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Abstract:  Compositional data are nonnegative data with the property of closure: that is, each set 

of values on their components, or so-called parts, has a fixed sum, usually 1 or 100%.  The 

approach to compositional data analysis originated by John Aitchison uses ratios of parts as the 

fundamental starting point for description and modeling.  I show that a compositional data set 

can be effectively replaced by a set of ratios, one less than the number of parts, and that these 

ratios describe an acyclic connected graph of all the parts.   Contrary to recent literature, I show 

that the additive log-ratio transformation can be an excellent substitute for the original data set, 

as shown in an archaeological data set as well as in three other examples. I propose further that a 

smaller set of ratios of parts can be determined, either by expert choice or by automatic selection, 

which explains as much variance as required for all practical purposes.  These part ratios can 

then be validly summarized and analyzed by conventional univariate methods, as well as 

multivariate methods, where the ratios are preferably log-transformed. 

 

Keywords:  compositional data, log-ratio transformation, log-ratio analysis, log-ratio distance, 

multivariate analysis, ratios, subcompositional coherence, univariate statistics. 
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1.  Introduction 
 

Compositional data are sets of non-negative data that have been expressed relative to a fixed 

total (usually as proportions summing to 1 or percentages summing to 100%), and their analysis 

is called compositional data analysis (Aitchison 1986).  The original totals, whatever they were, 

are not of interest − rather, the relative values, collectively called a composition, are relevant for 

summarizing and statistical analysis. The components of a composition are called its parts.   If a 

subset of the parts are considered and the data are re-expressed with respect to the new subtotals, 

this is called a subcomposition.  In several situations, where the total of the original data is the 

same for all samples, considering a subcomposition is usually not an issue.  For example, in the 

case of time budget data where activities such as sleeping, eating, leisure, work, transport, etc., 

are recorded during a 24-hour day, there is usually no point in dropping an activity and re-

expressing the parts relative to the total without that activity.  Similarly, concentrations in parts 

per million (ppm), for example, are analysed as such, without re-expression as proportions.  In 

this article I concentrate on compositional data where subcompositions or extended compositions 

are possible, for example, geochemical data, or fatty acid data in ecology, in other words where 

the proportions depend on the particular choice of parts made by the researcher.   

The act of converting a set of values into its set of relative values by dividing by the total, is 

called closure.  The term normalization is also used (which unfortunately has an alternative 

meaning in statistical theory);  for example, it is said that “the data are normalized”, “the data are 

closed”, “some parts are excluded, or added, and the data are renormalized, or reclosed”, etc…   

It is exactly because the compositional values associated with the parts change, after 

renormalization, that makes compositional data unique, and needing special approaches.    

In spite of the compositional values being dependent on the particular mix of parts chosen by the 

user, parts of a composition are still often summarized by statistical measures such as the mean 
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and correlation coefficient.  Clearly, these summary statistics make no sense when comparing 

different studies, unless studies being compared have used exactly the same set of parts.   In 

multivariate analysis of compositional data, it has long been recognized that a valid approach to 

compositional data is to analyse ratios of parts, which are invariant to the choice of the set of 

parts.  Basing the analysis on ratios is an approach with the property of subcompositional 

coherence: the relationships between parts is invariant to the particular mix of compositional 

parts in a data set, not changing when some other parts are excluded or added (see, for example, 

Aitchison 2005, sect. 1.7; van den Boogaart 2013, sect. 2.2.3).   The logarithmic transformation 

is important, because ratios are compared multiplicatively, and log-ratio analysis (Aitchison 

1990, Aitchison and Greenacre 2002) is a subcompositionally coherent variant of principal 

component analysis that displays the reduced dimensional structure of all log-ratios of the parts.  

Subsequently, Greenacre and Lewi (2009) showed the benefits of weighting the parts by their 

average proportions, leading to a weighted form of log-ratio analysis that is identical to spectral 

mapping , a method that has been used in drug development and biostatistical applications (Lewi 

1976, 1980; Wouters et al. 2003). 

There are many papers on Aitchison's approach to compositional data analysis, abbreviated as 

CoDa: to mention but a few key publications, Aitchison 1994, Aitchison et al. 2000, Aitchison 

and Egozcue 2005, Pawlowsky-Glahn, Egozcue and Tolosana-Delgado 2007, and the seminal 

book edited by Pawlowsky-Glahn and Buccianti (2011).  I will refer to these authors who take 

inspiration from Aitchison's foundational work as the "CoDa school".  The fundamental idea of 

their approach is the log-ratio transformation, and three log-ratio transformations have been 

proposed: the additive log-ratio (ALR), the centred log-ratio (CLR) and the isometric log-ratio 

(ILR), each with their advantages and disadvantages.  Of these three, only ALRs have a clear 

practical interpretation, since they are constructed from simple ratios of parts and do not involve 

ratios of geometric means of parts, as is the case with CLRs and ILRs.  I hope to show that, by 
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slightly relaxing the strict requirements of the CoDa school's approach in a controlled and 

measurable way, then other sets of simple ratios of parts can be used, which are easier for the 

practitioner to interpret, and  for all practical purposes  serving the same purpose as the classic 

ones. 

A relaxation of the strict requirement of compositional coherence, in the same spirit as the 

present article, has already been proposed by Greenacre (2011a), who defined a measure of 

subcompositional incoherence, that is how far any given method applied to a compositional data 

set is from the ideal of  subcompositional coherence.  The requirement of the CoDa school that 

methods should be strictly subcompositionally coherent excludes methods that are close to being 

coherent, for example correspondence analysis (CA), which is known to be theoretically linked 

to log-ratio analysis (LRA) by the Box-Cox transformation (Greenacre 2009, 2010a).  The chi-

square distance in CA approximates the log-ratio distance in LRA, coming closer and closer to it 

as the power parameter of the Box-Cox transformation reduces to 0 and in the limit the two 

methods are identical.  Moreover, since CA handles data zeros with ease, which is one of the 

main problems of Aitchison's log-ratio approach. In this sense, CA provides the next best choice 

to LRA to identify dimensions underlying a compositional data set (Greenacre 2011b). 

Moreover, its closeness to being compositionally coherent can be measured, as proposed by 

Greenacre (2011a).  This relaxation of a strict requirement, while checking how much the 

method deviates from that requirement in a particular application, is no different from current 

statistical practice that uses theory involving the strict assumption of the normal distribution, for 

example, but then relaxing this assumption to perform a hypothesis test after checking that the 

data do not deviate too much from normality.  This article continues in the same spirit, proposing 

alternative simpler approaches to CoDa that come measurably close to the strict requirements of 

the CoDa school.  
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An initial section (Sect. 2) lays the methodological foundation for what is to come. Two areas of 

methodology are essential to support my approach, namely network graph representation and the 

form of multivariate regression called redundancy analysis.  I will stress once again the practical 

usefulness in multivariate CoDa of part weighting, where parts occurring in low proportions 

should receive lower weight than their higher proportion counterparts.   

In Sect. 3 I will start with a simple application that restores the ALR transformation back to the 

stage of CoDa.  Pawlowsky-Glahn, Egozcue and Tolosana-Delgado (2007) dismiss the ALR 

transformation, saying that it "is frequent in many applied sciences and should be avoided".  I 

will discuss their reasons for this statement and show empirically, by contrast, that the ALR can 

be very "close" to the complete set of log-ratios in more than one sense and thus of potential use 

to the practitioner tackling a compositional data set.  I will also summarize the well-known 

theoretical niceties of the CLR and ILR transformations, being equivalent to the full set of log-

ratios, but explain why I think that they are not as useful for the practitioner as using a set of 

simple ratios.    

In Sect. 4 I will discuss ratio selection, a CoDa version of variable selection, leading to a small 

set of ratios, measuring how much "information" in the form of variance is lost in their selection, 

and showing how close their implied inter-sample distances are to the log-ratio distances based 

on all pairwise ratios. Using a few ratios that are essentially equivalent, for all practical purposes, 

to the original data set and which have a simple and intuitive interpretation, can considerably 

ease the task of the applied researcher.  Given the lack of subcompositional coherence in the 

parts themselves, it seems obvious that when it comes to reporting univariate statistics, these 

should rather be in terms of ratios of parts. In certain research areas, for example in fatty acid 

analyses in studies of the marine food web, some specific ratios are indeed proposed as 

indicators of certain substantive phenomena  see, for example, Kraft et al. (2015).  In my 

opinion, reporting a selected set of ratios, their distributions and confidence intervals on means, 
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for example, should be the norm rather than the exception, since these are the only quantities that 

are comparable across studies. 

As an illustration I will use throughout the following sections a data set on the compositions of 

11 oxides in a set of 47 Roman glass cups from an archaeological site in eastern England 

(Baxter, Cool and Heyworth 1990),  where oxygen is combined with elements silicon (Si), 

aluminium (Al), iron (Fe), magnesium (Mg), calcium (Ca), sodium (Na), potassium (K), titanium 

(Ti), phosphorus (P), manganese (Mn) and antimony (Sb).   These oxides will always be referred 

to and labelled by these abbreviations of the elements.  The data are reproduced in Table 2 of 

Greenacre and Lewi (2009), who highlight the difference between unweighted and weighted log-

ratio analysis of these data, demonstrating the benefits of the latter. This data set is provided 

electronically here as supplementary material. This is a highly suitable data set, since it consists  

of parts with widely varying average proportions.  It also has no zero values, which facilitates 

comparison with the  case where all log-ratios are considered and avoids the side issue of data 

zeros. 

 

2.  Some theoretical concepts 

2.1 Total variance of a compositional data set 

The total variance in a compositional data set, following Aitchison (1983, 1986), is measured by 

the total log-ratio variance.  This measure is so fundamental that I shall present several 

equivalent definitions of this concept, serving to highlight different properties.  Suppose that the 

data are in a samples-by-parts matrix X (n  p), where the rows of X sum to a constant, which 

can be set to 1 without loss of generality (hence, the data are proportions and the rows are 

compositions). Then the (unweighted) log-ratio variance, defined by Aitchison (1983), consists 

of first defining the logarithms of the ratios of all ½p(p  1) pairs of parts, that is expanding the 
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columns of  X into a n  ½p(p  1) matrix of log-ratios Z and then computing the grand total of 

the column variances: 
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The last version on the right hand side of Eq. (2) shows the sum of squares of the logarithmically 

transformed odds-ratios based on all unique pairs of rows and columns of the data matrix.  

As shown by Greenacre and Lewi (2009), weighting the parts has many important advantages.  

Parts occurring in low proportions need to be down-weighted because they induce large log-ratio 

variances and will dominate any analysis of the complete set of log-ratios (the rare oxide of the 

element Mn in the glass cups data set, which occurs only with values 0.01%, 0.02% and 0.03%, 

illustrates this argument perfectly) . A good default weighting system for a table of positive 

values, all on the same scale, is to weight the rows and columns proportionally to their marginal 

totals, as is the case in correspondence analysis and spectral mapping .  For compositional data, 

the row sums are all 1, so the row weights (which should sum to 1) are ri = 1/n, constant across 

samples, and the column weights are cj = jth part mean.  For other tables of positive data all on 

the same scale, for example counts, the row weights can also vary.  The definitions of (weighted) 

log-ratio variance corresponding to the unweighted ones in Eqs. (1) and (2) are thus respectively 

as follows: 
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Because of the demonstrated benefits of the weighting, I will maintain the weighted version in 

Eqs. (3) and (4) as the definition of the log-ratio variance, and qualify it with the adjective 

"unweighted" when referring to Aitchison's original definition in Eq. (1) or its equivalent in Eq. 

(2).   

A third equivalent definition of the log-ratio variance uses the matrix Y of centered log-ratios 

(CLRs): )log()log()/log( ijj jijj

c
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which can be expressed in vector notation and another equivalent form in terms of inter-CLR 

squared distances: 
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where yj is the j-th column of the CLR matrix Y. 

Since the log-transformed data matrix X, log(X) = [log(xij)], is first centered by their respective 

weighted row means to obtain the matrix Y, it follows that the elements jij yy  , which are 

centered by the column means, are a double-centering of the matrix log(X) using the column and 
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row weights cj  and ri =1/n respectively.  Then these double-centered values are squared and 

summed using the column and row weights again to obtain the total log-ratio variance.   In 

matrix notation, where the column and row weights are gathered in vectors c and r respectively, 

the CLR matrix is  

   Y = log(X)(I 1cT) T            (7) 

and the double-centered matrix is  

   S = Y1rTY = (I 1rT)log(X)(I 1cT) T        (8) 

Then the total log-ratio (LR) variance in Eqs. (3) and (4) is the weighted sum of squares of S: 

                                   LR variance =  trace(Dr 
S Dc S 

T).            (9) 

where Dr and Dc are the respective diagonal matrices of the weights. 

A fourth equivalent definition of the log-ratio variance can be obtained by defining a set of ILRs 

known as balances.  Balances are defined by a sequential binary partition of the parts, the 

simplest being part 1 versus the remaining 2,..., p, then part 2 versus the remaining 3,..., p, and so 

on, until part p1 versus part p, represented in the dendrogram of Fig. 1(a). One way of proving 

the total variance decomposition across the balances is to resort to the well-known result 

attributed by Benzécri (1973) to the Dutch mathematician Christiaan Huygens (16291695)  

this result is used in multivariate analysis of variance to calculate the decomposition of total 

sum-of-squares (TSS) into between-groups sum-of -squares (BSS) and within-groups sums-of-

squares (WSS): TSS = BSS + WSS.  Contrasting two groups in a partition (of the parts in this 

case), the two group centroids  define a between-group sum-of-squares.  Each of these group's 

within sum-of-squares is in turn decomposed according to subsequent binary splits and each time 

a between-group sum-of-squares is computed. Eventually, once the partitioning arrives at two 

single parts, which have no within sums-of-squares, the sequence of between-group sums-of-

squares has decomposed the total variance.  This procedure was executed in two ways: first, as a 
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stepwise divisive (descending) procedure where at each step one part was contrasted against the 

remainder at that step, which I will call a chain balance (Fig. 1a), and an agglomerative 

(ascending procedure by weighted Ward clustering (Fig. 1b), which I will call the Ward balance.  

In both cases the sum of the heights of the 10 nodes is exactly the total log-ratio variance, equal 

to 0.002339 for the glass cup data, and hence define a decomposition of the total variance.  I will 

return to the CLR and ILR transformations later, but suffice it to say for the moment that 

although their properties might be of theoretical interest, the CLRs and ILRs are not convenient 

for the practitioner to interpret.  In my experience, mainly with compositional fatty acid data in 

ecology, no researcher finds a geometric mean, let alone a ratio that involves a geometric mean, 

an interesting summary statistic.  However, practitioners do favor aggregating parts, for example 

summing together all the saturated or unsaturated fatty acids, and making ratios of these sums: 

saturated FAs/unsaturated FAs.  Similarly in geochemistry, interest may be on elements that 

behave together, for instance combining alkilies such as K20 and Na2O.  However, log-ratios of 

sums do not fit into the rigors of the CoDa school's approach.  I will show in Sect. 4 that 

practitioners' wishes for more interpretable variables can be accommodated in a pragmatic 

approach that has only slight (and measurable) incompatibility with the CoDa school's strict 

framework.  

2.2 Graph representation of log-ratios 

It will be very useful to represent log-ratios of parts as links between the parts in a network.  In 

graph theory the parts are called vertices and the links edges.  For example, the CoDa school's 

approach analyses all ½p(p  1) pairwise log-ratios, and these can be represented in the graph of 

Fig. 2a, called a complete graph because every pair of vertices is connected by an edge. In Fig. 

2b, the set of  p  1 additive log-ratios are displayed, where the oxide of Si is the denominator 

and edges in the form of arrows pointing towards the numerator  this is called a directed graph.  
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Actually, Fig. 2a should also be directed, with its ½p(p  1) edges as arrows, in which case the 

complete directed graph is called a tournament   see, for example,  Harary and Palmer (1973) or 

Bóna (2006).   When I deal with subsets of ratios in Sects. 3 and 4, the representation of these in 

a graph will enhance understanding, and certain graph-theoretic results will be very useful. 

2.3 Redundancy analysis and the vegan package in R 

Redundancy analysis (RDA) is a variant of multivariate regression, where there are p responses 

instead of just one, as in the standard regression model.  The name originates in a paper of 

Wollenberg (1977) but the method was first defined by Rao (1964), who called it "principal 

component analysis of instrumental variables".  Gittins (1985) gives a thorough treatment and 

equates the term "redundancy" with explained variance, which is exactly the use I will make of it 

here.  In its simplest form, given a n  p matrix of responses Z (which are appropriately 

transformed and would be suitable for PCA) and an n  m matrix of explanatory variables W 

(which serve to explain variance in each of the columns of Z), then dimension reduction is 

performed not on Z itself but rather on its projection Z* onto the space defined by W: Z* = W 

(WTW)1WTZ.  The total variance in Z is then split into two orthogonal components: the part in 

Z* that is explained by W and the part in Z  Z* that is uncorrelated with W and thus 

unexplained by the explanatory variables.  The vegan package in R (R Core Team 2015) 

implements RDA in the function rda, but also in another function adonis, which has the 

advantage of operating either on a rectangular matrix Z of responses, or on the square distance 

matrix implicit in the analysis of Z, for example the matrix of Euclidean interpoint distances, as 

in PCA.  As we have seen in Eq. (6), for example, the total variance can always be expressed 

equivalently in terms of a matrix of squared interpoint distances.  Because of adonis's ability 

to analyze distance or dissimilarity matrices directly as responses, I have used it throughout in 
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what follows, while noting that identical results are obtained whether the original matrix Z is 

given or the distance matrix between rows of Z. 

3.  Resurrecting the additive log-ratio transformation  

The additive log-ratio (ALR) transformation was the original transformation used by Aitchison 

(1986)  but in the book van den Boogaart and Tolosana-Delgado (2013, p. 44) the authors say 

they "will not use it in this book" (p. 44) and ALR "should not be used in case that distances, 

angles, and shapes are involved, as it deforms them" (p.45).  Other authors from the CoDa school 

similarly reject this transformation, for at least the following two reasons (quoted from 

Pawlowsky-Glahn et al. 2007): "the alr is not symmetrical in its components"; it defines 

"coordinates in an oblique basis, something that affects distances if the usual Euclidean distance 

is computed from the alr coordinates".  I will deal with these in turn. 

The critique that it is not symmetrical in its components is a feeble one  it is at least a set of 

simple ratios that the practitioner can understand, and I will show that it can do the job it is 

intended for, namely represent the variance in the original data and not distort the results.  

Because the total log-ratio variance is known to be contained in a (p1)-dimensional space, it 

can be easily demonstrated that any set of ALRs, which are by definition  p1 in number and 

containing every part at least once, will explain the totality of the log-ratio variance.  There is a 

large component of redundancy in the complete set of log-ratios, which are differences in the 

logarithms with many repetitions, and are fully explained when regressed on a set of log-ratios 

that contain each part at least once.  Notice the distinction between explaining the variance as 

opposed to containing the log-ratio variance  it is clear that a set of p1 ALRs must have less 

variance than the set of all ½p(p  1) log-ratios.  But some sets of ALRs contain more variance 

than others, as I will show now.   
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There are p potential sets of ALRs, each of which can be shown by arrows emanating from one 

of the parts in Fig. 2b to all the other p1 parts (the set of ALRs from Si is shown in that figure).  

Each set of ALRs was used as explanatory variables in a redundancy analysis to measure how 

well they explain the log-ratio data set, and as expected each set explains 100% of the total log-

ratio variance.  But some sets contain more inherent variance than others  see Table 1.  It is 

clear that the set of ALRs using Si as the reference contains the most variance, almost 90% of the 

total.  As will be shown soon, it is an excellent set of ratios representative of the complete data 

set.  

The second criticism of the ALR transformation is that it will affect the log-ratio distances and 

"deform" the space of the samples, that is poorly represent the inter-sample distances.  These 

distances are the so-called Aitchison distances, but defined here in their weighted form, between 

two cases (rows) i and i' , as follows (cf. (4)): 
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Since the sum in Eq. (10) is over ½p(p  1) log-ratios whereas the ALR distances involve 

summing over only p  1 of them, it is clear that all the distances will be affected, but what is not 

clear is if there is any serious "deformation" and if this has any practical consequences on the 

results.  Using the "best" set of ALRs (i.e., containing most variance, 89.3%), with respect to Si, 

and comparing the log-ratio distances in Eq. (10) with the interpoint distances based on this set 

of ALRs, the scatterplot in Fig. 3a is obtained.   Because I will show the two-dimensional 

solutions later and even surmise that these data only have one significant dimension, the same 

comparison is made of two- and one-dimensional LRA solutions with the corresponding two- 

and one-dimensional solutions of the analysis of the 10 ALRs based on Si, in Fig.s 3b and 3c 

respectively.  The reproduction of the distances in each case can clearly be seen to be excellent 
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and refutes the general assertion that the distances are "deformed(...)if the usual Euclidean 

distance is computed from the alr coordinates", at least in this example. As an alternative 

approach that compares configurations rather than inter-point distances, the last column in Table 

1 shows the Procrustes correlation, also computed in vegan using the function Procrustes, 

which compares the (p 1)-dimensional configuration from the log-ratio analysis (LRA) of the 

data set and the (p 1)-dimensional configurations based on the PCAs of the respective sets of 

ALRs. There are several very high Procrustes correlations, the highest being for the ALRs with 

respect to Si.  This suggests that the ALRs are preserving more of the "signal" in the data than 

might have been expected, since we know that all data sets contain a high proportion of 

unexplained "noise" variation.  Computing the Procrustes correlations that compare the two-

dimensional and one-dimensional solutions (for one dimension this is just the regular correlation 

coefficient), the agreement is even higher, so almost none of the important log-ratio distance 

variance contained in the major LRA dimensions is lost by using this set of ALRs. 

This last idea of comparing reduced-dimensional solutions is important because, after all, in a 

multivariate CoDa this is what will be interpreted by the practitioner, assuming that the minor 

dimensions reflect the "noise" variance. The two-dimensional solution based on the "full" LRA 

and the two-dimensional solutions based on the sets of ALRs with respect to Si are shown in the 

form of biplots in Fig. 4.  These are contribution biplots (Greenacre 2013), where the lengths of 

the arrows are directly related to the corresponding variable's contribution to the two-

dimensional solution.  The configuration of the case points (labelled 1 to 47) of Fig. 4b, based on 

the ALRs with respect to Si, compared to that in the LRA biplot in Fig. 4a, shows a strong 

resemblance, as expected from the high Procrustes correlation of 0.9982 (see Fig. 3b).  This 

shows again that these ALRs are sufficient to give practically the same result as the LRA (in 

Sect. 4 I will show that even less log-ratios are required to achieve this goal).  In addition, notice 
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that the first dimension in Fig. 4b has a much higher percentages of variance on the first axes, 

compared to Fig. 4a, which suggests the following possible reason. 

These data have a relatively low variance, and the question can be asked what the non-random 

dimensionality of the data set is.  Applying a permutation test in the style of Greenacre (2016, 

chapter 30) to the LRA solution, the first dimension was found to be highly significant 

(p<0.001), but for all the other dimensions the p-values were very high and non-significant.  The 

conclusion is that there is really only one non-random dimension in these data.  Therefore, we 

should be comparing one-dimensional solutions, not two-dimensional ones.  Figure 5 shows the 

simple scatterplot of the 47 cases (the glass cups) according to the first coordinate in the LRA 

plot (horizontal axis of Fig. 4a) and the first axis of the ALR analysis (horizontal axis of Fig. 4b).  

This is the vizualization of the correlation of 0.9994 in Fig. 3c.  If one accepts the permutation 

test that there is only one significant dimension, then the ALR analysis has detected it almost 

perfectly, but no less perfectly whatever the "signal" in the data might be.  This suggests the 

explanation why the first dimension in the LRA analysis has a much lower percentage of 

variance on the first dimension, because this analysis has a higher total variance, containing the 

"noise" variance augmented by a multiplicity of additional redundant log-ratios that are included 

in the analysis.  This situation is no different from PCA, for example, if a data set with p 

variables is augmented with new variables that are linear combinations of the old ones, for 

example differences between pairs of variables.  The dimensionality and information content is 

the same, but the more these new variables are added, the more the total variance in the data set 

increases and the percentages of variance on the major axes decrease. 

To summarize what has been learnt about the glass cup data in this section, it seems that: 

(i)    the ALR analysis reproduces log-ratio distances based on all pairwise ratios very accurately, 

sacrificing a very small part of distance variance, less than 0.5%; 
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(ii)   there may be only one non-random dimension in these compositional data, the remainder 

are compatible with random variation; 

(iii)  an analysis based on simple ALRs has almost exactly identified this first dimension, but 

also identifies other dimensions accurately; 

(iv)  the (p1)-variate ALR analysis does not contain as much noise variance as the ½p(p  1)-

variate LRA, so the first dimension appears relatively stronger in the ALR analysis, 

compared to the LRA one. 

All in all, the ALR analysis appears to be equivalent to a full-blooded LRA for all practical 

purposes, and has a simpler interpretation, constructed from a small set of log-ratios of parts.  In 

this example the set of ALRs based on Si appeared the most useful, but I found very similar 

results using other sets of ALRs too, always monitoring their variance explained, variance 

contained, Procrustes correlation and distance plots in comparison to the Aitchison approach.  In 

the next section I will show that even fewer than p  1 log-ratios can be adequate to represent the 

full set of log-ratios, and thus simplify the practitioner's task even more. 

As an interesting side result, it is noteworthy that the set of ALRs that emerges the closest to the 

CoDa log-ratio "ideal" is when the oxide of Si (i.e., SiO2) is used in the denominator of the ratios 

(Fig. 2b).  This recalls the definition of the Harker diagram for identifying relationships between 

oxides in a geological context: "The oldest method is the variation diagram or Harker diagram 

which dates from 1909, and plots oxides of elements against SiO2" (quoted from 

https://brocku.ca/earthsciences/people/gfinn/petrology/variatn.htm   

original reference is Harker (1909), see also Cortés (2009) ).   

4.  Variable selection in compositional data analysis  
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I see variable selection in CoDa taking two possible paths: selecting parts or selecting ratios.  If 

the first path is chosen, then a subset of parts is found based on some optimality criterion, after 

which the data are reclosed and analysis continues in the log-ratio framework using this 

subcomposition.  If the second path is chosen, then a subset of log-ratios is found in the same 

way and these are treated afterwards just like regular variables, or they suggest a reduced set of 

parts for further analysis.  I will concentrate on the selection of log-ratios, in the belief that 

simple ratios can solve practitioners' data analytic problems without resorting to the "all log-

ratios" approach based on CLRs or ILRs, or even the p1 variable set of ALRs as in Sect. 3.  

Simple ratios are compatible across studies, and their choice can also be guided by the 

practitioner who has expert knowledge about the data and its context. Whatever the way ratios 

are chosen, by expert knowledge, by statistical criteria or a combination of both, the relationship 

of the ratios to the original data set can be measured, for example how much the ratios explain 

the log-ratio variance, how much of the log-ratio variance they contain and how close the 

distances based on ratios approximate the log-ratio distances. 

4.1 Choosing a set of ratios 

An automatic way of identifying a "good" set of ratios can proceed in a stepwise fashion, trying 

in the first step every individual log-ratio as an explanatory variable in explaining the log-ratio 

variance in a redundancy analysis, and selecting the one with the highest percentage of variance 

explained.  This ratio is then fixed as the first log-ratio and then the second best log-ratio in 

combination with the first is sought, then fixed, and so on, similar to stepwise regression.  Care 

must be taken to choose ratios that are "independent" of the ones already chosen: for example, if 

A/B and B/C have already been selected, then A/C is no longer a candidate for selection, since it 

depends on the others: A/C = A/B B/C, or on the log-scale, log(A) log(C)  is the sum of, and 

thus linearly dependent on, log(A) log(B)  and log(B) log(C). Since the dimensionality of a p-
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part compositional data set is p  1, and if all the parts have appeared in at least one log-ratio 

after p 1 steps of the above procedure, the variance explained will be 100%, as was the case for 

each set of ALRs in Sect. 3.   

If ratio selection is done stepwise "by hand" by an expert, it will be necessary to check that the 

chosen ratio of two parts is not dependent on the ones chosen previously.  This is easy to check 

in the case of three parts, as just described, for which at most two ratios are admissible, but 

becomes more difficult when the dependence might be via several ratios of parts.  Here the graph 

representation can be very enlightening; for example, Fig. 6a represents five ratios, showing their 

exact definition by indicating solid arrows from the denominator to the numerator in each case 

(i.e., Si/Ca, Si/Na, Si/Ti, Ti/P, Ti/Mn).   No other ratios of the parts represented here are 

admissible, since they will necessarily depend on the existing ratios.  Two such inadmissble 

candidate ratios are shown by dashed arrows in Fig. 6b, Si/Mn and Ca/P.  The ratio Si/Mn is like 

the A, B, C example mentioned above, and following the arrows the dependence relationship can 

be seen as Si/Mn = Ti/Mn  Si/Ti.  The ratio Ca/P also closes a circuit and so can be obtained by 

following the path from P to Ca, where an arrow that goes in the reverse direction implies 

inverting the corresponding ratio.  This is a type of vector geometry but multiplicative/divisive 

rather than additive/subtractive (but it is additive/subtractive in the log-ratios).  Thus, Ca/P = 

Ti/P  Si/Ti  (Si/Ca)1.  The only way to add ratios to this network would thus be to add new 

parts. It is clear that the network of multiplicatively independent ratios (by which is meant 

linearly independent log-ratios), cannot have any connected cycles. The requirement that all 11 

parts appear in the network but only 10 ratios thus implies that they must be connected and 

acyclic (i.e., no cycles). From graph theory, the number of acyclic connected networks of p 

elements (also called spanning trees) is known  it is the Cayley number, equal to pp2 (Bóna 

2006), which in this example is 119 = 2 357 947 691, over 2 billion.  (If this seems a lot, consider 

that the number of balances, which define dendrograms such as Fig. 1, is equal to p!  (p1)! / 
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2p1 = 141 455 160 000, over 141 billion).   Clearly, an efficient way of choosing ratios is 

required and a stepwise procedure is proposed here. 

This procedure starts by selecting, from the the ½1110 = 55 log-ratios in this example, the one 

that explains the most log-ratio variance.  Using the adonis function again, the log-ratio of 

Si/Ca turned out to be the best, explaining 61.5% of the variance.  The second best is Si/Sb, 

explaining an additional 12.6%, so the variance explained is now 74.1%, then Na/Sb which 

brings the variance explained up to 86.4%, and so on.  The sequence of ratios and their 

accumulated explained variances are given in Table 2, and Fig. 7 represents the set of ratios in its 

acyclic graph connecting all the parts, where the edges show their order of entry in the stepwise 

procedure. In addition, Table 2 reports the medians of these ratios, as well as their reference 

ranges based on the estimated 0.025 and 0.975 quantiles (i.e., 2.5% and 97.5% percentiles).  

These statistics may be validly compared with the same ratios in other archaeological studies, 

whether the list of oxides is extended or not, since the ratios are invariant to the parts chosen by 

the researcher.  The importance of Si as an element of high degree (i.e., the number of links to it, 

which is 7) is seen once more, even in this stepwise procedure.   

What is not clear from the stepwise selection is that at some steps there can be more than one 

ratio competing for entry, giving the same additional benefit of variance explained.  For 

example, in Table 2, the third ratio chosen was Na/Sb, explaining an additional 12.3% of the 

variance (increasing from 74.1%  to 86.4%), but exactly the same increase would have been 

obtained if Si/Na or Ca/Na had entered.  The important aspect of this third step is the entry of 

Na, which can be in a ratio with either Si, Ca or Sb.  In my algorithm these ties were broken by 

choosing the ratio that, when added to the list of ratios at that step, maximized the Procrustes fit 

of the distances to the log-ratio distances.  In this third step, this ratio turned out to be Na/Sb.   It 

is also at this point that an expert could intervene to choose one of the "competing" ratios that 

has some relevant substantive meaning and interpretation in the context of the data. 
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The log-ratio biplot in Fig. 4a sheds light on the choice of the ratios.  This incorporates the 

weighting of the parts (Greenacre and Lewi 2009; Greenacre 2009, 2010, 2011b), and the 

contribution biplot scaling (Greenacre 2013). Clearly the Si vs. Ca opposition is the most 

important along the first axis, which clarifies the choice of the first ratio as Si/Ca.  It is no 

surprise either that Si/Sb is then chosen, to include Sb which is the most important contributor on 

the second axis.  In the light of what was said in the previous section about the second dimension 

in Fig. 4a being compatible with random variation, it could be that the ratio Si/Sb is not worth 

retaining, but for the moment the stepwise procedure is designed only to replicate, as closely as 

possible, the log-ratio distances based on all the parts, whether the contained relationships are 

non-random or not. 

Now, using only the 10 identified log-ratios in Table 2, Fig. 8a shows the contribution biplot  

notice that the definitions of the ratios are inverted compared with Fig. 4, with Si appearing in 

the numerator.  The resemblance with Fig. 4a is clear, and once again (as we saw for the ALR 

results in Fig. 4b) the percentage of variance explained on the first axis is much higher  the first 

dimension of Fig. 8a explains 67.2 % of the variance, whereas in Fig. 4a it has practically the 

same interpretation and explains only 39.6 %.  Although Fig. 8b shows the distances based on 

these ratios to be less concordant with the log-ratio distances, compared to the ALR distances in 

Fig. 3, the Procrustes correlation for the 47 glass cups between the two-dimensional 

configurations of Fig. 4a and Fig. 8b is nevertheless a high 0.966.    

4.2 Choosing a reduced set of ratios 

In the contribution biplot of Fig. 8a three ratios stand out from the rest: Si/Ca, Si/Sb and Na/Sb, 

exactly the first three ratios that entered the stepwise process described in Sect. 4.1, explaining 

86.4 % of the log-ratio variance.  Figure 9a shows the biplot using just these three ratios, and it 

hardly differs from Fig. 8a.  The configuration of the 47 glass cups is practically the same, and 
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now the percentage of explained variance for this three-dimensional example is 74.1 % + 25.8 % 

= 99.9 %, with only 0.1 % lost on the remaining third dimension.  Just these three ratios capture 

the first two dimensions of the original LRA analysis very accurately, with a Procrustes 

correlation of 0.950 between the samples in Fig. 9a and the LRA of Fig. 4a.  Instead of the three 

ratios, a LRA can be performed on the subcomposition comprising the four oxides of Si, Na, Ca 

and Sb that make up these ratios.  This LRA operates on the six pairwise ratios between the four 

oxides, including three ratios that are "redundant".  The result is almost identical to Fig. 4a if one 

simply deletes the other seven oxides, with a Procrustes correlation of 0.988, but percentages of 

variance on the two dimensions of 75.2% and 15.5%.  This approach of using the selection of 

ratios to lead to the selection of a subcomposition may be more acceptable to the CoDa school. 

As a final step towards extreme parsimony, if one accepts that it is really only the first dimension 

of the LRA that is non-random, then a single ratio Si/Ca accounts for this dimension very 

accurately, as shown in the scatterplot of Fig. 9b.  Here the ratio has been inverted and 

log(Ca/Si) is plotted against the first dimension of Fig. 4a, with an astounding correlation of 

0.953.  This begs the question that perhaps the non-random component of the whole data set can 

be reduced to the study of the subcomposition of only two parts, that is a single ratio between the 

oxides of calcium and silicon.  In other words, this data set may be compatible with the situation 

where oxides of calcium and silicon are the informative parts, ordinating the glass cups in a non-

random way in terms of log(Ca/Si), whereas the other nine oxides are non-informative random 

values added as additional columns, merely inflating the total variance. 

 

5.  Discussion and conclusion 
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The main point of this article is to show that a simple choice of ratios, logarithmically 

transformed, can account for all or most of the log-ratio variance in a compositional data set, and 

can be used for univariate or multivariate analysis as a substitute for the original data.  In the 

example presented here, one set of ALRs, for example, has been shown to serve the same 

purpose as a LRA that involves all pairwise log-ratios, and comes to the same conclusion about 

the data using variables that are easier to interpret.  I am not proving that this will always be the 

case, but this example serves as a counter-example to the assertion that ALRs should be avoided.  

I would rather say that ALRs can always be explored in CoDa for their effectiveness in 

summarizing the compositional data content.  In case this single example is considered not 

sufficient evidence, the supplementary material contains three additional data sets and the results 

when ALRs are considered as substitutes for the full set of log-ratios, as in Sect. 3. Two of these 

compositional data sets are taken from Aitchison (2005) and the third one is considered by 

Greenacre (2016) in the context of correspondence analysis.  In each of these three examples a 

set of ALRs gave excellent results, with Procrustes correlations 0.995, 0.960 and 0.989 

respectively between the configuration based on the ALRs and the configuration based on the 

full set of log-ratios.  These results echo the words of Aitchison (1994, p.76), who says that "a 

simple methodology for compositional data analysis" is suggested as follows: "Transform each 

composition (...) to its (vector of additive log-ratios...), then apply the appropriate, standard 

multivariate procedures to the logratio vectors."  Notice Aitchison's use of the term "simple 

methodology", with which I fully agree. 

Furthermore, I have shown that a reduced set of log-ratios, explaining part of the log-ratio 

variance, can be found to represent the essential content of the data set considered here.  In the 

glass cup data set, three log-ratios were more than sufficient, and if one accepts the hypothesis 

that there is really only one non-random dimension in these data, then only one log-ratio was 

necessary to represent  that component.  
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Univariate analysis of the log-ratios, or the ratios themselves, is particularly relevant since ratios 

are subcompositionally coherent and comparable across studies, whereas univariate statistics 

based on the original parts are not.   The definitive book on CoDa, edited by Pawlowsky-Glahn 

and Buccianti (2011), contains almost no mention of univariate analysis of compositional data, 

except a passing reference by Lovell et al. (2011) to a paper by Filzmoser, Hron and Reimann 

(2009), who use the isometric log-ratio (ILR) transformation to arrive at a set of p  1 variables 

that replace the original data set.  These new ILRs are defined as proportional to ratios of parts to 

geometric means of  parts as follows (the constant of proportionality is not relevant here) 
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(balances described earlier in Sect. 2 are a special case of ILRs).  The claimed advantage of ILRs 

is that they are orthogonal and reconstruct exactly the log-ratio distances. But as shown here, the 

lack of orthogonality in simple log-ratios hardly impedes their use in serving practically the same 

purpose, giving an excellent approximate representation of these distances.  The problem with 

ILRs is that they have no easy interpretative meaning for the practitioner and remain of 

theoretical interest only  as van den Boogaart and Tolosana-Delgado (2013, p. 45) themselves 

say: "each coordinate might involve many parts (potentially all), which makes it virtually 

impossible to interpret [ILRs] in general".  The same can be said of CLRs, which are a very 

useful computational short-cut to performing LRA on all pairwise ratios, but are by themselves 

of no practical usefulness as interpretable variables, are not subcompositionally coherent 

(Pawlowsky-Glahn et al. 2007, page 19), and are also linearly dependent , which can be "a 

source of problems when doing statistical analyses" (van den Boogaart and Tolosana-Delgado 

2013, p. 42).   
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A specifically chosen set of independent  part ratios, as I propose here, can come sufficiently 

close in practical terms to using all log-ratios, and has an easier interpretation, especially if 

guided by experts who are familiar with the data context. The set of ratios can be nicely 

visualized in an acyclic graph, which facilitates interpretation and understanding, clearly 

demonstrated in the glass cups application. Ratios also provide univariate statistics that can be 

validly summarized by regular statistical measures of centrality such as the mean and median, 

and dispersion measures such as standard deviation, margins of error and quantiles. These ratios, 

preferably log-transformed, can even be correlated or combined in multivariate analyses such as 

regression and principal component analysis, with the assurance that they are subcompositionally 

coherent. In a particular field, for example the archaeology of ancient glass where the set of parts 

(oxides) is fairly similar across studies, one can imagine a set of ratios becoming a benchmark 

for easier comparison of data sets. 

Based on expert knowledge, a selection of ratios can be made that have a substantive 

interpretation, or expert knowledge can be combined with automatic statistical selection.  For 

example, Tanimoto and Rehren (2008) consider the composition of glasses from the late bronze 

age and point out some elements that are "rather heterogeneous in their composition, particularly 

in their ratios of soda (Na2O) to potash (K2O) and lime (CaO) to magnesium (MgO)".  If 

required, these ratios can be "forced" into the first two steps of the present algorithm, after which 

the same stepwise procedure can be performed searching among the other ratios.  In the present 

glass cup data set it turns out that those two log-ratios, of Na/K and Ca/Mg, explain only 16.6% 

of the log-ratio variance. The automatic selection that follows immediately brings in the log-ratio 

of Si/Ca (or equivalently Si/Na), which increases the variance explained dramatically to 74.1% . 

A sequence of ratios then follows, bringing in a similar sequence of elements as in Table 2, and 

reaching 100% with 10 ratios, as before. 
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The same ratio-selecting approach can be followed if the compositional data set involves a 

comparison of groups, for example comparing two groups of glass cups according to the 

archaeological periods they come from.  Instead of the total log-ratio variance, the between-

group log-ratio variance would serve as the variance to be explained by the selected ratios.  The 

best ratio would then constitute the log-ratio that explains the most between-group variance, and 

so on.   

I firmly believe that the concept of subcompositionally coherent log-ratios is the key idea in 

compositional data analysis.  I have shown that not all  ½p(p  1) log-ratios are necessary to 

represent a compositional data set, and at most  p  1 are necessary, and these form an acyclic 

graph.  There are thus ½p(p  1)  (p  1) = ½(p  1)(p  2) redundant log-ratios that depend 

linearly on the others and are merely inflating the total variance.  Furthermore, only a few log-

ratios are necessary to preserve the relevant part of the variance and correctly represent the major 

features of the data set.  The ability of these ratios to represent the complete data set can be 

measured and assessed in many different ways: variance explained, variance contained, 

Procrustes correlation, distance plots, etc.  One specific example has been used throughout, with 

the caveat that it might not always turn out as successfully as in the application considered here, 

where a small set of log-ratios was particularly effective in replacing the full set of log-ratios.  

Nevertheless, this example stands to counteract the strict and more complicated requirements of 

the CoDa school, and to promote this simpler "approximative" approach, which is reminiscent of 

the idea of Greenacre (2011a).  So I hope that this simpler approach will now be explored for its 

usefulness in the analysis of other compositional data sets.  Reducing a compositional data set to 

a few ratios is a major simplification for the practitioner  and provides a pragmatic alternative to 

the restrictive solutions provided so far in the recent CoDa literature. 

 



 26

References 

Aitchison J (1983) Principal component analysis of compositional data. Biometrika 70:57−65 

Aitchison J (1986) The statistical analysis of compositional data. Chapman & Hall, London. 

Reprinted in 2003 with additional material by Blackburn Press 

Aitchison J (1990) Relative variation diagrams for describing patterns of compositional 

variability. Math Geol 22(4):487–511 

Aitchison J (1994) Principles of compositional data analysis. In Anderson TW, Olkin I, Fang KT  

(eds) Multivariate Analysis and its Applications.  Institute of Mathematical Statistics, 

Hayward, California, pp.7381 

Aitchison J (2005)  A Concise Guide to Compositional Data Analysis. URL: 

http://ima.udg.edu/Activitats/CoDaWork05/A_concise_guide_to_compositional_data_analysis.pdf (last 

accessed 31 December 2016) 

Aitchison J, Barceló-Vidal C, Martín-Fernandez JA, Pawlowsky-GlahnV (2000). Logratio 

analysis and compositional distance. Math Geol 32: 271275  

Aitchison J, Greenacre MJ (2002) Biplots for compositional data. J R Stat Soc Ser C (Appl Stat) 

51(4):375–392 

Aitchison J, Egozcue JJ (2005) The statistical analysis of compositional data:  Where are we and 

where should we be heading?”  Math Geol 37:829–850 

Baxter MJ, Cool HEM, Heyworth MP (1990) Principal component and correspondence analysis 

of compositional data: some similarities. J Appl Stat 17:229–235  

Benzécri J-P (1973) Analyse des Données, Tôme II; Analyses des Correspondances. Dunod, 

Paris 

Bóna, M. (2006) A Walk Through Combinatorics: An Introduction to Enumeration and Graph 

Theory. Second Edition.  World Scientific Publishing, Singapore 



 27

Cortés J (2009) On the Harker variation diagrams; a comment on “The statistical analysis of 

compositional data.  Where are we and where should we be heading?” by Aitchison and 

Egozcue (2005). Math Geosc 41: 817828 

Filzmoser P, Hron K, Reimann C (2009) Univariate statistical analysis of environmental 

(compositional) data: problems and possibilities. Science of the Total Environment 407: 

61006108  

Gittins R (1985) Canonical Analysis: a Review with Applications in Ecology. Springer, New 

York 

Greenacre MJ (2009) Power transformations in correspondence analysis. Comp Stat Data Anal 

53: 3107–3116 

Greenacre MJ (2010a) Log-ratio analysis is a limiting case of correspondence analysis. Math 

Geosc 42: 129–134 

Greenacre MJ (2010b) Biplots in Practice. BBVA Foundation, Bilbao.  Free download from 

www.multivariatestatistics.org 

Greenacre MJ (2011a) Measuring subcompositional incoherence. Math Geosc: 43, 681–693 

Greenacre MJ (2011b) Compositional data and correspondence analysis. In: Pawlowski-Glahn 

V, Buccianti A (eds) Compositional Data Analysis. Wiley, Chichester UK, pp.104113 

Greenacre MJ (2013) Contribution biplots. J Comp Graph Stat 22: 107–122 

Greenacre MJ (2016) Correspondence Analysis in Practice. Third edition. Chapman & Hall / 

CRC, Boca Raton, Florida 

Greenacre MJ, Lewi PJ (2009) Distributional equivalence and subcompositional coherence in 

the analysis of compositional data, contingency tables and ratio-scale measurements. J 

Classif 26: 2964  

Harary F, Palmer EM (1973) Graphical Enumeration. Academic Press, New York 



 28

Harker A (1909) Natural History of the Igneous Rocks. Methuen, London 

Kraft A, Graeve M, Janssen D, Greenacre MJ, Falk-Petersen S (2015) Arctic pelagic amphipods: 

lipid dynamics and life strategy. J Plank Res 37:790807 

Lewi PJ (1976) Spectral mapping, a technique for classifying biological activity profiles of 

chemical compounds. Arzneim Forsch (Drug Res) 26:1295–1300 

Lewi PJ (1980) Multivariate data analysis in APL. In: van der Linden GA (ed) Proceedings of 

APL-80 conference. North-Holland, Amsterdam, pp 267–271 

Lovell D, Müller W, Taylor J, Zwart A, Helliwell C (2011) Proportions, percentges, ppm: do the 

molecular biosciences treat compositional data right? In: Pawlowski-Glahn V, Buccianti A 

(eds) Compositional Data Analysis. Wiley, Chichester UK, pp.193207 

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos 

P, Stevens MHH, Wagner H (2015). vegan: Community Ecology Package. R package 

version 2.3-2. https://CRAN.R-project.org/package=vegan 

Pawlowski-Glahn V, Egozcue JJ, Tolosana-Delgado R (2007) Lecture Notes on Compositional 

Data Analysis. URL: http://dugi-doc.udg.edu/bitstream/handle/10256/297/CoDa-

book.pdf?sequence=1  (last accessed 31 December 2016) 

Pawlowski-Glahn V, Buccianti A (eds) (2011) Compositional Data Analysis. Wiley, Chichester 

UK 

R core team (2015) R: a language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. http://www.R-project.org/ 

Rao CR (1964) The use and interpretation of principal component analysis in applied research. 

Sankhya A 26: 329358 

Tanimoto S, Rehren T (2008) Interactions between silicate and salt melts in LBA glassmaking. J 

Archaeol Sci 35: 25662573  



 29

van den Boogaart KG, Tolosana-Delgado R (2013) Analyzing Compositional Data with R. 

Springer-Verlag, Berlin.  

Wollenberg AL (1977) Redundancy analysis  an alternative for canonical analysis. 

Psychometrika 42: 207219 

Wouters L, Göhlmann HW, Bijnens L, Kass SU, Molenberghs G, Lewi PJ (2003) Graphical 

exploration of gene expression data: a comparative study of three multivariate methods. 

Biometrics 59: 1131–1139  



 30

Table captions 
 

Table 1: Results for ALRs using each part in turn as the reference one in the denominator.  R2 is 

the part of total log-ratio variance explained; variance is the amount of variance contained in the 

ALRs, used to order the list in descending order; %variance is the percentage of the total log-

ratio variance (which is equal to 0.002339) contained in the ALRs; weight is the average 

proportion of the reference part, used in the weighted analysis; Procrustes is the Procrustes 

correlation that measures similarity between the geometry of the ALRs and the geometry of all 

log-ratios.     

 

Table 2: Sequence of log-ratios of mineral oxides entering in a stepwise search, explaining the 

log-ratio variance of the whole compositional data set. 
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                                           R2      variance   %variance   weight    Procrustes 
  _____________________________________________ 

Si  1   0.002089   89.3%   0.7237   0.9975 

Na  1   0.000956   40.9%   0.1825   0.8439 

Sb  1   0.000325   13.9%   0.0036   0.7689 

Ca  1   0.000700   30.0%   0.0567   0.6989 

Al  1   0.000153    6.5%   0.0194   0.9043 

Mg  1   0.000150    6.4%   0.0046   0.9539 

Fe  1   0.000135    5.8%   0.0031   0.6704 

K   1   0.000116    5.0%   0.0040   0.7017 

Ti  1   0.000022    0.9%   0.0007   0.6564 

P   1   0.000016    0.7%   0.0005   0.6187 

Mn  1   0.000015    0.7%   0.0001   0.5692 
  _____________________________________________ 

 

 
Table 1
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                                                     Cumulative  
                                                            Explained                                               95% 
                                  Ratio             Variance                 Median         Reference Range 

   1. Si/Ca      61.5%         13.3      10.1-15.0 

   2. Si/Sb      74.1%        206.5     120.4-403.5 

   3. Na/Sb      86.4%         53.3      32.1-93.6    

   4. Si/Fe      93.6%        244.3     163.8-340.8 

   5. Si/K       96.6%        151.8     112.3-181.9 

   6. Si/Mg      98.4%        157.8     117.3-230.0 

   7. Al/Na      99.2%        0.106     0.092-0.122 

   8. Si/Ti      99.5%         1043       726-1485   

   9. Si/Mn      99.8%         7260      2505-7497 

  10. Na/P      100.0%        358.0     273.3-455.0 

 

 

Table 2
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Figure captions 

 

Figure 1: The dendrograms associated with two balances that define ILRs (isometric log-ratios) 

for the glass cup data: (a) a chain balance, (b) the Ward balance. 

 

Figure 2: Graph representations of networks defined by (a) all pairwise log-ratios, (b) the 

additive log-ratios (ALRs) with Si as the denominator, indicated by the arrow emanating from Si 

to the others. 

 

Figure 3: Comparison of log-ratio distances with distances based on ALRs with respect to Si (a) 

the full 10-dimensional space; (b) reduced 2-dimensional space; and (c) reduced 1-dimensional 

space. 

 

Figure 4: (a) Log-ratio analysis (LRA) of the full data set (contribution biplot); (b) Principal 

component analysis (PCA) of the ALRs with respect to Si.  

 

Figure 5: Almost perfect agreement of coordinates of 47 glass cups on first axis of LRA (i.e., 

their coordinates on the first axis of Figure 4a) and first axis of PCA of ALRs with respect to Si 

(i.e., their coordinates on the first axis of Figure 4b)  correlation is 0.999. 

 

Figure 6: Illustration of acyclic graphs and dependent ratios: (a) An acyclic connected graph of 

six parts and five ratios, where the arrows point towards the respective numerators of the ratios; 
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(b) Two additional ratios, Si/Mn and Ca/P, that are dependent on the existing ones because they 

form cycles. 

 

Figure 7: The graph of the 10 ratios chosen in a stepwise procedure to explain maximum log-

ratio variance at each step, with numbers indicating their order of choice. 

 

Figure 8: (a) The PCA contribution biplot of the 10 ratios shown in Figure 7; (b) The log-ratio 

distances compared to the distances defined between the 10 chosen log-ratios. 

 

Figure 9: (a) PCA contribution biplot of the 3 "best" ratios Si/Ca, Si/Sb and Na/Sb from the 

stepwise ratio-selection procedure; (b) Concordance between the first coordinate of the LRA of 

Figure 4a and the log-ratio log(Ca/Si)  correlation is 0.953. 
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Supplementary material 

 

Three compositional data sets are considered, with n rows (cases)  and p columns (parts). 

For each data set the sets of additive log-ratios (ALRs) are computed, using each part in turn as 

the reference part in the denominator.   The set of ALRs that lead to inter-case distances that best 

match the log-ratio distances, using the Procrustes correlation as the criterion, is identified.  Two 

figures are shown for each example: (a) the two-dimensional configuration obtained using LRA, 

that takes into consideration all pairwise log-ratios; (b) the two-dimensional configuration 

obtained using the set of ALRs.  The Procrustes correlation between the full-space (p  1 

dimensional) configurations is also reported in each case. 

In all these examples, the assertion in Section 3 that a set of ALRs can effectively represent the 

log-ratio variance is validated, with an almost perfect resemblance between the two-dimensional 

configurations. 
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Data set 1 (Aitchison 2005,  Table 4.7.1) 

Minerals compositions:  21 samples, 8 minerals 

 

 qu: quartz     or: orthoclase   al: albite     an: anorthite 

 en: enstatite  ma: magnetite  il: ilmenite  ap: apatite 
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Procrustes correlation (between full space configurations) = 0.995 

 

Remark: the relative positions of the case points are practically identical 
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Data set 2 (Aitchison 2005, Table 1.1.6) 

Activity pattern of a statistician: 20 days, 6 activities  

 te = teaching; co = consultation; ad = administration;  

 re = research; ot = other wakeful activities; sl = sleep 
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Procrustes correlation (between full space configurations) = 0.960 

 

Remark: the first dimension of the ALR analysis accounts for a much higher percentage of 

variance, similar to the glass cup example in the main text, suggesting that there is only one 

relevant dimension and that the LRA analysis is inflated with redundant variance.
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Data set 3 (see Greenacre 2016, Appendix E) 

Fatty acid data: 42 samples, 25 fatty acids with nonzero values 
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Procrustes correlation (between full space configurations) = 0.989 

 

 

Remark: this data set separates groups of marine organisms collected in three different seasons, 

and the ALR analysis separates the groups just as well as the LRA.  The four ratios that stand out 

in the contribution biplot on the right are made up of the four parts prominently radiating out 

from the centre in the LRA on the left, expressed relative to the more centrally located fatty acid 

16:0. 




