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ABSTRACT

Proteins and RNAs assemble in membrane-less or-
ganelles that organize intracellular spaces and reg-
ulate biochemical reactions. The ability of proteins
and RNAs to form condensates is encoded in their
sequences, yet it is unknown which domains drive
the phase separation (PS) process and what are
their specific roles. Here, we systematically investi-
gated the human and yeast proteomes to find regions
promoting condensation. Using advanced computa-
tional methods to predict the PS propensity of pro-
teins, we designed a set of experiments to investi-
gate the contributions of Prion-Like Domains (PrLDs)
and RNA-binding domains (RBDs). We found that
one PrLD is sufficient to drive PS, whereas multi-
ple RBDs are needed to modulate the dynamics of
the assemblies. In the case of stress granule protein
Pub1 we show that the PrLD promotes sequestration
of protein partners and the RBD confers liquid-like
behaviour to the condensate. Our work sheds light
on the fine interplay between RBDs and PrLD to regu-
late formation of membrane-less organelles, opening
up the avenue for their manipulation.

INTRODUCTION

A correct functioning of cells requires a strict spatio-
temporal regulation of molecular processes (1). To ensure
such regulation, cells contain organelles. Some of them,

such as vacuoles and lysosomes, are separated by mem-
branes whilst others, such as stress granules (SGs) and
processing-bodies (PBs), do not have membranes and form
when their constituent components condense (2–4). In the
past decades, high interest has been drawn to study intracel-
lular condensation due to their role in regulatory processes
and association with several human diseases (5).

Membrane-less organelles are diverse and versatile (4,6).
We know more than 10 different types of intracellular
condensates involved in functions ranging from storage to
transcriptional regulation (4,7,8). These assemblies, usu-
ally composed of proteins and RNAs, have liquid-like be-
haviour, adopt spherical shape and undergo deformation
and fusion events (2,3,9). Their formation has been de-
scribed to require a liquid–liquid phase separation (PS) pro-
cess, in which the energies of inter-molecular interactions
are greater than the entropy of being mixed with the sol-
vent. In this process, components assemble by multiple dy-
namic contacts, known as multivalent interactions (10–12),
allowing local accumulation, exchange of elements with the
surrounding environment and formation of areas with dif-
ferent density and composition (13,14). The different com-
position facilitates the development of sequential biologi-
cal reactions within one specific biological condensate (14–
16). For example, the nucleolus has three immiscible sub-
compartments that coordinate the sequential assembly of
ribosomes (14).

Even within the same biomolecular condensate the ma-
terial state (solid-like or liquid-like) and composition (pro-
teins and RNAs trapped within) vary with environmental
conditions (8). Thus, a condensate changes the ‘dynam-
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icity’ (switch between solid- to liquid-like behaviour) de-
pending on the type of contacts established by the compo-
nents, which, in turn, alter the ability to interact with the
surrounding environment and the resulting functionality
(4,8,9,17,18). The disturbance of the contact network can
impede the correct function of a ribonucleoprotein complex
and trigger disease (17,19–21). Whilst protein interactions
are tightly regulated in physiological conditions (21,22),
aberrant assembly and aggregation of specific proteins, such
as Fus in Amyotrophic Lateral Sclerosis (23), can occur in
pathological conditions.

Multivalency (10–12) is required to keep the dynamics
of the macromolecular complex and is controlled through
multiple binding sites (11) that are either in structural do-
mains or intrinsically disordered regions (IDRs). IDRs of-
ten contain weak adhesive elements (high stickiness or reac-
tivity to bind) that allow interaction with multiple partners
(or promiscuity), including the molecule itself (24–26). This
property is the hallmark of Prion Like Domains (PrLD)
that favour nucleation of large macromolecular assemblies
(27–31).

RNA molecules have been also reported to modulate
the dynamics (32,33) and the PS process of biomolecular
condensates (34–37). Indeed, RNAs are flexible and low-
complexity polymers with intrinsic high multivalent capac-
ity to interact with several RNA-binding proteins (RBPs)
through specific RNA-binding domains (RBDs). Interest-
ingly, RNA interactions can result in abrogation of aggre-
gation (38), solubilization of proteins (32) or increased con-
densation (19).

The mechanisms through which proteins phase separate
are at present unclear (7). With the aim of shedding light on
the formation of biomolecular condensates, we computa-
tionally analysed the PS propensity of Saccharomyces cere-
visiae and Homo sapiens proteomes. We found that both
RBDs and PrLDs co-occur in proteins that are highly prone
to phase separate into condensates. Using the SG protein
Pub1, we experimentally validated our computational anal-
yses and investigated the effects of RBDs and PrLDs on the
formation of condensates. By monitoring the assembly and
capacity to disturb cell homeostasis (32,39), we found that
the prion domain drives the assembly process whereas the
RNA regulates the dynamics of the condensate.

MATERIALS AND METHODS

Proteomes

Human and Yeast proteomes were obtained from UniProt
(40). Sequence files containing all canonical sequences from
each organism’s reference proteome were obtained from
the UniProt website. This resulted in 20404 canonical and
reviewed human proteins (proteome UP000005640 from
UniProt) and 6049 canonical and reviewed yeast proteins
(proteome UP000002311 from UniProt release 2018/11,
strain ATCC 204508/S288c; see Supplementary Materials
for details).

catGRANULE analysis

catGRANULE (41) (available at http://s.tartaglialab.com/
new submission/catGRANULE) was employed to identify

proteins assembling into biological condensates. Scores > 0
indicate that a protein is prone to phase separate. Structural
disorder, nucleic acid binding propensity and amino acid
patterns such as arginine-glycine and phenylalanine-glycine
are properties used to predict the PS propensity (41).

The part considered prone to phase separate and used
in the overlap analysis (Figure 1) is defined as the re-
gion of positive values around the highest peak of the
catGRANULE profile. catGRANULE scores > 1 (one
standard deviation away from the mean computed over the
yeast proteome) identify proteins with high-confidence PS
propensity (41).

PLAAC analysis

Prion-like amino acid composition (PLAAC) (42) searches
protein sequences to identify probable prion sub-sequences
using a hidden Markov model (HMM) algorithm. The algo-
rithm was downloaded from https://github.com/whitehead/
plaac and run locally to our servers for the Human and
Yeast proteome. Default settings except for window w = 50
(to match catGRANULE window) were used. Considered
PrLD regions for following analysis were defined as [PRD-
start, PRDend]. Proteins not predicted to contain a PrLD
are assigned as ‘No PrLD’. PrLD scores in the top quartile
(>25) are considered high-confidence.

multiCM

The algorithm, available at http://www.tartaglialab.com/
cs multi/submission, allows to classify protein groups ac-
cording to physico-chemical properties (hydrophobicity, ag-
gregation, secondary structure propensities, RNA-binding
abilities, etc). The algorithms were previously tested on in-
dependent experimental datasets (e.g. the aggregation prop-
erty derives from analysis of solid-like deposits, including
amyloid fibrils) (43).

Yeast strains and genetic engineering

Saccharomyces cerevisiae strain S288c BY4741 (MATa
his3�1 leu2�0 met15�0 ura3�0) was used for all experi-
ments. Uracil auxotrophy was used as selection marker for
all genetic engineering (including the gene URA along the
cloning sequence).

The GAL1 promoters were amplified via tool-box poly-
merase chain reaction (PCR) as designed by Janke et al.
(44). Amplified fragments were genome integrated via a
standard lithium acetate transformation protocol and the
correct insertion of the promoter was verified by PCR on
extracted genomic DNA.

For plasmid overexpression experiments, a strain lack-
ing the Pub1 gene was used (ATCC, from yeast deletion
project). Pub1 full was expressed via cloning into p416-Gal1
and p426-Gal1 (Addgene). eGFP alone was expressed into
p426-Gal1. For the characterization of Pub1 deletion vari-
ants, p416-Gal1-PUB1full-eGFP was linearized and rean-
nealed (Gibson reaction) to delete corresponding sequence
fragments. Oligonucleotides (primers) used for cloning are
listed at Supplementary Materials.
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Figure 1. RBDs and prions are associated with the proteins PS ability. (A) Stress granules are enriched in RNA-binding proteins (RBPs) and prions. Left,
percentage of RBPs (90) found in the yeast SGs (15) and in the rest of the proteome (40). Right, percentage of prion proteins (30) in same datasets. ***:
P-value < 0.001; Fisher’s exact test. (B) catGRANULE PS propensity profile predicted for human Tdp43. We show two RBDs (Pfam annotated) in purple
and a PrLD (PLAAC algorithm prediction) in yellow (42). (C) PS propensity profile of yeast Mip6. We report the four RBDs in purple and two low-
complexity (LC) regions in yellow, as annotated at the ELM database (96). The two RBDs close to the N-terminus are essential for the PS (41). (D) Box
plots showing the percentage of overlapping between PrLDs and the highest peak of PS predicted by catGRANULE. Overlap: ≥20% PrLD propensity
predicted using PLAAC [PLAAC peak (42)]; No overlap: <20%; No PrLD: PLAAC does not predict PrLD. To guarantee a minimum overlap of one amino
acid, we chose a threshold of 20% overlapping between peaks, it is important to note that we obtained similar results regardless of the threshold chosen.
(E) Box plots showing the percentage of overlapping between RBDs (Pfam annotated, scanned with HMMER) and the highest peak of PS predicted by
catGRANULE. Proteins were classified according to the number of RBDs contained in their sequence: >20% overlap with at 1 RBD in ‘<3 RBD’, and
‘≥3 RBD’; those with no Pfam annotation as No RBDS; finally ‘No overlap’ indicates <20% overlap between the RBD and the highest peak of PS. For
all box plots: box represents interquartile range (IQR); central line, median; notches, 95% confidence interval; whiskers, 1.5 times the IQR. ****: P-value
< 0.0001; t-test. (F) Fisher test of the association between PrLDs and RBDs. Proteome datasets interrogated for presence (+) or absence (−) of PrLDs
(predicted with PLAAC) and RBDs (scanned with HMMER, based on Pfam).

Phenotypes quantification

Strains were grown during corresponding inducing times
keeping culture density always below 1 OD (diluting ac-
cordingly). Cells in exponential phase were imaged under
63 × magnification on a confocal TCS SP8 microscope (Le-
ica).

Phenotypes were classified according to condensates size
in three categories: diffuse (no condensates), small (<1 �m
condensates) and big (≥1 �m condensates), using ImageJ
software. Quantification of phenotypes was assessed in a

minimum amount of 100 cells from at least three different
biological replicates for each strain and condition.

Immunofluorescence assay

Strains expressing HA-tagged proteins were induced dur-
ing 8 h until exponential phase and then fixed with
4% formaldehyde for 1 h. Cell walls were digested with
ß-mercaptoethanol and zymolase (5 mg/ml). Obtained
spheroplasts were permeabilized in phosphate-buffered
saline (PBS) with 0.05% Tween-20 and loaded into optical-
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bottom 96-well plates. After blocking (bovine serum albu-
min 1 mg/ml in PBS), fixed spheroplasts were incubated
with anti-HA 3F10 rat antibody (Roche 11867431001,
1:4000 for 1 h at room temperature), washed and incu-
bated with secondary anti-rat Alexa Fluor 488 (Invitrogen
A11006, 1:10,000 for 1 h at room temperature in the dark).
Samples were finally washed in PBS, mounted in propyl gal-
late solution with DAPI and stored at 4◦C until visualiza-
tion. Cells were imaged under 100 × magnification on a
DMRE fluorescence microscope with PRIOR Lumen 200
light (Leica).

Fluorescence recovery after photobleaching (FRAP)

Strains were grown during corresponding inducing times
keeping culture density always below 1 OD (diluting ac-
cordingly). Cells were then imaged under a Confocal TCS
SP5 microscope (Leica) where bleaching was achieved with
488 Laser Power at 70% for five frames (1.3 s/frame) whilst
recovery was recorded for 100 frames. The curves, follow-
ing the fluorescence intensity of a certain cell region (i.e.
cytosol and granule), were then fitted to a single exponen-
tial, following normalization with extracellular background
subtraction.

Mass spectrometry procedure and analysis

Beads were re-suspended in 50 �l 8M urea, 50 mM
Tris/HCl (pH8.5), reduced with 10 mM DL-Dithiothreitol
(DTT) for 30 min and alkylated with 40 mM chloroac-
etamide for 20 min at 24◦C. Urea was diluted to a final
concentration of 2M with 25 mM Tris/HCl (pH8.5), 10%
acetonitrile and proteins were digested with trypsin/lysC
mix (mass spec grade, Promega) overnight at 24◦C. Acid-
ified peptides (0.1% trifluoroacetic acid) were desalted and
fractionated on combined C18/SCX stage tips (three frac-
tions). Peptides were dried and resolved in 1% acetonitrile,
0.1% formic acid.

Liquid chromatography coupled with tandem mass spec-
trometry (LC-MS/MS) was performed on a Q Exactive Plus
equipped with an ultra-high pressure liquid chromatog-
raphy unit (Easy-nLC1000) and a Nanospray Flex Ion-
Source (all three from Thermo Fisher Scientific, Waltham,
MA, USA). Peptides were separated on an in-house packed
column (100 �m inner diameter, 30 cm length, 2.4 �m
Reprosil-Pur C18 resin [Dr Maisch GmbH, Germany]) us-
ing a gradient from mobile phase A (4% acetonitrile, 0.1%
formic acid) to 30% mobile phase B (80% acetonitrile, 0.1%
formic acid) for 60 min followed by a second step to 60% B
for 30 min, with a flow rate of 300 nl/min. MS data were
recorded in data-dependent mode selecting the 10 most
abundant precursor ions for higher-energy collisional dis-
sociation (HCD) with a normalized collision energy of 27.
The full MS scan range was set from 350 to 2000 m/z with a
resolution of 70 000. Ions with a charge ≥2 were selected for
MS/MS scan with a resolution of 17 500 and an isolation
window of 2 m/z. The maximum ion injection time for the
survey scan and the MS/MS scans was 80 ms, and the ion
target values were set to 3e6 and 1e5, respectively. Dynamic
exclusion of selected ions was set to 60 s. Data were acquired
using Xcalibur software (Thermo Fisher Scientific).

MS raw files from 5 biological replicates of different
Pub1 variants and background samples were analyzed with
Max Quant (version 1.5.3.30) (45) using default parame-
ters. Enzyme specificity was set to trypsin and lysC and a
maximum of two missed cleavages were allowed. A min-
imal peptide length of seven amino acids was required.
Carbamidomethyl-cysteine was set as a fixed modifica-
tion, whilst N-terminal acetylation and methionine oxida-
tion were set as variable modifications. The spectra were
searched against the UniProtKB yeast FASTA database
(downloaded in July 2018, 6721 entries) for protein identi-
fication with a false discovery rate of 1%. Unidentified fea-
tures were matched between runs in a time window of 2 min.
In the case of identified peptides that were shared between
two or more proteins, these were combined and reported in
protein group. For label-free quantification (LFQ), the min-
imum ratio count was set to 1.

Bioinformatic data analysis was performed using Perseus
(version 1.5.2.6) (46). Hits in three categories (false posi-
tives, only identified by site and known contaminants) were
excluded from further analysis. Samples were grouped into
Pub1 full, �PrLD, �PS and background. The data were
filtered for proteins having at least three valid LFQ values
in at least one group (pulldowns and background). Missing
LFQ values were imputed on the basis of normal distribu-
tion with a width of 0.3 and a downshift of 1.5. Proteins en-
riched in Pub1 variants over background control were iden-
tified by two-sample t-test at different permutation-based
false discovery rate (FDR) cutoffs (0.001 and 0.01) and s0
= 0.3. See Supplementary Materials for more details.

RESULTS

Phase separation propensity is encoded in both RBDs and
PrLDs

To investigate the biophysical properties that determine the
ability of proteins to phase separate, we first analysed the
composition of the best known membrane-less organelle,
the SG (7,15) (Figure 1A and Supplementary Table S1).
With respect to the S. cerevisiae proteome, we observed a
significant enrichment of proteins classified as RBPs (15)
and experimentally validated prions (30) in SGs (P-value
< 0.001; Fisher’s exact test; Figure 1A). This finding sug-
gests that PrLDs and RBDs are characteristic features of
phase-separating proteins, and agrees with previous stud-
ies in which RNA-binding ability and presence of prion do-
mains in structurally disordered regions were reported to be
enriched in membrane-less organelles (Supplementary Fig-
ure S1) (41,47,48).

Our observations are in accordance with the principles
used in the catGRANULE method (19,41) to estimate the
PS propensity of proteins using structural disorder and
RNA-binding propensities (‘Materials and Methods’ sec-
tion; Figure 1B and C). Two examples of catGRANULE
predictions for proteins containing PrLDs and RBDs are
(i) TAR DNA binding protein 43 (Tdp43), associated with
ALS disease (49) and (ii) MEX67-interacting protein 6
(Mip6), a yeast protein involved in nuclear mRNA export
(41). catGRANULE profile of Tdp43 shows that the PrLD
in the C-terminal region overlaps with the main PS peak
(Figure 1B). In agreement with our predictions, peptides
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Figure 2. Pub1 as a model to study PS. (A) Scatter plot and over-imposed 2D-density plot indicating the PS propensity (catGRANULE, X-axis) (19,41)
and prion propensity (PLAAC, Y-axis) (42) for the yeast proteome. The confidence thresholds of the predictors are highlighted with dotted lines. Inside,
bar plot indicating the percentage of RBPs in each of the quadrants. Pub1 protein (three RBDs) is indicated with a red dot. (B) catGRANULE prediction
of Pub1 PS propensity (Y-axis) along sequence (X-axis). The figure shows three RRMs (Pfam annotated, RRM, PF00076 (97)) in purple and a PrLD
(PLAAC prediction) in yellow. (C) Diagram of the different Pub1 variants studied in this thesis. Targeted deletions of Pub1 full: �PrLD (�240–314),
�RRM2 (�200–240) and �PS (�200–300).

derived from the C-terminal region have been found to
aggregate in the brain of ALS patients (50–52) and the
PrLD itself was shown to promote aggregation of the whole
protein (53). As for of Mip6, catGRANULE predicts the
PS propensity to be encoded in four RBDs and two low-
complexity domain (LC; Figure 1C). Experimental work
indicate that Mip6 requires at least two RBDs and the LC
domain close to the N-terminus to undergo PS (41), which
supports the correctness of the predictions and the impor-
tance of multivalence (10,11,12).

With the aim of assessing the contributions of PrLDs
and RBDs to PS propensity, we interrogated both the H.
sapiens and S. cerevisiae proteomes to identify regions that
exhibit strong PS propensity (catGRANULE peaks). We
found that if the catGRANULE peak overlaps with at least
1 PrLD predicted with the PLAAC algorithm (42) there is
higher PS propensity than in absence of PrLD or no over-
lap (Figure 1D; ‘Materials and Methods’ section; see also
Supplementary Materials for additional details). By con-
trast, the same analysis repeated for the overlap between the
catGRANULE peak and just one RBD indicates stronger
PS propensity when there is not overlap. However, based on
our previous study on Mip6 (41) and, more in general, the
RBPs multi-domain character, we considered that >1 RBD
can occur in a protein. We observed that the PS propen-
sity increases with the number of RBDs, and the highest
catGRANULE scores are with ≥ 3 domains (Figure 1E).
This result suggests a threshold of three RBDs required to
achieve enough PS potential.

Since both RBDs and PrLDs were found significantly en-
riched in phase-separating proteins (18,19,41), we hypothe-
sized that the two domains might be present and perhaps co-
operate to induce condensation. For that reason, we tested

whether their co-occurrence is significant. To do so, we
quantified the proteins that contain both RBDs and PrLDs
and compared them with proteins that contain just one of
the two domains or that do not have any. We found a signif-
icant co-occurrence of prion and RNA-binding domains in
both H. sapiens and S. cerevisiae proteomes (Fisher’s test;
Figure 1F and Supplementary Figures S2 and S3).

Pub1 as a model to study phase separation

We then proceeded to validate the link between the ability
to PS propensity and the occurrence of PrLDs and RBDs.
We specifically aimed to clarify the role and implications of
each domain type in the PS process.

Following the results of our previous computational
analysis, we searched for a phase-separating protein candi-
date containing several RBDs and 1 PrLD (‘Materials and
Methods’ section; Figure 2A and B). To this aim, we fo-
cused on S. cerevisiae that (i) has been widely validated as a
model to study PS (11,18,54), (ii) produces abundant prion-
like proteins (30,42) and (iii) has membrane-less organelles
and protein quality control system conserved with high eu-
karyotes (55–57) (see Supplementary Materials).

In order to select a suitable protein candidate, we ranked
the whole yeast proteome according to the PS (predicted
by catGRANULE) (19,41) and the prion propensities (pre-
dicted by the PLAAC algorithm; Figure 2A) (42). We
note that a statistical relation exists between PS and PrLD
propensities (the fitting PS = 1 − exp(αPrLD + β) with
α = −0.05 and β = 1 shows chi-square of 2695.97 and P-
value < 0.0001), but there is high dispersion of values be-
tween the two variables (Theil U coefficient: 0.80).

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/48/17/9491/5898611 by guest on 29 O

ctober 2020



9496 Nucleic Acids Research, 2020, Vol. 48, No. 17

Figure 3. Pub1 expression and localization. (A) Representative pictures of Pub1 variants provides evidence that the PrLD has a critical role for PS. From
top to bottom, Pub1 variants are ranked by decrease in multivalency. From left to right, time progresses in hours. Arrows indicate round condensates in the
FULL variant and less round condensates in the �RBD2. (B) Cells are classified in three phenotypes: Big, cells that present ≥1 �m condensates; Small,
cells that present <1 �m condensates; Diffuse: cells that present fluorescent homogenously distributed. Percentage of cells (Y-axis) are normalized to the
total number of fluorescent cells. A minimum of 100 cells were counted for each strain and condition. (C) Fusion events of the condensates formed at
different expressions times of Pub1. White numbers indicate the timing of fusion events. (D) �RBD2 and Pub1 FRAP measurements of the condensates
at different expression times. Plots indicate mean and standard deviations of normalized fluorescence over time, background subtracted. Experiments
correspond to three biological replicates. Percentages of mobile (Mob. F.) and immobile (Imm. F.) protein fractions. Protein half-life (t1/2) in seconds.

We found 52 proteins containing high-confidence PrLD
(PLAAC score > 25 corresponding to the upper quar-
tile) and PS propensities (catGRANULE score > 1; corre-
sponding one standard deviation away from the mean com-
puted over the proteome): the potential to form prions has
been previously investigated experimentally for 29 of them
(30), 28 are nucleic-acid binding or have annotated RBDs
(58) and 22 phase separate in fluorescent foci (30). Only five
belong to the ≥3 RBDs group (corresponding to our com-
putational threshold of RBD multivalence), and Poly(U)-
binding protein (Pub1) is the only prion with three RBDs
(notably, the PS propensity is in the top decile of the whole
yeast proteome; Supplementary Figure S4 and Table S1).

Pub1 protein binds polyuridilated RNA and is present in
SGs under different stresses (18,59). The PS peak of Pub1
overlaps with the second RBD (RBD2, a structured RNA
Recognition Motif, RRM) and the only PrLD (60) (Fig-
ure 2B; Supplementary Figures S5 and 6). PrLD is unstruc-
tured and PLAAC predicts no overlap with RBD2). Thus,
in the PS region we have the two domains to study. To in-
vestigate the contributions of both the PrLD and the RBD,
we generated three constructs performing deletion of these
regions (Figure 2C): �RBD2, lacking the part of the sec-
ond RRM region that is under the PS peak; �PrLD, lack-
ing the PrLD; and �PS, lacking the overall region under the
PS peak (�RBD2+ �PrLD).

We monitored Pub1 expression and PS by fusing the gene
to GFP and employing a strong inducible promoter (GAL1;
‘Materials and Methods’ section). By controlling Pub1 ex-

pression level, we are able to trigger PS independently of
environmental stresses (18,59). Based on the multivalence
of RBDs (10,11,61) and catGRANULE predictions (Fig-
ure 2C and Supplementary Figure S7) (19,41), we expected
that deletion of these specific domains would decrease the
PS potential.

Pub1 PrLD leads phase separation

To test the effect of PrLDs and RBDs on Pub1 protein
PS, we analysed the expression levels of Pub1 and three
variants (‘Materials and Methods’ section; Supplementary
Figure S8) as well as their localization at different expres-
sion times (Figure 3A). Induction resulted in similar ex-
pression levels (Supplementary Figure S8) and compara-
ble soluble/insoluble fractions (Supplementary Figure S9),
but the assemblies formed by Pub1 (‘FULL’) and its vari-
ants looked dramatically different. We analysed and classi-
fied cells in three groups according to the presence and size
of condensates: diffuse (no condensates), small condensates
(<1 �m) and big condensates (≥1 �m) (at least 100 cells
were counted for each strain; Figure 3B).

After 4 h under GAL1 overexpression all strains showed
diffuse protein distribution through the cytosol (Figure 3A).
However, after 8 h we observed a different condensation:
56% Pub1 and 31% of �RBD2 populations presented small
or big condensates, whereas �PrLD and �PS proteins re-
mained mainly diffuse across the populations (Figure 3B).
The condensates became larger with prolonged induction
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times (Figure 3A and B). After 16 h of overexpression nearly
all Pub1 and �RBD2 cells showed condensates and most of
them could be classified as big (70 and 76%, respectively).
In the case of �PrLD and �PS populations, the number of
cells with condensates remained below 18 and 9%, respec-
tively. Importantly, the number of condensates is increased
in Pub1 cells and their size is larger in �RBD2 cells (Figure
3A and B).

Truncation of RBD2 results in less dynamic condensates

Through microscopy cell screening we found that the num-
ber and size of the condensates increase over time (‘Materi-
als and Methods’ section; Figure 3A and B). In agreement
with these observations, larger and non-spherical conden-
sates were previously associated with lower dynamicity and
aging (e.g. formation of aggregated forms) (17,20).

To test if the increase in size is associated with a change
in the dynamics of the assemblies, we recorded fusion events
of Pub1 condensates at different expression times. Whilst at
8 h we observed fast fusion events (22 s) that result in round
condensates, after 24 h the fusion events were four times
longer (1.33 s) and the final condensates do not have round
shape (Figure 3C).

Thus, in addition to a size increase, there was a dras-
tic change in shape (Figure 3C). The images indicated that
�RBD2 condensates look less spherical than those with
Pub1 (Figure 3A and B), suggesting condensates with dif-
ferent material states. To confirm if the change is asso-
ciated to a decrease in dynamicity, we used fluoresce re-
covery after photobleaching (FRAP; ‘Materials and Meth-
ods’ section) measurements, at different expression times,
on both Pub1 and �RBD2 condensates and measured their
diffusion properties (Figure 3D and Supplementary Figure
S10). We observed that Pub1 condensates exhibit similar re-
covery at different induction times (50–60%). By contrast,
�RBD2 presents slower recovery that further decreases af-
ter long induction times (reaching <10% after 24 h of ex-
pression). This finding reveals that condensates formed with
�RBD2 have more solid-like character than those formed
by Pub1.

Phase separation propensity correlates with cell growth im-
pairment

We found that Pub1 variants differ in PS propensity and dy-
namics (Figure 3C and D), which indicates a change in their
capacity to interact with the surrounding environment. In-
deed, the ability of molecules to interact with each other
has a strong effect on cellular homeostasis (39,62) and tight
regulation is required to avoid damage (21,61) (see Supple-
mentary Materials for details).

We employed a growth assay to measure how Pub1
(‘FULL’) and its variants disturb cell homeostasis (Figure
4). Under GAL1 promoter, Pub1 expression is controlled
by the carbon source present in the media: i) glucose acts
as an inhibitor allowing growth without Pub1 expression
or (after a media change) stopping its expression; ii) galac-
tose acts as an inducer allowing growth with Pub1 expres-
sion (Figure 4A). At no-induction all strains grow similarly,
both in liquid (Figure 4B) and solid media (Supplementary

Figure S11), as expected given their isogenic origin and the
absence of metabolic differences before induction. Overex-
pression of eGFP alone results in no significant decrease in
growth rate, supporting yeast robustness against proteotox-
icity (Supplementary Figure S11). Following the dual phe-
notype that �PS and �PrLD diffuse whilst �RBD2 and
Pub1 condense (Figure 3), we found that �RBD2 and Pub1
grow more slowly than �PrLD and �PS (Figure 4C and D;
Supplementary Figure S11 and Table S2) and the doubling
time correlates with the PS potential (Figure 4E and Sup-
plementary Figure S12).

Flow cytometry experiments indicate that the growth dif-
ferences associated with our variants are not caused by plas-
mid loss or cell death (Supplementary Figures S13–15 and
Table S3) but a perturbation in the cell division process. The
expression of Pub1 always exhibits a larger growth impair-
ment, and after 24 h its doubling time is 1.44 times slower
than when the induction was started (Figure 4C). �PrLD
and �RBD2 doubling times also gradually decreased with
the induction time, whereas �PS growth speed remains
constant. Interestingly, we found that the catGRANULE
score correlates with the doubling time (Figure 4E and Sup-
plementary Figure S12), which suggests a connection be-
tween impairment of cell division and aberrant formation
of phase-separated assemblies. In summary, our results in-
dicate that the propensity of Pub1 to phase separate into
specific species, and not just condensation per se (62), is as-
sociated with the ability to disturb cell growth.

Phase separation propensity correlates with fitness recovery
time

To further investigate how condensates with different dy-
namicity affect cellular functioning, we measured the cell
capacity to reacquire physiological conditions after Pub1
variants overexpression. This assay is intrinsically linked to
the diffusion capacities of Pub1 and its variants, and thus
the reversibility of the condensate state (15,18). In these
experiments, after different induction times, we moved the
strains to glucose that inhibits the galactose pathway and
thus expression of Pub1.

After the expression of Pub1 (‘FULL’) and its variants is
blocked (‘Materials and Methods’ section; Figure 5A), all
strains showed growth recovery (Figure 5B and C; Supple-
mentary Figure S16 and Table S4), however the effect de-
creased with induction time (Figure 5D). This agrees with
the growth impairment effect that we previously found asso-
ciated with the induction time (Figure 4A and Supplemen-
tary Figure S17). For the different variants, we observed a
consistent change in number, size and dynamics (FRAP) of
condensates linked to the induction times. Interestingly, a
similar decrease in recovery capacity has been associated
with ‘aging’ in the case of FUS condensates, whose loss of
dynamicity and progressing aggregation was recently inves-
tigated in vitro (17,19,20).

Focusing on the growth curve parameters, we observed
that, for a specific induction time, the doubling time and
saturation level remain quite similar between strains (Sup-
plementary Figure S12 and Table S4), whereas the lag time
is different and fits, again, with the growth impairment pre-
viously measured (Supplementary Figure S16). It should be
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Figure 4. Changes in the growth curve after the expression of the different Pub1 variants. (A) Scheme of the different steps followed to prepare the cell
samples before the growth curve analysis. The pre-inoculum was in glucose media, then the cells were incubated in inducing conditions during different
times (0, 8, 16 and 24 h; Supplementary Tables S1 and 2) before growth characterization in presence of galactose (the inducer). (B) Growth curves in
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mentioned that in a growth curve, lag time informs about
the time that a population of cells requires to achieve the
top division speed. Thus, in our case, after stopping induc-
tion, the lag time informs about the time required by the cell
to overcome the disturbance caused by the overexpressed
Pub1. Importantly, the lag time is the parameter that best
correlates with the PS propensity of Pub1 variants (Figure
5E and Supplementary Figure S12).

At long induction times, we observed a strong slow-down
of �RBD2 doubling time. Whereas the growth rate recovery
obtained after 24 h of induction is around 3 h for Pub1, �PS
and �PrLD, division of �RBD2 cells takes more than 4 h.
For nearly all the fitness analyses �RBD2 and Pub1 were
closely related, with �RBD2 performances slightly better
than Pub1 (Figures 3A and C and 4C and D). Yet, �RBD2

condensates are less dynamic (Figure 3D), a characteristic
that is associated with lower reversibility and more difficult
disassembly (17,19,20). In the future, we plan to investigate
more these aspects, although we can already hypothesize
that the less dynamics of �RBD2 condensates has a deep
effect on cell fitness.

Pub1 PrLD interacts with numerous proteins with essential
cellular functions

PrLD domain is crucial to achieve the formation of con-
densates (Figure 2) and PS propensity is intimately associ-
ated with the capacity to disrupt cell function (Figure 4).
Upon PrLD depletion, we found a fast recovery of cell fit-
ness. Thus, PrLD causes cell toxicity by interacting with
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proteins in the surrounding environment and inducing con-
densation. To shed light on this, we proceeded to measure
changes in Pub1 protein network upon PrLD (�PrLD) and
PS (�PS) peak depletions.

Protein networks were studied using immuno-
precipitation (Supplementary Figures S18 and S19) and
mass-spectrometry (Material and Methods; Supplementary
Figures S20–23 and Table S5). For immuno-precipitation
we used Pub1-HA (‘FULL’) that shows similar assembly
behaviour as Pub1-GFP (‘FULL’; Supplementary Figure
S19). Specifically, we conducted our experiments after 8
h of induction, when the percentage of fluorescent cells is
close to 50% (Supplementary Figure S14 and Table S3)

and the differences between strains are clearly measurable
(Figures 1 and 4).

We found a dramatically different number of Pub1
(‘FULL’), �PrLD and �PS interactors: 436, 49 and 23,
respectively (FDR, of 0.001; Figure 6A and B and Sup-
plementary Table S5). When compared to the rest of the
proteome, around 4000 proteins (40), Pub1 (‘FULL’) and
�PrLD interactors showed more structurally disordered
and nucleic acid binding proteins, as predicted by the
multiCM algorithm that calculates enrichments in physico-
chemical properties (‘Materials and Methods’ section; Fig-
ure 6C) (63). By contrast, �PS interactors are less prone
to bind to nucleic acids and have a propensity to undergo
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solid-like aggregation (e.g. ‘amyloid’) similar to the rest of
the proteome (Figure 6C) (64). Proteins bond by �PrLD
and �PS are more hydrophobic and less nucleic acid bind-
ing than Pub1 (Figure 6D).

Pub1 interactors are longer (Figure 6E), less abundant
(Figure 6F) and have a larger number of interactors (Fig-
ure 6G) than proteins contacted by �PrLD and �PS, as
found interrogating PaxDB (65) and BioGRID databases

(66). These results agree with previous observations that ex-
pression of genes with a large number of partners should
be tightly controlled to avoid massive aggregation (67,68).
In the list of Pub1 interactors, we counted 106 (24%) pro-
teins with high PS propensity (catGRANULE score > 1),
of which 16 are SG proteins (Supplementary Table S6)
(15). All the characteristics associated to phase-separation
(long, RNA-binding and highly interacting proteins) are in-
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timately connected with the presence of the PrLD region
(19,69). The PrLD is essential for the recruitment of Pub1
interactors: 387 (>90%) Pub1 partners are not in �PrLD
network and 32 (>60%) of �PrLD interactors are not in
�PS network (Figure 6A). The presence of PrLD in Pub1
is associated with recruitment of 50 PrLD-containing pro-
teins (Supplementary Table S6), of which 33 have been pre-
viously reported to bind Pub1 (e.g. polyadenylate-binding
protein, Pab1; nuclear polyadenylated RNA-binding pro-
teins Nab2, Nab3, Nab6; and mRNA-binding proteins
Puf2, Puf3, Puf4; data from BioGRID (66); Supplementary
Table S6).

Many different cellular circuits are affected by Pub1 con-
densation, including transcription (e.g. Nuclear polyadeny-
lated RNA-binding protein 3 Nab3 and Transcriptional
regulatory protein Gat1), chromosome organization (Tubu-
lin gamma chain Tub4 and DNA repair and recombination
protein Rad52), ribosome and mitochondrion (37S ribo-
somal protein Sws2 and 37S ribosomal protein S7 Rsm7),
degradation and autophagy (Nuclear protein localization
protein 4 Npl4, Autophagy-related protein 3 Atg3 and
Ubiquitin ligase complex F-box protein Ufo1) and molec-
ular chaperones (Heat shock protein homologue Sse2 and
prion Cerevisin Prb1). We also detected HSP104, a disag-
gregase with valuable therapeutic application (70,71), able
to resolve diverse protein aggregates in response to environ-
mental stress. In particular, Hsp104 actively remodels amy-
loids and toxic soluble oligomers formed by several disease-
linked proteins (72,73). Interestingly, the number of inter-
actions detected is proportional to the PS propensities of
Pub1 variants (Figure 6A and B; Supplementary Figure
S23): removal of PrLD results in depletion of proteins as-
sociated with cell cycle, transcription, translation and lipid
metabolism and, similarly, abrogation of the PS peak af-
fects ribosome, spliceosome, transport and mitochondrial
biogenesis (Supplementary Figure S24).

To understand to what extent alteration of protein abun-
dance affects cell fitness, we analysed the amount of es-
sential and dosage sensitive proteins (i.e., toxic when dif-
ferentially expressed; Supplementary Table S6) sequestered
by Pub1. We obtained that Pub1 interacts with 65 essen-
tial (14% of the whole interactome, including Pav1, Cdc15,
Tub4 and Taf11) and 92 dosage sensitive proteins (20%, in-
cluding Hsp82, Gbp2, Pub1 and If4f1).

In summary, our analysis indicates that Pub1 interacts
with proteins involved in many functional pathways. These
interactions result in a disruption of cell homeostasis, which
causes impediments in cell growth. Toxicity is intimately
linked to the amount of proteins sequestered by Pub1 con-
densates and by the ability to participate in large interaction
networks.

DISCUSSION

Currently, there is an intense debate on which protein re-
gions contribute to the assembly and dynamics of biomolec-
ular condensates (31,32,38,74–77). Our bioinformatic anal-
ysis reveals that the ability to phase separate is intrinsi-
cally linked to the co-occurrence of PrLDs and RBDs in
H. sapiens and S. cerevisiae proteomes. Ranking PS propen-
sities computed with catGRANULE (41) we selected one

protein, Pub1, that accumulates in SGs (59) and contains
one PrLD and three RDBs (30). Pub1 PrLD was shown
to aggregate alone and trigger aggregation of proteins in
which was inserted (18,30) and our predictions indicate that
it forms a unique PS regulatory region with the adjacent
RBD. Being the PrLD unstructured and the RBD struc-
tured, we expected different contributions to the folding and
aggregation of the protein (78).

Our experiments show that the PrLD is required for Pub1
condensation and the RBD modulates the dynamics. Dis-
ruption of the RBD reduces the liquid-like behaviour of the
condensate (22) in favour of interactions that lead to solid-
like aggregation (30,79). Based on catGRANULE predic-
tions, we expect that the deletion of the other RBDs will
result in less strong effects. In accordance with our findings,
previous studies indicated that binding to RNA molecules
contributes to the specificity and organization of SG in-
teraction networks (32,38,80). One could hypothesize that
RNA is a chaperone, similarly to other cellular machiner-
ies (81). Moreover, RNA is a key modulator of the dy-
namics and material state of ribonucleoprotein complexes
(75,82–84) and highly structured transcripts can act as scaf-
fold for large assemblies (19,32,75). For instance, the non-
coding RNA NEAT1 promotes condensation of nuclear
paraspeckle components (76,85,86) and several other long
RNAs are involved in recruiting RBPs in SGs or SG-like
assemblies (19,80,87).

In line with previous reports (8,15), our analysis of pro-
tein interactions indicates that PrLDs are recruited into
condensates. As PrLD interactions are essential to seed
condensation (88), our interpretation is that once a criti-
cal mass of interactions is reached, the assembly attracts
molecules establishing a large network of protein–protein
and protein–RNA interactions (69). One could hypothesize
the intriguing possibility that PrLDs might establish weak
interactions with nucleic acids to promote condensation.
Indeed, unstructured regions containing PrLDs have been
shown to have propensity to bind RNA (89,90).

Is condensation the cause or rather consequence of cell
toxicity? Over-expression of proteins in another host, such
as human Tdp43 in yeast, causes toxicity because the pro-
tein does not have a functional homologue and only estab-
lishes aberrant interactions disturbing cell homeostasis (53).
In this case, aggregation is a form of compartmentalization
that reduces the interaction potential of Tdp43 and con-
sequent damages to the cell (91). By contrast, increase of
abundance of proteins in the same host, such as Pub1 in
yeast, leads to different effects. Toxicity arises from the im-
balanced complex stoichiometry caused by over-expression
of the gene and results in the formation of assemblies in
which Pub1 and its interactors become unavailable to per-
form their physiological functions (92). Aberrant conden-
sation not only creates the conditions for inappropriate
molecular sequestration (loss of function) (93) but also
favours the occurrence of undesired reactions (gain of func-
tion) (94). Thus, there is an evolutionary pressure to avoid
aggregation (95) and protein abundance is tightly regulated
by the cell machinery (67).

Protein interactors of the different Pub1 variants are re-
lated to transcription, translation, folding and degradation.
The variety of processes affected by condensations points to
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a general disruption of homeostasis. Indeed, Pub1 interac-
tors are enriched in essential and dosage sensitive proteins.
Importantly, the presence of the PrLD not only favours the
recruitment of proteins, but also highly interacting ones,
which has an amplification effect on the final network size.
As suggested by our mass spectroscopy results, the main
cause of the fitness decrease is the deficient cell division.
Indeed, Pub1 condensates interact with proteins related to
cell cycle arrest, whereas the less toxic variants, �PrLD and
�PS, do not. We suspect that toxicity arise when the pro-
tein interacts with essential cellular machinery, ultimately
trapped in condensates.

In conclusion, our results demonstrate that PrLDs and
RBDs play different but not independent roles in PS. The
two domain types have intimately inter-connected tasks:
PrLD has a clear role in creating protein interactions and
assembling condensates, whereas RDB influences the final
material state. The fine interplay between RBDs and PrLDs
regulates the formation of membrane-less organelles, induc-
ing quick formation of ribonucleoprotein assemblies and
promoting their fast disaggregation.
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