IMPLEMENTATION OF A BIG DATA CLOUD-
BASED CATALOG USING OPEN DATA

Carit] Costa, Roger

Glirs 2019-2020

LA

RS

Director: VICENC GOMEZ DERDA

GRAU EN ENGINYERTIA TINFORMATICA

Universitat Escola

gﬁ?gnf:bn Superier Politécenica Treball de Fi de Grau




IMPLEMENTATION OF A BIG
DATA CLOUD-BASED
CATALOG USING OPEN
DATA

CARITJ COSTA, ROGER

TREBALL FI DE GRAU

GRAU EN ENGINYERIA EN INFORMATICA
ESCOLA SUPERIOR POLITECNICA UPF
CURS 2019-2020

Project Director from ServiZurich:
Sanchez Ros, Jose Luis

Supervisor from UPF:
Gomez Cerda, Viceng

@ Universitat
Technolo
. Delivery it upf Pompeu Fabra
ZUR]CH ServiZurich | Barcalons Ba,rcelona




“To my father, mother, and sister,

my idols and supporters.”



i



ACKNOWLEDGMENTS

I would like to acknowledge everyone who played a role in my end-of-degree project. First of
all, my parents and sister, who supported me with love and understanding. Without you, I
could never have reached this current level of success. You teach me the importance of trying
to reach excellence in what passionate us.

Secondly, my project director Jose Luis Sanchez Ros and my supervisor Viceng Gomez
Cerda. Thanks to Jose Luis I had the opportunity to explore this field and all the technology
behind, you were not a boss but a leader in this project. If it were not for Viceng this
document would be very different in style and format. Your guidance in this, my first serious
project, is proof that the devil is in the details.

Last but not least, all the people in ServiZurich who shared his knowledge with me and
treated me like part of a family for almost a year. Some of them are Victor Vallejo, Carlos
Aires, Alicia Sanchez, Jesus Segura, Marta Tolos, Aurelien Remy Antoine, Pere Brull,
Francesc Pelegrin, Ester Sufier, Joan Ficapal, Marc Vila, Angela Marques, and Pere Llimona.

11



v



PROLOGUE

Data is power. Nowadays we are all aware of it. More data leads to smarter decisions. Huge
companies can change the world based on this fact. Google knows everything I search on the
web, Amazon knows what stuff I buy, even the more private things, Facebook knows which
people I hang out with. All this data retrieved by big companies is very powerful, as they

proved. And all these private companies can use our private data in tons of different ways.

It is easier for companies to work with their own data since they control everything about it:
the format, the period they retrieve it, how to store it, how to retrieve it, etc. Since this
end-of-grade project is developed in Zurich, an insurance company, we are interested in data
related to risks and direct danger for properties. It was shown that natural disasters take their
toll on insurance companies [1]. How can they succeed when they don’t have the

infrastructure to measure these data?

Open Data is the forgotten youngest brother. There is no general rule when updating open
data, so it is very difficult to work with more than one dataset at the same time. What could
happen if we take several open datasets with regularity, in order to get good quality and
updated data, and make them capable of working together for a concrete objective? How

smart could our decisions be if we use only data that is freely available for everybody?

This project is an initial attempt to improve the usage of this open data, the first step towards

a practical tool that can be the basis of any data-driven company in the future.
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ABSTRACT

In this project, we will develop a cloud-based data catalog. We will first determine the
services that will be necessary and afterward build the infrastructure in Azure. Then we will
explore the Open Data sources available and evaluate them to see if they fit our purposes.
Once they are selected we will periodically retrieve and transform this data to a similar
format in order to work with all the datasets at the same time. Once this part is concluded, it
will provide us an automatically updated data catalog with information from different
sources. We will also see some use cases and will start using this data to give useful
risk-related information.

RESUM

En aquest projecte, desenvoluparem un cataleg de dades basat en el nivol. Mostrarem els
serveis que seran necessaris i aixecarem la infraestructura a Azure, després explorarem les
fonts de dades obertes disponibles i les avaluarem per veure si s'ajusten a les nostres
necessitats. Un cop seleccionades, les extraurem periodicament i les transformarem en un
format similar per poder treballar amb tots els conjunts de dades a el mateix temps. Una
vegada aix0 estigui funcionant, ens proporcionara un cataleg de dades actualitzat
automaticament amb informacié de diferents fonts. També veurem algun cas d'ls i
utilitzarem aquestes dades per donar informaci6 util relacionada amb el risc.

RESUMEN

En este proyecto, desarrollaremos un catdlogo de datos basado en la nube. Mostraremos los
servicios que seran necesarios y levantaremos la infraestructura en Azure, luego
exploraremos las fuentes de datos abiertos disponibles y las evaluaremos para ver si se
ajustan a nuestros necesidades. Una vez seleccionado, los extraemos periddicamente y lo
transformaremos en un formato similar para poder trabajar con todos los conjuntos de datos
al mismo tiempo. Una vez esto esté funcionando , nos proporcionard un catalogo de datos
actualizado automéaticamente con informacion de diferentes fuentes. También veremos algun
caso de uso y utilizaremos estos datos para dar informacion util relacionada con el riesgo.
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INTRODUCTION

Motivation

Over the last few years, Data has been proclaimed as the new Oil [2]. That leads both people
and organizations to start storing huge amounts of it. Ninety percent of the world’s data was
generated in the last two years [3]. The question now is: What to do with all these data?
Governments and organizations have released several amounts of data for free, or what is

known as Open Data.

Data in zettabytes (ZB)
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Source: Oracle. 2012

Fig. 1: Data generated per year.
(1 Zettabyte = 1 billion Terabytes)

Some parts of this data have been explored for very concrete purposes. It’s not easy to work
with different open datasets from different sources since there is not a pattern or a general
way to extract and save it. Not even the format.

There is Open Data from a lot of different topics, we can find from worldwide economic
statistics' to registered dog names’. We will mostly focus on daily nature-related data.
Another problem with this kind of data is the lack of periodicity on its launch, so we can have
no data for several weeks and we want to maintain an updated Data Catalog as long as it is
possible.

My project director in Zurich, Jose Luis, shared with me an experiment he ran in a congress.
They set a table with Lego pieces separated in two different groups: one group had the pieces
classified by type and color and the other one was in a box, all mixed up. They told two

' Datosmacro.com. Retrieved from https://datosmacro.expansion.com/.
2 Dog Names. (2019, March 29). Retrieved from https://catalog.data.gov/dataset/dog-names.
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people to build a small Lego car in less than a minute. The person who worked with the
ordered pieces built it in a few seconds while the other did not finish in the given minute.

This shows that even though the information is available out there, in the box that represents
internet, we won’t be able to make proper decisions and build good models if we do not have
it cataloged and classified. We could end up with a car built with the wrong pieces or, in case
we end up with a functional car, it could have taken too long to build it.

This project will set the basis of the data catalog for the data scientist so that in the future, the
smartest decisions can be made based on our extracted data (Data-driven decisions).

Objective

The objective will be to improve the efficiency of the workflow by integrating multiple
sources of open data. This data must be treated and transformed into a format that allows
working with the most commonly used frameworks. We also expect the data to be daily
updated, or as soon as new information is available. To prove that, we expect to have some
use cases that work with all this data.

All this will be set up in the cloud, concretely, we will work with Microsoft Azure. We will
use Databricks for the code and Azure Data Lake Storage (ADLS) to store the data. In the
end, we expect to have:

1. A set of programs that can be automatically executed every certain amount of time,
that retrieve information through APIs, requests or web scraping from different
sources.

2. A Data Catalog where all this data will be stored, classified, organized and updated
periodically through the programs.

3. Some use cases to show which risk-related decisions can we make using only the
extracted data.
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1. SETTING UP THE ENVIRONMENT
1.1 What is Microsoft Azure

“Microsoft Azure is an ever-expanding set of cloud services to help your organization meet
your business challenges. It’s the freedom to build, manage, and deploy applications on a
massive, global network using your favorite tools and frameworks.?”

Leaving the marketing explanation of what is Azure aside, we could describe it as a portal
with a catalog of cloud services given by Microsoft. Those services are modular and work
quite well between them. It uses all the technologies and advantages involved in distributed
and parallel services with an abstraction layer that allows us to think at a much higher level.

It works by what they called Azure Subscription. It grants us access to the more than 800
services that they have in the catalog. Each subscription manages its own permissions,
services, security, and costs. It can be used to create different environments for different

purposes, commonly: dev, test, and production. In big companies like Zurich, they have
subscriptions per each country too.

Fig 2: Typical distribution of Subscriptions in Azure[4]

3 What is Azure-Microsoft Cloud Services?. Retrieved from
https://azure.microsoft.com/en-us/overview/what-is-azure/.
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1.2 Azure Data Lake Storage (ADLS)

“Azure Data Lake Storage is an enterprise-wide hyper-scale repository for big data analytics
workloads. Azure Data Lake enables you to capture data of any size, type, and ingestion
speed in one single place for operational and exploratory analytics.””

In this project, we will be using ADLS as storage for our data since it is already included in
Azure and its build for use cases like ours.

| s ~ Store N Analyze

et bk Cle ~ Retain for present and b Using analytic engines

b it foinmet a atize future analysis ¥ like hadoop and Spark
anr atiz futy lysi : ce hadoop and Spark

i Azure Data Lake Storage Gen1

0L
||

Devices

Batch queries

Interactive queries

Real-time analytics
Machine Learning

Data Warehouse

Clickstream

Fig 3: ADLS documentation schema

It is a distributed file system like Hadoop and it could work with all the Hadoop ecosystem. It
is also compatible with Hadoop analytic frameworks such as MapReduce and Hive. It
provides unlimited storage as long as we paid for it. It was created for Big Data, so it doesn’t
impose any limits on account size, file sizes or amount of data. Individual files can range
from kilobytes to petabytes.

4 What is Azure Data Lake Storage? Retrieved from
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-overview.
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ADLS is built for running large-scale analytic systems that require massive throughput to
query and analyze large amounts of data. The data lake spreads parts of a file over a number
of individual storage servers. This improves the read throughput when reading the file in
parallel for performing data analytics.

It provides industry-standard availability and reliability. Our data assets are stored durably by
making redundant copies to guard against any unexpected failures. ADLS also provides
enterprise-grade security for the stored data.

1.3 Azure Databricks

“Azure Databricks is an Apache Spark-based analytics platform optimized for the Microsoft
Azure cloud services platform. Designed with the founders of Apache Spark, Databricks is
integrated with Azure to provide one-click setup, streamlined workflows, and an interactive
workspace that enables collaboration between data scientists, data engineers, and business
analysts.””

Databricks is meant to be used as a Python notebook as could be Jupyter. There exists a
pipeline in Azure to work with data. This involves several services that cover Ingest, Explore,
Preparation and Train, Model and Serve, Store and Visualize. Every one of these tasks can be
performed by a different service. Databricks work for the preparation and training of the data,
but we will also use it to retrieve the data using Python.

INGEST EXPLORE PREP & MODEL & VISUALIZE
TRAIN SERVE

On-premises -
ltk H €& 7
B S0

Azure Data Azure Data Azure Azure SQL Data
Cloud data ——> Factory Explorer Databricks Warehouse .ul

—

I I Power BI

a1 Azure Data
. Lake Storage

STORE

SaaS data —_—

Fig 4: Recommended pipeline from Azure

Databricks provide some tools that will be very useful for us along with this project. The first
one is the possibility to create different clusters for different projects and attach them to some
specific notebook. Those clusters can be attached and detached any amount of time. Clusters

5 What is Azure Databricks? Retrieved from
https://docs.microsoft.com/en-us/azure/azure-databricks/what-is-azure-databricks.
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are scalable and we can decide which one with which version of Python, Scala and Apache
Spark version we want. We can also decide the memory, the number of cores and the number
of workers desired.

. Weather @ Edit ) Clone Z Restart W Terminate x Delete

Configuration Notebooks (0) Libraries Event Log Spark Ul Driver Logs Metrics Apps Spark Cluster Ul - Master v

Cluster Mode @
Standard ~

Databricks Runtime Version

6.0 (includes Apache Spark 2 4 3 Scala 2 11)

This Runtime version supports only Python 3.

Autopilot Options
(¥ Enable autoscaling @
¥ Terminate aﬂer} 120 | minutes of inactivity @

Worker Type Min Workers Max Workers
Standard_DS3 v2 14.0 GB Memory, 4 Cores, 0.75 DBU 2 4

Driver Type
Standard_DS3_v2 14.0 GB Memory, 4 Cores, 0.75 DBU

» Advanced Options

Fig 5: Cluster configuration window

Each cluster starts with a few libraries installed but we can add new libraries from different
sources, e.g. similar to pip install for Python if we have the library in jar format, or the whi,
or the egg, etc. Almost all libraries that we are going to use can be installed by PyPI (similar
to pip install).

Install Library

Library Source
Upload ~ DBFS Maven CRAN  Workspace

Package

[PyPI package (simplejson or simplejson==3.8.0)

Package is a required field
Repository ©
Optional

Cancel Install

Fig 6: Installing a new library with PyPl




Another good feature of our project is job scheduling. This part will be very important since
we want to retrieve data every day to actualize our datasets. Here we must declare which
Notebook will be executed, with which parameters, if necessary, and dependent libraries. We
decided to assign our cluster as a default since it worked during all the tests. We can decide
the period for the job. Another interesting feature is that it can send emails when it fails or

succeeds.

HurricanesDataExtractor % Delete

Job ID: 2
Task: Notebook at /Users/roger caritjicosta@zurich. com/HuracanesDataExtractor - Edit / Remove
» Parameters: Edit
o Dependent Libraries: Add
Cluster: Weather (Running) Edit
Schedule: Every 3 hours (Europe/Berlin) Edit / Remove
Advanced =
Alerts: None Edit
Maximum Concurrent Runs: 1 Edit
Timeout: None Edit
Retries: Limit 2x, 1 min delay Edit / Remove

Fig 7: Job configuration window

Finally, the main tool of Databricks is the notebook. There we will program the main part of
this project. Here you can program in some programming languages by writing some
commands at the beginning of each cell but we will mainly use Python. It is very similar to
Jupyter Notebooks but with the extra thing that you can edit notebooks online, so more than
one person can be coding and executing at the same time.

PORTAL  rogercariicosla@zurich.com

< TestingHurricanesDatasets ryumon) o ? &

®
N

Azure .
Databricks  [RECSCRCEINEY lev  EView: Code ¥

Prv-x

Main Parameters

Data import csv
from sklearn.linear_model import Linearkegression

imps (xpars, indent=4, sort_keys=True)

Fig 8: Example of Azure Databricks Notebook




1.4 Linking ADLS with Databricks

“In this section, we will describe the necessary steps to link our ADLS and Databricks so we
can work with files stored in ADLS as local files.”

We want to store data in our Data Lake (ADLS) but we will work from Databricks. That
means that we must connect in some way these two services. As we saw previously, those
services are meant to work together, so it shouldn’t be a big deal. This can be done in
different ways, we will do it in Python from the Databricks Notebook.

Every service in Azure has some identifiers. When we connect two services we must find
some of them, like the client-id, the credentials, the refresh URL and the source.

Mounting ADLS

#Configure authentication for mounting
configs = {"dfs.adls.oauth2.access.token.provider.type": "ClientCredential”,
"dfs.adls.oauth2.client.id": LR SR EA S R T EEE ) e T L F I

"dfs.adls.oauth2.credential": Iullz UL GLDET ~Z e,
"dfs.adls.oauth2.refresh.url": "https://login.microsoftonline.com/< = slua=ssbd *=2% " I=ad a== "X h ni s4bc/0auth2/token"}
dbutils.fs.mount(
source = "adl://m wim =."m*7 3.azuredatalakestore.net/",

mount_point = "/mnt/dynatrace",
extra_configs = configs)

Fig 9: Code to connect with the ADLS, credentials censored

Once this is done there is no need to execute it never again. From now on we can access our
ADLS as if it was our local directory on the computer. We can open, close and create files
using the common function in Python without worrying about all the distributed and parallel
mechanisms behind.

def open_file(file_name):
with open("/dbfs/mnt/dynatrace/DynatracebData/" + file_name + '.json',

'r') as file:
result_json = json.load(file)

return result_json

Fig 10: Working with ADLS files as local files




2. OPEN DATA PORTALS RESEARCH

2.1 First approach

“We will see our research procedure when looking for Open Data and which criteria we
followed when discarding datasets.”

When looking for Open Data we can use some useful tools and known portals. Kaggle®, a
subsidiary of Google LLC, is an online community of data scientists and machine learning
practitioners. It allows users to find and publish data sets, explore and build models in a
web-based data-science environment, work with other data scientists and machine learning
engineers, and enter competitions to solve data science challenges.

We are interested in Kaggle datasets. There are huge amounts of them of different themes and
they are evaluated by their usability. Currently, we can find more than 25k datasets available
in the following format:

®, Feedback

PUBLIC YOUR DATASETS FAVORITES Sort by: Hottest

@ US Accidents (2.25 million records) A | 223

Wl @ Top 50 Spotify Songs - 2019 ~ | 267

@ Temperature Readings : 0T Devices A

@ Madrid Airbnb Data ~ 35
qur'- T¢' @ Open Elections Data: USA A
College Basketball Dataset -~ 51

ﬂ @ Mock Traffic Data -

Fig 11: Data Catalog from Kaggle

& Open Datasets and Machine Learning Projects. Retrieved from https://www.kaggle.com/datasets
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It has a lot of good things, we can preview each file containing the data, we can see the
distribution of each column in our dataset, a little explanation of itself, etc. It provides us
good tools for data exploration and we can easily understand how it works.

The bad thing about Kaggle datasets is that they are not subject to revisions and periodic
updates. This is because in the end they are uploaded by users who find it and, usually but not
always, clean this data and update it. Some users comment on the dataset information where
they find it, so we could track it back to the source and check if we could periodically
download from there.

2 Usability 9.4 & License Da

Temperature Time-Series for some Brazilian cities

peratures in Brazilian cities? Too hot? Cold weather sometimes? And what about climate changes? Is

Context

Content

Acknowledgements

These datasets are provided through NASA's GISTEMP v4 and recorded by NOAA GHCN v4. Thanks for researchers and staffs for the

Fig 12: Description and Data exploration of a Kaggle Dataset.

Another useful tool released at the end of 2019 is Google Datasets’. It works like the images
searcher but for datasets. It is still very new and it is subject to several changes but the new
come tool from Google is probably going to be the main reference when searching for Open
Data. It also has a few filters that can be useful like the format we want it, if it’s free, if we
can use it for commercial purposes or when was it updated for the last time.

" Google Dataset Search. Retrieved from https:/datasetsearch.research.google.com/
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Google Dataset Search Q  volcano X ®© B

v Fecha de actualizacién v Formato de descarga w Uso comercial permitido Gratis Clear filters

Todos v Uso comercial permitido Uso no comercial permitido

Se han encontrade més de 100 resultados
Eruption of the Hakon Mosby mud volcano recorded by the long-term observatory on mud-volcano
° Eruption of the Hakon Mosby eruptions (LOOME) between 2009 and 2010

mud volcano recorded by the...

www.researchgate.net
+1mas L .
) Identificador tnico
Ultima actualizacién: Mar 6, 2014
https://doi.org/10.1594/PANGAEA.830324

) Fecha de actualizacion del conjunto de datos Mar 6, 2014
kaggle Volcano Eruption Global

Distribution
Conjunto de datos proporcionade por

PANGAEA

www.kaggle.com

Ultima actualizacién: May 25, 2018
Autores
Dana Yoerger; Rich Camilli; Antje Boetius; Dirk de Beer; Christopher R German; Karine Oly; Jérome Blandin; Frank Wenzhofer; Tomas Feseker

NZ Volcano Status R .
Licencia

hub.arcgis.com
Attribution 3.0 (CC BY 3.0)

Ultima actualizacion: Dec 12, 2017

acion de la licencia automaticamente

obtenido la

Formatos de ga disponibles de los

@ Major Volcanoes ap

Fig 13: Example of a search in Google Datasets

Another option is to search for open data portals or websites that provide this information.
We found some interesting options in our first approach. Eurostat® has tons of datasets from a
lot of themes. We will look for those related to natural disasters.

Sign In | Register ®

eu rostat Legal notice | Y RSS | Cookies | Links | Contact  English L3
Your key to European statistics
News ta Publications About Eurostat Help

European Commission > Eurostat > Search

natural disasters E

Filter by: <Y 206results Sort by Publication date
Search term: natural disasters %
Theme Climate related economic losses by type of event - EU aggregate ze )
(source: EEA)
General and regional statistics 82
Economy and finance 55 Dataset [Tables], Product code: sag_ 713 40, updated on 710-Apr-2079
Population and social 25 The mdl\cator measures ili'wsur.ecl! economic losses from weather and c\.\mate-relateq disasters expresseq as
conditions eonomic losses per year in million euro (in current values). Types of disasters considered are hydrological,
meteorological and climatological events. The indicator is based on data from
Agriculture, forestry and 17
fisheries
Environment and energy n Rape, turnip rape, sunflower seeds and soya by area <a )L e
Industry, trade and services 10
= " = Dataset [Tables], Product code: tag007100, updated on 77-Dec-20719
ranspor|
s excluding the non-harvested area (e.g. area ruined by natural disasters, area not harvested for economic
International trade 5 reasons, etc.)
Science and technology 1
Collection Root crops and plants harvested green from arable land by area | < ) e

Statistical books/Pocketbooks &9
Dataset [Tables], Product code: tag00103, updated on 77-Dec-2019

Manuals and guidelines 61 area (e.g. area ruined by natural disasters, area not harvested for economic reasons, etc.)

Eurostat News 16

Fig 14: Eurostat search example for natural disasters

8 Your key to European statistics. Retrieved from https://ec.europa.eu/eurostat.
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Checking out the data and the formats we identified some potential issues. This data cannot
be used in this project because most of them are only for Europe and Zurich has clients
worldwide. The company told us that we must also cover at least the USA where natural
disasters are a real problem. We kept looking and then found some other interesting Open
Data portals.

We also found Europa Press portal’, which claims to have more than 57M datasets, but
unfortunately, they show almost no results when we search for climate data and found that
most of them are only related to Spain.

Datosmacro shows data at a worldwide level and they are supposed to have a lot of
information but they only provide a few tables on their web page comparing very few rows of
their information. In this case, we started a process of web scraping to retrieve this data.

Py = x

Year

2018
2017
2016
015
Ul

20

2014
29.983€ 2013

29 440€ 2012

Fig 15: Successful web scraping code and output

We started with a simple table before trying to go further and we succeeded. Using libraries
like requests to get to the link, BeautifulSoup to navigate through the HTML of the web and
pandas to save the data in JSON format we end up with the table on the web in our data lake.
We noticed that using web scraping could put us into trouble in some different ways.

First of all, our data is expected to be retrieved with some frequency, so we must be sure that
the source where we get it has the updated data every time we visit it. Even if this was the
case, which was not since Datosmacro follows a blog structure and new data is published as a
new post in another link so we cannot retrieve new information from the same link. Also, if
we apply this technique we are subjective to fail if the web page changes its structure. This

% La actualidad informativa, en datos. Retrieved from https://www.epdata.es/.
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kind of change is not unusual since nowadays is very easy to change the visuals with no need
to code.

Another problem is that web scraping is what could be described as “alegal”, it means that it
is not strictly forbidden by law but depending on how it is done it could be interpreted as
illegal. All related to extracting information that was not given to us directly could be seen as
stealing information. We must consider all of this when extracting data and be sure that
everything is Open Data with all his characteristics. We will try to use web scraping if and
only if it is absolutely necessary and ensuring that we are retrieving Open Data.
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2.2 Going to the source

“When going to the source of the data we find that data can be represented in very different
ways. We must transform this data into the same format. This is the toll to pay when we want
periodicity and reliability.”

After the first approach, we decided that the best idea is going directly to the source. Using
the tools described before we can find where to extract exactly the raw data. We can also
assume that if the data that we are looking for is in Kaggle or passes the Google Datasets
search filters it is Open Data.

We want all data related to natural disasters, so some of the datasets that we are looking for
are: Hurricanes, Earthquakes, Wildfires, Volcano eruptions, Weather Forecast, etc. The main
distributors of all this data are usually governments or associations like NASA that claim that
the data that they give are Open Data.

Another point that we didn’t mention but it is also important when referring to Open Data is
the reliableness of the data. We want to be sure that what we get is correct in order to make
good decisions in the end. That’s why we must dedicate some extra time to this part to ensure
that our sources are trustful.

After some research, we end up with good quality sources like the National Oceanic and
Atmospheric Administration (NOAA), NASA, United States Geological Survey (USGS), and
open weather API. All of these sources are considered trustable enough for our purposes.

Once we found our sources, we manually downloaded the data. That is another problem with
Open Data, each dataset is in a different format and has a different structure. We find data
that is in CSV, JSON, KML, etc. Each format has a specific purpose, some of them like KML
are created to be visualized in some specific viewers like MyMaps from Google, others are
more generic like XML or JSON. We must define a general pattern for the data.

12
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b
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281.15,
1833,
87

"stations

1414,
"country™:
"sunrise™:
"sunset”:

I

"timezone": @,
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Figure 16: Comparison between KML (Hurricanes) format, CSV (Volcanoes) format and
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3. EXTRACT-TRANSFORM-LOAD (ETL)

“In computing, extract, transform, load (ETL) is the general procedure of copying data from
one or more sources into a destination system that represents the data differently from the
source(s) or in a different context than the source(s).”

ETL is an important part of the ecosystem of Data Science and Business Analytics. We will
focus on this part of this project. We can define extract as the process of reading data from a
database. In this stage, the data is collected, in our case from multiple and different types of
sources. Transform is the process of converting the extracted data from its previous form into
the form it needs to be so that it can be placed into another database. Finally, the load is the
process of writing the data into the target database, in our case our ADLS.

Data
Source
ETL Warehouse

S 58
gl

S
£ E)S

Fig 17: Schema of the ETL process

3.1 Prerequisites using Databricks

As we explained before Databricks is like a Python Notebook with some extra functionalities.
We will follow some made-up standards in order to set a pattern when coding.

Each source will be extracted and treated first individually in a different notebook.
Every notebook will use the same cluster.
The code must be optimal but also readable.

The first cell will be called Main Parameters, there we will place all the imports and
functions that will be used along the process.

The data must be saved in any pandas exportable format (JSON, CSV, etc).

All tables must have the Longitude and Latitude column

All data must be transformed to table format, no nested relations are allowed.

The job must return a Succeeded if all the data was retrieved or Failed if no data were
extracted.
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3.2 Using Open Weather API

“The term API refers to a specific kind of interface between a client and a server, which has
been described as a ‘“contract” between both - such that if the client makes a request in a
specific format, it will always get a response in a specific format or initiate a defined action.”
After trying some other options, we ended up with Open Weather API as the way to retrieve
our weather forecast information. It has the biggest dataset of cities and it is updated every
day. It also contained a lot of information that other services do not provide, like the speed of
the wind, pressure, humidity, etc.

The first thing to do is to download the dataset of cities. We had more than 200K cities with
its id, name, country, longitude, and latitude. We will need this information since we must
call the API using the exact names from this dataset, otherwise, we will receive an error.
Instead of downloading all the information for all the cities, which would generate too many
gigabytes per day, we will do another approach.

We will always download the information about certain cities, the most important ones in
Europe and the USA. Then we will also download the information of 5 random cities per
country to have a representation of each country. The schema is the following.

Step Task
1 Get our historical dataset
2 Retrieve the information for important cities
3 Select 5 random cities per country
4 Retrieve information of the random cities
5 Append this new information to the historical dataset
6 Save this data as the new historic

Expected Result | Dataset of cities and timestamps with the weather forecast
information. Some cities will be repeated, like the important ones.
This dataset can be later ordered by the city or timestamp. It will
increase its size every day it is executed.
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3.2.1 Implementation
“In this section, we will see the implementation of the Weather ETL process.”

First of all, we have created a file in our ADLS where to store all the data. We have created a
master folder called OPENDATA, then a subfolder called Natural Disasters. Here we will
place all the data that we will retrieve related to nature-related events. Inside this folder we
created a new folder called Weather so we know exactly what’s inside. Finally, a folder
called Global, since we want to store data form cities all around the world, not only a
concrete country. We will follow this schema for every source of data.

The next step is to create a dummy empty historic to start. We’ve saved the cities list in the
ADLS. We have been searching for some important information about the Open Weather
API, so now we know the format of the response and that no more than 3600 requests per
hour are allowed.

Request Response

requests.get(‘http://api.openweathermap.org/
data/2.5/weather?q=london&APPID=e6d51
Oebcf2570e71ea55et953dfecbd")

{"coord":{"lon":-0.13,"1lat":51.51}, "weather
":[{"1d":804,"main":"Clouds", "description”:
"overcast

clouds","icon":"0@4d"}], "base":"stations","m

ain":{"temp":282.55,"feels_like":278.83,"te
mp_min":281.15, "temp_max":283.71, "pressure”
11020, "humidity":81},"visibility":10000, "wi
nd":{"speed":4.1,"deg":200},"clouds":{"all"
190}, "dt":1577969000, "sys" : {"type":1,"id":1
414,"country":"GB","sunrise" :1577952366, "su
nset":1577980925}, "timezone":0,"id":2643743
,"name":"London", "cod":200}

Knowing the structure of the response, we can now select the information that we want to
keep. Some cities give more parameters than others, so we must be sure to claim only those
parameters that are in every city in order to have a consistent dataset. We will work first with
the hardcoded list of cities in the same format that is in the cities database. Our list includes
the most important cities in Europe and the USA. We read that list from an Excel file that
other teams have available, so they can add any city at any moment.

For each one of these cities, we make a request to the API. We need to hold each operation at
least one second to be sure that we are not trespassing the maximum requests per hour. The
idea now is to not request more than 3600 cities and to execute this code only once per day
but we don’t know if this is subject to changes so we will place the wait command just in
case. The strategy here is to have one dictionary object, the JSON with the request and an
empty dictionary that will be filled. We will extract only the info that we want from one
dictionary to another. This dictionary is transformed into a dataframe and append to our
historic.
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for city in hardcoded_cities:
time.sleep(l)
r = requests.get('http://api.openweathermap.org/dataf2.5/weatheriq="' + city + '&APPID=ebd518ebcf2570e7leas5ef953dfechd’)
if r.status_code == 200:

city_info = json.loads(r.text)

city_df = {}
city df['id'] = city_infol'id"]
city_df['name'] = city_infol['name']

city_df['country'] = city_info['sys']['country']
city_df['weather'] = city_info['weather'][@]['main']
city_df['description'] = city_info['weather'l[@]['description']
city_df['temperature'] = to_celsius(float(city_info['main']['temp']))
city_df['min_temperature'] = to_celsius(float(city_infe['main']['temp_min']})
city_df['max_temperature'] = to_celsius(float(city_info['main']['temp_max']})
city_df['humidity'] = city_infol['main']['humidity"']

city_df['pressure'] = city_info['main']['pressure']

city_df['wind_speed'] = city_info['wind']['speed’]

city_df['sunrise'] = city_info['sys']['sunrise’]

city_df['sunset'] = city_info['sys']['sunset']

city_df['timezone'] = city_info['timezone']

city_df['timestamp'] = city_info['dt']

city_df['lat'] = city_info['coord']['lat']

city df['len'] = city_ info['coord']['lon']

city_df = pd.DataFrame({city_df, index = [city_df['id"]]}

cities_df = pd.concat([cities_df, city_df], ignore_index = True)

Fig 18: Data extraction of the common information

The data extraction process is the same for randomized cities. What matters here is how we
select 5 random cities from each country. To do this we have created a function called shuffle
and reduce, the output of this function is the list of cities for the new request. We send the list
of all cities minus the hardcoded ones in order to avoid duplicates. We also delete some
special cases such as the world and the continents itself, we want only cities. This function
receives the amount of elements that need to hold and the column. Then it is shuffled and
then we only keep the first N elements.

We repeat the data extraction process with this new list and append the results to our global
historical dataset.

17



3.3 Volcano eruptions Dataset

“Volcanoes eruptions are another natural disaster that causes a lot of damage. We can think
that nowadays they are less frequent, but the truth is that we don’t need huge explosions of
magma and lava to cause damage.”

It was difficult to find a good dataset of volcanic eruptions since they are not so common and
they are not tracked daily, like the weather forecast. The National Oceanic and Atmospheric
Administration'® (NOAA) had a pretty good history with a first record in 4360 BC.

The most interesting thing is that they also have some nice information that could help an
insurance company like Zurich, such as the number of houses that were destroyed, the
damage caused to the infrastructure in millions of dollars, the injuries, missings, and deaths.
It also has the Longitude and Latitude of the volcano, so we will be able to relate it with other
datasets in the future. Not only this but they also tracked the total effect of the volcano, it
means that if the volcano also generated a tsunami or earthquake it is also measured.

15 Significant Volcanic Events where Damage Millions Dollars >= 0.04

Volcano Information Fruption

Fig 19: Volcanoes Dataset filter by Damage

As we can see in the Figure 19, this dataset contains a lot of information. Every column is an
important parameter of the volcano, and we got more than 30.The only problem with this is
that the way to get to the data is through filling a form and then sending it. It looks like we
will need to do some web scraping. We will try to be the least restrictive possible, so we
download all the dataset and then if we need to filter we can do it from our data in our ADLS.

1 NOAA. (2012, February 10). National Centers for Environmental Information (NCEI). Retrieved from
https://www.ngdc.noaa.gov/.
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Volcano Parameters:

Minimum VEI:

Data Display Options:

Enter the Name of the Volcano:

Select Country: | none selected

Select the Region: |none selected

Latitude: @ to 90 (North
Longitude: 0 to 180 (Ea;

(enter one number from -179 to 180):

Volcane Type: | none selected

Enter Event Year (-1750 to present): Beginning: Ending:

® includes or starts with matches or does not match

or select from a list: | none selected v

Enter the Location where the Volcano is located:
(For example enter: Alaska or Aleutian): '"® includes or starts with matches or does not match

v

v

Enter a range of Event Coordinates in decimal degrees:

here) -90 to 0 (Southern Hemisphere)
misphere) -180 to 0 (Weastern He ere)

Northernmost Latitude

(enter one number from -90 to 90):

Westernmaost Longitude

Southernmost Latitude
(enter one number from -90 to 90):

v

Enter the VEI of the volcanic eruption (0 fo 8_J:a

Maximum VEI:

Enter Number of Deaths: Minimum Maximum
Enter Death Description: Q Minimum Maximum

Enter Damage in Millions of Dollars (Minimum 0.04): Minimum |0.04 Maximum
Enter Damage Description: a Minimum Maximum

Wolcano Eruption Comments: ® includes or starts with matches or does not match
Tsunami was associated with the eruption: | none selected v

Earthguake was associated with the eruption: | none selected v

Return All Selected Events Sorted by Date
Sort by Volcano Name, Date

® Return All Selected Events with Total effects displayed (Earthquake, Tsunami, Volcano) Sorted by Date

Fig 20: Volcanoes Form

(enter one number from -179 to 180):

Easternmost Longitude

A good thing about this dataset is that when it is updated they add the new data to the

historic. This means that we only need to check it every day and replace the old data with the

new one instead of keeping a copy of what exists and then append the new information. The

procedure will be much shorter.

Step

Task

1 Fill the form in a way that maximum information is retrieved
2 Transform the data into the desired format
3 Replace the old dataset with the new one

Expected Result

A dataset with the eruptions of volcanoes until the present with all the

information related to the damage that it caused.

19



3.3.1 Implementation

“In this section, we will see the implementation of the volcanoes ETL process. We did some
“network” scraping to find the request.”

The first thing to do in this case is to explore the structure of the web page to see if we could
find the request behind the select data button. While testing we found a way that instead of
sending us to the web view of the table it downloaded a file. Instead of web scraping the page
we must look in the Network part and check if we can find the file path.

Fig 21: Network Scraping

Once we find the link we can use it as a request and see what it returns. We get a text that is a
representation of the table in TSV (tab-separated value). So thanks to tracking this we’ve
done the two first steps at once. Looking at the query we find that there is a parameter that is
called “t”. If this is the current timestamp we cannot reuse the link because, in the end, we
will not download any new information.

We made a test and used the same link in November and later in December. It showed a new
volcano eruption on the 9th of December without changing the link, so we are now sure that
this link retrieves the information until the present, no matter when it was executed.

Once this was checked we can now save the file and replace it every day without worrying
about losing information. In the end, we have got a very simple code. Basically, we send a
request and store that output as .tsv file in our ADLS.
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3.4 Earthquakes Dataset

“Earthquakes are very common in America. If the infrastructure of the buildings is not
specifically prepared to resist an earthquake it can causes damage by millions of dollars. It
makes sense to track these events to consider them when calculating risks.”

Also from the USA, we have the United States Geological Survey (USGS). This institution is
specialized in tracking earthquakes all around the globe. They release the data in different
formats, so we can choose the one that better fits our purposes. In this dataset, we can find
daily information about the earthquakes every two and a half days. Some of the important
parameters that we have are timestamp, latitude, longitude, magnitude, type, place, error,
status, location, etc. We will start tracking all this information and storing it.

This is the same source that Google uses when it displays information about earthquakes, so
we can say that it is trustable enough. The problem here is that they don’t upload the whole
historic every day, so we must create our dataset daily while monitoring this information.
Ideally, we could find a larger dataset of earthquakes with the same information.

Step Task
1 Download earthquake daily information
2 Append to our historic or set this day as historic if not exists
3 Delete duplicates from the historic

Expected Result | A dataset with all the earthquakes in the world updated every day.
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3.4.1 Implementation

“In this section, we will show the procedure that we followed to end up with historical data
since the year 2000 and how we extracted and appended it to have a dataset that is updated
automatically every day.”

The webpage has a tool that is a filter to show the earthquakes with custom filters. We will
use this to get our historic data. We can force it to show it as CSV instead of using the
interactive map. At first attempt, we’ve tried to retrieve data for the last 20 years. It broke and
show an error because we are trying to download more data than what is allowed, but in this
error, we had access to the request query, so now we can tune it by requests.

Our request is now retrieving data from the last 20 years, all those which has magnitude more
than 6. We only need to save it to our data lake and set it as initial historical data.

time latitude longitude  depth mag magT... nst gap
2011-03-11T05:46:24.1... 38.297 142.373 29.0 9.1 mww 541.0 9.5
2004-12-26T00:58:53.4... 3.295 95.982000... 30.0 9.1 mw 601.0 22.0
2010-02-27T06:34:11.5... -36.122 -72.898 22.9 8.8 mww 454.0 17.8
2012-04-11T08:38:36.7... 2.327 93.062999... 20.0 3.6 mw 499.0 16.6
2005-03-28T16:09:36.5... 2.085 97.107998... 30.0 3.6 mww 510.0 22.1
2001-06-23T20:33:14.1... -16.265 -73.641 33.0 84 mww 518.0
2007-09-12T11:10:26.8... -4.438 101.367 34.0 8.4 MWW 411.0 32.3
2013-05-24T05:44:48.9... 54.89199.. 153.221 598.1 8.3 mww 385.0 10.0
2006-11-15T11:14:13.5...  46.592 153.266 10.0 2.3 mwc 576.0 209
2015-09-16T22:54:32.8... -31.5729 -71.6744 22.44 8.3 mww 19.0
2014-04-01T723:46:47.2... -19.6097 -70.7691 25.0 8.2 mww 23.0
2012-04-11T10:43:10.8... 0.802 92.463 25.1 8.2 mwc 341.0 14.9
Fig 22: Historical Earthquakes Data from USGS

Once we have this we only need to get the daily data and add it to our table. We will use
requests in Python to retrieve this information, save it as daily and work with it. Since pandas
cannot pass raw text in CSV to a Dataframe object we will store it temporarily in the ADLS
and then retrieve it from them. The same happens with the historic. The idea is to run this
notebook once per day, so we need to delete the duplicated entries to not store irrelevant data.
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3.5 Hurricanes to risk

“From June to November, the USA suffers what they call hurricane season. With every

passing year, these hurricanes are becoming more and more powerful. Nowadays, they cause
several damages to both people and properties. Zurich was worried about the fact that they
have no way to measure these events even though they have a big impact on the company.”

This is probably one of the most difficult datasets to work with. Hurricanes are in general
hard to transform into data, they are generated from different ways and they don’t usually
have a center. A hurricane can also generate other dangerous winds that take other routes.

Again, NOAA is the source of this information. The data is in KMZ/KML format and it is
updated every hour if there is a hurricane or tropical storm. This means that most of the year
there are no information available.

Instead of storing the natural disaster itself like we did until now, Zurich want to have a
dataset of USA cities and know how prone a city is to suffer any kind of dangerous wind, this
go from tropical storms to hurricanes. This must include not only the current hurricanes but
also to historical data. The data visualization team also require us to store the hurricane itself
in JSON format so they can visualize it in Power BI.
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Fig 23: KML with probabilities of Tropical Cyclones

We have the hurricane represented as several points and each point has a value according to
its danger associated. The idea is to create a cloud of points and connect them, and then check
whether or not a city is inside the hurricane. We need to take into account the fact that not all
points need to be considered as the hurricane itself. The value of each point represents the
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probability of having a phenomenon in this area, so we could ignore those points with low
values.

Another problem is that not all the points in the dataset belong to the same hurricane, as we
can see in Figure 30, several hurricanes could be happening at the same time. If we connect
these points indistinctly we will find that all the space between hurricanes is also considered
part of the hurricanes.

We also need to find a big dataset of cities from the USA. We want as much accuracy as
possible, so bigger datasets of cities will give us better results. While using the Open Weather
API we find that it has information from tons of cities around the world. If we could list all
the cities that Open Weather API uses and then filter by the country we could have a good
enough dataset where to start.

This new approach to the problem will make us work with two different Open Data datasets
and also start applying some models that data scientists could apply in the future, such as
clustering in order to detect different hurricanes.

Step Task

1 Find a good dataset of cities from the USA

2 Download hurricanes information every 3 hours

3 Transform daily data to interpretable format

4 Find a Historic Dataset of hurricanes

5 Transform the historic if necessary

6 Apply K-means to detect different hurricanes for all the data

7 Check whether or not the cities are inside the dangerous zone

8 Extra: Plot the results in Power Bl

Expected Result | A dataset with the USA cities and information about how many times

they were affected by the three types of dangerous winds (Tropical
storms, cyclones, and hurricanes). This dataset must be also updated
daily.
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3.5.1 Implementation

“In this section, we will see how we selected the cities dataset, the daily hurricane
information and the hurricanes historical data. Then we will show its transformations, and
the techniques applied to calculate the number of times that a city has been in danger.”

For the city dataset search we went back to Open Weather API, we found that we can
download a JSON file with the id that they use when calling the API, the coordinates, the
country and the name of the city. This is great because we can filter by country. When we
filter by the US we find that we have 43191 cities homogeneously distributed.
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Fig 24: Coverage of cities in the USA

For the daily hurricane dataset, our first intuition is to download the data from the NOAA
web page and try to manually visualize it in Power BI. Even though the main purpose in
Power BI is to visualize data, we find that it has no support for either KMZ or KML. We
investigated the program and tested several files that could be displayed on a world map. The
conclusion was that Power BI mainly works with tables, and the way that it has to put points
in a map is having a column that represents the longitude and another one that represents the
latitude.
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It makes sense that if a KMZ/KML file can be displayed in Google Maps, and Google Maps
uses longitude and latitude, this information would be at some point inside the structure of the
file. So the first thing to do is to read the format of the file.

<?xml version="1.8" encoding="utf-8" ?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document id="root_doc">
<Schema name="wsp" id="wsp">
<SimpleField name="Name" type="string"></SimpleField>
<SimpleField name="Description" type="string"></SimpleField>
</Schema>

<Style id="e">
<LineStyle>
<color>@@FFFFFF</color>
<width>e.e</width>
</Linestyle>
<Polystyle>
<outline»1</outline>
<fill»1</fill>
<color>@@FFFFFF</color>
</Polystyle>

</Style>

<Style id="1"»

(.-
<Folder><name>wsp</name>
<Placemark><name>&1t;5%</name><styleUrl>#0</styleUrl><description>&lt;5%</description>

<MultiGeometry><Polygon><outerBoundaryIs><LinearRing»<coordinates>-152.555295810092,9.631541889732087

Eoi]
Fig 25: Simplified version of what a KML file contains

As we can see in the picture, the raw data in a KML file is displayed as XML. The data is
quite long but in the picture, we can see the structure. Points are displayed in an array and
they are divided by polygons, lines or points each one with the different structures depending
on the type. The first thing we must do is transform this XML file to something else that we
can work with, for example, JSON.

We have created a function, using an external library, to convert XML to JSON by only
calling this function. Now we can navigate through the data easily using Python. Once we
downloaded the data, we saw that the first KML file could not be represented in Google
Maps.

If we open the file and read it with the parser we can see that this file is not a common KML
file. It contains a kind of index and it redirects us to other links that have attached a KMZ
file. We saved every KMZ file independently. After some extractions of the data, we can see
that every day we are getting different KMZ files. If there are any hurricanes or tropical
storms they can have, or not, information about its cone of uncertainty, past track, track
forecast, initial extent of winds, etc.
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The most interesting, and constant, file is the one with the probability of having different
dangerous winds, this includes 34-knot winds (Tropical Storms), 50-knot winds (Cyclones)
and 64-knot winds (Hurricanes). Since these files are the only ones that are uploaded every
day we will focus on them. We will keep storing the other files as well but we will focus on
the probability ones. A representation of these files is what we see on Figure 23.

It is easy to infer from the probabilities files. We can see the probabilities as the impact
caused by those dangerous winds. Meaning that zones with probability more than 70% are
closer to the danger and are very likely to be affected by the winds.

The KMZ format is a compressed version of the data, the structure of which depends on the
shape of the hurricane. This variability in the data made it especially challenging to obtain a
readable JSON version from the KMZ. To address this issue, we have created a program that
manages all the KMZ versions and transforms it to obtain a stable JSON file of the hurricane.

This file is a readable version of the KML original file. We can see the structure in Figure 25.
But what we want is a new version that contains each point of the hurricane and information
about it. After applying non-trivial transformations to the data we ended up with a JSON file
where each row contains the longitude and latitude of the point, the kind of wind, the
timestamp and the probability that this point is affected by the winds (we will consider it as
magnitude). We had 30k ~ 60k rows on average for each hurricane. We tested the new
format in Power BIL.
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Fig 26: Hurricane Probabilities in Power B

Even though the visualization can look worse than in Google Maps, Power BI allows us to
apply filters, show the data in several ways, clean the data, work with more than one dataset
at the same time and even create a video of how the hurricanes evolve based on the
timestamp of the data.
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For the historical dataset, we went back to Kaggle, there we find two historic datasets from
1851 until 2016. We have a dataset for the Atlantic and the Pacific oceans. Both of them are
interesting since those are the oceans that surround the USA. As expected, the problem with
these datasets is that they are in a different format than what we have done before, so we need
to transform it before proceeding. This is one of the main issues when working with Open
Data.

Until now we were able to transform the KMZ files to a JSON with the points delimiting the
dangerous zones of the winds. This new format is quite different.

Low Low Low Low High High High High

Wind Wind Wind Wind Moderate Moderate Moderate Moderate Wind Wind Wind Wind
Latitude Longitude NE SE NW sw Wind NE Wind SE Wind NW Wind SW NE SE NW sSwW
31.6N 79.2W 0 50 0 50 0 0 0 0 0 0 0 0
31.5N 79.3W 0 50 0 50 0 0 0 0 0 0 0 0
31.4N 79.4W 60 90 0 20 0 0 0 0 0 0 0 0
31.3N 79.0W 75 90 20 60 30 30 0 0 0 0 0 0
31.8N 78.TW 75 90 30 50 30 30 20 20 0 0 0 0

Fig 27: Historical dataset format pre-processed

They use different coordinates systems, and then they assign a center of the hurricane. They
make a distinction between winds that correspond to our tropical storm, cyclone, and
hurricane. The gist of this is that they take four directions from the center, NE, SE, NW, and
SW and they indicate the distance in this direction where winds of that type happened. In the
end, we should be able to understand the shape of the hurricane based on this data.

&

Fig 28: Visual representation of a hurricane in the new format
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First of all, we want to transform the coordinates system. The first step is to pass from miles
to kilometers, this is only a multiplication. After researching we find that we can transform
those distances in kilometers to coordinates following a formula that takes into account the
fact that this distance belongs to a sphere, not a plane.

Once this is done we must check if the data belong to the South or West, in those cases the
will add the minus before. Remember that we use the global system where coordinates go
from left, negative, to right, positive, and from the bottom, negative, to the top, positive.

Then we need to add or subtract that information depending on which row we are. For
example, if we are in NE row we want to add the latitude and longitude, while if we are in
NW we want to subtract the longitude and add the latitude. We take into account the type of
wind that we are analyzing, so we also classify by tropical storm, cyclone or hurricane.

We do this for both datasets, the Atlantic and Pacific. We merge this into a new dataset and
we have now a historic for the USA in a more treatable format. Now we must come up with
some method to see if cities were inside the danger area or not.

We researched and find that exists a library called shapely[5] that can create polygons from
points and check whether or not another point is inside this polygon. The idea is to model our
hurricanes as polygons and our cities and points to see if they were affected or not by the
winds.

If we apply this method directly to our cities we find strange results, like, most of the cities
are affected most of the time, even those that are in the center of the continent that we know
that they have never been reached by any kind of dangerous wind. This happens because we
did not take into account the fact that we have several winds in one file and we cannot count
them as one single polygon.

Fig 29: Expected representation vs real representation
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As we can see in Figure 29 the polygon that we have has more lines than the reality. The
problem came when a city between winds is not in danger but with this representation it
considers the space between hurricanes as a part of hurricanes. We need to find a way to
classify each wind individually.

This problem is perfectly solved by any clustering method since what we have is a bunch of
unlabeled data points distributed in the space and we want to find reasonable groups of
points. For this concrete problem, we will use k means[6] from sklearn[7] library.

The first thing to take into consideration in this kind of problem is the number of clusters that
we should use. To do this we will use something called silhouette score. The silhouette value
is a measure of how similar an object is to its own cluster (cohesion) compared to other
clusters (separation). The silhouette ranges from —1 to +1, where a high value indicates that
the object is well matched to its own cluster and poorly matched to neighboring clusters. If
most objects have a high value, then the clustering configuration is appropriate. If many
points have a low or negative value, then the clustering configuration may have too many or
too few clusters[8].

What we will do is to set a range of clusters, from 2 to 10, and see which score we get when
we test the k means model. We will pick the number of clusters that have the best score + 4
since we want to be sure that every hurricane has his own cluster. If we use more clusters
than necessary we can have one polygon divided into some parts, which does not really affect
when we are checking if a city is inside or not. On the other hand, if we use fewer clusters we
could end putting in the same group two different hurricanes and had the same problem that
we try to solve.
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Fig 30: Clustered Data (Polygons) from Hurricanes
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Once we have the polygons of each dangerous wind individually the only thing left is to, for
every cluster, check our list of cities and set them as points. We check if the point (city) is
inside the polygon (hurricane), if this happens we will check the type of wind that we are
looking at, and then increase the times that the city was visited by this wind one time.

Once this is done for the historical data we will go for the data that we retrieve every day. As
we know this data contains the probabilities, not the representation of the wind itself. We
decided to filter this data for those values where the probability is at least 90.

Now that we have a dataset with information about the city, coordinates, and name, and how
many times it was in danger we can plot it in Power BI. We also added some filters in the
dashboard so they can filter with no need to code. They have an output window with the
number of cities affected by their current choice of filters.
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Fig 31: Power BI Dashboard with the Data and the Filters

39306

31



3.6 Wildfires Dataset

“Fire is another phenomenon that causes several damages to properties, it will be interesting
to monitor this kind of events in order to evaluate the risk that has a certain property to be
involved in a wildfire based on his historical information.”

It is well-know that fires are increasing as time passes. Events like what happened in
Australia at the beginning of 2020, are very common this decade with an average of 2,279
fires and 44,568 acres burnt per year.'" This factor is not been taking into account when
calculating the risk of a property, despite being one of the most devastating events that tend
to destroy totally or partially the place where it was originated.

It is interesting to track the fires that happen in nature but Zurich, as an insurance company, is
interested in all kinds of fires, especially those that occur in urban zones, like cities or towns.
We must find an updated and trustable dataset that tracks all these events.

We find that NASA has a website with a map with wildfires and it is updated every 24, 48,
72 hours and even weekly. After searching and filtering with their web tool we saw that it
tracks even the fires reported by cities and towns.
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Fig 32: NASA Fire Map

We want to extract this information and keep an updated database with all the fires tracked
since the day we have started until the present. Since what we have is points in a map we
should probably work with KML/KMZ files.

" National Interagency Fire Center (n.d.). Retrieved from_https://www.nifc.gov/fireInfo/nfn.htm
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Step

Task

1 Extract information from the NASA Fire Map

2 Transform this file from KMZ/KML to table

3 Append to the historic if exists

4 Upload the data to the ADLS

Expected Result

A dataset with the information of the fires since the day that the
program is launched until the present, updated daily.
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3.6.1 Implementation

“We will use some techniques that we have learned during this project like Network
Scrapping and KML/KMZ data extraction. Using all these known techniques and functions
we can simplify all the processes.”

We find on the web where we can download the data from the latest 24h, 48h or 7 days. The
format is KML as expected. It does not have API to retrieve this data but a button to
manually downloads. Using what we have learned while downloading volcanos we can do
what we have called “Network Scrapping” and find the request that is sent when we press this
button.

Animated files are marked as (anim).

MODIS Tkm VIIRS 375m / SNPP VIIRS 375m / NOAA20

Fig 33: Network Scrapping with Wildfires

Now we know the link where we need to request in our code. Using the same functions that
we have used when working with hurricanes, we extract information about longitude and
latitude. Then we can also extract other interesting information that is displayed on the
webpage like the timestamp, the brightness, which allows us to imagine the magnitude of the
fire, the track, the scan, the satellite, if it was during day or night, etc. We save all this
information in a pandas dataframe.

As we have seen, we can retrieve information from the last week, so the first iteration of this
project will be to download this file and set this dataset as historic, a poor one but NASA
does not provide any older information. Every day we extract the information and append it
to the last historic dataset.
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3.7 Automatization of the ETL

“Here we will see how we automatized all the procedure through Databricks Jobs, to
auto-download all the data daily.”

Once we have created the Databricks Notebooks that do the ETL process, we want it to work
standalone and automated following our prerequisites. The code was cleaned and optimized.
We followed the given pattern where the first cell contains the main functions and
parameters. All libraries were installed in the same cluster and checked that there are no
compatibility errors. Notebooks were distributed according to their retrieval period.

We ended with 3 different jobs. The first one is the Open Weather Data job. This Job
executes a notebook with all the extraction process of weather. This notebook has his own job
because it is the one that takes longer, remember that we wait one second between requests to
not exceed the API request limit, and it can fail if we encounter some country that has a
non-ASCII character when looking random cities. It happened very few times (<1%), but if it
fails we want to run the notebook again. It is executed every day at midday.

The second one is called Hurricane Data Extractor Job. This job executes all the procedures
from extracting the hurricane in KML format until the calculation per city in the USA.
Instead of using the historic, we transform the KML to data points and apply the same effect
that we did before. This job is executed every 3 hours. If there are any risks of dangerous
winds we want to monitor it as continuously as possible. Most of the time of the year this job
fails since, according to our prerequisites, it must return a Failed status if no data was
retrieved.

The last job is the Weather Job. This job contains all the code to download the rest of the
Open Data: Wildfires, Earthquakes, and Volcanos. It is executed every day at midday.

Open Weather Data x Delete

Job ID: 9
Task: Notebook at /Users/roger.caritjicosta@zurich.com/\Weather Data - Edit / Remove
» Parameters: Edit
o Dependent Libraries: Add
Cluster: Weather (Running) Edi
Schedule: Every day at 12:00pm (Europe/Berlin) Edit / Remove
Advanced «
Alerts: None Edit
Maximum Concurrent Runs: 1 Edit
Timeout: None Edit
Refries: Limit 3x, 30 min delay Edit / Remove

Active runs
Run RuniD Start Time Launched Duration Spark Status
Run Now / Run Now With Different Parameters

Completed in past 60 days

Latest successful run (refreshes automatically)

Run Run ID Start Time Launched Duration Spark Status

Run 15 4961 2020-02-19 12:00:09 CET By scheduler 16m 30s Succeeded x
Run 14 4933 2020-02-18 12:00:03 CET By scheduler 10m 38s ! r Succeeded x
Run 13 4905 2020-02-17 12:00:07 CET By scheduler 10m 20s Spark Ul / Logs / Metrics Succeeded x

Fig 34: Open Weather Data Job information dashboard
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4. FROM DATA LAKE TO DATA CATALOG

“If you have tons of data but you are not able to find what you need despite being stored, do
you really have any data?”

It is said nowadays that too much information leads to disinformation. It is very common in
big companies that every user has his data in a concrete format stored in different places. We
will try to solve this problem by implementing a Data Catalog.

Until now we have been storing all our data in a Data Lake in Azure. The problem is that this
ADLS does not allow us to search in the data as well as we need. There is also the problem
that, like everything in Azure, needs a lot of permissions, and subscriptions. There are no
previsualization of the data and no description at all. It is hard to understand what are we
looking at if we are not the owners and we know all the procedures behind.

Ideally, we want something that can be understood by the marketing team, the human
resources team, engineers, etc. In order to reach this, we require some features.

Description of the data.

Labeled data.

Downloadable data, manually and by APIL.
Uploadable data, manually and by API.

Easy to access.

Secure.

Optional: Previsualization of the data.
Optional: Agrupations of data by topic.
Optional: Agrupations of data by organization.

Optional: Search by content in data, not only by tags.

We have done the research and contacted several companies that showed us their data
catalogs products. We took into account all the previous requisites plus the economic cost
that it has for the company, since that if it works, it could be implemented in the whole
company, even in other countries. After all this process we end up with 3 options.
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4.1 Watson Knowledge Catalog vs Dremio vs CKAN

“In this section, we will show, at a very high level, the process that we followed until we
made the decision.”

After hours of meetings, discussions, and tests we end up with these 3 options as a possible
candidate for the Data Catalog.

The IBM Watson Knowledge Catalog' had very good functions that match with our
requisites. It had a very good searching system, they had internal tools that can be purchased
as extras to do some prework on the data. They had a very good governance system, so not
everybody can manage, create, delete or even see all the data. This allows us to think in terms
of departments and countries, so we could put all kinds of data and then decide who had
access to what.

Some bad things about this are the fact that it was too expensive, even the basic with no extra
add-ons or tools. All the data that we upload there will then belong to IBM, this could be a
problem when we manage personal information data. While negotiating with them they
insisted on the fact that they require all the information about the project, even before we
agreed to anything.

Dremio" had really good features. It had the option to create collections from ADLS. It also
had a very good governance system and its Ul is easy to understand to everyone. It has a very
good feature, you can search from the tags and name but also from the values from the data.
It means that you could search for data from Europe, for example, and you will find those
tables that in some fields have Europe as value, not only on the tags. The price was correct
according to the given services.

The bad things about Dremio are that data has no description. We thought that this problem
could be solved by putting several tags but we find that the API does not support tagging. We
could automatically upload all the data but the tagging should be done manually.

CKAN" is an open-source data portal used by many governments in the world. It has a very
good API that allows creating public or private datasets, divide them by groups,
organizations, and tags. Is very intuitive and its search system can search by tags and word in
the description of the dataset and resource. It can previsualize the data in a table format or in
a map if the data has longitude and latitude. Since it is open-source the only cost will be the
maintainer of the machine where we decide to allocate it.

2 \Watson Knowledge Catalog. Retrieved from
https://www.ibm.com/uk-en/cloud/watson-knowledge-catalog
'3 Dremio. Retrieved from https://www.dremio.com/

4 CKAN. Retrieved from https://ckan.org/
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Some bad things about CKAN are that it must be deployed by hand. We need to work on the
front-end and back-end, there is no tool or online portal created like the cases before. This
means a lot of work focused on developing a web.

Regarding the required features we can see that all of them cover almost every feature, even

the optional ones:

Watson .
Knowledge Dremio CKAN
Description of the data. v ® v
Labeled data. v v v
Downloadable data,
manually and by APIL. v v v
Uploadable data, manually
and by APL v v v
Easy to access. 2 v v
Secure. v (4 4
Optional: Previsualization v ”® v
of the data.
Optional: Agmpgtlons of " " v
data by topic.
Optional: Agrupations of v ® v
data by organization.
Optlonalz Search by content " v ®
in data, not only by tags.

In more general terms we can compare the pros and cons of each option:

Watson Knowledge
PROs CONs
e Pre-work data. e [Expensive.
e Powerful Searching. e [ oss of ownership of data.
e [External support e Not an internal tool.
e They ask for too much information
about internal projects.
e Not trustable.
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Dremio
PROs CONs
e Good price. e No description of the data.
e Integration with ADLS. e Not taggable by API.
e Good UL
CKAN
PROs CONs
e Free. e [t must be developed from 0.
e Internal tool. e Support only in forums.
e Has most of the features.
e Adaptable UL
e Good enough search system.

After taking into account all the things mentioned before we ended up choosing CKAN as
our Data Catalog. It was the most complete option after all. We decided that it will be
running in a Virtual Machine in Azure. In this way, we can adapt the machine according to
our needs and it is running in the cloud.
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4.2 CKAN Overview

“In this section, we will explain how does CKAN works from a user/admin point of view, all
of the available actions that can be performed from the Ul. ”

We find out a template and we modified some files to change the visualization of the catalog
to make it more Zurich friendly. We used MobaXterm to access the data of the web via ssh.

We will focus more on the functionalities rather than the visual aspect since this is not our
scope in this project.

@ ZURICH Datasets Organizations Groups About

Search data Welcome to Zurich OpenData-

We are proud to introduce our brand new OpenData-Portal.

Populartags (oL
Matural-disaster

ZURICH statistics
datasets organizations — group related items
Data will talk to you if you are willing to listen
NASA ~ Natural Disasters
The National Aeronautics and Space... e In this group we can find all datasets related...

Fig 35: Homepage of the Data Portal

As we can see, the homepage is summarizing the content and features of our Data Catalog.
We can see that we have some datasets, something called Organizations and Groups. We

have a searcher and the most popular tags in the catalog. We will focus first on the main part
of a data catalog, the datasets.
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@ ZURICH ): - Organizations Groups About

A | Datasets

Y Organizations

Add Dataset
MNational Oceanic an... (3)

The World Bank (2)

United States Geolo... (1)

Open Weather (1) 8 datasets found Order by: | Relevance |
MNASA (1)

Global Weather Forecast

X Groups Access current weather data for any location including over 200,000 cities Current weather is frequently
Natural Disasters (5) updated based on global models and data from more than 40,000 weather...
Y Tags

NASA Global Fire

The Fire Information for Resource Management System (FIRMS) distributes Mear Real-Time (NRT)
active fire data within 3 hours of satellite observation from both the Moderate. .

Open-Data (6)

Timestamp (5)

MNatural-disaster (5)

Longitude (5
9 ©) Global Volcanoes NOAA

Location (5) This dataset is a global listing of over 500 significant eruptions which includes information on the

Latitude (5) latitude, longitude, elevation, type of volcano, and last known eruption. A

Global (5)

CSV (5
® Global Earthquakes NOAA
Daily-updated (3) This Dataset was extracted by the Data Extraction Team in Zurich. It contains information about

Earthquakes around the world.
csv (2)

Show More Tags

Global Earthquakes USGS

Y Formats

This Dataset was extracted by the Data Extraction Team in Zurich. It contains information about
Csv (8) Earthquakes around the world.
Y Licenses

Heailth Nutrition and Population Statistics

Creative Commons At.._ (8)

Fig 36: Dataset Search

Here we can see some of the datasets available. They show the title, the description and the
format of the data. We can search using free text or by filtering by tags, groups or
organizations on the left part. A very interesting thing about the search system is that if we
search for a word that is in the description of the dataset or in the resource description (the
file itself) it will be displayed too, even if the word is not in the tags. We will use this for
content search. We will put as description a list with the columns, so if someone is looking
for some concrete column it will appear in the search.
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NASA Global Fire

Followers

[ Organization

NASA

The National Aeronautics and
Space Administration is an
independent agency of the
United States Federal
Govemment responsible for
the Givilian space program

a5 well as... read mors

@ Social
W Google+

O Twitter

B Facebook

@ License

Creative Commans

Attribution

& Dataset @ Groups O Activty Stream  Eal Related # Manage

NASA Global Fire

The Fire Information for Resource Management System (FIRMS) distributes Near Real-Time (NRT)
active fire data within 3 hours of satelite obsenvation fiom both the Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIRS).

Data and Resources

. NASA Global Firg
This Dataset was extracted by the Data Extraction Team in Zurich. & contains.

~ Explore -

Daily-updated  Fire  Global  Latitude  Location  Longitude  NASA

Natural-disaster ~ OpenData  Timestamp  csv

Additional Info

Field Value

Source The Fire Information for Resource Management
System (FIRMS) distributes Near Real-Time
(NRT) active fire data within 3 hours of satellite
obsenvation from both the Moderate Resolution
Imaging Spectroradiometer (MODIS) and the
Visible Infrared Imaging Radiometer Suite (VIRS).

Author Data Extraction Team

Maintainer Data Extraction Team

State active

Last Updated February 28, 2020, 11:09

Created January 21, 2020, 09:26

18-faB0bBed 1 4435

NASA Global Fire

RL hitp://13.74.42.4 1d-5c98-4b:

This Dataset was extracted by the Data Extraction Team in Zurich. It contains information about Fires around the world collected from
NASA.

Columns information:

« Date: Timestamp of the fire

« Latitude: Latitude coordinate

« Longitude: Longitude coordinate

ightness: Channel 21/22 brightness temperature of the fire pixel measured in Kehin

« Scan: The algorithm produces 1km fire pixels but MODIS pixels get bigger toward the edge of scan. Scan and track reflect actual
pixel size.

« Track: The algorithm produces 1km fire pixels but MODIS pixels get bigger toward the edge of scan. Scan and track refect actual
pixel size.

« Acq_Date: Data of MODIS acquisition

« Acq_Time: Time of acquisition/overpass of the satellite (in UTC).

« Satellite: A= Aqua and T = Terra

« Confidence: This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to
help users gauge the quality of indiidual hotspot/ire pixels. Confidence estimates range between 0 and 100% and are assigned one
ofthe three fire classes (i dence fire I-confidence fire, or high-confidence fire).

« Version: Versin identifis the collection (e.g. MODIS Callection 6) and source of data processing: Near Real-Time (NRT suffix added
to collection) or Standard Processing (callection only)

« Bright_T31: Channel 31 brightness temperature of the fire pixel measured in Kehin

« FRP: Depicts the pixelintegrated fire radiative power in MW (megawatts).

« DayNight D= Daytime fire, N= Nighttime fire.

B8 Data Explorer

<> Embed
Gid | Graph Map  1000records |« (1 |-[100 | » a Go» || Fiters A
latitude | longitu... |brightn... |scan track acq_dat... acq_tim... satellite  confide... lversion | bright t..
8399 350719 3085 43 19 202002 15 T 61 6ONRT 2896 ~
8397 35077 3095 43 19 202002- 15 T 53 6ONRT 2893
16928 145762 3126 31 a7 202002- 110 T 0 6ONRT 2918
497370 140643 3180 14 12 202002- 110 T PE] 6ONRT 2973
32519 671 3040 10 10 202002 125 A 56 6ONRT 2727
318209 6231 3148 10 10 202002 125 A % 6ONRT 2749

Fig 37: Dataset and Resource Example

Here we can see the difference between dataset and resource. The dataset is on the left and it
can belong to an organization and group. Every dataset can have associated more than one
resource, which are the data files itself. Every dataset has also extra info like the source, the
maintainer, the author, the time updated and when was created. The Resource is the data
itself, it has a format, a description, a link where you can find it and previsualization. You can

also download it directly from the page by clicking the go-to source button.

Add Organization

NASA

The National Aeronautics
and Space Administration is
an independent agency of

a USGS

science for a changing world
United States
Geological Survey
The United States Geological

Survey is a scientific agency
of the United. ..

6 organizations found

Add Group

Order by: | Name Ascending |+

L

Open Weather
Openweather is a small IT
company, established in
2014 by a group of

5
3
7

A
5

3

]

2

2
N w«&“
“Risgr oF

National Oceanic and
Atmospheric
Administration

The National Oceanic and
Atmospheric Administration
is an American scientific.

@ THE R
WORLD
BANK

The World Bank
The World Bank is an
intemnational financial
institution that provides
loans. .

- B e

4 groups found

Order by: | Name Ascending  |v

Natural Disasters

In this group we can find all
datasets related with Natural
Disasters.

Fig 38: Organizations and Groups Example

This is how the organizations and groups are displayed. Some of them are pixelated since we
were testing some functions involving private data. The governance system is involved in this
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part. If any of these groups or organizations are private they will not appear in the general
search. We can see it because we are admins, but even admins will not find direct private data
when browsing datasets in general. If we want to see any of this dataset we must enter into
the organization itself and there we will find a searching page similar to the one in Figure 47
with all the private datasets.

@ ZURICH Datasets Organizations Groups  About _

A / Users / admin

& Datasets =~ @ Activity Stream e Manage
Global Weather Forecast

Access current weather data for any location including over 200,000 cities Current weather is frequently
updated based on global models and data from more than 40,000 weather...

NASA Global Fire

The Fire Information for Resource Management System (FIRMS) distributes Near Real-Time (NRT) active
fire data within 3 hours of satellite observation from both the Moderate...

Followers Datasets
0 1 3 Global Volcanoes NOAA
Edits This dataset is a global listing of over 500 significant eruptions which includes information on the latitude,
649 longitude, elevation, type of volcano, and last known eruption. A
Username
admin Global Earthquakes NOAA
- — This Dataset was extracted by the Data Extraction Team in Zurich. It contains information about
SUETY Private Earthquakes around the world.

s -

Member Since

ARGt 10,003 Global Earthquakes USGS

State This Dataset was extracted by the Data Extraction Team in Zurich. It contains information about
active Earthquakes around the world.
API Key ]
7 | B N N
e e—n (IS =M 5 oliiele . &
HEE N N BN N BN W
m | N |

Fig 39: User Example

Every user can track what datasets they manage and, depending on the user, has certain rights
to edit, visualize or delete them. As we can see here, the admin user owns 13 datasets even
though that on the homepage only appears 8. This is because of the private configuration that
we mentioned before.
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4.3 Uploading Data to CKAN

“In this section, we will see how we upload our Open Data to CKAN. To do this we have
created a new Python Library based on the CKAN API.”

It is great to have a portal that allows manual uploads but we want our data to get updated at
the same time that it does in our ADLS. To do so we want that our data is automatically
updated, it was one of the most important requisites that we had when choosing a portal.

We have developed a Python library to use the CKAN API intuitively. We have used an
external library to support our version.

First of all, we need to log in with our admin credentials and indicate which site are we
working with. Then we can start using the commands. In the API we can find how the page
manages their content. It has what they call package that corresponds to our dataset. You can
create an empty dataset, package, that only had a name, but from the API you can add much
more information. We’ve created a function that uses the API call to simplify.

#-------— CREATE DATASET WITH RESOURCE (EXTRACT DESCRIPTION FROM METADATA) ---------

e

This function creates a Dataset in CKAN. It can be created empty by giving only the name, but more parameters
can be passed. The tags is a normal list, the organization must be avaliable (use view_organizations() to see
current organizations), set private to true if you want this dataset only visible from erganizations, auther,
author email, mantainer and mantainer email are free text fields, url is to put where the information was
retrieved, state is active or deleted, usefull for tests, in group you can pass the list of groups that you
want it to belong to (use wiew_groups()) to see avaliable grups. Upload files is a list with the path where
it is located, example: upload_files=['/dbfs/mnt/dynatrace/TestData/pc_cpbuildingcov.avsc',

' fdbfs/mnt/dynatrace/TestData/super_pc_cpbuildingcov.avsc']. If you want to give a concrete name for each data
source you can pass a list of strings with the name for each file, otherwise it will take the name that is in
the file.

v

def create_dataset(title, description='No description was given', tags=[], erganization='",

private=False, author='"', author_email='', mantainer='', mantainer_email = '',
url="",state="'active', group=[], upload_files=[], names_files=[]):
dataset = mysite.action.package_create(name=title.lower().replace(' ', '_'),

title=title,
notes=description,
tags=list_to_tags(tags),
owner_org= organization,
private=private,
author=author,
author_email=author_email,
mantainer=mantainer,
mantainer_email=mantainer_email,
url=url,

state=state,
groups=list_to_tags(group)
)

add_resources(title, upload_files, names_files)

Fig 40: Create Dataset Function
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As we can see, using this function we do not need to worry about any parameter since it is
preset to empty. We also handle other possible issues with the API. The labels and groups
must be passed as a list of dictionaries with a concrete format. In this function, we only need
to enter a normal list and we handle the transformation. There is an internal name for the
dataset apart from the title itself, we managed it to be automatically set based on the given
title. We can also pass a list with the path where our data is stored and it will be added as a
resource. If we want to give a concrete name to our resource we can also pass them a list of
names.

A resource is what we have called the data itself from the dataset. One dataset can have
several resources but we will try to not have too many of them. The reason is that when we
search on CKAN we will obtain as a result the datasets that match our parameters. As we
explained, this search affects also the data in the datasets, the resource, so if we have too
many resources in a single dataset we could worsen the search system.

E.g. Search for “fire” and find that a dataset of wildfires had more than 100 resources but the
word fire only appears in one of them, now we need to find which one of this 100 is the one
we are looking for.

e e s ~—————m—————————————— ADD RESOURCE TO A DATASET -—————--————————-
def add_resources(dataset, files=[], names=[], replace=True):
#If no names were given set the file name as resource title
if len(names)==0:
names=[]
for file in files:
names.append(file.split('/")[-1].split('.")[0])

for position din range(len(files)):
if replace:
#If exists a resource with the same name delete the prewvious version
if names[position] in find_resource_name(dataset):
mysite.action.resource_delete(id=find_resource_id(dataset) [position])

resource = mysite.action.resource_create(package_id = dataset.lower().replace(' ', '_'},
url="I "F A T S/ dataset/ '+ dataset.lower().replace(' ', '_')},
description=create_description(files[position]),
name=names [position],
format=File.split{'/ "} [-1]).splic( . "} [-1],
created=datetime.datetime.now() .9soformat(),
upload=path_to_files(files) [position]
)

Fig 41: Add Resource to a Dataset

With this function, we handle several things. It can be called manually if someone needs to
add some resources to any dataset but it is automatically called when we create a dataset with
data attached. In this case, we see that if no names are given we will assign the file name.
Also, the fact that if exist any resource with the same name we will delete the previous one. It
is not forbidden to have two resources with the same name but it is usually not desirable. We
had also to handle some issues when locating the resources and when deleting since the API
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does not provide an effective method to delete. It changes the state of the resource to deleted
but it is still stored in the database, which causes some trouble later.

We created this little framework to simplify the process because, this project, more
concretely the data catalog development, has drawn the attention of other departments. So we
were required to optimize the process and make it understandable for developers and data
scientists. In our case, we used a more basic and customized version since the library was not
fully developed when we were asked to upload this data. We created the organizations from
each dataset (NASA, OpenWeather, NOAA, and USGS) and the natural-disaster group. Since
we will only update our datasets, not deleting or creating new, every time we extract data we
will only regenerate the resource, not the whole dataset.

We have the create description function that automatically generates descriptions from the
resource using the spark schema of the data. We have also a version when they want to
update only metadata files, such as Avro schemas (.avsc). But for our case, we decided to
handwrite this information to give a more human perspective of each column and what they
mean. Note that this can also be done through the API.

The only change that we need to do to our ETL code is to upload the data to CKAN. We
added a cell at the end of the notebook that only does this.

Upload to CKAN

1 #earthquakes-usgs
mysite.action.resource_delete(id=find_resource_id('global-earthquakes-usgs')[B])
resource = mysite.action.resource_create(package_id = 'global-earthquakes-usgs',
url="E "7 "~ 1 =& =~ w1/dataset/global-earthquakes-usgs’,
description=USGS_resource_description,
name="'Global Earthquakes',
created= datetime.datetime.now().isoformat(),
upload=open(' /dbfs/mnt/dynatrace/OPENDATA /Weather /Earthquakes/Global/USG5_historic_earthquake.csv')
)
#earthquakes-noaa
1 mysite.action.resource_delete(id=find_resource_id('global-earthquakes-noaa')[@])
resource = mysite.action.resource_create(package_id = 'global-earthquakes-noaa',
url="k . "3 ™4 «L =0 /dataset/global-earthquakes-noaa’',
description=NOAA_earthquakes_description,
name="Global Earthquakes NOAA '
created= datetime.datetime.now().isoformat()},
upload=open(' fdbfs/mnt/dynatrace/OPENDATA /Weather /Earthquakes/Global/NOAA_historic_earthquakes.csv')

mysite.action.resource_delete(id=find_resource_id('global-volcanoes-noaa')[8])
resource = mysite.action.resource_create(package_id = 'global-volcances-noaa',
url=""massainf.i . Z.nl/dataset/global-volcanoes-noaa',
description=NOAA_volcanoes_description,
name="'Global Volcanoes NOAA ',
created= datetime.datetime.now().isoformat(),
upload=open(' fdbfs/mnt/dynatrace/OPENDATA/Weather /Volcanos/Glebal/volcano_historic.csv')

)

Fig 42: Code to upload Open Data to CKAN

We first have written the descriptions of each resource in markdown format. Since the
description is always the same, it explains each column of the dataset, there is no need to
update it as long as the format of the table does not change. We can see in Figure 48 how
does it look like.
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This is not the only way to upload data from ADLS to CKAN. Since we ended up creating a
library for the rest of the teams we also developed a method that allows scanning an already
mounted ADLS (see 1.4). In this case, we input as a parameter the file path and we scan the
whole Data Lake. If there is any supported type file it will be uploaded to our Data Catalog.
This function is highly customizable, but by now it saves every data file in a separate dataset
with only one source, it uses as name the name of the file itself and the file where it is
contained. We put every file accessed from the root as a tag to facilitate the search. This
method is tough to bulk several files at the same time.

We could use this method also to upload all our open data to CKAN since we have got stored
our information in an ADLS file called Open Data. As a part of developing this library, we
also created new functionalities such as deleting all data from an organization or locating files
with given filters. E.g. locate datasets, modify datasets, modify the group of a dataset, add
datasets to an organization, create and remove datasets and organizations, download data
from resources, etc. In general, we have created more functions for more elaborate tasks but
simplifying all the process.
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5. Use case

“In this part, we will analyze all the Open Data datasets that we have stored in our Data
Catalog and try to extract useful insights from them. We will use our library to access the
data.”

At this point, we have extracted the data from the source, transformed it to fit our made-up
standards, and loaded it to a catalog that allows an optimal search. All this data management
is great but we need to be able to get something from all this data to ensure that all that we
have done is worth it.

To illustrate what we want to do, we will use the concept of the pyramid of knowledge also
known as the DIKW pyramid. It stands for Data, Information, Knowledge, Wisdom. Right
now we only have data, even though that it is labeled and has some description. We will
consider that we have information when we have some sort of human-understandable concept
from the data.

Our first approach will be to transform all the data into a simple sentence given a location. It
means that we will input a location (longitude and latitude coordinates) and we will output a
full report related to all the Natural disasters that we have been extracting.

To do so, we need to first extract the most useful insights from each table based on the
location given. The first point is to reduce the rows of data in our dataset keeping only those
that are more significant to us. In our case, we want to keep only those rows that hold
information from our city, or in case that our city is not in the dataset the closest cities.

To select those rows we first take the given location point in longitude-latitude format and
check if it is in our database. If we do not find the point we expand the radius of search
applying some transformations to convert from coordinates to distance. We will increase this
radius until we find a row that contains information from a city inside the area.

Once we find it we will extract from each dataset the most interesting, and human-readable,
features and output them in a structure that will store this information as long as the radius
that we had to search until we found it. In the cases where our city is between more than one
city, we will make the average between them. In these cases, we should notify this in the
output.

We did this for each extracted dataset. Then we created a function that given the coordinates
apply the corresponding function for each dataset and output a human-readable report. In our
example, we used the coordinates from Sarasota, Florida, USA. (Latitude: 27.3364,
Longitude: -82.5308). Here what we get:
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OUTPUT

Hurricanes: This area (Your city around) has been visited 2 times by a
tropical Storm, times by a Cyclone times by a Hurricane.
Volcanoes: You have 4 volcanoes near ( ). They last erupted on average the

year
Wildfires: You had wildfires close ( around) brightness on
average % confidence on average.

Earthquakes: The most dangerous area it has earthquakes of

magnitude on average.
Weather: Using information closest cities ( ): Highlands.
Humidity: %
Pressure: hPa
Wind Speed: m/s
Minimum Temperature:
Temperature: oC
Maximum Temperature:

With this explanation of the data, the Data Science team could create a formula to evaluate
the risk of every coordinate based on the parameters described in this text. E.g.

Number of disasters * damage caused by the disaster
distance to the disaster

Risk(Lat, Long) =

This is a simplification of a more complex formula that could be used in the future to
determine the natural disaster risk related to a certain property. Once this formula is well
defined it could be applied to all coordinates in a map, from -180 to 180 for longitude and
from -90 to 90 for latitude, and plot the risk. So we could generate a map of the whole planet
with the risk per zone in it.
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6. Conclusions

“In this part, we will show the impact of the project. We will separate it in two categories, the
usability of the Open Data extracted and the acceptance of the chosen CKAN Data Catalog
inside the company.”

6.1 Open Data

Currently, the preprocessed data is already being used in several projects. Despite the current
version is very preliminar, a web-based interactive hazards map has been developed as an
internal tool that uses the data. In addition, this information is also being used by a team that
integrates it for risk assessment. We can thus conclude that the company is being benefited
from the TFG in terms of Open Data usability.
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Figure 43: Risk in a concrete point shown in the map
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Figure 44: Wildfires, earthquakes and storms maps in the internal tool
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6.2 Data Catalog

For the data catalog acceptance inside the company we can declare it as a success. We had a
first version in the web (http://13.74.42.43/), now only used to test experimental features

from our CKAN Library. This system really liked here and in Germany. They asks us to
manage a private organization inside CKAN with part of their own private data. They also
wanted to do a bulk upload to store all the information from their ADLS.

@ ZURICH Datasets Organizations Groups About

A / Datasets

Y Organizations

Add Dataset
Data Gov (33369)

Data Europa EU (8192)

Ajuntament de Barce... (458)

National Oceanic an... (3) 42,028 datasets found Order by: Relevance v

The World Bank (2)

United States Geolo... (1)
COvID-19

QurWarid in'Datai(1) Our article on the Coronavirus Disease [COVID-19] presents daily global and national statistics on the

Open Weather (1) number of cases and deaths from the outbreak. Our data files present the...

NASA (1)

Global Weather Forecast

Y Groups Access current weather data for any location including over 200,000 cities Current weather is frequently

Natural Disasters (5) updated based on global models and data from more than 40,000 weather...

Figure 45: State of the catalog one month later after release (Showing only public
datasets)

We add this functionality to our library and we managed to successfully upload that data. Our
CKAN Library was explained to the developers team inside Zurich and they are now working
with it to manage and modify the CKAN structure.

They created a new version in their Zurich Intranet for private data. All this new version was
created using only our library. New dominions were requested by Zurich to have some
versions of our data catalog.

1. opendata.zurich.com
2. externaldata.zurich.com
3. data.zurich.com
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