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Abstract  
 

Abnormalities in heart wall motion are often related to cardiovascular disease (CVD), the 

first cause of death worldwide. In this context, tag-MRI imaging technique has the 

potential to become the gold-standard for quantifying regional function and therefore to 

enable reliable stratification of CVDs patients.  However, there is a lack of comprehensive 

image analysis methods that can analyse the cardiac motion from tag-MRI. On the other 

hand, the radiomics paradigm has recently shown great promise for patient stratification 

in the presence of complex diseases in cardiac MRI. 

In this project, the feasibility of using radiomics and machine learning for cardiac 

stratification in tag-MRI is investigated through a number of methods and experiments. 

First, a learning radiomics-based approach is implemented to predict the motion 

landmarks conventionally defined through semi-automatic methods, indicating limited 

correlations between the two types of variables. Subsequently, the potential of radiomics 

for cardiac motion stratification in tag-MRI is implemented based on feature selection 

and principal component analysis. The results obtained based on a public database of 15 

tag-MRI cases show that, unlike the motion landmarks used in previous research, 

radiomics features estimated from tag-MRI have the potential for discriminating between 

distinct cardiovascular subgroups.  

This thesis represents the first proof-of-concept study for deeper phenotyping and 

advanced stratification of cardiac motion using tag-MRI. Future work includes more 

extensive validation with larger clinical samples and diverse CVD subgroups. 
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Cardiovascular disease, cardiac motion, tag-MRI, radiomics, machine learning, patient 
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1. INTRODUCTION 
 

 Cardiovascular diseases  
 

Cardiovascular diseases (CVD) represent the first cause of death worldwide and are 

projected to prevail due to persistent tobacco and alcohol use, unhealthy diet, obesity and 

physical inactivity. Representing a total of 31% of overall deaths, approximately 17.7 

million people died from CVDs in 2015, and among these 7.4 million and 8.7 million 

were as a result of coronary heart disease and stroke, respectively [1]. In addition, 

estimations suggest that 23.6 million people will die in 2030 if the current tendency 

remains, principally in low- and middle-income countries. Below, the most common 

CVDs are described: 

a) Coronary Heart Diseases and Myocardial Infarction 

The reduction of blood supply to coronary arteries is known as ischemia, generally caused 

by atherosclerosis. A complete blockage of the arteries can cause irreversible damage to 

the myocardial tissue which is known as myocardial infarction [2]. Over time, these 

abnormalities result in morphological alterations of the heart such as localized thinning 

of the wall and also, in some extreme case, might result in ventricular aneurysm. 

 

b) Cardiomyopathy 

Cardiomyopathies correspond to a group of diseases that specifically affect the heart 

muscle. They are generally divided into genetic, mixed and acquired [3]. The most 

common genetic cardiomyopathy is Hypertrophic Cardiomyopathy (HCM) which is a 

condition where myocardial wall, generally from the ventricles and septum, becomes 

thickened (hypertrophy). The thickened areas cause narrowing or blockage in the 

ventricles and make it harder for the heart to function properly [4].  

The most common mixed (genetic and non-genetic) cardiomyopathy is dilated 

cardiomyopathy (DCM), which is characterized by ventricular chamber enlargement 

(dilation) and systolic dysfunction with normal left ventricle wall thickness. The causes 

of DCM include, infectious agents, particularly viruses, often producing myocarditis. 

DCM can be also caused by a number of mutations in other genes encoding 

cytoskeletal/sarcolemma, nuclear envelope, sarcomere, and transcriptional coactivator 

proteins [3].  
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c) Heart Failure: 

Heart failure or congestive heart failure indicates a dysfunction of the heart’s pumping 

[5]. Common causes of heart failure include coronary artery disease, such as a previous 

myocardial infarction, high blood pressure, atrial fibrillation and valvular heart disease.  

 

d) Congenital Heart Disease: 

Congenital heart disease is an abnormality of the structure of the heart present at birth. A 

variety of conditions can cause these abnormalities during embryonic development, 

including cardiac shunts, valve abnormalities, aortic coarctation and transposition of the 

great vessels [6].  

 

 Cardiac imaging techniques for motion quantification: 

tag-MRI 
 

As shown by the examples of CVDs listed above, cardiac disease is often related to 

abnormalities in heart wall motion and cardiac dynamics. To enable early and accurate 

diagnosis of these CVDs, it is important that the assessment tools can objectively and 

accurately measure alterations in cardiac motion. In this context, cardiac imaging has 

played a central role for its ability to capture subtle as well as complex changes in both 

cardiac morphology and dynamics [7] (cf. Figure 1). This section describes some of the 

imaging techniques that are in use or development for cardiac motion assessment.  

 

1.2.1. Cardiac motion assessment imaging techniques  

Diverse imaging techniques have emerged for evaluating cardiac function and 

deformations of the heart’s walls. Ultrasound-based speckle tracking is widely used due 

to its availability and ease of use. It is the fastest technique, but it is affected by noise and 

has a poor image quality. In addition, speckle tracking may simplify geometrical details 

and cannot be applied in distorted anatomies [8]. Computed Tomography (CT) offers a 

higher spatial resolution, and it is relatively inexpensive and provides fast image 

acquisitions. As a drawback, it is limited in clinical practice because of the radiation dose 

needed, especially when it involves healthy volunteers in repeated studies or patients who 

are likely to undergo multiple CT during live. 
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Figure 1. Cardiac images from different modalities. CT = Computed Tomography; MRI = Magnetic 

Resonance Imaging; 3DUS = Three-dimensional ultrasound. 

 

In this context, cardiovascular MRI (CMR) has demonstrated to be an excellent option 

due to its several advantages: it is non-invasive and non-ionizing radiation, it has good 

spatial and temporal resolutions with 3D and 4D imaging capabilities and good soft tissue 

and blood pool contrast [9]. It is a modality of choice for estimating cardiac function 

indices such as ejection fraction and wall thickening [10]. However, conventional CMR 

has limitations for quantifying local motion measurements and, especially, regional 

myocardial deformation. This has motivated the development of specific CMR protocols, 

tag-MRI which is the subject of this thesis as described below 

 

1.2.2. Tag-MRI 

MRI tagging is a recognized method to evaluate and quantify regional cardiac function, 

especially to track local deformations (i.e. strain). The technique is based on creating non-

invasive markers artificially placed throughout the myocardial tissue that persist during 

most of the cardiac cycle. By following the position of these tags, it becomes possible to 

estimate local myocardial deformations, including torsion. 

 

Myocardial tissue tagging was first defined by Zerhouni et al. [11] and Axel et al. [12]. 

The process is based on a spatial modulation of magnetization (SPAMM) prior to image 

acquisition. Radiofrequency-saturation pulses separated by a wrapping gradient are used 

to modulate the longitudinal magnetization, producing therefore sinusoidal tag patterns 

or, in other words, a set of parallel stripes across the image (cf. Figure 2). The main 

limitation of the method is tag fading as a consequence of T1 relaxation of the 

magnetization. At the end of the cardiac cycle, the tagging contrast may not be recognized 

impeding therefore the diastolic phases analysis.  

 

CT MRI 3DUS 
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Complementary SPAMM (CSPAMM) was later introduced by Fisher et al. [13]. In this 

case, a second set of RF-pulses and gradients is applied to the image but in the orthogonal 

direction, obtaining two sinusoidal patterns out of phase by 180º. This new variation is 

translated into a grid on the cardiac image and at each line intersection is placed a 

landmark or tag. These markers, as commented above, serve as a reference to track the 

deformations across the image frames (see Figure 2).  

 

 

Figure 2. CSPAMM acquisitions for a healthy volunteer at 3 T. Tag features persist despite T1 relaxation 

time along early systole (left), peak systole (middle) and end diastole (right) [14]. 

 

To track 3D motion in the volume of interest, commonly the left ventricle (LV), 

CSPAMM employs multiple sets of short-axis images (normally 6-9 images from the 

base to the apex) and long-axis images (normally a four-chamber plane). The right 

ventricle (RV) has been less studied due to its more complex geometry and motion, but 

we also can find some research on the topic [15], [16]. SPAMM and CSPAMM are rarely 

used in the clinical practice when information about specific myocardial contractility is 

required and not reflected in global quantitative – such as myocardial ischemia. There are 

also more sophisticated techniques such as strain encoding (SENC) or displacement 

encoding with stimulated echoes (DENSE), but they are applied principally for research 

purposes. 

 

1.2.3. Motion estimation techniques in tag-MRI: state-of-the-art 

MRI tagging has the potential to become the gold-standard for quantifying regional 

function: myocardial motion can be easily visualized, and related applications are 

increasing constantly. However, despite continuous improvements in the tagging 

protocols, tag-MRI remains a research tool mostly and new approaches are greatly needed 

to enable application to clinical routine [9]. There is a lack of comprehensive image 

analysis methods that can reliably analyse the cardiac motion from tag-MRI images. The 
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objective of any tagging analysis technique is to detect and track the tag features (or 

motion landmarks) from the tag-MRI images across the cardiac cycle. With such an 

approach, a contractility pattern along the heart phases can be derived for the evaluation 

of the heart condition [17]. Tagging analysis methods can be classified into three 

categories: feature-based tracking methods, frequency-based methods and tracking-based 

methods.  

a) Feature-based methods  

Feature-based methods, also called direct methods, first detect the tagging features and 

then track the movements accordingly. They calculate the deformation fields (or motion 

landmarks) directly from tagged MR images by creating or not a dense motion field from 

the sparse motion field by tracking the tag features. Because of the need of user-

supervision to initialise the tag features using landmarks at the first frame, these methods 

are only semi-automatic and may not be well reproducible.  

 

b) Frequency-based methods:  

Frequency based-methods were introduced in 1999 by Osman et al. [18] and have become 

one of the most used analysis methods. They quantify the motion of tagging features from 

images (generally created by SPAMM) using phase information in the Fourier domain.  

Harmonic phase (HARP) and its enhanced versions (like 3D HARP [19] and zHARP 

[20]) are the main techniques used, although other methods have been developed such as 

Local Sine Wave Modelling (SinMod) [21] and Gabor filters [22]. The advantages of 

Fourier-based methods are: 1) they are automatic, without the need of extracting tag 

features by the user; 2) they offer more accurate results and 3) they minimize sensitivity 

to noise [9]. On the other hand, they can fail when the level of motion is high.  

 

c) Tracking-based methods 

These tracking-based approaches directly calculate the displacement fields by optimizing 

similarity transformation models between frame-to-frame intensities [23]. Spatial 

derivatives are further calculated to obtain strain estimations. In addition, some methods 

require a spatial regularization to ensure smooth results. This category consists principally 

of Demons-based and BSpline-based methods. They are intuitive approaches and also 

fast and automatic without the need of tag extraction, similarly to frequency-based 
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methods. The disadvantages are the long processing time and their high sensitivity to 

image noise and artifacts. 

 

Table 1. Classification of motion quantification methods using tag-MRI images.  

Feature-based 

methods 

Tag beads (Amini et al. [24], Kerwin and Prince [25]) 

Tracking material markers (Sampath et al. [26]) 

 

 

Frequency-based 

methods 

HARP (Osman et al. [18]) 

fast-HARP (Sampath et al. [27]) 

3D-HARP (Ryf et al. [19]) 

 zHARP (Abd-Elmoniem et al. [20]) 

SinMod (Arts et al. [21]), Gabor filters banks (Chen et al. [22]), 

Morphon (Tautz et al. [28] ) 

 

 

 

 

Tracking-based 

methods 

 

Demons-based 

Optical flow (Xu et al. [29]) 

iLogDemons (Mansi et al. [30], McLeod et al. [31] ) 

Variational non-rigid registration (Rougon et al. [32] )  

 

BSpline-based 

3D BSpline (Deng and Denney [33]) 

Non-rigid FFD registration (Chandrashekara et al. [34], Shi et 

al. [35]) 

Volume deformable model with parameter functions (Park et 

al. [36]) 

BSpline-based 

(spatio-

temporal) 

4D BSpline (Huang et al. [37]) 

4D FFD (De Craene et al. [38] [39] ) 

4D Nurbs (Tustison and Amini [16]) 

 

As stated above, there is a great variety of motion quantification methods but they are still 

not used in clinical practice given the multiple disadvantages that each one presents: high 

computational cost, strong quality image influence, required user-supervision, etc. In 

most cases, the choice of the method should depend on the available tools and the specific 

application. It is important to note that the landmark-based methods, while popular in 

cardiac image analysis, have an important limitation: they only rely on a limited number 

of manually defined landmarks, and thus do not evaluate the entire myocardium but only 

a few specific locations. 

 

 Radiomics 
 

In this thesis, we propose to investigate radiomics as an alternative method to analyse tag-

MRI data and to identify differences in patient cardiac motion between subgroups; a task 

known as patient stratification. In other words, the aim is to differentiate patients with 

respect to their risk and so minimizing cost. 
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Radiomics is a relatively recent technique for deeper image-based phenotyping of 

complex diseases. It consists in the high-throughput extraction of large amounts of 

advanced quantitative imaging features (shape, size, boundary, texture, intensity) that 

result in the conversion of digital images into mineable data and the subsequent analysis 

for decision support [40],[41].  Radiomics have been measured from routine images such 

as CT, MRI  or positron emission tomography (PET) images but not yet in tag-MRI.  

In fact, so far, radiomics has been mostly applied in oncology to study tumour severity 

and treatment response. Several studies for different cancer types have shown that 

radiomic features provide increased predictive power when compared to conventional 

quantification methods (see Section 1.3.1). In addition, one advantage of radiomics is that 

they measure specific properties of the organs and tissues, and thus they can be interpreted 

easily by clinicians. 

 

Figure 3. Radiomics process: The first steps consist of the acquisition of quality image and segmentation 

of the regions of interest. Then quantitative features are extracted and placed on a database which can 

contain clinical and genomic data. Finally, these data are processed using machine learning to develop 

predictive models for desired outcomes [42]. 

 
The radiomics process could be summarized in a few steps: (a) image acquisition, (b) 

identification of the region of interest (ROI) and segmentation, (c) possible image filtering 

and quantitative feature extraction, (d) mining the data to develop predictive models [40]. 

In this last stage, it is advisable to include patient attributes like demographic, clinical and 

genomic data in order to obtain clinically-meaningful predictions and thus to understand 

the relationships between imaging characteristics and patient information. It is important 

to take into consideration that semiautomatic image segmentation and filtering may be a 

source of variability, meaning that the whole process might not be well reproducible. 
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1.3.1. Radiomics applications in cancer quantification  

As of June 2018, 95% of the papers indexed by Pubmed regarding radiomics (over 330), 

are related to cancer quantification. For example, Parmar et al. [43] studied how to 

enhance the applicability of radiomics for assessing neck and head cancer. They 

compared 13 feature selection methods and 11 machine-learning classification methods 

to predict overall survival in a cohort of 196 patients. Aerts et al. [44] analysed radiomics 

features to distinguish phenotypic differences in lung and head-and-neck cancer. They 

present an analysis of 440 features quantifying tumour image intensity, shape and 

texture extracted from CT of 1019 patients. Li, Hui et al. [45] assessed the role of 

radiomics in evaluating the risk of breast cancer recurrence. They investigated the 

relationships between computer-extracted breast MRI phenotypes with multigene assays.  

Coroller et al. [46] used 15 radiomics features describing stability and variance 

measures to show that tumours which did not respond well to neoadjuvant 

chemoradiation were more likely to present a rounder shape and heterogeneous 

appearence. Gibbs et al. [47] provided a method based on radiomics to discriminate 

between benign and malignant lesions of breast high-resolution, contrast-enhanced 

(CE) images. They noticed significant differences in textural features, especially using 

entropy and sum entropy.  

 

1.3.2. Radiomics applications in non-cancer diseases 

Some recent studies have begun to investigate the value of radiomics in other clinical 

domains. For instance, Sun et al. [48] created a classification model to diagnose Attention 

Deficit Hyperactivity Disorder (ADHD) based on radiomics. A total of 83 children with 

newly diagnosed and never-treated ADHD, as well as 87 healthy controls, participated in 

the study. The extracted radiomics features described shape properties of gray matter and 

diffusion properties of white matter and were applied in random forest classifiers. Cui et 

al. [49] proposed a radiomics-based approach to diagnose schizophrenia (SZ) based on 

the disrupted functional connectivity in the pathophysiology from neuroimaging.  A total 

of 108 first-episode SZ patients and 121 healthy controls (HCs) participated in the study. 

An accuracy of 80% for the testing set was obtained, demonstrating that a radiomics 

approach can be helpful to facilitate objective SZ individualized diagnosis. Naganawa et 

al. [50] determined if texture analysis of non-contrast-enhanced CT (NECT) images is 

able to predict nonalcoholic steatohepatitis (NASH). They used NECT images from 88 
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patients who underwent a liver biopsy for the diagnosis of suspected NASH and texture 

feature parameters were obtained without and with filtration. The area under the receiver 

operating characteristic curve (AUC) of the predictive model for the validation dataset 

was 0.94 and the accuracy was 94%.  

 

Finally, from Universitat Pompeu Fabra, Cetin et al. [51] recently presented the first 

radiomics approach in the field of cardiology to identify CVDs from cine-MRI and thus 

enable improved stratification of CVD patients. They calculated large pools of radiomics 

features (statistical, shape and textural features) encoding relevant changes in anatomical 

and image characteristics of the ventricles due to CVDs. Sequential forward feature 

selection was used to identify the most relevant descriptors for given CVD classes (e.g. 

myocardial infarction, cardiomyopathy, abnormal right ventricle). Advanced machine 

learning was applied to suitably integrate the selected radiomics for final multi-feature 

classification based on Support Vector Machines (SVMs). The authors achieved 92% 

classification accuracy with this radiomics-based method. 

 

 

 Problem statement and specific objectives 
 

As described in this introduction, tag-MRI has the potential to become the gold-standard 

for cardiac motion estimation and subsequently for advanced cardiac disease 

quantification integrating detailed and localised analysis of the cardiac deformations. 

However, the modality remains far from clinical translation due to the difficulty to extract 

and analysis the deformation tags. Existing techniques based on the computation of 

motion landmarks require user interaction to define a set of initial landmarks and use a 

limited amount of information, typically a few landmarks, for subsequent analysis. Thus, 

the main goal of this thesis is to investigate the feasibility and the potential of using 

radiomics as a new framework for quantifying tag-MRI images and use the extraction 

quantitative measures as new markers for classifying patients according to their motion 

characteristics and deviations.  

This thesis is thus structured around the following three objectives: 

1. To analyse the link between radiomics and motion landmarks, to assess whether 

they are linked and more importantly whether the motion landmarks can be 

predicted from the radiomics features calculated from tag-MRI. Such predictive 
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models, if accurate, would enable to estimate the motion landmarks without any 

user interaction. However, if uncorrelated, the tag-MRI radiomics will be further 

investigated to assess whether they encode additional complimentary information 

that can improve patient stratification in CVD. 

2. Subsequently, to analyse the ability of the motion landmarks as extracted from 

tag-MRI to identify subgroups of cardiac deformations and thus to use these for 

patient stratification in CVD. Because there is a lack of publicly available tag-

MRI data including health and patients, in this thesis we will focus on analysing 

differences in cardiac motion between male and female subjects, which are 

known to have differences in their cardiac function [52]. 

3. Finally, to analyse the eventual added value of cardiac radiomics for cardiac 

motion stratification in tag-MRI, the radiomics- and landmark-based results will 

be compared and discussed in detail.  

 

As such, this thesis will represent the very first attempt to use radiomics for deeper 

phenotyping and advanced stratification of cardiac motion using tag-MRI. The results 

will eventually represent a proof-of-concept of the potential of radiomics and to warrant 

future research in this clinical domain. 
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2. MATERIALS AND METHODS  
 

 Dataset 
 

The datasets and ground truth used are publicly available via the Statistical Atlases and 

Computational Models of the Heart (STACOM) 2011 Challenge on cardiac motion 

quantification from tag-MRI. They also correspond to the data used by Tobon-Gomez et 

al. in the journal paper describing the challenge results [23]. 3D tagged magnetic 

resonance (tag-MRI), cine Steady State Free Precession MR (SSFP) and 3D ultrasounds 

(3DUS) acquisitions were provided. However, in this these only the tag-MRI images and 

their corresponding landmarks and meshes were utilized. The participants which 

volunteered to provide the imaging data consist of 15 healthy subjects without clinical 

history of cardiac disease (three females and 12 males, aged 28 ± 5 years). More details 

such as gender and body surface area are given in Table 2.  

 

2.1.1. Tag-MRI images 

Tag-MRI acquisition was carried through at the Division of Imaging Sciences and 

Biomedical Engineering, King’s College London (IUCL), United Kingdom. It was 

performed using a 3T Philips Achieva System (Philips Healthcare, Best, The 

Netherlands). Tag-MRI datasets were acquired with three sequential breath-hold 

acquisitions in each orthogonal direction (TR/TE = 7.0/3.2 ms, flip angle = 19–25º, tag 

distance = 7 mm). Details on spatial and temporal resolution of the acquired images can 

be found in Table 2.  

 

 
Figure 4. Tag-MRI images corresponding to end diastole and end systole cardiac phases for both short-axis 

and long-axis [23]. 

 

END DIASTOLE END SYSTOLE 
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Table 2. Dataset description: SEX = sex; BSA = body surface area; SL = number of slices; PIXEL = in-

plane pixel size; THK = slice thickness; PH = number of cardiac phases. 

VOLUNTEER AGE 

(yr) 

SEX BSA 

(m2) 

SL PIXEL  

(mm) 

THK 

(mm) 

PH 

V1 

V2 

V3 

V4 

V5 

V6 

V7 

V8 

V9 

V10 

V11 

V12 

V13 

V14 

V15 

28 

30 

29 

36 

34 

32 

27 

29 

22 

22 

30 

31 

24 

20 

20 

M 

F 

F 

M 

M 

M 

M 

M 

M 

M 

M 

M 

F 

M 

M 

1.73 

1.55 

1.63 

1.84 

1.92 

1.99 

2.13 

1.78 

1.84 

1.88 

1.94 

1.78 

1.61 

1.65 

2.06 

95 

80 

90 

94 

94 

100 

100 

94 

80 

100 

80 

90 

75 

90 

90 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

23 

29 

26 

23 

23 

31 

31 

30 

27 

32 

24 

38 

29 

21 

25 

 

 

2.1.2. Landmarks  

The process of creating ground truth landmarks was accomplished by two observers (obs1 

and obs2). Each landmark was localized on the intersection point of the three orthogonal 

tagging planes. A total of 12 points were obtained: one per wall (anterior, lateral, 

posterior, septal) and per ventricular level (basal, midventricular, apical). Frame 0 was 

the starting point for the manual tracking: in the following frame, the observer moved the 

landmark to the displaced tag mark, and so on. This process was realized one landmark 

at a time, covering the entire cardiac cycle, guaranteeing in this way 4D tracking.  

 

2.1.3. Meshes 

In order to obtain ground truth meshes for each patient, the STACOM participants used 

SSFP images. Firstly, they selected the short-axis SSFP frame whose trigger time was 

closest to the end diastolic tag-MRI frame. After that, they manually segmented the left 

ventricle from this dataset by deforming a left ventricular (LV) model. Finally, using 

DICOM header information, they registered the resulting segmented LV mesh to the tag-

MRI coordinates. These manually-segmented ground truth meshes were used in order to 

visualize the results of the tracking methodologies.  
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 Pre-processing 
 

2.2.1. Landmarks 

In this project, since each patient’s landmarks were placed at different positions with 

diverse orientations, a common reference system for all cases was essential for an 

accurate analysis. A Generalized Procrustes analysis (see below) was performed in this 

thesis to solve this misalignment problem: information about size, orientation and 

position was removed to focus on LV changes of shape across tag-MRI images. The 

landmarks corresponding to frame 0 of volunteer number 1 (V1) were chosen as the 

reference.  

 

Procrustes alignment 

Procrustes1 analysis is a statistical shape analysis used to align various landmarked shapes 

by point correspondence (i.e. number of points which describes same anatomical 

positions in all shapes). Generalized Procrustes Analysis (GPA) uses isomorphic scaling, 

translation and rotation transformations to find the best alignment between two or more 

landmarked shapes. These spatial transformations, called Euclidean similarity 

transformations, allow to preserve the angles and parallel lines that define a shape while 

it is moved and scaled in order to be aligned to a target shape or other object.  

 

 

 

 

 

 

 

 

 

 
Figure 5. Procrustes alignment process. A1, A2 and Am represent the objects which have to be aligned to 

Z, the resulting centroid of the system. In order to obtain Â1, Â2 and Âm, it is necessary to apply the spatial 

transformations Tx, cx and tx, which correspond to the scale, rotational and translation components, 

respectively.  

                                                 
1 Procrustes refers to a bandit in Greek’s mythology. He offered accommodation to lonely travellers who 

became his victims: they must fit in his bed, otherwise he stretched their limbs or cut them off. 
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GPA is based on the following steps: 

1. Choose the reference shape to which the remaining shapes will be aligned. 

2. Align the shapes (or set of landmarks) to the approximate mean shape. 

a. Calculate the centroid of each shape. 

b. Move all shape centroid to the reference shape centroid position.  

c. Scale each shape to mean shape size. 

d. Rotate each shape around the reference centroid until the sum of squared 

distances among them is minimized. 

3. Compute the new mean shape of all aligned shapes. If it remains different from 

the reference shape, repeat the last step (Step2). 

 

In what follows, these spatial transformations are mathematically explained (formulas 

and more information from [53]). 

 

a)  Translation 

Translation basically consists on moving all configurations to a reference center. The 

origin (0,0,0) is commonly used, but all options are equally valid. This step can be written 

as: 

𝑋𝑐 = 𝑋𝑜 −
1

𝑘

(

 
 
 
 
∑𝑥𝑖1

𝑘

𝑖=1

⋯ ∑𝑥𝑖𝑚

𝑘

𝑖=1

⋮ ⋱ ⋮

∑𝑥𝑖1

𝑘

𝑖=1

⋯ ∑𝑥𝑖𝑚

𝑘

𝑖=1 )

 
 
 
 

=

(

 
 
 
 
𝑥11 −

1

𝑘
∑𝑥𝑖1

𝑘

𝑖=1

⋯ 𝑥1𝑚 −
1

𝑘
∑𝑥𝑖𝑚

𝑘

𝑖=1

⋮ ⋱ ⋮

𝑥𝑘1 −
1

𝑘
∑𝑥𝑖1

𝑘

𝑖=1

⋯ 𝑥𝑘𝑚 −
1

𝑘
∑𝑥𝑖𝑚

𝑘

𝑖=1 )

 
 
 
 

 

 

where Xo is the original matrix of k-landmarks and m-dimensions (m= 2 or 3) and Xc 

corresponds to the new matrix of landmarks centered, in this case, at the origin of the 

reference image. 

 

b)  Isomorphic scaling 

Isomorphic scaling changes the size of configuration preserving the ratio of its 

proportions. This transformation is used when scaling a set of shapes to a same size. In 

the below expression,  

𝑋 = 𝑋𝑐 (
1

∥ 𝑋𝑐 ∥
) 

Xc is the centered landmarks matrix and X  the centered and normalized landmark matrix. 



 

 16 

c)  Rotation 

Rotation is the last step of Procrustes alignment: all centered and normalized 

configurations are rigidly aligned to the mean form (reference shape).  

 

X: centered and normalized landmarks matrix 

Q: orthogonal rotation matrix to align X to the mean shape matrix 

𝑋: mean shape matrix 

 

To achieve this, this step is principally based on minimizing the difference between the 

mean form matrix and the rotated shape matrix resulting from the Procrustes analysis 

using the the sum-of-squares. 

 

Due to the sum-of-squares of the elements of a matrix A is ∥ 𝐴 ∥ = 𝑡𝑟𝑎𝑐𝑒(𝐴′𝐴), we have 

∥ 𝑋𝑄 − 𝑋 ∥ = 𝑡𝑟𝑎𝑐𝑒(𝑋′𝑋 + 𝑋 ′ 𝑋 ) − 2𝑡𝑟𝑎𝑐𝑒(𝑋 ′ 𝑋𝑄), 

expression which has to be minimized. 

 

Interested in the part that contains Q,  

𝑡𝑟𝑎𝑐𝑒(𝑋 ′𝑋𝑄) → 𝑚𝑎𝑥, 

and using singular value decomposition of  𝑋
′
𝑋 = 𝑈𝑆𝑉′ and the cyclic property of trace 

 

𝑡𝑟𝑎𝑐𝑒(𝑋 ′𝑋𝑄) = 𝑡𝑟𝑎𝑐𝑒(𝑈𝑆𝑉′𝑄) =  𝑡𝑟𝑎𝑐𝑒(𝑆𝑉′𝑄𝑈) =  𝑡𝑟𝑎𝑐𝑒(𝑆𝐻). 

 

H results from the product of orthogonal matrices (𝐻 = 𝑉′𝑄𝑈), H is therefore an 

orthogonal (pxp) matrix and we have that 

𝑡𝑟𝑎𝑐𝑒(𝑆𝐻) = ∑ 𝑠𝑖ℎ𝑖𝑖
𝑝
𝑖=1  . 

 

Since si are non-negative numbers and trace(SH) is maximum when ℎ𝑖𝑖 = 1 for i=1,2,…p, 

we have: 𝐻 = 𝐼 = 𝑉′𝑄𝑈. 

 

Finally, the orthogonal rotation matrix that minimizes ∥ 𝑋𝑄 − 𝑋 ∥ is 𝑄 = 𝑉𝑈′ and 

multiplying this transformation matrix Q to X (centered and normalized matrix), the 

configuration X is aligned to the mean shape matrix 𝑋. 
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Computation of landmark movement 

Once all landmarks were placed at the same coordinate system, their pertinent movement 

throughout all n-frames was computed. Movement was defined as the difference between 

landmarks’ 3D coordinates (x, y, z) at frames i = 1, 2, 3... n and frame 0. This way, we 

managed information related to landmarks’ distribution change for every frame of the 

cardiac cycle respecting the initial condition (frame 0), instead of working directly with 

3D independent coordinates. 

 

2.2.2. Radiomics  

Mask generation 

In order to extract the radiomics features from the tag-MRI images, the segmentation 

maps or image masks corresponding to the LV myocardium are needed. The masks had 

to be generated at the same position and with the same orientation of all MRI images to 

guarantee an optimal radiomics extraction (see Figure 7). The ITK/VTK C++ library 

(Constantine Butakoff GitHub repository) was used for this purpose. At the end, one mask 

for each combination of frame mesh and tag-MRI image was obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Mask generation process. First, Procrustes analysis is performed to the misaligned tag-image and 

mesh (top left). From the aligned result (top middle), 3D binary masks corresponding to the myocardium 

were obtained (right). It is also showed how masks were applied to tag images (bottom). 
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Software for radiomic estimation 

We used PyRadiomics, an open-source platform implemented in Python which facilitates 

processing and extraction of radiomics features from medical images. It is based on 

engineered hard-coded feature algorithms and enables a flexible analysis platform and 

automation in data processing, feature definition and batch handling [42].  Applying this 

tool, three feature classes can be obtained: first-order statistics (intensity distribution) and 

shape-based and texture-based radiomics descriptors.  

 

Radiomics features 

From each segmented ROI in the tagged images, 106 radiomics descriptors of 

morphology and function of the myocardium were provided as follows: 

• First order statistics descriptors included histogram-based measures, 

characterizing the distribution of voxel intensities without taking into account 

spatial relations. Some of the metrics included are mean intensities, maximum and 

minimum grey-level value, as well as more advanced measures such as energy, 

entropy and skewness. Energy, for instance, is a measure of the magnitude of 

voxel values in an image: larger this measure, grater the sum of squares of these 

values. Entropy refers mainly to uncertainty/randomness in the image value. It is 

a measure of the average amount of information required to encode the image 

values. Finally, skeweness measures the asymmetry of the distribution of intensity 

values about the mean value.  

• Shape-based features included descriptors that represent the geometrical 

morphology of the anatomical structure, principally size and shape (diameter, 

volume, area-to-volume ratio, axis, sphericity, elongation, etc.).  

• Texture features are basically second and higher order imaging characteristics. 

They take into account changes in spatial patterns, i.e. they are calculated 

considering spatial relationships between the voxels. There are five principal 

subgroups [9]:  

- Gray Level Co-occurrence Matrix (GLCM). It is a square matrix with the size 

of the number of gray levels in the image. GLCM calculates how often a pixel 

with intensity value i occurs in a spatial relationship to a pixel with vale j that 

are separated by a pixel distance (∆x, ∆y). Given an M × N neighbourhood of 



 

 19 

an image containing G gray levels from 0 to G − 1, let f(m, n) be the intensity 

at sample m, line n of the neighbourhood. Then, 

𝑃(𝑖, 𝑗 | ∆𝑥, ∆𝑦) = 𝑊𝑄(𝑖, 𝑗 | ∆𝑥, ∆𝑦) 
where  

𝑊 = 
1

(𝑀−∆𝑥)(𝑁− ∆𝑦) 
   ,  

 

𝑄(𝑖, 𝑗 | ∆𝑥, ∆𝑦) =  ∑  ∑ 𝐴

𝑀− ∆𝑥 

𝑚=1

𝑁− ∆𝑦

𝑛=1

 

 

and  

{

 
1 if 𝑓(𝑚, 𝑛) = 𝑖 and 𝑓(𝑚 + ∆𝑥, 𝑛 + ∆𝑦) = 𝑗

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
. 

 

- Gray Level Run Length Matrix (GLRLM). It quantifies the length, in number 

of pixels, of consecutive pixels in a given direction that have the same gray 

level value. These are called gray level runs and are used to calculate metrics 

such as low gray level run emphasis (LGLRE) or high gray level run emphasis 

(HGLRE). LGLRE measures the distribution of low gray intensity values in 

the ROI image. A higher value indicates a greater concentration of low gray-

level values, and vice versa for HGLRE. 

- Gray Level Size Zone Matrix (GLSZM). This matrix quantifies how many 

pixels of a given gray level intensity are connected in a single group. In 

contrast of GLCM and GLRLM, it is rotation independent so direction is not 

considered. For instance, one measure that can be extracted from this matrix 

is gray level non-uniformity (GLN). It calculates the variability of gray-level 

intensity values in the ROI image. This way, a higher GLN value indicates 

less homonegenity in intensity values. 

- Neighbouring Gray Tone Difference Matrix (NGTDM). The difference 

between a certain intensity value and the average gray value of its neighbours 

in a certain distance is calculated, supplying a local contrast measure. Contrast 

is considered high when an image has a large range of gray levels but also 

large changes between voxels and their neighbourhood. Some of the features 

within this category are busyness or complexity. A ‘busy’ image signifies that 

rapid changes of intensity between pixels and its neighbourhood are present 

so the image is non-uniform. 
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- Gray Level Dependence Matrix (GLDM). This matrix is a measure of 

coarseness. It quantifies gray level dependencies, which are defined as the 

quantity of connected voxels within a certain distance that are dependent on 

the center voxel. For instance, dependence non-uniformity (DN) measures the 

similarity of dependece, with a lower value indicating more homogeneity 

among the image. 

 

 Predictive modelling of motion landmarks 

2.3.1. Input and output 

Radiomics features (intensity, texture, shape and size) from tag-MRI images were used 

as the input of a predictive model of motion landmarks. We considered each image frame 

of each volunteer as one case for building the predictive model, increasing the sample 

size to a total of 412 (more info in Table 2). For each volunteer prediction, we used as 

input the radiomics descriptors at frame 0 and at the frame at which the prediction was 

being made (106 features + 106 features). Subsequently, the predictions of the model 

were landmark movement at each frame.  

 

2.3.2. Regression model 

To predict the motion landmarks, we used a machine-learning technique called Partial 

Least Squares (PLS) [54]. This method is based on reducing the number of predictors of 

X (input variable) to a smaller set of uncorrelated components. These new variables 

contain most of the information of X, but are also relevant for Y (output variable) as they 

explain as much as possible the covariance of both X and Y. This aspect differentiates 

PLS from Principal component analysis (PCA), which is explained in Section 2.4, as PCA 

only finds the components that have maximal variance in X. Once X is decomposed based 

on these relevant variables, least square regression is performed to predict Y.  It is 

especially useful when the results are a set of dependent variables from a larger set of 

independent predictors, called multicorrelation [55].  

 

2.3.3. Validation 

To evaluate the proposed radiomics-based predictive model of the motion landmarks, we 

used leave-one-out cross-validation (LOOCV). As an error measure, the median 

Euclidean distance between the predicted movement and the real ones was computed. We 
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measured our results in this manner to be able to compare the accuracy of the proposed 

method with those obtained by the participants of the STACOM motion challenge [23]. 

More details are given in the results section. 

 

 Patient stratification using PCA 
 

Another aim of this thesis concerns cardiac motion stratification from tag-MRI, by using 

and comparing the performance of motion landmarks and radiomics. As both data sit in 

a high dimensional space, a dimensionality reduction is required to obtain a better 

representation of the subgroups in a reduced space. Principal Component Analysis (PCA) 

was employed to achieve this.  

 

2.4.1. Principal Component Analysis 

PCA is a statistical procedure used to reduce the dimension of a large set of possible 

multicorrelated variables to a small set of uncorrelated values. This smaller number of 

linearly uncorrelated variables are called principal components, and should contain most 

of the information of the large set. In other words, PCA identifies the axes with a 

maximum variance or in which data is most spread and projects the initial feature space 

onto a smaller subspace. This makes data easier to visualize in order to identify patterns 

or highlight their similarities and differences [56]. The steps required to perform a PCA 

are now presented [57]. 

1. Compute the mean  

Calculate the mean for each dimension in the d-dimensional dataset, where n is the 

number of the element in the set X. 

𝑋 =  
∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
 

   

Figure 7. Pipeline of the predictive model based on radiomics. 
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2. Calculate covariance matrix 

𝑐𝑜𝑣(𝑋, 𝑌) =  
∑ (𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
𝑛
𝑖=1

(𝑛 − 1)
 

 

This matrix provides a measurement of the relationships between two sets of variables: if 

covariance takes positive values, both variables tend to show same behaviour (increase 

or decrease together), while the contrary case would happen if it is negative. This measure 

can only be computed for two-dimensional examples. In case of having, for example, a 

3D data set (x,y,z), covariance could be calculated for each pair, i.e. cov(x,y), cov(x,z) and 

cov(y,z). When higher sample sizes are managed, a very useful way to keep the obtained 

covariance values for all dimensions is by introducing them in a matrix. This way, a 

covariance matrix can be written as: 

 

𝐶𝑛 x 𝑛 = (𝑐𝑖,𝑗,  𝑐𝑖,𝑗 = 𝑐𝑜𝑣(𝐷𝑖𝑚𝑖, 𝐷𝑖𝑚𝑗)) 

 

where n is the data dimension and Dimx is the x-th dimension. 

 

3. Compute eigenvectors and corresponding eigenvalues  

The next step is to calculate the eigenvectors and eigenvalues of the covariance matrix. 

Each eigenvector represents a given direction and has an associated eigenvalue, which is 

a number that describes how much variance exists in that direction. This way, the 

eigenvector with the highest eigenvalue will represent the vector in which the data are 

more spread out. That first eigenvector is the principal component of the data, achieving 

a part of the PCA’s objective. The eigenvector problem can be formulated as: 

 

𝐶 ∙ 𝑣 =  𝜆 ∙ 𝑣 , 

 

where C is the covariance matrix, v a n-by-1 vector and 𝜆 a scalar. All 𝜆 values that satisfy 

the previous condition are eigenvalues of the C matrix, and v represent the eigenvectors.  

To find that values, we can reformulate the previous expression as: 

 
det (𝐶 − 𝜆 ∙ I) = 0 

 

and solve to obtain the eigenvalues. Then, they are used to find the corresponding 

eigenvectors. 
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4. Sorting the eigenvectors by the descending values of the eigenvalues and choose 

k eigenvectors with the largest eigenvalues (for example covering a certain 

percentage of the total variance). 

 

5. Transform the data onto the new space 

The selected eigenvectors are then combined to form the k-dimensional eigenvector 

matrix, which projects the initial samples onto the smaller subspace.  
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3. RESULTS 
 

 Link between radiomics and motion landmarks 
 

In this section, we first attempted to predict the motion landmarks from the radiomics 

variables calculated from the tag-MRI data. To this end, we built PLS regression models 

with the radiomics variables as input and the motion landmarks as output as described in 

the method section. We performed leave-one-out experiments (i.e. the subject tested was 

removed from the training of the PLS regression model). For each individual landmark 

(out of the 12 landmarks), forward sequential feature selection was performed to select a 

minimal set of radiomic predictors and thus to reduce overfitting.  

Table 3 shows the average prediction errors (point-to-point errors) for the 12 landmarks 

for all cases. It can be seen that the average errors range between 1.33 mm for landmark 

3 and 3.59 mm for landmark 5. In contrast, the registration-based methods used in the 

MICCAI challenge localized the motion landmarks with median errors of less than 1.5 

mm (Table 4). This suggests that radiomics are not good predictors of the motion 

landmarks, speculating that even that radiomics and motion landmarks might be to some 

extent independent. Thus, tag-MRI radiomics may provide additional or complimentary 

information -in addition to the landmarks- and might be useful to improve patient 

stratification. This hypothesis will be tested in the next subsections.  

 
Table 3. Mean prediction error (mm) obtained for each landmark (1-12) using the radiomics-based 

approach. 

Radiomics 

approach 

1 2 3 4 5 6 7 8 9 10 11 12 

2.20 2.45 1.33 3.21 3.59 3.05 2.26 2.55 2.58 2.59 1.56 1.86 

 

Table 4. STACOM motion challenge participants, methods and errors. 

Institution Method Error 

Fraunhofer MEVIS (MEVIS), 

Bremen, Germany 

Quadrature filter based registration 

(Morphon, Tautz et al. [28]) 

 

1.33 mm 

Imperial College London – 

University College London 

(IUCL), United Kingdom 

Multi-image motion tracking 

(FFD, Shi et al. [35]) 

 

1.52 mm 

Universitat Pompeu Fabra 

(UPF), Barcelona, Spain 

Temporal diffeomorphic free form deformation 

(4D FFD, De Creane et al. [38] [39]) 

 

1.09 mm 

Inria-Asclepios project 

(INRIA), France 

Incompressible log-domain demons 

(iLogDemons, Mansi et al. [30]  ; McLeod et al. [31]) 

 

1.32 mm 
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 Patient stratification in tag-MRI using motion 

landmarks 

 

In this section, we tested the ability of the motion landmarks to separate clearly distinct 

subgroups. Due to the limitations in our data, which correspond to a healthy population, 

we focused on stratification between male and female subjects. Existing research has 

shown that there are differences between men and women in the chamber structure and 

dynamics [58], [59]. Figure 9 shows the landmark changes over time, summarized using 

principle component analysis (PCA) over the landmark coordinates. It can be seen that 

none of the 12 landmarks discriminate between the male and female dynamics as captured 

by the landmarks. A lot of overlap can be observed in the curves of the female subjects 

(red color) with respect to the curves of the male subjects (blue color). Subsequently, we 

assessed whether combining all landmarks would lead to a better separation between the 

male and female groups.  

 

To this end, we performed a PCA for all the 12 landmarks simultaneously (based on their 

x,y,z coordinates). Figure 10 shows that there is no clear separation between the male and 

female subgroups. This can mean that male and female hearts do not have different 

motions, which contradict existing literature [58], [59]. A more plausible explanation is 

related to the motion landmarks being insufficient as discriminating variables for patient 

stratification. Alternative variables based on radiomics will be tested in the next 

subsection. 
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1st landmark 2nd landmark 3rd landmark 

  

 

 

 

 

 4th landmark 5th landmark 6th landmark 

  

 

 

 

 

  

 
7th landmark 8th landmark 9th landmark 

   10th landmark 11th landmark 12th landmark 

  

 

 

 
Figure 8. Landmarks movement across the cardiac cycle for male/female subjects. X-axis is expressed as number of image frames 

and Y-axis as distance in (mm). Male tag-MRI motion dynamics is represented in blue while female is represented in red. 

. 
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Figure 9. PCA plot for the 12 landmarks. Colour blue corresponds to male subgroup while red is referred 

to female cases. 

 

 

 Patient stratification in tag-MRI using radiomics 
 

In this section, we assess the value of radiomics for patient stratification in tag-MRI. In a  

first step, we rendered the temporal radiomics curves for all 15 subjects and for all 

radiomics. Examples of these curves are given in Figure 11 and Figure 12. We performed 

a qualitative assessment of the ability of these radiomics to discriminate between male 

and female tag-MRI characteristics. Figure 11 shows the 12 best radiomics that were 

identified to separate the male and female in terms of their tag-MRI dynamics. In contrast, 

Figure 12 shows some examples of radiomics that are not good discriminants of the male 

vs. female tag MRI dynamics. The selected set of 12 radiomics are listed in the following 

Table 5 (definitions from Pyradiomics and more information also in [42]). 
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Table 5. Description of the radiomics useful for distinguish between male and female dynamics from 

tagMRI.  

Name Type Explanation 

 

Energy 

 

Intensity 

Energy is a measure of the magnitude of voxel values in an 

image.  

 

Total energy 

 

Intensity 

Total Energy is the value of Energy feature scaled by the 

volume of the voxel in cubic mm. 

Dependence non 

uniformity 

 

Texture 

Measures the similarity of dependence throughout the image, 

with a lower value indicating more homogeneity among 

dependencies in the image. 

Least axis Shape Least axis = 4√𝜆𝑙𝑒𝑎𝑠𝑡 

Size zone non 

uniformity 

 

Texture 

Measures the variability of size zone volumes in the image, 

with a lower value indicating more homogeneity in size zone 

volumes. 

Surface area Size Surface area is an approximation of the surface of the ROI in 

mm2, calculated using a marching cubes algorithm. 

Mean Intensity The average gray level intensity within the ROI. 

 

Cluster 

prominence 

 

Texture 

(GLCM) 

Cluster Prominence is a measure of the skewness and 

asymmetry of the GLCM. A higher value implies more 

asymmetry around the mean while a lower value indicates a 

peak near the mean value and less variation about the mean 

Root mean 

squared 

 

Intensity 

RMS is the square-root of the mean of all the squared 

intensity values. It is another measure of the magnitude of 

the image values. 

90 percentile Intensity 90 percentile 

Run length non 

uniformity 

 

Texture 

RLN measures the similarity of run lengths throughout the 

image, with a lower value indicating more homogeneity 

among run lengths in the image. 

 

Volume 

 

Size 

The volume of the ROI is approximated by multiplying the 

number of voxels in the ROI by the volume of a single voxel. 
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It can be seen that all radiomics types are represented in this set (shape, size, intensity and 

texture) but with many more intensity and texture based radiomics (9 out of 12) as these 

intuitively better capture the deformations of the tags over time. 

Subsequently, the 12 radiomics were further reduced into two main scores using PCA. 

The results are shown in Figure 13, where it can be observed that the female subjects are 

clustered (red colour) when compared to the male subjects (blue colour). This is a clear 

improvement over the stratification results obtained by using the motion landmarks as 

previously shown in Figure 10.  

Finally, to further illustrate the potential of the radiomics for patient stratification, Figure 

14 shows the distribution of the 15 subjects by using as the main scores two radiomics 

variables only, namely one intensity (energy) and one texture (dependence non 

uniformity). It can be seen that these two radiomics alone enable to differentiate well the 

female subjects from the male subjects. This shows how a few radiomics are capable of 

performing motion stratification with higher accuracy than the 12 motion landmarks 

identified from the tags. 
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Intensity: Energy Intensity: Total energy Texture: Dependence non 

uniformity 

   Shape: Least axis Texture: Size zone non uniformity Shape: Surface area 

   Intensity: Mean Texture: Cluster prominence Intensity: Root mean squared 

   
Intensity: 90Percentile Intensity: Run length non uniformity Shape: Volume 

   

Figure 10. The best 12 discriminant radiomics features for separating male and female in terms of their tag-MRI dynamics. X-axis 

is expressed as number of image frames and Y-axis as feature magnitude. Male tag-MRI dynamics is represented in blue while 

female is represented in red. 
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Figure 11. Unsuitable radiomics for discriminating male vs. female tag-MRI dynamics. X-axis is expressed as number of image 

frames and Y-axis as feature magnitude. Male tag-MRI dynamics is represented in blue while female is represented in red. 
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Figure 12. PCA plot summarizing the 12 discriminant radiomics. Colour blue is used to represent the male 

subgroup and red correspond to female subgroup. 

Subsequently, the 12 radiomics were further reduced into two main scores using PCA. 

The results are shown in Figure 14, where it can be observed that the female subjects are 

clustered (red colour) when compared to the male subjects (blue colour). This is a clear 

improvement over the stratification results obtained by using the motion landmarks as 

previously shown in Figure 11.  

 

 
Figure 13. Plot for two radiomics features: energy (intensity) and dependence non uniformity (texture). 

Again, red is for female and blue for male cases.  
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4. DISCUSSION  
 

In this thesis, a number of investigations were carried out with the aim to answer three 

main questions: 

• Is it possible to predict motion landmarks from tag-MRI radiomics? 

• Can motion landmarks be used to perform patient stratification, in this case for 

male vs. female heart comparison? 

• Can radiomics improve the patient stratification achieved by the motion 

landmarks? 

The goal of the first experiment was to test whether there is a link between radiomics 

features and motion landmarks extracted from tag-MRI. If such a link existed, it would 

become possible to build predictive models of the motion landmarks directly from the 

tag-MRI intensities. Existing registration-based techniques for estimating the motion 

landmarks require manual definition of the initial positions at frame 1 and thus a more 

direct method would eliminate the need for user interaction, potentially improving 

reproducibility. However, our results indicate that such statistical approach is less 

accurate than the use of existing registration-based techniques for estimating the motion 

landmarks. This may suggest that the radiomics features may encode 

distinct/complimentary information to those carried by the landmarks. 

In the second experiment, we tested the value of the motion landmarks for patient 

stratification. For this purpose, we used the male vs. female subgroups in our datasets. 

However, we found that the motion landmarks do not provide a clear separation between 

the male and female subgroups. This suggests that the motion landmarks, while useful 

for assessing the heart’s dynamic, seem to encode information in an incomplete manner. 

One of the issues is that the motion landmark is typically defined manually, which is time 

consuming and thus the operators often limit these landmarks to a few (12 in our dataset). 

This might lead to a loss of information as they do not cover all tags and all regions of 

the myocardium. 

Finally, in the third experiment, we evaluated the potential of radiomics for patient 

stratification in tag-MRI as an alternative to the motion landmarks. The obtained results 

clearly show a greater capability for the radiomics to capture differences in cardiac 
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dynamics between male and female hearts. One evident advantage is that they encode 

information throughout the entire myocardium, while the motion landmarks only cover a 

few localized points. Radiomics estimate several characteristics of the tags over time, 

including shape and texture based. As such, they have great potential for deeper 

phenotyping of cardiac pathology using tag-MRI. 

Limitations of the study and future perspectives. This work has some limitations that 

are important to mention. First of all, the sample size is relatively small to draw definitive 

conclusions and future work will require working with larger databases. This will be 

achieved by collaborating with clinical researcher at Vall d’Hebron Hospital and Queen 

Mary University of London. Furthermore, it would be important to test this stratification 

approach in more clinically meaningful dataset, to effectively look for risk stratification 

with pathological cases. Finally, the current study was performed mostly using qualitative 

evaluation. More quantitative evaluation based on larger samples would enable to study 

in more detail the role of each radiomic type. Nevertheless, these initial results are 

promising and indicate that radiomics incorporate potentially clinically useful 

information for disease quantification with tag-MRI.  This thesis is the very first proof-

of-concept performed to study the potential benefit of combining cardiac radiomics with 

tag-MRI to study cardiac dynamics and perform patient stratification. At the SIMBioSys 

research lab, where this thesis was performed, future work has been planned to extend 

this work, by considering larger samples and more detailed quantitative validation, but 

also by applying the technique to specific disease populations, such as for patients with 

hypertrophic cardiomyopathy or myocardial infarction. This may allow to identify more 

accurately and comprehensively new tag-MRI biomarkers that can be used for early 

diagnosis and treatment monitoring. 
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