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1.

Information based on loudness changes abstracted from music signals can serve as an
important source of data for the creation of meaningful and salient high-level features of
performed music, which is almost all of the music that we hear. Our focus is on concepts
related to dynamic levels in musical expressivity which are represented in the score by
markings such as p (piano, meaning soft) and f (forte, meaning loud). These symbols are
interpreted in performance and communicated through the varying of loudness levels.
Understanding the relationship between dynamic markings and loudness levels is crit-
ical to applications in music cognition, musicology (performance analysis), and music
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Loudness variation is one of the foremost tools for expressivity in music performance. Loud-
ness is frequently notated as dynamic markings such as p (piano, meaning soft) or f (forte,
meaning loud). While dynamic markings in music scores are important indicators of how
music pieces should be interpreted, their meaning is less straightforward than it may seem,
and depends highly on the context in which they appear. In this article, we investigate the
relationship between dynamic markings in the score and performed loudness by applying
machine-learning techniques—decision trees, support vector machines, artificial neural net-
works, and a k-nearest neighbor method—to the prediction of loudness levels corresponding
to dynamic markings, and to the classification of dynamic markings given loudness values.
The methods are applied to forty-four recordings of performances of Chopin’s Mazurkas each
by eight pianists. The results show that loudness values and markings can be predicted rela-
tively well when trained across recordings of the same piece, but fail dismally when trained
across the pianist’s recordings of other pieces, demonstrating that score features may trump
individual style when modeling loudness choices. Evidence suggests that all the features cho-
sen for the task are relevant, and analysis of the results reveal the forms (such as the return of
the theme) and structures (such as dynamic marking repetitions) that influence predictability
of loudness and markings. Modeling of loudness trends in expressive performance appears to
be a delicate matter, and sometimes loudness expression can be a matter of the performer’s
idiosyncracy.
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prediction; marking classification

Introduction

informatics (e.g. transcription).

Our approach is a computational one. Existing work on computational modeling of
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loudness in performed music is limited and has largely focused on expressive performance
rendering. Here, loudness is considered as part of the performances characteristics that
have a large impact on the quality of the rendered pieces. One example is the YQX
probabilistic performance rendering system based on Bayesian network theory described
by ?. In this study, loudness is, among others, one of the expressive performance rendering
targets. A similar approach for defining loudness as a parameter of expression was taken
by ? in their statistical modeling of polyphonic piano renditions.

Other researchers have studied dynamics as an important tool for shaping perfor-
mance using computational techniques. Widmer and Goebl (2004) reviewed various uses
of Langner’s tempo-loudness space in the representation and shaping of expressive per-
formance parameters. Sapp (2008) used scapeplots to represent loudness variation at
different hierarchical levels and to distinguish between performance styles.

Little work exists on score-based loudness feature representation, an exception being
the study of Kosta, Bandtlow, and Chew (2014) on the meanings of dynamic markings
in performances of five Chopin Mazurkas. A related study is that of Grachten and Krebs
(2014) where a machine-learning approach is applied to score-based prediction of note
intensities in performed music. From the perspective of transcribing the loudness changes
to dynamic markings, the MUDELD algorithm proposed by ? uses linguistic description
techniques to categorize the dynamic label of separate musical phrases into three levels
labeled as piano (p), mezzo (m), and forte (f).

In this paper we present a number of machine-learning approaches with a two-fold pur-
pose: predicting loudness levels given dynamic score markings and classifying performed
loudness into dynamic markings. This will be done by taking into account features that
emphasize the fact that dynamic markings have to be understood in relative terms. The
approach to the analysis of dynamic markings is inspired by the description of dynamics
by Khoo (2007) as operating on “primary dynamic shading” (absolute) and “inner shad-
ings” (relative) levels. A consequence is that the absolute loudness of dynamic markings
may be superseded by their local context so that a p dynamic might objectively be louder
than an fat another part of the piece, as shown by Kosta, Bandtlow, and Chew (2014).

Fabian, Timmers, and Schubert (2014) posit that while a significant part of the per-
former’s aim is to communicate the composer’s intentions, nevertheless, performers bring
their personal, cultural, and historical viewpoints to the fore when subjectively under-
standing expression. In an early study on dynamics performance styles, ? alludes to the
difficulty of grouping patterns of dynamic changes across recordings of the same musical
excerpt, highlighting that only a weak relationship exists between performers’ sociocul-
tural variables with the dynamics profile in their recordings. In order to systematically
investigate variability in the performer’s understanding of the composer’s intentions, we
analyze eight different pianists’ recordings of forty-four distinct Mazurkas by Frédéric
Chopin.

The remainder of the paper is organized as follows: In Section 2 we describe the data set
used for this study, the features extracted, the learning task and the algorithms employed.
Section 3 presents and discusses the results obtained when predicting loudness levels at
dynamic markings; and, Section 4 does the same for results obtained when classifying
loudness levels into dynamic markings. Finally, Section 5 summarizes the conclusions
with some general discussions.



2. Material and methods

This section describes the music material and computational methods that form the
basis of the studies of this paper. Section 2.1 describes the dataset, the multiple align-
ment strategy used to synchronize audio and score features, and the features extracted.
Section 2.2 presents the machine-learning algorithms employed in the experiments.

2.1. Data preparation

For the purpose of this study, we examine recordings of eight pianists’ performances of
forty-four performances of Mazurkas by Frédéric Chopin. The Mazurkas and the number
of dynamic markings each are detailed in Table 1, and the eight pianists together with
the recording’s year and index are identified in Table 2. The audio data was obtained
from the CHARM Project’s Mazurka database’.

Mazurka index|M06-1|MO06-2 | M06-3|{MO07-1|M07-2|MO07-3|M17-1|M17-2| M17-3 | M17-4|M24-1
# markings 18 13 22 13 13 18 7 6 9 7 4
Mazurka index|M24-2{M24-3 | M24-4|M30-1|M30-2|{M30-3 | M30-4|M33-1|M33-2|M33-3|M33-4
# markings 12 7 33 8 14 25 18 5 16 4 12
Mazurka index|M41-1{M41-2|M41-3|M41-4 | M50-1{M50-2| M50-3|M56-1 | M56-2 | M56-3 | M59-1
# markings 12 5 6 7 15 14 17 14 7 16 8
Mazurka index|M59-2|M59-3 | M63-1|M63-3|M67-1|M67-2| M67-3 | M67-4| M68-1|M68-2 | M68-3
# markings 8 11 9 4 18 10 13 11 12 21 8

Table 1. Chopin Mazurkas used in this study and the number of dynamic markings that appear in each one.
Mazurkas are indexed as “M<opus>-<number>.”

Pianist | Chiu | Smith | Ashkenazy | Fliere | Shebanova | Kushner | Barbosa | Czerny
Year 1999 | 1975 1981 1977 2002 1990 1983 1989
D P1 P2 P3 P4 P5 P6 pP7 P8

Table 2. Pianist’s name, year of the recording, and pianist ID.

The loudness time series is extracted from each recording using the ma_sone function
in Elias Pampalk’s Music Analysis toolbox?. The loudness time series is expressed in
sones, and smoothed by local regression using a weighted linear least squares and a 2nd
degree polynomial model (the “loess” method of MATLAB’s smooth function®). The
final values are normalized by dividing each value with the largest one per recording; in
this way we are able to compare different recording environments.

2.1.1.  Audio recording alignment

To speed the labour-intensive process of annotating beat positions for each recording,
only one recording (which we refer to as the “reference recording”) for a given Mazurka
was annotated manually, and the beat positions transferred automatically to the remain-
ing recordings using a multiple performance alignment heuristic to be described below.
The multiple performance alignment heuristic employs the pairwise alignment algorithm
by Ewert, Miiller, and Grosche (2009), which is based on Dynamic Time Warping (DTW)
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applied to chroma features. This pairwise alignment technique extends previous synchro-
nization methods by incorporating features that indicate onset positions for each chroma.
Ewert et al. report a significant increase in alignment accuracy resulting from the use
of these chroma-onset features and the average onset error for piano recordings is 44
milliseconds.

The pairwise alignment algorithm creates a match between two audio files, say ¢ and
j, using dynamic time warping. The matched result is presented in the form of two
column vectors p; and q;, each with m entries where m depends on the two recordings
chosen, 7 and j. Each vector presents a nonlinear warping of the chroma features for the
corresponding audio file, and represents the timing difference between the two recordings.
A pair of entries from the two vectors gives the indices of the matching time frames of the
two audio files. We compute the Euclidean distance between each pair of the dynamic
time warped audio files as follows:

m

dij= | (@x—pir)%  Vi#j, (1)

k=1

where m € N is the size of the vectors. In this way, each audio has a profile corresponding
to its alignment to all other audio recordings which is d; = [d; j]. The average value of
all the alignment accuracies for the i*? recording in relation to the remaining ones is d;.

The goal of the multiple performance alignment heuristic is to optimize the choice
of a reference audio with which we can obtain better alignment accuracies than with
another reference audio file. We consider the best reference file to be one that minimizes
the average distance to other audio files and without extreme differences from more
than two other audio recordings as measured by the norm distance. Mathematically, the
problem of finding the reference audio can be expressed as one of solving the following
problem:

min d;
s.t. # {j : ’di7]‘| > ‘B(di) + 1.5[(]3(di) — ql(dz)]} <2,

where gy(d;) is the ¢-th quantile of d;, and the left hand side of the inequality uses an
interquartile-based representation of an outlier. The “reference recording” is then given
by arg min; d;.

We then detect manually the beat positions only for the reference audio recording and
we obtain the beat positions of the remaining recordings by using the alignment method
which is mentioned above. In order to evaluate the method, we have compared these
derived beat positions with our manually annotated ones for forty-four recordings of the
Mazurka Op. 6 No. 2 and the average error was 37 milliseconds.

2.1.2. Observed dynamic features

The dynamic markings are taken from the Paderewski, Bronarski, and Turczynski (2011)
edition of the Chopin Mazurkas. For the dataset described in Table 1, pp occurs 62
times, p 234, mf 21, f 170, and ff 43 times, giving a total of 530 dynamic markings.
The loudness value corresponding to each marking is the average of that found at the
beat of the marking and the two subsequent beats. More formally, if {y,} € R is the
sequence of loudness values in sones for each score beat indexed n € N in one piece, then
the loudness value associated with the marking at beat b is £, = %(yb + Y1 + Ypt2)-
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About the choice of three beats, sometimes the actual change in response to a new
dynamic marking does not take place immediately, and can only be observed in the subse-
quent beat or two. It is clear from the data that loudness varies considerably between one
dynamic marking and the next. Thus, we additionally aim to have the smallest window
possible to capture dynamic changes in response to a marking. Consequently, we have
chosen a three-beat window as the window for study, which for Mazurkas corresponds to
a bar of music.

For each dynamic marking in the data set, we have extracted the following associated
features:

1) label of the current dynamic marking (M);

2) label of the previous dynamic marking (PR-M);

3) label of the next dynamic marking (N_M);

4) distance from the previous dynamic marking (Dist_PR);

5) distance to the next dynamic marking (Dist_N);

6) nearest non-dynamic marking annotation between the previous and current dynamic
marking, e.g. crescendo (Annot_PR);

(7) nearest non-dynamic marking annotation between current and next dynamic mark-
ing, e.g. crescendo (Annot_N); and,

(8) any qualifying annotation appearing simultaneously with the current dynamic mark-

ing, e.g. dolcissimo (Annot_M).

In addition to the feature set described above, we also have an associated loudness value,
L, which is the ¢, value on the beat of the dynamic marking.

We consider at most one value each for the features “Annot_ PR,” “Annot_N,” and
“Annot_M.” If two different annotations occur on the same beat, we choose the one
related to dynamic changes, an exception being the case where the annotations sf and
a tempo appear simultaneously. In this case, to be consistent with the time range of
other non-dynamic marking annotations, we choose a tempo over sf, as it applies to
more than one score beat. In the case where there was an annotation related to change in
dynamics and a qualifying term such as poco preceding it, we use the annotation without
the qualifier, to limit the number of dynamic terms.

2.2. Learning task and algorithms

In this article we explore different machine learning techniques to induce a model for
predicting the loudness level at particular points in the performance. Concretely, our
objective is to induce a regression model M of the following form:

M (FeatureSet) — Loudness

Where M is a function which takes as input the set of features (FeatureSet) described
in the previous section, and Loudness is the predicted loudness value. In order to train
M we have explored the following machine learning algorithms (as implemented in Hall
et al. (2009)):

Decision Trees (DT). Decision trees Quinlan (1986) use a tree structure to represent
possible branching on selected attributes so as to predict an outcome given some observed
features. The decision tree algorithm recursively constructs a tree by selecting at each
node the most relevant attribute. The selection of the most relevant attribute, at each
node of the tree is based on the information gain associated with each attribute and



the instances at each node of the tree. For a collection of loudness values, suppose there
are b instances of class B and c¢ instances of class C. An arbitrary object will belong to
class B with probability b/(b+ ¢) and to class C with probability ¢/(b+ ¢). The expected
information needed to generate the classification for the instance is given by

I(b,c):( D gy 2 4 S log, —© ) (2)

bre B2h1c  bye B2pte

Suppose attribute A can take on values {a1,as,...,a,} and is used for the root of the
decision tree, partitioning the original dataset into v subsets, with the ¢-th subset con-
taining b; objects of class B and ¢; of class C. The expected information required for the
i-th subtree is I(b;, ¢;), and the expected information required for the tree with A as root
is the weighted average

"\ b+
i=1

where the weight for the i-th subtree is the proportion of the objects in the i-th subtree.
The information gained by branching on A is therefore gain(A) = I(b,c)— E(A), and
the attribute chosen on which to branch at the next node is thus argmax4 gain(A).
Decision trees can also be used for predicting numeric quantities. In this case, the leaf
nodes of the tree contain a numeric value that is the average of all the training set
values. Decision trees with averaged numeric values at the leaves are called regression
trees.

Support Vector Machines (SVM). Support vector machines by Cristianini and
Shawe-Taylor (2000) aim to find the hyperplane that maximizes the distance from the
nearest members of each class, called support vectors. Cristianini et al. use a nonlin-
ear function ¢(-) to map attributes to a sufficiently high dimension, so that the surface
separating the data points into categories becomes a linear hyperplane. This allows the
model to predict nonlinear models using linear methods. The data can be separated by a
hyperplane and the support vectors are the critical boundary instances from each class.

The process of finding a maximum margin hyperplane only applies to classification.
However, support vector machine algorithms have been developed also for regression
problems, i.e. numeric prediction, that share many of the properties encountered in the
classification case. SVM for regression problems also produce a model that can usually
be expressed in terms of a few support vectors and can be applied to nonlinear problems
using kernel functions.

Artificial Neural Networks (ANN). Artificial neural networks are generally pre-
sented as systems of interconnected “neurons” which exchange messages between each
other. They are based on the idea of the perceptron which includes an input, a hidden
and an output layer of data points connected with nodes having numeric weights. The
nodes of the input layer are passive, meaning they do not modify the data. The two as-
pects of the problem is to learn the structure of the network, and to learn the connection
weights. A multilayer perceptron (MLP)—or ANN- has a linear activation function in all
neurons, that is, a linear function that maps the weighted inputs to the output of each
neuron. More formally, we assume that in one network there are d inputs, M hidden
units and ¢ output units. As it is described by ?, the output of the jth hidden unit is



obtained by first forming a weighted linear combination of the d input values, to give

d
CL]' = ij(})xz, (4)
=1

where w(-;) denotes a weight in the first layer, going from input i to hidden unit j. The

activation of hidden unit j is then obtained by transforming the linear sum above using
an activation function ¢(-) to give

zj = g(aj). ()

The outputs of the network are obtained by transforming the activations of the hidden
units using a second layer of processing elements. For each output unit k, we construct
a linear combination of the outputs of the hidden units of the form

M
ap = Zw,g.)zj. (6)
j=1

The activation of the kth output unit is then obtained by transforming this linear com-
bination using a non-linear activation function g(-), to give

yr = glag). (7)

We next consider how such a network can learn a suitable mapping from a given dataset.
Learning is based on the definition of a suitable error function, which is minimized with
respect to the weights and biases in the network. If we define a network function, such as
the sum-of-squares error which is a differentiable function of the network outputs, then
this error is itself a differentiable function of the weights. We can therefore evaluate the
derivatives of the error with respect to the weights, and these derivatives can then be
used to find weight values which minimize the error function.

In this paper, in order to determine the weights, that is, to tune the neural network
parameters to best fit the training data, we apply the gradient descent back propagation
algorithm of Chauvin and Rumelhart (1995). The back propagation algorithm is
used for evaluating the derivatives of the error function and learns the weights for a
multi-layer perceptron, given a network with a fixed set of units and interconnections.
The idea behind this algorithm is that the output corresponds to a propagation of
errors backwards through the network. We empirically set the momentum applied to the
weights during updating to 0.2 and the learning rate, that is the amount of the weights
that are updated, to 0.3. We use a fully-connected multi-layer neural network with one
hidden layer meaning that we have one input and one output neuron for each attribute.

k-Nearest Neighborhood (k-NN). k-NN is a type of instance-based learning which
instead of performing explicit generalization, compares the new data instances with in-
stances in the traning set previously stored in memory. In k-NN generalization beyond
the training data is delayed until a query is made to the system. The algorithm’s main
parameter is k, the number of considered closest training vectors in the feature space.
Given a query, the output’s value is the average of the values of its k nearest neighbors.
More formally, as it is described by ?, the k-nearest neighbor fit for the prediction Y of



the output Y is

Y=g Y w Q
)

x;ENg(z

where N (z) is the neighborhood of the input instance x defined by the closest points x;
in the training sample.

In this paper we report the results of the k-NN algorithm with & = 1 which finds
the training instance closest in Euclidean distance to the given test instance. If several
instances are qualified as the closest, the first one found is used. We tested the values of
k equal to 1,2, and 3 and there was not a significant difference on the regression results.

3. Performed loudness-level modeling

This section assesses the fit of the machine-learned models as they predict loudness values
in a pianist’s recording of a Mazurka, first given other recordings of that Mazurka, and
second given other recordings of that pianist. Two experiments have been conducted for
this purpose. In the first one, each prediction model has been trained for each Mazurka
separately. Then, each model has been evaluated by performing a 8-fold training-test
validation in which instances of one pianist of the training set are held out in turn as
test data while the instances of the remaining seven pianists are used as training data.
In the second one, each prediction model has been trained for each pianist separately.
Then each model has been evaluated by performing a 44-fold training-testing validation
in which instances of one Mazurka of the training set are held out in turn as test data
while the instances of the remaining forty-three Mazurkas are used as training data.

Section 3.1 presents the machine-learning algorithms’ results of the first experiment,
when predicting loudness given other pianists’ recordings of the target piece; Section 3.2
presents the machine-learning algorithms’ results of the second experiment, when pre-
dicting loudness given the target pianist’s other recordings; Section 3.3 considers the
extremes in prediction results for the second experiment; Section 3.4 considers the de-
gree of similarity in approach to loudness between pianists; and, Section 3.5 considers
the relevance of the features selected.

3.1. Predicting loudness given other pianists’ recordings of target piece

In the first experiment, we use the machine-learning methods described above to predict
the loudness values at the dynamic markings of one Mazurka, given the loudness levels
at the markings of the same Mazurka recorded by other pianists. We test the machine-
learning models by assessing their predictions at points where the composer (or editor)
has placed a dynamic marking because this is our closest source of ground truth. The
evaluations focus on how well a pianist’s loudness choices can be predicted given those
of other seven pianists for the same Mazurka.

As a measure of accuracy, we compute the Pearson correlation coefficient between
predicted (X) and actual (Y) loudness values using the formula

. >y — X) (i —Y)
\/Zi:1 n(z; — Y)Q\/Zizl n(y; —Y)?
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where z; € X, y; € Y, and the size of X and of Y, n, varies from one Mazurka to the
next, and is given in Table 1.

For each Mazurka, we compute the mean Pearson correlation coefficients over all
recordings of that Mazurka to produce the graph in Figure 1. The results of each machine-
learning algorithm—Decision Trees (DT), Support Vector Machines (SVM), Artificial
Neural Networks (ANN), and k-Nearest Neighbour (k-NN)—is denoted on the graph
using a different symbol.

Results of prediction models
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Figure 1. Pearson correlation coefficient between predicted and actual loudness values for each Mazurka, averaged
over all recordings of the Mazurka, for each machine-learning method—Decision Trees (DT), Support Vector
Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbour (k-NN).

Observe in Figure 1 that, with few exception, the mean Pearson correlation coefficient
is fairly high. When disregarding the two most obvious outliers, Mazurka Op. 17 No. 3
and Mazurka Op. 24 No. 3, the mean Pearson correlation value ranged from 0.5192 to
0.9667 over all machine learning methods. Furthermore, the mean Pearson correlation
coefficient, averaged over the four machine-learning techniques, and over all Mazurkas
is equal to 0.8083. This demonstrates that, for most Mazurkas, the machine-learning
methods, when trained on data from other pianists’ recordings of the Mazurka, can
reasonably predict the loudness choices of a pianist for that Mazurka.

In the next sections, we inspect the anomalous situation of Mazurka Op. 17 No. 3 and
Mazurka Op. 24 No. 3, and the special cases when one particular pianist deviates from
the behavior of other pianists for specific Mazurkas.

3.1.1.  Cases of low correlation between predicted and actual loudness values

While the overall Pearson correlation measure of success is good for the prediction of
loudness values in a Mazurka recording when a machine-learning model is trained on
other pianists’ recordings of the Mazurka, two Mazurkas were found to be outliers to this
positive result: Mazurka Op. 24 No. 3 and Mazurka Op. 17 No. 3.

For Mazurka Op. 24 No. 3, the mean (over all recordings) Pearson correlation value,
when averaged over the four machine-learning techniques, is -0.347, meaning that the
predictions are weakly negatively correlated from the actual loudness values. The mean



Pearson correlation value for Mazurka Op. 17 No. 3, when averaged over the four machine-
learning methods, while positive, is low at 0.320, meaning that the predictions are only
weakly correlated with the actual loudness values.

Looking deeper into the case of these two Mazurkas, apart from the common key of
Ab major, they also share the property of having only the dynamic markings p and mf
in the score, with extended mono-symbol sequences of p’s. In the case of Mazurka Op.
24 No. 3, the existing score markings are {mf, p, p, p, p, p, p}; for Mazurka Op. 17 No.
3, the score markings are {mf, p, mf, p, p, p, p, mf, p}. The narrow dynamic range of
the notated symbols and the consecutive strings of the same symbols both will almost
certainly lead to a wide range of interpretations in order to create dyanmic contrast and
narrative interest.

Consider the case of Mazurka Op. 24 No. 3: Figure 2 shows the actual loudness values
for the eight recordings at the points of the dyanmic markings. Note that, in this Mazurka,
apart from the initial mf, the remaining dynamic markings are uniformly p. The x-axis
marks the sequence of dynamic markings in the score, and the eight distinct symbols on
the graphs mark the loudness values (in sones) at these points in the recording. Note
the wide range of interpretation of the loudness level for mf; the loudness value ranges
for the p’s are often as wide as that for the mf, with the recordings exhibiting many
contradictory directions of change from one dynamic marking to the next. In particular,
note that in three out of the eight recordings, the p immediately following the mf is
actually louder than the mf.

Mazurka Op. 24 No. 3
I

P1
P2
P3
P4
P5
P6
P7
P8

|
Aovexpranm

Normalized sones

mf P P P P P P
Marking

Figure 2. Representation of the loudness levels on the marking positions in score time for Mazurka M24-3 for the
eight pianists.

For the case of Mazurka Op. 24 No. 3, the Pearson correlation coefficient between the
predicted and actual loudness values, for each of the four machine-learning methods,
are uniformly negative. Next, we consider the cases when the predictions are negatively
correlated for only one recording of a Mazurka while the remaining seven recordings of
the same Mazurka had predictions positively correlated with the actual loudness values.

3.1.2.  Cases when one recording is negatively correlated while others are not

The tests in the previous section showed that there can be a high degree of divergence
in loudness interpretation amongst recordings of a Mazurka. In this section, we examine
the special cases of solitary deviant behavior, when one pianist chose starkly different
loudness strategies than the others when recording a Mazurka. For this, we consider
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the cases when the predictions for one recording has a negative average (over all four
machine-learning techniques) Pearson correlation value while those for the other seven
have positive average correlation coefficients between predicted and actual loudness val-
ues.

We identified four Mazurkas for which the predictions for one recording was negatively
correlated on average (over all the machine-learning algorithms) and the other seven were
positively correlated. The average Pearson correlation values for each pianist’s recordings
of these four Mazurkas are plotted in Figure 3. The average correlation value of the
solitary deviant recording for each Mazurka is highlighted with a red dot. For each red
dot marking the correlation value of the worst-predicted pianist, the correlation values
of the other pianists who recorded the Mazurka are shown as grey squares in the same
vertical column.

Unpredicted pianists in specific Mazurkas

I I
1F B B .
]
08 H [ | e
]
06 L] = i
o 0 |
(5]
£ m |
E 0.4 m b
]
g 0.2 . -
2 )
«© or | . -
[ @ °®
§-02fF —
c
g-04r .
3
206 .
08 .
()
1 | | | | ]
P5 (M17-3) P7 (M24-1) P5 (M33-1) P1 (M67-2)

Pianist (Mazurka)

Figure 3. Pearson correlation coefficients of Mazurkas for which the worst predicted pianist’s recording scored,
averaging over all machine-learning methods, a negative r value (red dots): pianist P5 for M17-3, P7 for M24-1,
P5 for M33-1, and P1 for M67-2. The average coefficients for the remaining pianists are shown as grey squares.

We can see from the display that even when the machine-learning algorithms did poorly
in the case of a particular pianist, they often did fairly well for other pianists who recorded
the same Mazurka. Figure 3 demonstrates why the loudness values of certain Mazurka
recordings cannot be predicted well when machine-learning algorithms are trained on
other pianists’ recordings of the same Mazurka.

We next turn our attention to the extreme case of Mazurka Op. 24 No. 1, in which the
loudness value predictions for one recording, that of Barbosa (P7), are amost perfectly
negatively correlated with the actual values. Figure 4 shows the loudness time series, in
score time, for all eight recordings of Mazurka Op. 24 No. 1. The loudness time series for
Barbosa, the worst-predicted pianist, is highlighted in bold. The score dynamic markings
for this Mazurka are labeled on the x-axis. The actual loudness values recorded for pianist
P7 at these points are marked by red dots. The actual loudness values of other pianists—
—Chiu (P1), Smith (P2), Ashkenazy (P3), Fliere (P4), Shebanova (P5), Kushner (P6),
Czerny (P8)—at this point are marked by black symbols on the same vertical line.

As illustrated by the graph, in Barbosa’s recording, he employs a performance strategy
contrary to that of all or almost all of the other pianists. Furthermore, the loudness level
of Barbosa’s recording sampled at the points of the first four dynamic markings are
relatively level, in contrast to the strategies exhibited by the other pianists.

Having considered the prediction of loudness values in a Mazurka recording by training
machine-learning algorithms on recordings of the same Mazurka by other pianists, we
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Figure 4. Loudness time series in score-beat time for recordings of Mazurka Op. 24 No. 1. Loudness time series
for Barbosa’s recording (P7) is shown in bold; loudness value for Barbosa’s recording at dynamic markings are
indicated by red dots, those of other pianists Chiu (P1), Smith (P2), Ashkenazy (P3), Fliere (P4), Shebanova
(P5), Kushner (P6), Czerny (P8)—are shown as black symbols.

next consider predictions of models trained on recordings of other Mazurkas by the same
pianist.

3.2. Predicting loudness given target pianist’s recordings of other pieces

In the second experiment, we use the machine-learning methods to predict the loudness
values at the dynamic markings of one Mazurka, given the loudness levels at the markings
of other Mazurkas recorded by the same pianist. The evaluations focus on how well
a pianist’s loudness choices can be predicted given those of them made in the other
forty-three Mazurkas. For this purpose, a 44-fold training-testing validation has been
implemented. As before, we use as measure of prediction accuracy the Pearson correlation
coefficient between actual and predicted values.

The results are displayed in Figure 5, which shows the mean, minimum, maximum,
and median Pearson correlation coefficient values over all Mazurka recordings by each of
the pianists listed in Table 2; the results are broken out into the four machine-learning
methods employed—Decision Trees (DT), Support Vector Machines (SVM), Artificial
Neural Networks (ANN), and k-Nearest Neighbour (k-NN).

Contrary to the previous experiment, where the machine-learning models were trained
on other pianists’ recordings of the same Mazurka and did fairly well, when training
the models on the same pianist’s other Mazurka recordings, the average cross-validation
results for each pianist are close to zero. The minimum is close to -1, implying that
sometimes the loudness values of a recording can be directly contrary to the predictions,
and the maximum is close to 1, implying that sometimes the loudness values behave
as predicted. The results thus demonstrate that it can be extremely difficult to predict
loudness values in a recording given the pianist’s past behavior in recordings of other
pieces. The results fare far better when training on other pianists’ recordings of the same
piece.

In Section 3.3, we seek to gain some insights into why the Pearson correlation values
were so highly variable between the predicted and actual values for this experiment. In
particular, we examine in detail the Mazurkas for which predicted and actual loudness
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Figure 5. Pearson correlation coefficient mean, min, max, and median values for each method—Decision Trees
(DT), Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbour (k-NN)—for
each pianist—Chiu (P1), Smith (P2), Ashkenazy (P3), Fliere (P4), Shebanova (P5), Kushner (P6), Barbosa (P7),
Czerny (P8).

values were most strongly and positively correlated and most strongly and negative
correlated across all machine-learning methods.

The previous results have shown that while there may be some small variability in the
prediction quality of the four machine-learning methods, they agree on the prediction
difficulty amongst the recordings In the next section, we perform a second check on the
prediction quality using a Euclidean measure.

3.2.1.  Comparing machine-learning methods

To check for variability in the prediction quality of the four machine-learning algorithms,
we compute the accuracy for each algorithm using the Euclidean distance. The Euclidean
distance between the predicted (X) and actual (Y) loudness values (in sones) in the held
out data is given by the formula

(10)

where x; € X, y; € Y, and n is the size of X, and Y, which varies from one Mazurka to
the next, as shown in Table 1.

We average these Euclidean distances over all Mazurkas for a given pianist to produce
the results shown in Figure 6. The results are grouped by pianist: Chiu (P1), Smith (P2),
Ashkenazy (P3), Fliere (P4), Shebanova (P5), Kushner (P6), Barbosa (P7), Czerny (P8).
For each pianist, the graph shows accuracy results for each of the four machine-learning
methods—Decision Trees (DT), Support Vector Machines (SVM), Artificial Neural Net-
works (ANN), and k-Nearest Neighbour (k-NN)—averaged over all Mazurka recordings
by that pianist.

The results show that the algorithms perform consistently one relative to another.
The span of average Euclidean distance between predicted and actual values is relatively
small. In comparison, the DT algorithm produced the best results, followed closely by
the SVM algorithm then the k/-NN algorithm; the ANN algorithm is a more distant
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Figure 6. Euclidean distance between predicted and actual loudness values for each pianist Chiu (P1), Smith
(P2), Ashkenazy (P3), Fliere (P4), Shebanova (P5), Kushner (P6), Barbosa (P7), Czerny (P8)—for each method—
Decision Trees (DT), Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neigh-
bour (k-NN)—averaged over all Mazurka recordings by the pianist.

fourth. While the ANN algorithm fared worse in this exercise, we shall see in Section 4.2
that the ANN gives better results when the machine-learning algorithms are applied to
the problem of predicting dynamic marking labels.

3.3. A pianist’s interpretation may not be predictable based on their
approach to other pieces

In this section, we dig deeper into the Pearson correlation results of the previous section
to consider the extreme cases of when the predicted and actual loudness values are most
consistently positively and consistently negatively correlated. We consider the Mazurkas
for which all methods produced loudness predictions that were negatively correlated with
the actual loudness values for all pianists; we also single out the Mazurkas for which all
methods produced predictions that were positively correlated with the actual values for
all pianists.

3.8.1.  Most negatively and most positively correlated results

In the cross-validation, the highest Pearson correlation coefficient between predicted and
actual loudness, 0.9981, is encountered in Chiu (P1)’s recording of Mazurka Op. 63 No. 3
(M63-3), and the lowest correlation value, —0.9444, in Fliere (P4)’s recording of Mazurka
Op. 17 No. 2 (M17-2).

The four Mazurkas for which the Pearson correlation is negative for all the machine-
learning methods and for all eight pianists are Mazurkas Op. 7 No. 1 (M07-1), Op. 24
No. 2 (M24-2), Op. 24 No. 4 (M24-4), and Op. 50 No. 3 (M50-3). This means that, for
these Mazurkas, the pianists’ recorded loudness strategies are contrary to those gleaned
from their recordings of the other Mazurkas. The three Mazurkas for which the Pearson
correlation coefficient over all pianists and for all machine-learning methods was positive
are Mazurkas Op. 30 No. 4 (M30-4), Op. 41 No. 2 (M41-2), and Op. 68 No. 2 (M68-2).
For these Mazurkas, the pianists’ recorded loudness strategies are in accordance to those
gleaned from their recordings of the other Mazurkas.

The results are summarized in Figure 7, which presents the Pearson correlation result
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for each of the eight pianists for the Mazurkas mentioned; each pianist’s data point for
a Mazurka shows the average over the four machine-learning methods. Note that, for
each Mazurka, the correlation coefficients are relatively closely grouped for all pianists.
In the next section, we shall examine more closely the four Mazurkas having all-negative
correlation values, i.e. the ones to the left of the dividing line.
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Figure 7. Pearson correlation coefficient values for each pianist, averaged over all machine-learning methods, for
the Mazurkas having all negative (left: M07-1, M24-2, M24-4, M50-3) and all positive (right: M30-4, M41-2, M68-2)
correlation values.

3.8.2. Cases of negative correlation

Here, we focus on the four Mazurkas with negative Pearson correlation coefficients for
all pianists and all machine-learning methods. Figure 8 shows the predicted and actual
loudness values at each dynamic marking in the four Mazurkas, concatenated in sequence.
The values shown are the average over all pianists and all machine-learning methods for
each marking and Mazurka.

Average actual and predicted values in extreme upredictable Mazurkas
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Figure 8. Average actual (circles) and predicted (squares) dynamic values at dynamic marking positions for
Mazurkas MO7-1, M24-2, M24-4, and M50-3 where the average of the Pearson correlation coefficient over pianists
and methods was negative.

As can be seen, for most dynamic markings in these four Mazurkas, the actual loud-
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ness levels are the opposite of the predicted loudness values. The difference in loudness
strategy may be due to deliberate contrarian behavior, or to aspects of the piece relevant
to dynamic choices not being captured in the selected features. A discussion on future
directions for feature analysis will be presented in Section 3.5.

There may also be score-inherent factors in these four Mazurkas that contributed to the
negative correlation results. These include the oscillatory nature—and hence longer range
dependencies—of some of the dynamic marking sequences, and the presence of sequences
of identical markings—which lead to greater variability in interpretation. Instances of
oscillatory sequences include the sequence (p, f, p, f, p, f) in Mazurka Op. 7 No. 1, the
sequence (f, p, f, p, f, p) in Mazurka Op.24 No. 2, and the sequence (pp, ff, pp, ff, pp,
fP in Mazurka 24 No. 4. Examples of monosymbol sequences include the sequence of
three pp’s in Mazurka 24 No. 4, and the sequence of four p’s in Mazurka 50 No. 3.

The analysis of the results of the loudness value prediction experiments leads us to
suspect that the poor predictability of some of the Mazurka recordings may be due to high
variability in performed loudness strategies among the pianists for the range of Mazurkas
represented. Hence, in the next section, we describe and report on an experiment to test
the degree of similarity in the loudness strategies employed by one pianist vs. that used
by another.

3.4. Inter pianist similarity

To determine the degree of similarity in the loudness strategies employed by different
pianists, machine-learning models were trained on all Mazurka recordings by one pianist
and used to predict the loudness values in all Mazurka recordings by another pianist. The
goodness of fit is measured using the mean (over all Mazurka recordings) of the average
(over all machine-learning methods) Pearson correlation coefficient.

The results are shown in Fig. 9 in the form of a matrix, where the (i,7)-th element in
the matrix represents the percentage of the mean averaged Pearson correlation coeflicient
between the loudness value predictions of the model trained on data of pianist ¢ and
the corresponding actual loudness data of pianist j. The correlation values range from
68.36% to 78.43%. This shows the high level of similarity between pianists for interpreting
dynamic markings in the pieces investigated.

PI P2 P3 P4 P5 P6 P7 P8

Figure 9. Matrix displaying Pearson correlation coefficient values (in %), averaged over all machine-learning
methods, when applying a model trained on recordings by one pianist to predict the loudness values of another
pianist.

Higher correlation values are observed in columns P1 and P5. We can deduce that Chiu
(P1)’s interpretation model, followed closely by Shebanova P5’s model, best predicts
the loudness values of recordings by other pianists. (Note that Chiu’s recordings also
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achieved some of the highest correlation values, meaning that they were most predictable.
Furthermore, the loudness strategies of pianists P1 and P5 best fit each other, i.e. the
highest non-diagonal Pearson correlation value is found when P1’s model is used to
predict the loudness levels in P5’s recording, and vice versa. On the other hand, the
loudness strategies of pianist P6 is the one most dissimilar to that in other recordings,
as shown by the almost white non-diagonal squares in column P6.

3.5. Discussion on feature analysis

The k-NN method is known to be highly sensitive to irrelevant features, i.e. it performs
considerably less well than other algorithms in the presence of irrelevant features. As the
results show no demonstrable trend in this respect, this leads us to think that all the
extracted features in our feature set are indeed relevant.

A natural question that follows is: which of the extracted features are more salient
for predicting performed loudness? To investigate this question, we apply the RELIEF
algorithm from Robnik-Sikonja and Kononenko (1997) to rank the features according
to relevance for predicting loudness. The RELIEF algorithm evaluates the worth of an
attribute by repeatedly sampling an instance and considering the value of the given
attribute for the nearest instance of the same and different class.

The results are shown in Table 3, with features being ranked from most important
(1) to least important (8). The feature-relevance analysis indicates that the current dy-
namic marking proved to be the most informative feature for the task, followed by the
text qualifiers, and the preceding dynamic marking. Interestingly, the ranking of fea-
tures according to relevance for predicting loudness is the same for all pianists, which
may indicate that all the considered pianists give the same relative importance to the
investigated features when deciding loudness levels in their performances.

Ranking Feature Ranking | Feature || Ranking | Feature
1 M 4 N_M 7 Dist_N
2 Annot_M 5 Dist PR 8 Annot_ N
3 Annot_PR 6 PR.M

Table 3. Ranking of importance of the features for the loudness prediction task.

In order to evaluate the incremental contribution of each of the features studied, we
created machine learning models using different subsets of features. More concretely, we
considered feature subsets by incrementally adding features to the training set one at a
time, starting with the most important feature, i.e. the highest ranked, and continuing
to add features according to their rank order. In Figure 10 we present the results for each
pianists recording, averaged over all machine learning methods.

As can be seen in the figure, for all pianists, the loudness prediction accuracy for their
recordings, with few exceptions, increases monotonically with the number of features.
This confirms our belief that all the features studied are indeed relevant and contribute
to the accuracy of the loudness level predictions for all recordings. It is worth noticing
that the highest ranked feature, i.e. the dynamic marking, contains on its own substantial
predictive power: the correlation coefficient of the loudness models induced with only
dynamic marking information alone ranges from 0.64 (for pianist P6s recordings) to 0.75
(for pianist P1s recordings).
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Figure 10. Upper bound for average (over all machine learning methods) Pearson correlation coefficient as number
of features considered increases; features are added in the order given in Table 3. Numbers result from the optimal
case where the testing data is equal to the training data.

4. Dynamic marking prediction

Classification remains one of the staple tasks of machine-learning algorithms. This section
assesses the fit of the machine-learned models as they are applied to the classification of
a Mazurka recording’s loudness values into loudness categories as indicated by dynamic
markings. In particular, we examine the following problem: given a loudness level in a
recorded Mazurka, what is the dynamic marking that best represents conceptually the
loudness value at a particular instance in time.

As in Section 3, we have conducted two experiments. In the first experiment each classi-
fication model has been trained for each Mazurka separately and a 8-fold cross-validation
implemented for predicting the dynamic markings given other pianists’ recordings of the
target piece. In the second experiment each classification model has been trained for
each pianist separately and a 44-fold cross-validation has been implemented for predict-
ing the dynamic markings of one Mazurka given the other Mazurka recordings of the
same pianist.

For evaluation, we compute the percentage of correctly classified instances. For each
class of markings, {pp, p, mf, f ff}, we compute the F-measure which is defined as

2PR
= 11
P+R’ (11)

where precision, P, is the proportion of true positives for the relevant class, and recall,
R, proportion of the relevant class retrieved. As the number of markings is different for
each class, we have created a composite F-measure that is the sum of the F-measures for
each class of markings, weighted by the proportion of markings in that class.

Therefore in the remaining part of this section we present the analysis of the results of
the second experiment. More specifically, Section 4.1 presents and discusses the results
for predicting dynamic markings given other pianists’ recordings of the target piece;
Section 4.2 does the same for predicting markings given the target pianist’s recordings of
other pieces; Section 4.3 looks at which of the dynamic markings are more easily classified
than others; and, Section 4.4 evaluates the ease or difficulty of predicting the markings
of a Mazurka using the ratio of correctly classified markings.
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4.1. Predicting dynamic markings given other pianists’ recordings of
target piece

In the first experiment, we use the four machine-learning methods to predict the dynamic-
marking labels of loudness values given the loudness-marking data of other pianists’
recordings of the target piece. The cross-validation tests result in 100% correctly classified
instances—and correspondingly a precision of 1.0 and recall of 1.0 for each dynamic
marking class, and weighted F-measure of 1.0—for every Mazurka. This means that it is
entirely plausible to train a machine-learning algorithm on other pianists’ performance
of a Mazurka to predict the dynamic marking labels of the target recording.

This finding, while suspicious, may not be surprising considering that the number of
markings of each Mazurka that we want to predict is small, and the number of pianists is
also small, fact that affects the classification results more than the results for predicting
the loudness level.

We next move on to the complementary experiment in which the machine-learning
algorithms predict dynamic-marking labels based on loudness-marking data of other
Magzurka recordings by the target pianist.

4.2. Predicting dynamic markings given target pianist’s recordings of
other pieces

In this experiment, we train classifiers—using DT, ANN, SVM, and k-NN algorithms—
on the loudness-label mappings of other Mazurka recordings by the same pianist in order
to identify the dynamic marking corresponding to a given loudness value in the target
recording. Table 4 shows the results obtained by the classifiers in terms of the mean
percentage of Correctly Classified Instances (CCI) over all Mazurkas, and the mean
class-weighted average F-measure (F) over all Mazurkas. The highest mean CCI values
for each pianist are highlighted in bold.

Method P1 P2 P3 P4 P5 P6 P7 P38 AVG
DT CCI(%) | 27.822 | 26.387 | 28.012 | 24.542 | 24.798 | 27.858 | 29.230 | 26.437 || 26.8858
F 0.264 | 0.301 | 0.309 | 0.226 | 0.210 | 0.238 | 0.320 | 0.231 0.2624
SVM CCI(%) | 27.735 | 25.283 | 23.962 | 22.830 | 25.283 | 24.717 | 26.227 | 25.670 || 25.2134
F 0.262 | 0.234 | 0.230 | 0.214 | 0.246 | 0.223 | 0.229 | 0.236 || 0.2343
ANN CCI(%)[30.755| 27.925 | 27.736 |26.981[26.604 [31.132| 30.189 [30.460|28.9727
F 0.323 | 0.272 | 0.258 | 0.261 | 0.280 | 0.323 | 0.303 | 0.333 || 0.2941
NN CCI(%) | 28.301 [28.49128.113| 25.660 | 25.660 | 26.981 [30.377| 27.547 || 27.6412
F 0.323 | 0.327 | 0.317 | 0.278 | 0.297 | 0.312 | 0.336 | 0.313 || 0.3129

Table 4. Percentage of Correctly Classified Instances (CCI) and weighted average F-measure per method and per
pianist. Maximum values per pianist are highlighted in bold. The last column contains the average values per row
and the highest average of CCI is highlighted in bold.

As can be seen by the preponderance of numbers in bold in the ANN row, the ANN
algorithm gives slightly better results in terms of mean CCI than other methods. In
particular, it yields the best results for pianists Chiu (P1), Fliere (P4), Shebanova (P5),
Kushner (P6), and Czerny (P8), followed by the k-NN algorithm that gives slightly bet-
ter results for the pianists Smith (P2), Ashkenazy (P3), and Barbosa (P7). The highest
average value of the percentage of correctly classified instances over all pianists is given
by the ANN algorithm. Recall that in Section 3.2.1, ANN had the lowest prediction cor-
relation to actual figures. That was for the case of loudness prediction; here, it performed
best for dynamic-marking label prediction.
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The CCTI’s reported in Table 4 are not high, only a little above chance, which would
be 20% as we consider five dynamic-marking labels. One avenue for further analysis is
to identify the markings that are more easily classified by considering the ones that have
been predicted correctly by all recordings; this study is reported in Section 4.3. Another
direction is to identify the Mazurka which has the highest number of markings that are
more easily predicted, by observing for every Mazurka the ratio of the markings correctly
classified for all recordings to the total number of markings in the piece; this is reported
in Section 4.4. We use the ANN algorithm as a basis for both studies due to its better
performance found here.

4.3. Eastily predicted markings

In this section, we seek to determine which of the dynamic-marking labels are more easily
classified by the machine-learning algorithms when trained on other Mazurka recordings
by the target pianist. A specific marking in a Mazurka is considered to be easily predicted
if it has been classified correctly for all recordings. In Table 5 we present the markings
across all Mazurkas that have been identified as being easily predicted according to this
criterion.

Mazurka Marking Mazurka Marking Mazurka Marking
(position) (position) (position)

M06-3 | p (1), p (16) M33-2 75 M63-1 p (3), p ()
MO07-3 f (5) M50-2 | p(2),p (4),p (6), p(7) || M67-1 | p(4), p(15)
M17-3 p (5), p (9) M50-3 p (12) M67-3 p (11)
M17-4 IF (5) M56-1 mf (12) M68-2 pp (2)
M24-4 (6), F1) || M56-3 p (12) M68-3 p(2)
M30-3 p (14) M59-3 p (11)

Table 5. Markings that have been predicted correctly for all recordings of the Mazurka containing that marking;
the numbers in parentheses indicate the position of that marking in the sequence of dynamic markings in that
Mazurka.

Two patterns emerge from Table 5: the first has to do with the range of the dynamic
markings in the Mazurka; the second has to do with the existence of important struc-
tural boundaries such as key modulations or cadences near the marking that impact the
dynamics. We shall describe each case in greater detail provide specific examples of each
case.

In the first case, when considering the range of markings present in a score, the marking
at the edges of this range tend to correspond to extreme loudness values in the recording.
Thus, these dynamics at the extremes would be the ones most easily categorized. For
example, the ff marking in Mazurka Op. 17 No. 4 (M17-4) is a case in point. The markings
that appear in this Mazurka are: {pp, p, ff}. Clearly, ffis at the extreme of this marking
set, and in the loudness spectrum. Even in its position in the score, it is placed uniquely
in such a way as to highlight the extreme nature of its dynamic level. Figure 11 shows
the score position of the marking: it is preceded by a crescendo and followed by a p. It
is no wonder that this marking is correctly classified in all recordings of this Mazurka.

In the second case, structural boundaries are often inflected in performance in such
a way as to reinforce their existence: the dynamic may drop immediately preceding or
immediately after the boundary. As an example of a dynamic marking following a key
change, consider the second fmarking of Mazurka Op. 24 No. 4 (M24-4), which is in the
key of Bb minor. Just before this easily predicted marking a phrase is repeated in the
different key of F major, and the repeat is marked sotto voce (in an undertone). The f
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Figure 11. Case of the ff marking in Mazurka Op. 17 No. 4 (M17-4), correctly classified in all recordings of the
Mazurka when the machine-learning algorithms are trained on the markings in the remaining Mazurkas by the
target pianist.
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appears at the return of B b minor; the performer is thus encouraged to make a sharp
distinction between the f and the preceding sotto voce. Four bars after the fis a pp
marking, which would bring into sharper relief the f. These factors all conspire to make
this f more easily detectable.

An example of an extreme dynamic marking near a structural boundary is the case of
the marking pp in Mazurka Op. 30 No. 3 (M30-3), which is located at a cadence prior to
a return to the main theme of the piece. The score segment for this example is shown in
Figure 12. As can be seen in the score, the pp is proceeded by the text indicator dim.,
for diminuendo; furthermore, the text indicator slentando, meaning to become slower,
is paired with the marking; and, the marking is followed by a f marking paired with
the text indicator risoluto, meaning bold, at the return of the main theme. The extra
meaning imputed to this pp as a signifier of the impending return of the f main theme
makes it again a more extreme kind of pp, and thus easier to classify.

o risoluto ~“
Jybrhs aa\. - ——ree—rroe = = e S riE
@""1’4 H-Wj = J'-W: = JJ‘*J = é"/"b‘q’ e
dim. > pp slentando f 1
L3 1| Py | | 1~ & =
b b - . p— — & & s o [ 7
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Figure 12. Case of the pp marking in Mazurka Op. 30 No. 3 (M30-3), correctly classified in all recordings of the
Mazurka when the machine-learning algorithms are trained on the markings in the remaining Mazurkas by the
target pianist.

In the next section, we consider the ease or difficulty of classifying dynamic markings
through a different study, this time on the ratio of correctly classified markings.

4.4. Easy/hard to predict Mazurkas: ratio of correctly-classified markings

We have observed over the course of the experiments that there were Mazurkas for which
the ratio of the markings that have been correctly classified is high for each record-
ing, while for others that same ratio is low. To study this ratio across all Mazurkas,
we have run a set of cross-validation experiments for which the markings of a specific
Mazurka constituted the testing set and the markings of the remaining ones constituted
the training set. The resulting ratio, averaged over all recordings of the Mazurka, of cor-
rectly classified markings to total markings is laid out in Figure 13 in a monotonically
increasing order.

Note that Mazurka Op. 24 No. 1 has an average ratio of zero, meaning that none
of its markings are classified correctly for any recording. Recall that Mazurka Op. 24
No. 1 was also the one in which the loudness value predictions for one recording was
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Figure 13. Average ratio, over all machine-learning methods, of correctly classified markings and number of
markings per Mazurka over all pianists.

almost perfectly and negatively correlated with the actual values; this was described in
Section 3.1.2.

In contrast, Mazurka Op. 50 No. 2 has the highest ratio, 0.5893, meaning that this
Mazurka has the highest number of correctly classified markings for every recording. We
then consider in detail the loudness values at dynamic markings in Mazurka Op. 50 No.
2 for all eight recordings of that Mazurka. In Figure 14 the markings that are correctly
classified for all recordings in are highlighted with a solid vertical line, while the ones that
are correctly classified for seven out of eight recordings are highlighted with a dashed
vertical line. The loudness levels at these easily-classified markings follow the patterns
established by other recordings.

Mazurka Op. 50, No. 2
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Figure 14. Loudness values at dynamic marking positions for Mazurka Op. 50 No. 2. Solid vertical lines indicate
markings that are correctly classified for all eight recordings; dashed vertical lines indicate markings that are
correctly classified for seven out of eight recordings.

Recall that consecutive strings of the same symbol posed significant challenges to the
prediction of loudness values described in earlier sections. Note that Mazurka Op. 50 No.
2 again features a series of seven p’s, with high degrees of variation in the loudness levels
at these markings and in the fimmediately following the sequence.
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5. Conclusions

In this article We have investigated the relationship between loudness levels and dynamic
markings in the score. To this end, we have implemented machine-learning approaches
for the prediction of loudness values corresponding to different dynamic markings and
musical contexts, as well as for the prediction of dynamic markings corresponding to
different loudness levels and musical contexts. The methods—Decision Trees, Support
Vector Machines, Artificial Neural Networks, and a k-Nearest Neighbor algorithm—are
applied to forty-four recordings of performances of Chopins Mazurkas each by eight
pianists.

The results in Section 3 highlight that, using any of the methods, loudness values and
markings can be predicted fairly well when training across recordings of the same piece,
but fail dismally when training across recordings of other pieces by the same pianist. This
happens possibly because the score is a greater influence on the performance choices
than the performers individual style for this test set. More specifically, insights from
the data structure come forward, including Mazurkas in which loudness values can be
predicted easier than others. This finding is related to the range of the different markings
that appear in a piece as well as their position and function in the score in relation to
structurally important elements.

The results in Section 4 highlight the good performance of the methods on predicting
the dynamic markings given the loudness-marking data of the pianists’ recordings of a
target piece. When training across recordings of other pieces by the same pianist, the
results, while not exceptional with respect to the prediction of dynamic markings, show
notable trends on markings that are classified correctly, and on pieces that have higher
ratios of classified markings over all markings. These trends are based mostly on the
relationship between the position of the markings and the structure of the piece.

Different tuning of the parameters in the existing machine learning techniques for the
prediction of loudness levels as well as for the prediction of dynamic markings may give
better results. The scope of this article, however, is not to find the optimal solution
to the tuning issue, but to point out universal characteristics of this kind of complex
data. Improvements of the results may occur by considering possible alterations in the
feature set or the data set. From the features set point of view, it would be especially
interesting if the results were to improve with more score-informed features, and features
that correspond to changes of other expressive parameters, such as tempo variations.
From the data set point of view, a selection of pieces that include specific different
sequences of markings, or a more constant range of markings could enhance the results.

Modeling expressive performance trends using artificial intelligence appears to be a
rather delicate matter. The models are limited by the particular representations of
changes that happen throughout a music piece with respect to the expression render-
ing. The results that are drawn from the current study are likely to appear in similar
studies for other instruments and data sets. Future work in this direction should include
the comparison of performances from different eras, or performances of musicians from
particular schools. At the same time it should be kept in mind that the freedom of em-
ploying a particular dynamic range in one interpretation is a matter of the performer’s
idiosyncrasy.
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