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PROLOGUE 

Data is power. Nowadays we are all aware of it. More data leads to smarter decisions. Huge                 
companies can change the world based on this fact. Google knows everything I search on the                
web, Amazon knows what stuff I buy, even the more private things, Facebook knows which               
people I hang out with. All this data retrieved by big companies is very powerful, as they                 
proved. And all these private companies can use our private data in tons of different ways. 
 
It is easier for companies to work with their own data since they control everything about it:                 
the format, the period they retrieve it, how to store it, how to retrieve it, etc. Since this                  
end-of-grade project is developed in Zurich, an insurance company, we are interested in data              
related to risks and direct danger for properties. It was shown that natural disasters take their                
toll on insurance companies ​[1]​. How can they succeed when they don’t have the              
infrastructure to measure these data? 
 
Open Data is the forgotten youngest brother. There is no general rule when updating open               
data, so it is very difficult to work with more than one dataset at the same time. What could                   
happen if we take several open datasets with regularity, in order to get good quality and                
updated data, and make them capable of working together for a concrete objective? How              
smart could our decisions be if we use only data that is freely available for everybody? 
 
This project is an initial attempt to improve the usage of this open data, the first step towards                  
a practical tool that can be the basis of any data-driven company in the future. 
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ABSTRACT 

In this project, we will develop a cloud-based data catalog. We will first determine the               
services that will be necessary and afterward build the infrastructure in Azure. Then we will               
explore the Open Data sources available and evaluate them to see if they fit our purposes.  
Once they are selected we will periodically retrieve and transform this data to a similar               
format in order to work with all the datasets at the same time. Once this part is concluded, it                   
will provide us an automatically updated data catalog with information from different            
sources. We will also see some use cases and will start using this data to give useful                 
risk-related information.  
 
  

RESUM 

En aquest projecte, desenvoluparem un catàleg de dades basat en el núvol. Mostrarem els              
serveis que seran necessaris i aixecarem la infraestructura a Azure, després explorarem les             
fonts de dades obertes disponibles i les avaluarem per veure si s'ajusten a les nostres               
necessitats. Un cop seleccionades, les extraurem periòdicament i les transformarem en un            
format similar per poder treballar amb tots els conjunts de dades a el mateix temps. Una                
vegada això estigui funcionant, ens proporcionarà un catàleg de dades actualitzat           
automàticament amb informació de diferents fonts. També veurem algun cas d'ús i            
utilitzarem aquestes dades per donar informació útil relacionada amb el risc. 

 

RESUMEN  

En este proyecto, desarrollaremos un catálogo de datos basado en la nube. Mostraremos los              
servicios que serán necesarios y levantaremos la infraestructura en Azure, luego           
exploraremos las fuentes de datos abiertos disponibles y las evaluaremos para ver si se              
ajustan a nuestros necesidades. Una vez seleccionado, los extraemos periódicamente y lo            
transformaremos en un formato similar para poder trabajar con todos los conjuntos de datos              
al mismo tiempo. Una vez esto esté funcionando , nos proporcionará un catálogo de datos               
actualizado automáticamente con información de diferentes fuentes. También veremos algún          
caso de uso y utilizaremos estos datos para dar información útil relacionada con el riesgo.  
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INTRODUCTION 

Motivation 

Over the last few years, Data has been proclaimed as the new Oil ​[2]​. That leads both people                  

and organizations to start storing huge amounts of it. Ninety percent of the world’s data was                

generated in the last two years ​[3]​. The question now is: What to do with all these data?                  

Governments and organizations have released several amounts of data for free, or what is              

known as Open Data.  

 
Fig. 1: Data generated per year.  

(1 Zettabyte = 1 billion Terabytes) 
 

Some parts of this data have been explored for very concrete purposes. It’s not easy to work                 
with different open datasets from different sources since there is not a pattern or a general                
way to extract and save it. Not even the format. 

There is Open Data from a lot of different topics, we can find from worldwide economic                
statistics to registered dog names . We will mostly focus on daily nature-related data.             1 2

Another problem with this kind of data is the lack of periodicity on its launch, so we can have                   
no data for several weeks and we want to maintain an updated Data Catalog as long as it is                   
possible. 

My project director in Zurich, Jose Luis, shared with me an experiment he ran in a congress.                 
They set a table with Lego pieces separated in two different groups: one group had the pieces                 
classified by type and color and the other one was in a box, all mixed up. They told two                   

1 Datosmacro.com. Retrieved from ​https://datosmacro.expansion.com/. 
2 Dog Names. (2019, March 29). Retrieved from ​https://catalog.data.gov/dataset/dog-names​. 
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people to build a small Lego car in less than a minute. The person who worked with the                  
ordered pieces built it in a few seconds while the other did not finish in the given minute. 

This shows that even though the information is available out there, in the box that represents                
internet, we won’t be able to make proper decisions and build good models if we do not have                  
it cataloged and classified. We could end up with a car built with the wrong pieces or, in case                   
we end up with a functional car, it could have taken too long to build it. 

This project will set the basis of the data catalog for the data scientist so that in the future, the                    
smartest decisions can be made based on our extracted data (Data-driven decisions). 

Objective 

The objective will be to improve the efficiency of the workflow by integrating multiple              
sources of open data. This data must be treated and transformed into a format that allows                
working with the most commonly used frameworks. We also expect the data to be daily               
updated, or as soon as new information is available. To prove that, we expect to have some                 
use cases that work with all this data. 

All this will be set up in the cloud, concretely, we will work with Microsoft Azure. We will                  
use Databricks for the code and Azure Data Lake Storage (ADLS) to store the data. In the                 
end, we expect to have: 

1. A set of programs that can be automatically executed every certain amount of time,              
that retrieve information through APIs, requests or web scraping from different           
sources. 

2. A Data Catalog where all this data will be stored, classified, organized and updated              
periodically through the programs. 

3. Some use cases to show which risk-related decisions can we make using only the              
extracted data. 
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1.  SETTING UP THE ENVIRONMENT 

1.1  What is Microsoft Azure 

“Microsoft Azure is an ever-expanding set of cloud services to help your organization meet 
your business challenges. It’s the freedom to build, manage, and deploy applications on a 
massive, global network using your favorite tools and frameworks. ”  3

Leaving the marketing explanation of what is Azure aside, we could describe it as a portal                
with a catalog of cloud services given by Microsoft. Those services are modular and work               
quite well between them. It uses all the technologies and advantages involved in distributed              
and parallel services with an abstraction layer that allows us to think at a much higher level.  

It works by what they called Azure Subscription. It grants us access to the more than 800                 
services that they have in the catalog. Each subscription manages its own permissions,             
services, security, and costs. It can be used to create different environments for different              
purposes, commonly: dev, test, and production. In big companies like Zurich, they have             
subscriptions per each country too. 

 
 

Fig 2: Typical distribution of Subscriptions in Azure​[4] 

 
  

3 What is Azure-Microsoft Cloud Services?. Retrieved from 
https://azure.microsoft.com/en-us/overview/what-is-azure/. 
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1.2  Azure Data Lake Storage (ADLS) 

“Azure Data Lake Storage is an enterprise-wide hyper-scale repository for big data analytics             
workloads. Azure Data Lake enables you to capture data of any size, type, and ingestion               
speed in one single place for operational and exploratory analytics. ” 4

In this project, we will be using ADLS as storage for our data since it is already included in                   
Azure and its build for use cases like ours.  

 
Fig 3: ADLS documentation schema 

 

It is a distributed file system like Hadoop and it could work with all the Hadoop ecosystem. It                  
is also compatible with Hadoop analytic frameworks such as MapReduce and Hive. It             
provides unlimited storage as long as we paid for it. It was created for Big Data, so it doesn’t                   
impose any limits on account size, file sizes or amount of data. Individual files can range                
from kilobytes to petabytes. 

4 What is Azure Data Lake Storage? Retrieved from 
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-overview. 
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ADLS is built for running large-scale analytic systems that require massive throughput to             
query and analyze large amounts of data. The data lake spreads parts of a file over a number                  
of individual storage servers. This improves the read throughput when reading the file in              
parallel for performing data analytics. 

It provides industry-standard availability and reliability. Our data assets are stored durably by             
making redundant copies to guard against any unexpected failures. ADLS also provides            
enterprise-grade security for the stored data. 

 

1.3 Azure Databricks 

“Azure Databricks is an Apache Spark-based analytics platform optimized for the Microsoft            
Azure cloud services platform. Designed with the founders of Apache Spark, Databricks is             
integrated with Azure to provide one-click setup, streamlined workflows, and an interactive            
workspace that enables collaboration between data scientists, data engineers, and business           
analysts. ” 5

Databricks is meant to be used as a Python notebook as could be Jupyter. There exists a                 
pipeline in Azure to work with data. This involves several services that cover Ingest, Explore,               
Preparation and Train, Model and Serve, Store and Visualize. Every one of these tasks can be                
performed by a different service. Databricks work for the preparation and training of the data,               
but we will also use it to retrieve the data using Python. 

 
Fig 4: Recommended pipeline from Azure 

 

Databricks provide some tools that will be very useful for us along with this project. The first                 
one is the possibility to create different clusters for different projects and attach them to some                
specific notebook. Those clusters can be attached and detached any amount of time. Clusters              

5 What is Azure Databricks? Retrieved from 
https://docs.microsoft.com/en-us/azure/azure-databricks/what-is-azure-databricks​. 
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are scalable and we can decide which one with which version of Python, Scala and Apache                
Spark version we want. We can also decide the memory, the number of cores and the number                 
of workers desired. 

 
Fig 5: Cluster configuration window 

 

Each cluster starts with a few libraries installed but we can add new libraries from different                
sources, e.g. similar to pip install for Python if we have the library in jar format, or the whl,                   
or the egg, etc. Almost all libraries that we are going to use can be installed by PyPl (similar                   
to pip install). 

 
Fig 6: Installing a new library with PyPl 
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Another good feature of our project is job scheduling. This part will be very important since                
we want to retrieve data every day to actualize our datasets. Here we must declare which                
Notebook will be executed, with which parameters, if necessary, and dependent libraries. We             
decided to assign our cluster as a default since it worked during all the tests. We can decide                  
the period for the job. Another interesting feature is that it can send emails when it fails or                  
succeeds. 

 
Fig 7: Job configuration window 

 

Finally, the main tool of Databricks is the notebook. There we will program the main part of                 
this project. Here you can program in some programming languages by writing some             
commands at the beginning of each cell but we will mainly use Python. It is very similar to                  
Jupyter Notebooks but with the extra thing that you can edit notebooks online, so more than                
one person can be coding and executing at the same time. 

 
Fig 8: Example of Azure Databricks Notebook 
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1.4 Linking ADLS with Databricks 

“In this section, we will describe the necessary steps to link our ADLS and Databricks so we                 
can work with files stored in ADLS as local files.” 

We want to store data in our Data Lake (ADLS) but we will work from Databricks. That                 
means that we must connect in some way these two services. As we saw previously, those                
services are meant to work together, so it shouldn’t be a big deal. This can be done in                  
different ways, we will do it in Python from the Databricks Notebook. 

Every service in Azure has some identifiers. When we connect two services we must find               
some of them, like the client-id, the credentials, the refresh URL and the source. 

 
Fig 9: Code to connect with the ADLS, credentials censored 

 

Once this is done there is no need to execute it never again. From now on we can access our                    
ADLS as if it was our local directory on the computer. We can open, close and create files                  
using the common function in Python without worrying about all the distributed and parallel              
mechanisms behind. 

 
Fig 10: Working with ADLS files as local files 
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2. OPEN DATA PORTALS RESEARCH 

2.1 First approach 

“We will see our research procedure when looking for Open Data and which criteria we               
followed when discarding datasets.” 

When looking for Open Data we can use some useful tools and known portals. Kaggle , a                6

subsidiary of Google LLC, is an online community of data scientists and machine learning              
practitioners. It allows users to find and publish data sets, explore and build models in a                
web-based data-science environment, work with other data scientists and machine learning           
engineers, and enter competitions to solve data science challenges. 

We are interested in Kaggle datasets. There are huge amounts of them of different themes and                
they are evaluated by their usability. Currently, we can find more than 25k datasets available               
in the following format: 

 
Fig 11: Data Catalog from Kaggle 

 

6 Open Datasets and Machine Learning Projects. Retrieved from ​https://www.kaggle.com/datasets 

7 

https://www.kaggle.com/datasets


It has a lot of good things, we can preview each file containing the data, we can see the                   
distribution of each column in our dataset, a little explanation of itself, etc. It provides us                
good tools for data exploration and we can easily understand how it works. 

The bad thing about Kaggle datasets is that they are not subject to revisions and periodic                
updates. This is because in the end they are uploaded by users who find it and, usually but not                   
always, clean this data and update it. Some users comment on the dataset information where               
they find it, so we could track it back to the source and check if we could periodically                  
download from there. 

 
Fig 12: Description and Data exploration of a Kaggle Dataset. 

 

Another useful tool released at the end of 2019 is Google Datasets . It works like the images                 7

searcher but for datasets. It is still very new and it is subject to several changes but the new                   
come tool from Google is probably going to be the main reference when searching for Open                
Data. It also has a few filters that can be useful like the format we want it, if it’s free, if we                      
can use it for commercial purposes or when was it updated for the last time.  

7 Google Dataset Search. Retrieved from ​https://datasetsearch.research.google.com/ 
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Fig 13: Example of a search in Google Datasets 

 

Another option is to search for open data portals or websites that provide this information.               
We found some interesting options in our first approach. Eurostat has tons of datasets from a                8

lot of themes. We will look for those related to natural disasters. 

 
Fig 14: Eurostat search example for natural disasters 

8 Your key to European statistics. Retrieved from ​https://ec.europa.eu/eurostat. 
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Checking out the data and the formats we identified some potential issues. This data cannot               
be used in this project because most of them are only for Europe and Zurich has clients                 
worldwide. The company told us that we must also cover at least the USA where natural                
disasters are a real problem. We kept looking and then found some other interesting Open               
Data portals. 

We also found Europa Press portal , which claims to have more than 57M datasets, but               9

unfortunately, they show almost no results when we search for climate data and found that               
most of them are only related to Spain. 

Datosmacro shows data at a worldwide level and they are supposed to have a lot of                
information but they only provide a few tables on their web page comparing very few rows of                 
their information. In this case, we started a process of web scraping to retrieve this data. 

 
Fig 15: Successful web scraping code and output 

 

We started with a simple table before trying to go further and we succeeded. Using libraries                
like requests to get to the link, BeautifulSoup to navigate through the HTML of the web and                 
pandas to save the data in JSON format we end up with the table on the web in our data lake.                     
We noticed that using web scraping could put us into trouble in some different ways. 

First of all, our data is expected to be retrieved with some frequency, so we must be sure that                   
the source where we get it has the updated data every time we visit it. Even if this was the                    
case, which was not since Datosmacro follows a blog structure and new data is published as a                 
new post in another link so we cannot retrieve new information from the same link. Also, if                 
we apply this technique we are subjective to fail if the web page changes its structure. This                 

9 La actualidad informativa, en datos. Retrieved from ​https://www.epdata.es/. 
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kind of change is not unusual since nowadays is very easy to change the visuals with no need                  
to code. 

Another problem is that web scraping is what could be described as ​“alegal”​, it means that it                 
is not strictly forbidden by law but depending on how it is done it could be interpreted as                  
illegal. All related to extracting information that was not given to us directly could be seen as                 
stealing information. We must consider all of this when extracting data and be sure that               
everything is Open Data with all his characteristics. We will try to use web scraping if and                 
only if it is absolutely necessary and ensuring that we are retrieving Open Data. 
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2.2 Going to the source 

“When going to the source of the data we find that data can be represented in very different                  
ways. We must transform this data into the same format. This is the toll to pay when we want                   
periodicity and reliability.” 

After the first approach, we decided that the best idea is going directly to the source. Using                 
the tools described before we can find where to extract exactly the raw data. We can also                 
assume that if the data that we are looking for is in Kaggle or passes the Google Datasets                  
search filters it is Open Data. 

We want all data related to natural disasters, so some of the datasets that we are looking for                  
are: Hurricanes, Earthquakes, Wildfires, Volcano eruptions, Weather Forecast, etc. The main           
distributors of all this data are usually governments or associations like NASA that claim that               
the data that they give are Open Data. 

Another point that we didn’t mention but it is also important when referring to Open Data is                 
the reliableness of the data. We want to be sure that what we get is correct in order to make                    
good decisions in the end. That’s why we must dedicate some extra time to this part to ensure                  
that our sources are trustful.  

After some research, we end up with good quality sources like the National Oceanic and               
Atmospheric Administration (NOAA), NASA, United States Geological Survey (USGS), and          
open weather API. All of these sources are considered trustable enough for our purposes. 

Once we found our sources, we manually downloaded the data. That is another problem with               
Open Data, each dataset is in a different format and has a different structure. We find data                 
that is in CSV, JSON, KML, etc. Each format has a specific purpose, some of them like KML                  
are created to be visualized in some specific viewers like MyMaps from Google, others are               
more generic like XML or JSON. We must define a general pattern for the data. 

 

12 



 

Figure 16: Comparison between KML (Hurricanes) format, CSV (Volcanoes) format and 
nested JSON (Weather) format. 
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3. EXTRACT-TRANSFORM-LOAD (ETL) 

“In computing, extract, transform, load (ETL) is the general procedure of copying data from 
one or more sources into a destination system that represents the data differently from the 
source(s) or in a different context than the source(s).” 

ETL is an important part of the ecosystem of Data Science and Business Analytics. We will                
focus on this part of this project. We can define extract as the process of reading data from a                   
database. In this stage, the data is collected, in our case from multiple and different types of                 
sources. Transform is the process of converting the extracted data from its previous form into               
the form it needs to be so that it can be placed into another database. Finally, the load is the                    
process of writing the data into the target database, in our case our ADLS. 

 
Fig 17: Schema of  the ETL process 

 

3.1 Prerequisites using Databricks 

As we explained before Databricks is like a Python Notebook with some extra functionalities.              
We will follow some made-up standards in order to set a pattern when coding.  

● Each source will be extracted and treated first individually in a different notebook.  
● Every notebook will use the same cluster.  
● The code must be optimal but also readable. 
● The first cell will be called Main Parameters, there we will place all the imports and                

functions that will be used along the process. 
● The data must be saved in any pandas exportable format (JSON, CSV, etc). 
● All tables must have the Longitude and Latitude column 
● All data must be transformed to table format, no nested relations are allowed. 
● The job must return a Succeeded if all the data was retrieved or Failed if no data were                  

extracted.  

14 



 

3.2 Using Open Weather API 

“The term API refers to a specific kind of interface between a client and a server, which has                  
been described as a “contract” between both - such that if the client makes a request in a                  
specific format, it will always get a response in a specific format or initiate a defined action.” 

After trying some other options, we ended up with Open Weather API as the way to retrieve                 
our weather forecast information. It has the biggest dataset of cities and it is updated every                
day. It also contained a lot of information that other services do not provide, like the speed of                  
the wind, pressure, humidity, etc.  

The first thing to do is to download the dataset of cities. We had more than 200K cities with                   
its id, name, country, longitude, and latitude. We will need this information since we must               
call the API using the exact names from this dataset, otherwise, we will receive an error.                
Instead of downloading all the information for all the cities, which would generate too many               
gigabytes per day, we will do another approach.  

We will always download the information about certain cities, the most important ones in              
Europe and the USA. Then we will also download the information of 5 random cities per                
country to have a representation of each country. The schema is the following. 

 

Step Task 

1 Get our historical dataset 

2 Retrieve the information for important cities 

3 Select 5 random cities per country 

4 Retrieve information of the random cities 

5 Append this new information to the historical dataset 

6 Save this data as the new historic 

 

Expected Result Dataset of cities and timestamps with the weather forecast 
information. Some cities will be repeated, like the important ones. 
This dataset can be later ordered by the city or timestamp. It will 
increase its size every day it is executed. 
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3.2.1 Implementation 

“In this section, we will see the implementation of the Weather ETL process.” 

First of all, we have created a file in our ADLS where to store all the data. We have created a                     
master folder called OPENDATA, then a subfolder called Natural Disasters. Here we will             
place all the data that we will retrieve related to nature-related events. Inside this folder we                
created a new folder called Weather so we know exactly what’s inside. Finally, a folder               
called Global, since we want to store data form cities all around the world, not only a                 
concrete country. We will follow this schema for every source of data. 

The next step is to create a dummy empty historic to start. We’ve saved the cities list in the                   
ADLS. We have been searching for some important information about the Open Weather             
API, so now we know the format of the response and that no more than 3600 requests per                  
hour are allowed. 

Request Response 

requests.get('http://api.openweathermap.org/
data/2.5/weather?q=london&APPID=e6d51
0ebcf2570e71ea55ef953dfecbd') 

{​"coord"​:{​"lon"​:-​0.13​,​"lat"​:​51.51​},​"weather
"​:[{​"id"​:​804​,​"main"​:​"Clouds"​,​"description"​:
"overcast 
clouds"​,​"icon"​:​"04d"​}],​"base"​:​"stations"​,​"m
ain"​:{​"temp"​:​282.55​,​"feels_like"​:​278.83​,​"te
mp_min"​:​281.15​,​"temp_max"​:​283.71​,​"pressure"
:​1020​,​"humidity"​:​81​},​"visibility"​:​10000​,​"wi
nd"​:{​"speed"​:​4.1​,​"deg"​:​200​},​"clouds"​:{​"all"
:​90​},​"dt"​:​1577969000​,​"sys"​:{​"type"​:​1​,​"id"​:​1
414​,​"country"​:​"GB"​,​"sunrise"​:​1577952366​,​"su
nset"​:​1577980925​},​"timezone"​:​0​,​"id"​:​2643743
,​"name"​:​"London"​,​"cod"​:​200} 

 

Knowing the structure of the response, we can now select the information that we want to                
keep. Some cities give more parameters than others, so we must be sure to claim only those                 
parameters that are in every city in order to have a consistent dataset. We will work first with                  
the hardcoded list of cities in the same format that is in the cities database. Our list includes                  
the most important cities in Europe and the USA. We read that list from an Excel file that                  
other teams have available, so they can add any city at any moment. 

For each one of these cities, we make a request to the API. We need to hold each operation at                    
least one second to be sure that we are not trespassing the maximum requests per hour. The                 
idea now is to not request more than 3600 cities and to execute this code only once per day                   
but we don’t know if this is subject to changes so we will place the wait command just in                   
case. The strategy here is to have one dictionary object, the JSON with the request and an                 
empty dictionary that will be filled. We will extract only the info that we want from one                 
dictionary to another. This dictionary is transformed into a dataframe and append to our              
historic. 
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Fig 18: Data extraction of the common information 

 

The data extraction process is the same for randomized cities. What matters here is how we                
select 5 random cities from each country. To do this we have created a function called shuffle                 
and reduce, the output of this function is the list of cities for the new request. We send the list                    
of all cities minus the hardcoded ones in order to avoid duplicates. We also delete some                
special cases such as the world and the continents itself, we want only cities. This function                
receives the amount of elements that need to hold and the column. Then it is shuffled and                 
then we only keep the first N elements. 

We repeat the data extraction process with this new list and append the results to our global                 
historical dataset. 
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3.3 Volcano eruptions Dataset 

“Volcanoes eruptions are another natural disaster that causes a lot of damage. We can think               
that nowadays they are less frequent, but the truth is that we don’t need huge explosions of                 
magma and lava to cause damage.” 

It was difficult to find a good dataset of volcanic eruptions since they are not so common and                  
they are not tracked daily, like the weather forecast. The National Oceanic and Atmospheric              
Administration  (NOAA) had a pretty good history with a first record in 4360 BC. 10

The most interesting thing is that they also have some nice information that could help an                
insurance company like Zurich, such as the number of houses that were destroyed, the              
damage caused to the infrastructure in millions of dollars, the injuries, missings, and deaths.              
It also has the Longitude and Latitude of the volcano, so we will be able to relate it with other                    
datasets in the future. Not only this but they also tracked the total effect of the volcano, it                  
means that if the volcano also generated a tsunami or earthquake it is also measured. 

 
Fig 19: Volcanoes Dataset filter by Damage 

 

As we can see in the Figure 19, this dataset contains a lot of information. Every column is an                   
important parameter of the volcano, and we got more than 30.The only problem with this is                
that the way to get to the data is through filling a form and then sending it. It looks like we                     
will need to do some web scraping. We will try to be the least restrictive possible, so we                  
download all the dataset and then if we need to filter we can do it from our data in our ADLS. 

10 NOAA. (2012, February 10). National Centers for Environmental Information (NCEI). Retrieved from 
https://www.ngdc.noaa.gov/. 
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Fig 20: Volcanoes Form 

 

A good thing about this dataset is that when it is updated they add the new data to the                   
historic. This means that we only need to check it every day and replace the old data with the                   
new one instead of keeping a copy of what exists and then append the new information. The                 
procedure will be much shorter. 

Step Task 

1 Fill the form in a way that maximum information is retrieved 

2 Transform the data into the desired format 

3 Replace the old dataset with the new one 

 

Expected Result A dataset with the eruptions of volcanoes until the present with all the 
information related to the damage that it caused. 
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3.3.1 Implementation 

“In this section, we will see the implementation of the volcanoes ETL process. We did some                
“network” scraping to find the request.” 

The first thing to do in this case is to explore the structure of the web page to see if we could                      
find the request behind the select data button. While testing we found a way that instead of                 
sending us to the web view of the table it downloaded a file. Instead of web scraping the page                   
we must look in the Network part and check if we can find the file path. 

 
Fig 21: Network Scraping 

 

Once we find the link we can use it as a request and see what it returns. We get a text that is a                        
representation of the table in TSV (tab-separated value). So thanks to tracking this we’ve              
done the two first steps at once. Looking at the query we find that there is a parameter that is                    
called “t”. If this is the current timestamp we cannot reuse the link because, in the end, we                  
will not download any new information.  

We made a test and used the same link in November and later in December. It showed a new                   
volcano eruption on the 9th of December without changing the link, so we are now sure that                 
this link retrieves the information until the present, no matter when it was executed.  

Once this was checked we can now save the file and replace it every day without worrying                 
about losing information. In the end, we have got a very simple code. Basically, we send a                 
request and store that output as .tsv file in our ADLS.  
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3.4 Earthquakes Dataset 

“Earthquakes are very common in America. If the infrastructure of the buildings is not              
specifically prepared to resist an earthquake it can causes damage by millions of dollars. It               
makes sense to track these events to consider them when calculating risks.” 

Also from the USA, we have the United States Geological Survey (USGS). This institution is               
specialized in tracking earthquakes all around the globe. They release the data in different              
formats, so we can choose the one that better fits our purposes. In this dataset, we can find                  
daily information about the earthquakes every two and a half days. Some of the important               
parameters that we have are timestamp, latitude, longitude, magnitude, type, place, error,            
status, location, etc. We will start tracking all this information and storing it. 

This is the same source that Google uses when it displays information about earthquakes, so               
we can say that it is trustable enough. The problem here is that they don’t upload the whole                  
historic every day, so we must create our dataset daily while monitoring this information.              
Ideally, we could find a larger dataset of earthquakes with the same information. 

Step Task 

1 Download earthquake daily information 

2 Append to our historic or set this day as historic if not exists 

3 Delete duplicates from the historic 

 

Expected Result A dataset with all the earthquakes in the world updated every day. 
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3.4.1 Implementation 

“In this section, we will show the procedure that we followed to end up with historical data                 
since the year 2000 and how we extracted and appended it to have a dataset that is updated                  
automatically every day.” 

The webpage has a tool that is a filter to show the earthquakes with custom filters. We will                  
use this to get our historic data. We can force it to show it as CSV instead of using the                    
interactive map. At first attempt, we’ve tried to retrieve data for the last 20 years. It broke and                  
show an error because we are trying to download more data than what is allowed, but in this                  
error, we had access to the request query, so now we can tune it by requests. 

Our request is now retrieving data from the last 20 years, all those which has magnitude more                 
than 6. We only need to save it to our data lake and set it as initial historical data. 

 
Fig 22: Historical Earthquakes Data from USGS 

 

Once we have this we only need to get the daily data and add it to our table. We will use                     
requests in Python to retrieve this information, save it as daily and work with it. Since pandas                 
cannot pass raw text in CSV to a Dataframe object we will store it temporarily in the ADLS                  
and then retrieve it from them. The same happens with the historic. The idea is to run this                  
notebook once per day, so we need to delete the duplicated entries to not store irrelevant data.  
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3.5 Hurricanes to risk 

“From June to November, the USA suffers what they call hurricane season. With every              
passing year, these hurricanes are becoming more and more powerful. Nowadays, they cause             
several damages to both people and properties. Zurich was worried about the fact that they               
have no way to measure these events even though they have a big impact on the company.” 

This is probably one of the most difficult datasets to work with. Hurricanes are in general                
hard to transform into data, they are generated from different ways and they don’t usually               
have a center. A hurricane can also generate other dangerous winds that take other routes.  

Again, NOAA is the source of this information. The data is in KMZ/KML format and it is                 
updated every hour if there is a hurricane or tropical storm. This means that most of the year                  
there are no information available. 

Instead of storing the natural disaster itself like we did until now, Zurich want to have a                 
dataset of USA cities and know how prone a city is to suffer any kind of dangerous wind, this                   
go from tropical storms to hurricanes. This must include not only the current hurricanes but               
also to historical data. The data visualization team also require us to store the hurricane itself                
in JSON format so they can visualize it in Power BI. 

 
Fig 23: KML with probabilities of Tropical Cyclones 

 

We have the hurricane represented as several points and each point has a value according to                
its danger associated. The idea is to create a cloud of points and connect them, and then check                  
whether or not a city is inside the hurricane. We need to take into account the fact that not all                    
points need to be considered as the hurricane itself. The value of each point represents the                
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probability of having a phenomenon in this area, so we could ignore those points with low                
values. 

Another problem is that not all the points in the dataset belong to the same hurricane, as we                  
can see in Figure 30, several hurricanes could be happening at the same time. If we connect                 
these points indistinctly we will find that all the space between hurricanes is also considered               
part of the hurricanes. 

We also need to find a big dataset of cities from the USA. We want as much accuracy as                   
possible, so bigger datasets of cities will give us better results. While using the Open Weather                
API we find that it has information from tons of cities around the world. If we could list all                   
the cities that Open Weather API uses and then filter by the country we could have a good                  
enough dataset where to start. 

This new approach to the problem will make us work with two different Open Data datasets                
and also start applying some models that data scientists could apply in the future, such as                
clustering in order to detect different hurricanes.  

 

Step Task 

1 Find a good dataset of cities from the USA 

2 Download hurricanes information every 3 hours 

3 Transform daily data to interpretable format 

4 Find a Historic Dataset of hurricanes 

5 Transform the historic if necessary 

6 Apply K-means to detect different hurricanes for all the data 

7 Check whether or not the cities are inside the dangerous zone 

8 Extra: Plot the results in Power BI 

 

Expected Result A dataset with the USA cities and information about how many times 
they were affected by the three types of dangerous winds (Tropical 
storms, cyclones, and hurricanes). This dataset must be also updated 
daily. 
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3.5.1 Implementation 

“In this section, we will see how we selected the cities dataset, the daily hurricane               
information and the hurricanes historical data. Then we will show its transformations, and             
the techniques applied to calculate the number of times that a city has been in danger.” 

For the city dataset search we went back to Open Weather API, we found that we can                 
download a JSON file with the id that they use when calling the API, the coordinates, the                 
country and the name of the city. This is great because we can filter by country. When we                  
filter by the US we find that we have 43191 cities homogeneously distributed. 

 
Fig 24: Coverage of cities in the USA 

 

For the daily hurricane dataset, our first intuition is to download the data from the NOAA                
web page and try to manually visualize it in Power BI. Even though the main purpose in                 
Power BI is to visualize data, we find that it has no support for either KMZ or KML. We                   
investigated the program and tested several files that could be displayed on a world map. The                
conclusion was that Power BI mainly works with tables, and the way that it has to put points                  
in a map is having a column that represents the longitude and another one that represents the                 
latitude. 
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It makes sense that if a KMZ/KML file can be displayed in Google Maps, and Google Maps                 
uses longitude and latitude, this information would be at some point inside the structure of the                
file. So the first thing to do is to read the format of the file. 

 
Fig 25: Simplified version of what a KML file contains 

 

As we can see in the picture, the raw data in a KML file is displayed as XML. The data is                     
quite long but in the picture, we can see the structure. Points are displayed in an array and                  
they are divided by polygons, lines or points each one with the different structures depending               
on the type. The first thing we must do is transform this XML file to something else that we                   
can work with, for example, JSON. 

We have created a function, using an external library, to convert XML to JSON by only                
calling this function. Now we can navigate through the data easily using Python. Once we               
downloaded the data, we saw that the first KML file could not be represented in Google                
Maps.  

If we open the file and read it with the parser we can see that this file is not a common KML                      
file. It contains a kind of index and it redirects us to other links that have attached a KMZ                   
file. We saved every KMZ file independently. After some extractions of the data, we can see                
that every day we are getting different KMZ files. If there are any hurricanes or tropical                
storms they can have, or not, information about its cone of uncertainty, past track, track               
forecast, initial extent of winds, etc.  
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The most interesting, and constant, file is the one with the probability of having different               
dangerous winds, this includes 34-knot winds (Tropical Storms), 50-knot winds (Cyclones)           
and 64-knot winds (Hurricanes). Since these files are the only ones that are uploaded every               
day we will focus on them. We will keep storing the other files as well but we will focus on                    
the probability ones. A representation of these files is what we see on Figure 23. 

It is easy to infer from the probabilities files. We can see the probabilities as the impact                 
caused by those dangerous winds. Meaning that zones with probability more than 70% are              
closer to the danger and are very likely to be affected by the winds. 

The KMZ format is a compressed version of the data, the structure of which depends on the                 
shape of the hurricane. This variability in the data made it especially challenging to obtain a                
readable JSON version from the KMZ. To address this issue, we have created a program that                
manages all the KMZ versions and transforms it to obtain a stable JSON file of the hurricane. 

This file is a readable version of the KML original file. We can see the structure in Figure 25.                   
But what we want is a new version that contains each point of the hurricane and information                 
about it. After applying non-trivial transformations to the data we ended up with a JSON file                
where each row contains the longitude and latitude of the point, the kind of wind, the                
timestamp and the probability that this point is affected by the winds (we will consider it as                 
magnitude). We had 30k ~ 60k rows on average for each hurricane. We tested the new                
format in Power BI. 

 
Fig 26: Hurricane Probabilities in Power BI 

 

Even though the visualization can look worse than in Google Maps, Power BI allows us to                
apply filters, show the data in several ways, clean the data, work with more than one dataset                 
at the same time and even create a video of how the hurricanes evolve based on the                 
timestamp of the data. 
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For the historical dataset, we went back to Kaggle, there we find two historic datasets from                
1851 until 2016. We have a dataset for the Atlantic and the Pacific oceans. Both of them are                  
interesting since those are the oceans that surround the USA. As expected, the problem with               
these datasets is that they are in a different format than what we have done before, so we need                   
to transform it before proceeding. This is one of the main issues when working with Open                
Data. 

Until now we were able to transform the KMZ files to a JSON with the points delimiting the                  
dangerous zones of the winds. This new format is quite different. 

 
Fig 27: Historical dataset format pre-processed 

 

They use different coordinates systems, and then they assign a center of the hurricane. They               
make a distinction between winds that correspond to our tropical storm, cyclone, and             
hurricane. The gist of this is that they take four directions from the center, NE, SE, NW, and                  
SW and they indicate the distance in this direction where winds of that type happened. In the                 
end, we should be able to understand the shape of the hurricane based on this data. 

 
Fig 28: Visual representation of a hurricane in the new format 
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First of all, we want to transform the coordinates system. The first step is to pass from miles                  
to kilometers, this is only a multiplication. After researching we find that we can transform               
those distances in kilometers to coordinates following a formula that takes into account the              
fact that this distance belongs to a sphere, not a plane. 

Once this is done we must check if the data belong to the South or West, in those cases the                    
will add the minus before. Remember that we use the global system where coordinates go               
from left, negative, to right, positive, and from the bottom, negative, to the top, positive.  

Then we need to add or subtract that information depending on which row we are. For                
example, if we are in NE row we want to add the latitude and longitude, while if we are in                    
NW we want to subtract the longitude and add the latitude. We take into account the type of                  
wind that we are analyzing, so we also classify by tropical storm, cyclone or hurricane. 

We do this for both datasets, the Atlantic and Pacific. We merge this into a new dataset and                  
we have now a historic for the USA in a more treatable format. Now we must come up with                   
some method to see if cities were inside the danger area or not. 

We researched and find that exists a library called shapely​[5] that can create polygons from               
points and check whether or not another point is inside this polygon. The idea is to model our                  
hurricanes as polygons and our cities and points to see if they were affected or not by the                  
winds. 

If we apply this method directly to our cities we find strange results, like, most of the cities                  
are affected most of the time, even those that are in the center of the continent that we know                   
that they have never been reached by any kind of dangerous wind. This happens because we                
did not take into account the fact that we have several winds in one file and we cannot count                   
them as one single polygon. 

  
Fig 29: Expected representation vs real representation 
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As we can see in Figure 29 the polygon that we have has more lines than the reality. The                   
problem came when a city between winds is not in danger but with this representation it                
considers the space between hurricanes as a part of hurricanes. We need to find a way to                 
classify each wind individually. 

This problem is perfectly solved by any clustering method since what we have is a bunch of                 
unlabeled data points distributed in the space and we want to find reasonable groups of               
points. For this concrete problem, we will use k means​[6]​ from sklearn​[7]​ library. 

The first thing to take into consideration in this kind of problem is the number of clusters that                  
we should use. To do this we will use something called silhouette score. The silhouette value                
is a measure of how similar an object is to its own cluster (cohesion) compared to other                 
clusters (separation). The silhouette ranges from −1 to +1, where a high value indicates that               
the object is well matched to its own cluster and poorly matched to neighboring clusters. If                
most objects have a high value, then the clustering configuration is appropriate. If many              
points have a low or negative value, then the clustering configuration may have too many or                
too few clusters​[8]​.  

What we will do is to set a range of clusters, from 2 to 10, and see which score we get when                      
we test the k means model. We will pick the number of clusters that have the best score + 4                    
since we want to be sure that every hurricane has his own cluster. If we use more clusters                  
than necessary we can have one polygon divided into some parts, which does not really affect                
when we are checking if a city is inside or not. On the other hand, if we use fewer clusters we                     
could end putting in the same group two different hurricanes and had the same problem that                
we try to solve. 

 

   

   

Fig 30: Clustered Data (Polygons) from Hurricanes 
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Once we have the polygons of each dangerous wind individually the only thing left is to, for                 
every cluster, check our list of cities and set them as points. We check if the point (city) is                   
inside the polygon (hurricane), if this happens we will check the type of wind that we are                 
looking at, and then increase the times that the city was visited by this wind one time.  

Once this is done for the historical data we will go for the data that we retrieve every day. As                    
we know this data contains the probabilities, not the representation of the wind itself. We               
decided to filter this data for those values where the probability is at least 90.  

Now that we have a dataset with information about the city, coordinates, and name, and how                
many times it was in danger we can plot it in Power BI. We also added some filters in the                    
dashboard so they can filter with no need to code. They have an output window with the                 
number of cities affected by their current choice of filters. 

 
Fig 31: Power BI Dashboard with the Data and the Filters 

 

  

31 



3.6 Wildfires Dataset 

“Fire is another phenomenon that causes several damages to properties, it will be interesting              
to monitor this kind of events in order to evaluate the risk that has a certain property to be                   
involved in a wildfire based on his historical information.” 

It is well-know that fires are increasing as time passes. Events like what happened in               
Australia at the beginning of 2020, are very common this decade with an average of 2,279                
fires and 44,568 acres burnt per year. This factor is not been taking into account when                11

calculating the risk of a property, despite being one of the most devastating events that tend                
to destroy totally or partially the place where it was originated.  

It is interesting to track the fires that happen in nature but Zurich, as an insurance company, is                  
interested in all kinds of fires, especially those that occur in urban zones, like cities or towns.                 
We must find an updated and trustable dataset that tracks all these events. 

We find that NASA has a website with a map with wildfires and it is updated every 24, 48,                   
72 hours and even weekly. After searching and filtering with their web tool we saw that it                 
tracks even the fires reported by cities and towns. 

 
Fig 32: NASA Fire Map 

 

We want to extract this information and keep an updated database with all the fires tracked                
since the day we have started until the present. Since what we have is points in a map we                   
should probably work with KML/KMZ files. 

11 National Interagency Fire Center (n.d.). Retrieved from​ https://www.nifc.gov/fireInfo/nfn.htm 
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Step Task 

1 Extract information from the NASA Fire Map 

2 Transform this file from KMZ/KML to table 

3 Append to the historic if exists 

4 Upload the data to the ADLS 

 

Expected Result A dataset with the information of the fires since the day that the 
program is launched until the present, updated daily. 
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3.6.1 Implementation 

“We will use some techniques that we have learned during this project like Network              
Scrapping and KML/KMZ data extraction. Using all these known techniques and functions            
we can simplify all the processes.” 

We find on the web where we can download the data from the latest 24h, 48h or 7 days. The                    
format is KML as expected. It does not have API to retrieve this data but a button to                  
manually downloads. Using what we have learned while downloading volcanos we can do             
what we have called “Network Scrapping” and find the request that is sent when we press this                 
button. 

 
Fig 33: Network Scrapping with Wildfires 

 

Now we know the link where we need to request in our code. Using the same functions that                  
we have used when working with hurricanes, we extract information about longitude and             
latitude. Then we can also extract other interesting information that is displayed on the              
webpage like the timestamp, the brightness, which allows us to imagine the magnitude of the               
fire, the track, the scan, the satellite, if it was during day or night, etc. We save all this                   
information in a pandas dataframe. 

As we have seen, we can retrieve information from the last week, so the first iteration of this                  
project will be to download this file and set this dataset as historic, a poor one but NASA                  
does not provide any older information. Every day we extract the information and append it               
to the last historic dataset.  
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3.7 Automatization of the ETL 

“Here we will see how we automatized all the procedure through Databricks Jobs, to              
auto-download all the data daily.” 

Once we have created the Databricks Notebooks that do the ETL process, we want it to work                 
standalone and automated following our ​prerequisites​. The code was cleaned and optimized.            
We followed the given pattern where the first cell contains the main functions and              
parameters. All libraries were installed in the same cluster and checked that there are no               
compatibility errors. Notebooks were distributed according to their retrieval period. 

We ended with 3 different jobs. The first one is the Open Weather Data job. This Job                 
executes a notebook with all the extraction process of weather. This notebook has his own job                
because it is the one that takes longer, remember that we wait one second between requests to                 
not exceed the API request limit, and it can fail if we encounter some country that has a                  
non-ASCII character when looking random cities. It happened very few times (<1%), but if it               
fails we want to run the notebook again. It is executed every day at midday. 

The second one is called Hurricane Data Extractor Job. This job executes all the procedures               
from extracting the hurricane in KML format until the calculation per city in the USA.               
Instead of using the historic, we transform the KML to data points and apply the same effect                 
that we did ​before​. This job is executed every 3 hours. If there are any risks of dangerous                  
winds we want to monitor it as continuously as possible. Most of the time of the year this job                   
fails since, according to our prerequisites, it must return a Failed status if no data was                
retrieved. 

The last job is the Weather Job. This job contains all the code to download the rest of the                   
Open Data: Wildfires, Earthquakes, and Volcanos. It is executed every day at midday. 

 
Fig 34: Open Weather Data Job information dashboard 
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4. FROM DATA LAKE TO DATA CATALOG  

“If you have tons of data but you are not able to find what you need despite being stored, do                    
you really have any data?” 

It is said nowadays that too much information leads to disinformation. It is very common in                
big companies that every user has his data in a concrete format stored in different places. We                 
will try to solve this problem by implementing a Data Catalog.  

Until now we have been storing all our data in a Data Lake in Azure. The problem is that this                    
ADLS does not allow us to search in the data as well as we need. There is also the problem                    
that, like everything in Azure, needs a lot of permissions, and subscriptions. There are no               
previsualization of the data and no description at all. It is hard to understand what are we                 
looking at if we are not the owners and we know all the procedures behind. 

Ideally, we want something that can be understood by the marketing team, the human              
resources team, engineers, etc. In order to reach this, we require some features. 

● Description of the data. 
● Labeled data. 
● Downloadable data, manually and by API. 
● Uploadable data, manually and by API. 
● Easy to access. 
● Secure. 
● Optional: Previsualization of the data. 
● Optional: Agrupations of data by topic. 
● Optional: Agrupations of data by organization. 
● Optional: Search by content in data, not only by tags. 

We have done the research and contacted several companies that showed us their data              
catalogs products. We took into account all the previous requisites plus the economic cost              
that it has for the company, since that if it works, it could be implemented in the whole                  
company, even in other countries. After all this process we end up with 3 options.  
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4.1 Watson Knowledge Catalog vs Dremio vs CKAN 

“In this section, we will show, at a very high level, the process that we followed until we                  
made the decision.”  

After hours of meetings, discussions, and tests we end up with these 3 options as a possible                 
candidate for the Data Catalog.  

The IBM Watson Knowledge Catalog had very good functions that match with our             12

requisites. It had a very good searching system, they had internal tools that can be purchased                
as extras to do some prework on the data. They had a very good governance system, so not                  
everybody can manage, create, delete or even see all the data. This allows us to think in terms                  
of departments and countries, so we could put all kinds of data and then decide who had                 
access to what. 

Some bad things about this are the fact that it was too expensive, even the basic with no extra                   
add-ons or tools. All the data that we upload there will then belong to IBM, this could be a                   
problem when we manage personal information data. While negotiating with them they            
insisted on the fact that they require all the information about the project, even before we                
agreed to anything.  

Dremio had really good features. It had the option to create collections from ADLS. It also                13

had a very good governance system and its UI is easy to understand to everyone. It has a very                   
good feature, you can search from the tags and name but also from the values from the data.                  
It means that you could search for data from Europe, for example, and you will find those                 
tables that in some fields have Europe as value, not only on the tags. The price was correct                  
according to the given services. 

The bad things about Dremio are that data has no description. We thought that this problem                
could be solved by putting several tags but we find that the API does not support tagging. We                  
could automatically upload all the data but the tagging should be done manually. 

CKAN is an open-source data portal used by many governments in the world. It has a very                 14

good API that allows creating public or private datasets, divide them by groups,             
organizations, and tags. Is very intuitive and its search system can search by tags and word in                 
the description of the dataset and resource. It can previsualize the data in a table format or in                  
a map if the data has longitude and latitude. Since it is open-source the only cost will be the                   
maintainer of the machine where we decide to allocate it. 

12 Watson Knowledge Catalog. Retrieved from 
https://www.ibm.com/uk-en/cloud/watson-knowledge-catalog 
13 Dremio. Retrieved from ​https://www.dremio.com/ 
14 CKAN. Retrieved from ​https://ckan.org/  
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Some bad things about CKAN are that it must be deployed by hand. We need to work on the                   
front-end and back-end, there is no tool or online portal created like the cases before. This                
means a lot of work focused on developing a web.  

Regarding the required features we can see that all of them cover almost every feature, even                
the optional ones: 

 Watson 
Knowledge  Dremio CKAN 

Description of the data.  ✔ ✖  ✔ 

Labeled data.  ✔  ✔  ✔ 

Downloadable data, 
manually and by API.  ✔  ✔  ✔ 

Uploadable data, manually 
and by API.  ✔  ✔  ✔ 

Easy to access. ✖  ✔  ✔ 

Secure.  ✔  ✔  ✔ 

Optional: Previsualization 
of the data.  ✔ ✖  ✔ 

Optional: Agrupations of 
data by topic. ✖ ✖  ✔ 

Optional: Agrupations of 
data by organization.  ✔ ✖  ✔ 

Optional: Search by content 
in data, not only by tags. ✖  ✔ ✖ 

 

In more general terms we can compare the pros and cons of each option: 

Watson Knowledge 

PROs 
● Pre-work data. 
● Powerful Searching. 
● External support 

CONs 
● Expensive. 
● Loss of ownership of data. 
● Not an internal tool. 
● They ask for too much information 

about internal projects.  
● Not trustable. 
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Dremio 

PROs 
● Good price. 
● Integration with ADLS. 
● Good UI. 

CONs 
● No description of the data. 
● Not taggable by API. 

 

CKAN 

PROs 
● Free. 
● Internal tool. 
● Has most of the features. 
● Adaptable UI. 
● Good enough search system. 

CONs 
● It must be developed from 0. 
● Support only in forums. 

 

After taking into account all the things mentioned before we ended up choosing CKAN as               
our Data Catalog. It was the most complete option after all. We decided that it will be                 
running in a Virtual Machine in Azure. In this way, we can adapt the machine according to                 
our needs and it is running in the cloud.  
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4.2 CKAN Overview 

“In this section, we will explain how does CKAN works from a user/admin point of view, all                 
of the available actions that can be performed from the UI. ” 

We find out a template and we modified some files to change the visualization of the catalog                 
to make it more Zurich friendly. We used MobaXterm to access the data of the web via ssh.                  
We will focus more on the functionalities rather than the visual aspect since this is not our                 
scope in this project. 

 
Fig 35: Homepage of the Data Portal 

 

As we can see, the homepage is summarizing the content and features of our Data Catalog.                
We can see that we have some datasets, something called Organizations and Groups. We              
have a searcher and the most popular tags in the catalog. We will focus first on the main part                   
of a data catalog, the datasets. 
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Fig 36: Dataset Search 

 

Here we can see some of the datasets available. They show the title, the description and the                 
format of the data. We can search using free text or by filtering by tags, groups or                 
organizations on the left part. A very interesting thing about the search system is that if we                 
search for a word that is in the description of the dataset or in the resource description (the                  
file itself) it will be displayed too, even if the word is not in the tags. We will use this for                     
content search. We will put as description a list with the columns, so if someone is looking                 
for some concrete column it will appear in the search. 
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Fig 37: Dataset and Resource Example 

 

Here we can see the difference between dataset and resource. The dataset is on the left and it                  
can belong to an organization and group. Every dataset can have associated more than one               
resource, which are the data files itself. Every dataset has also extra info like the source, the                 
maintainer, the author, the time updated and when was created. The Resource is the data               
itself, it has a format, a description, a link where you can find it and previsualization. You can                  
also download it directly from the page by clicking the go-to source button. 

 
Fig 38: Organizations and Groups Example 

 

This is how the organizations and groups are displayed. Some of them are pixelated since we                
were testing some functions involving private data. The governance system is involved in this              
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part. If any of these groups or organizations are private they will not appear in the general                 
search. We can see it because we are admins, but even admins will not find direct private data                  
when browsing datasets in general. If we want to see any of this dataset we must enter into                  
the organization itself and there we will find a searching page similar to the one in Figure 47                  
with all the private datasets. 

 
Fig 39: User Example 

 

Every user can track what datasets they manage and, depending on the user, has certain rights                
to edit, visualize or delete them. As we can see here, the admin user owns 13 datasets even                  
though that on the homepage only appears 8. This is because of the private configuration that                
we mentioned before.   
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4.3 Uploading Data to CKAN 

“In this section, we will see how we upload our Open Data to CKAN. To do this we have                   
created a new Python Library based on the CKAN API.” 

It is great to have a portal that allows manual uploads but we want our data to get updated at                    
the same time that it does in our ADLS. To do so we want that our data is automatically                   
updated, it was one of the most important requisites that we had when choosing a portal.  

We have developed a Python library to use the CKAN API intuitively. We have used an                
external library to support our version. 

First of all, we need to log in with our admin credentials and indicate which site are we                  
working with. Then we can start using the commands. In the API we can find how the page                  
manages their content. It has what they call package that corresponds to our dataset. You can                
create an empty dataset, package, that only had a name, but from the API you can add much                  
more information. We’ve created a function that uses the API call to simplify. 

 

 
Fig 40: Create Dataset Function 
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As we can see, using this function we do not need to worry about any parameter since it is                   
preset to empty. We also handle other possible issues with the API. The labels and groups                
must be passed as a list of dictionaries with a concrete format. In this function, we only need                  
to enter a normal list and we handle the transformation. There is an internal name for the                 
dataset apart from the title itself, we managed it to be automatically set based on the given                 
title. We can also pass a list with the path where our data is stored and it will be added as a                      
resource. If we want to give a concrete name to our resource we can also pass them a list of                    
names. 

A resource is what we have called the data itself from the dataset. One dataset can have                 
several resources but we will try to not have too many of them. The reason is that when we                   
search on CKAN we will obtain as a result the datasets that match our parameters. As we                 
explained, this search affects also the data in the datasets, the resource, so if we have too                 
many resources in a single dataset we could worsen the search system.  

E.g. Search for “fire” and find that a dataset of wildfires had more than 100 resources but the                  
word fire only appears in one of them, now we need to find which one of this 100 is the one                     
we are looking for. 

 
Fig 41: Add Resource to a Dataset 

 

With this function, we handle several things. It can be called manually if someone needs to                
add some resources to any dataset but it is automatically called when we create a dataset with                 
data attached. In this case, we see that if no names are given we will assign the file name.                   
Also, the fact that if exist any resource with the same name we will delete the previous one. It                   
is not forbidden to have two resources with the same name but it is usually not desirable. We                  
had also to handle some issues when locating the resources and when deleting since the API                
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does not provide an effective method to delete. It changes the state of the resource to ​deleted                 
but it is still stored in the database, which causes some trouble later. 

We created this little framework to simplify the process because, this project, more             
concretely the data catalog development, has drawn the attention of other departments. So we              
were required to optimize the process and make it understandable for developers and data              
scientists. In our case, we used a more basic and customized version since the library was not                 
fully developed when we were asked to upload this data. We created the organizations from               
each dataset (NASA, OpenWeather, NOAA, and USGS) and the natural-disaster group. Since            
we will only update our datasets, not deleting or creating new, every time we extract data we                 
will only regenerate the resource, not the whole dataset.  

We have the create description function that automatically generates descriptions from the            
resource using the spark schema of the data. We have also a version when they want to                 
update only metadata files, such as Avro schemas (.avsc). But for our case, we decided to                
handwrite this information to give a more human perspective of each column and what they               
mean. Note that this can also be done through the API.  

The only change that we need to do to our ETL code is to upload the data to CKAN. We                    
added a cell at the end of the notebook that only does this. 

 
Fig 42: Code to upload Open Data to CKAN 

 

We first have written the descriptions of each resource in markdown format. Since the              
description is always the same, it explains each column of the dataset, there is no need to                 
update it as long as the format of the table does not change. We can see in ​Figure 48 ​how                    
does it look like. 
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This is not the only way to upload data from ADLS to CKAN. Since we ended up creating a                   
library for the rest of the teams we also developed a method that allows scanning an already                 
mounted ADLS (see ​1.4​). In this case, we input as a parameter the file path and we scan the                   
whole Data Lake. If there is any supported type file it will be uploaded to our Data Catalog.                  
This function is highly customizable, but by now it saves every data file in a separate dataset                 
with only one source, it uses as name the name of the file itself and the file where it is                    
contained. We put every file accessed from the root as a tag to facilitate the search. This                 
method is tough to bulk several files at the same time. 

We could use this method also to upload all our open data to CKAN since we have got stored                   
our information in an ADLS file called Open Data. As a part of developing this library, we                 
also created new functionalities such as deleting all data from an organization or locating files               
with given filters. E.g. locate datasets, modify datasets, modify the group of a dataset, add               
datasets to an organization, create and remove datasets and organizations, download data            
from resources, etc. In general, we have created more functions for more elaborate tasks but               
simplifying all the process.  
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5. Use case 

“In this part, we will analyze all the Open Data datasets that we have stored in our Data                  
Catalog and try to extract useful insights from them. We will use our library to access the                 
data.” 

At this point, we have extracted the data from the source, transformed it to fit our made-up                 
standards, and loaded it to a catalog that allows an optimal search. All this data management                
is great but we need to be able to get something from all this data to ensure that all that we                     
have done is worth it. 

To illustrate what we want to do, we will use the concept of the pyramid of knowledge also                  
known as the DIKW pyramid. It stands for Data, Information, Knowledge, Wisdom. Right             
now we only have data, even though that it is labeled and has some description. We will                 
consider that we have information when we have some sort of human-understandable concept             
from the data. 

Our first approach will be to transform all the data into a simple sentence given a location. It                  
means that we will input a location (longitude and latitude coordinates) and we will output a                
full report related to all the Natural disasters that we have been extracting.  

To do so, we need to first extract the most useful insights from each table based on the                  
location given. The first point is to reduce the rows of data in our dataset keeping only those                  
that are more significant to us. In our case, we want to keep only those rows that hold                  
information from our city, or in case that our city is not in the dataset the closest cities.  

To select those rows we first take the given location point in longitude-latitude format and               
check if it is in our database. If we do not find the point we expand the radius of search                    
applying some transformations to convert from coordinates to distance. We will increase this             
radius until we find a row that contains information from a city inside the area. 

Once we find it we will extract from each dataset the most interesting, and human-readable,               
features and output them in a structure that will store this information as long as the radius                 
that we had to search until we found it. In the cases where our city is between more than one                    
city, we will make the average between them. In these cases, we should notify this in the                 
output. 

We did this for each extracted dataset. Then we created a function that given the coordinates                
apply the corresponding function for each dataset and output a human-readable report. In our              
example, we used the coordinates from Sarasota, Florida, USA. (Latitude: 27.3364,           
Longitude: -82.5308). Here what we get: 
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OUTPUT
 

Hurricanes: This area (Your city ​and​ ​23 km​ around) has been visited ​2​ times by a 

tropical Storm, ​0​ times by a Cyclone ​and​ ​0​ times by a Hurricane. 

Volcanoes: You have ​4​ volcanoes near (​1650 km​). They last erupted on average the 

year ​1830. 

Wildfires: You had ​53​ wildfires close (​19 km​ around) ​with​ ​351​ brightness on 

average ​and​ ​76​% confidence on average. 

Earthquakes: The most dangerous area ​is​ ​1011 km​ near ​and​ it has earthquakes of 

magnitude ​4.2​ on average. 

Weather: Using information ​from​ ​1​ closest cities (​53 km​): Highlands.  

Humidity: ​94.0​%  

Pressure: ​1014.75​hPa  

Wind Speed: ​2.98​m/s  

Minimum Temperature: ​20.25​ºC  

Temperature: ​21.48​ºC  

Maximum Temperature: ​22.5​ºC. 

 

With this explanation of the data, the Data Science team could create a formula to evaluate                
the risk of every coordinate based on the parameters described in this text. E.g. 

Risk(Lat, Long) =  distance to the disaster
Number of  disasters  damage caused by the disaster*   

This is a simplification of a more complex formula that could be used in the future to                 
determine the natural disaster risk related to a certain property. Once this formula is well               
defined it could be applied to all coordinates in a map, from -180 to 180 for longitude and                  
from -90 to 90 for latitude, and plot the risk. So we could generate a map of the whole planet                    
with the risk per zone in it.  
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6. Conclusions 

“In this part, we will show the impact of the project. We will separate it in two categories, the                   
usability of the Open Data extracted and the acceptance of the chosen CKAN Data Catalog               
inside the company.” 

6.1 Open Data 

Currently, the preprocessed data is already being used in several projects. Despite the current              
version is very preliminar, a web-based interactive hazards map has been developed as an              
internal tool that uses the data. In addition, this information is also being used by a team that                  
integrates it for risk assessment. We can thus conclude that the company is being benefited               
from the TFG in terms of Open Data usability. 

 
Figure 43: Risk in a concrete point shown in the map 
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Figure 44: Wildfires, earthquakes and storms maps in the internal tool 
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6.2 Data Catalog 

For the data catalog acceptance inside the company we can declare it as a success. We had a                  
first version in the web (​http://13.74.42.43/​), now only used to test experimental features             
from our CKAN Library. This system really liked here and in Germany. They asks us to                
manage a private organization inside CKAN with part of their own private data. They also               
wanted to do a bulk upload to store all the information from their ADLS. 

 
Figure 45: State of the catalog one month later after release (Showing only public 

datasets) 

 

We add this functionality to our library and we managed to successfully upload that data. Our                
CKAN Library was explained to the developers team inside Zurich and they are now working               
with it to manage and modify the CKAN structure.  

They created a new version in their Zurich Intranet for private data. All this new version was                 
created using only our library. New dominions were requested by Zurich to have some              
versions of our data catalog. 

1. opendata.zurich.com 
2. externaldata.zurich.com 
3. data.zurich.com 
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