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Summary 
 
Heart Failure with preserved Ejection Fraction has proven to be a suitable syndrome to 

be studied with machine learning approaches, as its complexity is not fully captured in 

clinical guidelines. 

 

For this reason, in this work we present a pipeline to characterize patients from Heart 

Failure with Preserved Ejection Fraction cohorts. This comprises from the creation of the 

databases to the development of a computational platform in Python to process the images 

and extract the descriptors. Lastly, we implemented machine learning and dimensionality 

reduction techniques to explore the data and clustering and kernel regression to obtain 

physiological insights on the population.  

 

We validated the Echocardiographic Image Analysis platform with clinical data from two 

clinical trials, succeeded at creating meaningful clusters to classify healthy and diseased 

patients and obtained an output space from Multiple Kernel Learning which encoded the 

principal modes of cardiac dysfunction. 
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Preface 
 
Heart Failure with Preserved Ejection Fraction (HFpEF) can be difficult to diagnose and 

HFpEF patients may manifest rather heterogeneous etiologies, then clinical guidelines 

may not fully capture its complexity.  

 

To overcome this limitation, it seems to be helpful the analysis of various functional 

features of the heart. These features may ultimately be complex (e.g., patterns rather than 

scalar measurements), and suitable for advanced analysis through machine learning (ML). 

This ML analysis may help understanding the pathophysiological aspects underlying 

HFpEF syndrome, thus enabling identification of the different etiologies. This ultimately 

allows a patient-specific approach allowing for personalized-medical treatments, rather 

than a one-size-fits-all approach, as current clinical guidelines do. Clustering analysis of 

HFpEF patients by studying dense phenotypic data has been performed with promising 

results (SJ Shah et al. 2015). Moreover, research using unsupervised multiple kernel 

learning (MKL) algorithm, a non-linear dimensionality reduction technique, has already 

been studied using velocity traces of left ventricular walls (Sanchez-Martinez et al. 2016), 

with a Cohen’s Kappa of 0.65 at classifying patients.  

 

In this project we aim at providing a framework to improve the characterization of HFpEF 

patients by studying the patterns of the left ventricular lateral and septal wall velocities 

as well as the mitral and aortic blood flows, both at rest and at submaximal exercise and 

longitudinal strain. 
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1. INTRODUCTION: THEORETICAL FRAMEWORK  
 
1.1 Heart Failure with preserved Ejection Fraction 
 
The heart is the organ in charge of providing blood with enough kinetic energy to 

overcome the pressure gradient of the circulatory system and supply the organism with 

the necessary perfusion of oxygen and nutrients. For this reason, pathologies affecting its 

functions may result in a decrease in quality of life, comorbidities and even death [1]. 

 

Given the critical importance of the heart, evolution has ensured it has mechanisms to 

adapt to adverse conditions. A common ill-disposed scenario arises from a need of an 

increased cardiac output. To overcome this situation, heart muscle undergoes remodeling 

to keep up with the needs of the body. This remodeling takes place at expenses of 

abnormalities and eventually to the syndrome known as heart failure (HF). Among other 

consequences, a decrease in the pumping action may occur, valves may malfunction and 

the overall effect results in an enlargement, dilation and stiffening of the heart. These 

changes will manifest overtly unless the process can be halted [2], [3]. 

 

The previously exposed remodeling is usually due to systolic dysfunction, often caused 

by a myocardial infarction; diastolic dysfunction, often caused by long-term 

hypertension; and in multiple cases a combination of both.  Other causes that lead to 

remodeling are the degeneration of the cardiac valves, “idiopathic” dilated 

cardiomyopathy and alcoholic cardiomyopathy. Less frequent causes include rheumatic 

valve disease and Chagas’ disease [4]. 

 

Heart failure can be divided into different classes depending on the parameter at hand. 

For instance, which heart side is affected (right or left), instauration time (acute or 

chronic) and ejection fraction (preserved or reduced). We will focus on a subset of the 

latter, Heart Failure with preserved Ejection Fraction (HFpEF), for this reason we explain 

these two types of HF in depth. Ejection fraction (EF) is computed by dividing the amount 

of blood that ventricles pump in each systolic cycle by the total amount of blood they are 

able to store. In a healthy subject or in a patient with HFpEF, the EF will range between 

50 and 70%, whereas in patients with a reduced ejection fraction it will be below 50%. 
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The most accurate technique to acquire this marker is either echocardiogram or magnetic 

resonance imaging (MRI) [2]. 

 

In HF with reduced ejection fraction (HFrEF), also known as systolic HF, the heart 

muscle is not able to contract adequately and, therefore, cardiac output is decreased. 

Given that the change in EF in HfrEF is sensible and specific, its diagnosis and treatment 

has resulted in a consensus by the clinical community, which slightly improves in 

comparison to HFpEF, but it is still a challenging condition [4]. 

 

On the other hand, the pathophysiological basis of HFpEF is not well understood, thus 

leading to cumbersome diagnosis. Many or most of these patients probably have diastolic 

dysfunction, though it is not specific as it is also present in HFrEF. The results from 

clinical trials hitherto are negative and do not conclude an optimal treatment modality. 

This may be due to the usage of scalar indexes to assess cardiac function, while the use 

of patterns and complex descriptors can be of more relevance[2], [3], [5].  

 
 
1.1.1 Cardiac Imaging and Markers 

Nowadays to assess heart function it is performed cardiac imaging. Quantitative markers 

obtained from imaging define an objective evaluation of the patient. Devices of frequent 

use include echocardiography or Doppler ultrasound procedures. 

The most broadly used cardiac imaging modality due to its affordability and screening 

power is echocardiography. It is based on the use of an ultrasound probe that can both 

emit and receive, allowing for a reconstruction of the heart chambers, the velocities of the 

cardiac walls , Tissue Doppler Imaging (TDI), as well as the velocities of the blood flow 

(Doppler echocardiography).  It is the primary tool for screening, follow-up of patients 

and overall management when suspecting heart disease. Depending on specific purposes, 

different types of data can be obtained [6].  

Echocardiograms can be obtained under several modalities, each of them offering 

different type of information. Going from simple to complex, B-mode (brightness mode) 

provides a still 2D gray-scale image of the heart. It sends a pulse from the piezoelectric 

crystal of the probe that automatically works as a receiver. As the time to receipt and 
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distance are proportional, a gray scale image can be obtained relating brightness to wave 

reflection change, thus soft tissue to bone would appear as white and so would soft tissue 

to air. Next on, M-mode (motion mode) is based on the representation of a narrow 

ultrasound window acquired as in B-mode but instead it is represented in time. This 

allows for the analysis of motion of structures such as the valve leaflets [6].  

Doppler ultrasound uses the Doppler principle to obtain the velocities in a given window. 

It is used, depending on the gain and filtering parameters, to obtain the velocities either 

from blood flow or from tissues. It can be obtained in Continuous Wave (CW) or Pulsed 

Wave (PW). CW is obtained producing a continuous sinusoidal signal with the probe. It 

lacks spatial resolution but has a precise velocity resolution. Thus it is used to know the 

highest velocity in a given line of imaging.  On the other hand, PW transmits pulses along 

a particular line through the tissue at a constant pulse repetition frequency (PRF). 

However, rather than acquiring the complete RF signal as a function of time (as in the M-

mode acquisition) only one sample of each reflected pulse is taken at a fixed time, the so-

called range gate, after the transmission of the pulse. Consequently, information is 

obtained from one specific spatial position, where velocities can be obtained [6].  

Lastly, speckle tracking exploits the use of so-called fingerprints in B-mode, regions of 

the heart that can be traced from frame to frame. Lately, the processing of the changes in 

the position between each frame of these points can provide information relating to strain 

and motion of the cardiac tissue [6].  

All in all, cardiac mechanics and hemodynamics have proven to encode information 

relating to the worsening of the HFpEF syndrome. Tissue Doppler imaging can yield 

information on how the cardiac muscle relaxes. Longitudinal strain measures relate to the 

distensibility of the heart, and lastly Doppler ultrasound of the blood flows can give an 

insight on the whole process of filling of the ventricles and ejection of blood.  

The figure below -extracted from the review by R. Fontes-Carvalho and A. Leite-

Moreira- illustrates how the different patterns obtained using echocardiography change 

depending on the severity of the condition [7], [8]. 
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Figure 1. Mitral inflow velocity and mitral annulus velocity in different degrees of diastolic dysfunction 

 

Echocardiography allows for the collection of several markers, we would like to 

emphasize two of them due to its broad use in clinical practice, especially in HFpEF: 

E/E’and E/A.  

The E/E’ ratio divides the peak of the early filling wave (E) from blood flow Doppler 

with the e’ wave in TDI, which relates to the filling of the ventricle. This marker increases 

proportionally with the severity of heart failure, correlates to NT pro BNP concentration 

and declines as heart failure improves [9].   

On the other hand, E/A ratio is computed dividing the E peak by the peak of the wave due 

to atrial contraction (A). It allows for a coarse profiling of the different patterns in regards 

to the degree of HF [2], [9]. 

 

As for biomarkers that can be measured in a blood sample, one of the most relevant is the 

serum concentration of natriuretic peptides. It correlates to excessive myocardial stretch, 

which occurs in heart remodeling. HFpEF, as well as HFrEF patients, may present slightly 

elevated concentrations, but these will go back to normal in asymptomatic periods. Lastly, 

troponin has proven to be the most accurate and specific biomarker for myocardial 

damage and presents strong correlation to HF [2], [9]. 
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1.1.2 Incidence and Cost 
 
The epidemiology of symptomatic heart failure in developed countries ranges between 

1% and 2% of the adult population. Elderly people, those over the age of 65 year present 

an incidence of 6–10%, thus being the most prevalent group. 26 million people worldwide 

are living with heart failure approximately. The prognosis for HFpEF patients is poor, 

with survival rates worse than those for bowel, breast or prostate cancer. Healthcare 

expenditure is expected to increase greatly over the next decade, as patient numbers grow 

due to ageing populations and longer life spans.  

 

Heart failure with preserved ejection fraction (HFpEF) accounts for almost one-half of 

the total heart failure burden. It presents a steady rise of its prevalence, and it appears 

certain that HFpEF will be the most prevalent HF type in the near future. Heart Failure 

supposes a cost around the 1-2% of the healthcare expenditure in developed countries. In 

the USA, HF is expected to cost 70 thousand million dollars in 2030 [10]. 

 

1.1.3 Clinical Guidelines  
 
Current clinical guidelines (see Supporting Information), rely on scalar indexes and 

qualitative evaluation of the cardiac function. Among other markers, those used to 

discriminate the condition afflicting the patient are EF, E/E’, E/A and BNP and NT-

proBNP. Most of the cardinal symptoms (dyspnea and fatigue) and signs (peripheral 

edema) of heart failure are non-specific, especially in elderly patients, and could be due 

to other problems. Even when HF is correctly diagnosed on regards of symptoms and 

signs, discrimination preserved and reduced left-ventricular systolic function is difficult. 

Consequently, the diagnosis of heart failure requires further investigation.  

 

Stress protocols have proven to exacerbate the symptoms as the cardiac output needs are 

pushed even further. We shall remind that the hearts of HFpEF patients are over the top 

cardiac output demands, thus exercising pushes the heart even more, not being a suitable 

option for improving their condition.  

 

The most used classification of HF patients is the New York Heart Association’s. It places 

the patients into four classes ranging from 1 being the absence of symptoms up to class 4 

where there is an inability to carry any physical activity and having symptoms at rest [2].  
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1.2. Machine Learning 

By way of introduction, in this section we will describe the basic concepts of machine 

learning so as to give the reader an idea of the techniques used in this project. Artificial 

intelligence (AI) is the field of science focused on mimicking human behavior in 

machines. Machine learning (ML) is a subset of AI based on statistical methods for 

learning a specific task. They require using the information contained in big enough 

datasets, from which they are able to recognize the properties and subsequently improve 

the task at hand. These tools are able to predict, classify or infer the true nature of data. 

For the sake of simplicity, we will just explain the two main modes of learning: supervised 

learning, if the data has been labeled with different classes, or unsupervised learning, if 

the algorithm is used to explore unlabeled data [11]. 

 
1.2.1. Supervised learning 

In supervised approaches the learner receives a set of labeled examples as training data 

and makes predictions for all unseen points. This is the most common scenario associated 

with classification, regression, and ranking problems.  One of the hottest fields at the 

moment is deep learning, a technique which replicates how the human brain performs 

computation. This means that it implements a network consisting in layers of neurons 

who undergo a process called back propagation to learn a task. This technique needs large 

amounts of data as well as big computational power, but it is able to learn how to perform 

very complex tasks that range from automated car driving to the prediction of 

cardiovascular risks from non-invasive retinal images [11].  

 
1.2.2. Unsupervised learning 

On the other hand, an unsupervised learner exclusively receives unlabeled training data, 

and makes predictions for all unseen points. Since in general no labeled example is 

available in that setting, it can be difficult to quantitatively evaluate the performance of a 

learner. Clustering and dimensionality reduction, on which this work focuses, are 

examples of unsupervised learning problems. 

When dealing with high dimensional datasets, as it is the case in this project, it may be 

useful to create a more understandable representation. To that end, several techniques 
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have been created to allow for a transformation preserving the properties as much as 

possible between the high dimensional dataset and the low-dimensional new 

representation. We will illustrate an idealized example of the utility of dimensionality 

reduction with the figure below – extracted from the thesis of Scholz M, Approaches to 

analyze and interpret biological profile data.-, where small Euclidean distances in the 

input space become large geodesic distances in the output space [11]. 

 

 
Figure 2. Dimensionality reduction 

  
 
 

1.2.3. Potential use in HFpEF     
 

Regarding the improvement in diagnosis of HFpEF, the biggest problem has been the 

etiological and pathophysiological heterogeneity of the syndrome, which favors a subset-

specific rather than a uniform therapeutic approach. For this reason, in this project we 

exploit the evidence in the literature demonstrating that the symptomatic phase of HFpEF 

is characterized by abnormalities of a number of cardiac imaging markers, such as 

longitudinal strain as well as tissue Doppler and blood flow velocity patterns [12], [13]. 

 

Moreover, the use of statistical learning algorithms applied to more complex patterns 

rather than scalar indexes, may allow improved classification of heterogeneous clinical 

syndromes, with the ultimate goal of defining therapeutically homogeneous patient 

subclasses, which can potentially improve the prognosis of HFpEF [12], [13].  
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2. METHODS 
 
In order to achieve the objectives set in this project, we devised a pipeline divided into 

two main sections. Firstly, we acquired the echocardiographic images and created a   

database with the images for each study. Then, a computational platform was developed 

to process and extract the information contained in them. 

 

Secondly, we explored the data using an unsupervised machine learning approach. This 

last point consisted on three main building blocks, already explored by the work of 

Sánchez-Martínez et al. with satisfactory results. 

The methodologies used were: 

 

1. Combination of features using Multiple Kernel Learning (MKL) for 

fusing information from different acquisition modalities and obtaining a 

space of reduced dimensions [13], [14]. 

2. Kernel regression along the dimensions of the learned output space so 

we can observe the information encoded in them and how the features of 

the patients change depending on their coordinates[15].  

3. Lastly, we will perform cluster analysis of the output space, to see if it 

can be a framework for the creation of HFpEF phenotype classes [12], 

[13]. 

 
Figure 3. Representation of the whole pipeline followed by this project. 
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2.1 Clinical trials 
 
2.1.1. The MEtabolic Road to DIAstolic Heart Failure (MEDIA) 

The MEDIA consortium investigated how metabolic derangements contribute to 

Diastolic HF (DHF), how diagnostic algorithms for DHF can be improved by assessing 

metabolic risk and lastly how correction of metabolic risk can open new therapeutic 

perspectives for DHF. Their trial focused on obtaining results regarding metabolic risk-

related mechanisms as therapeutic targets, the inclusion of biomarkers and arterial 

stiffness tests in diagnose algorithms and lastly the use of ant fibrotic therapy. 

It began on 2011 and ended in 2016. It was a European common effort enrolling 21 

centers across Europe, ranging from laboratories, universities and hospitals. The total cost 

of the trial was 15.9 million euro.  

From this study we were able to obtain 420 images corresponding to 105 subjects, coming 

from the centers of Novara, Perugia, Cardiff and Oslo. These included TDI and valve 

velocity flows at rest and at submaximal exercise. From these 105, 72 were diagnosed -

using the ESC 2007 consensus criteria for the diagnosis of HFpEF (Paulus et al., 

European Heart Journal, 2007) - as HFpEF and 33 were healthy. Our aim in this study 

was to observe if healthy or diseased patients could be separated in the output space of 

MKL. 

2.1.2. Treatment of Preserved Cardiac Function Heart Failure with an 
Aldosterone Antagonist (TOPCAT) 

The TOPCAT trial was a multicenter, international, randomized, double-blind trial, which 

enrolled 3445 patients with symptomatic heart failure and a left ventricular ejection 

fraction of 45% or more to receive either spironolactone (15 to 45 mg daily) or placebo. 

They were not able to observe statistically significant differences between those who 

received treatment and those who received placebo. 

The data collected from this trial was provided by the Cardiovascular Imaging Cardiology 

Lab (CICL) at the Brigham and Women’s Hospital in Boston, Massachusetts, USA.  

From this study we obtained longitudinal strain patterns, which were already available 

from speckle tracking over B-mode images, aortic and mitral flow velocities for 273 
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patients. Our aim in this study was to observe differences within the HFpEF population, 

as all patients suffered from HF. 

2.2. Echocardiographic Image Analysis platform  

The data collected from both studies were DICOM images acquired with cardiac 

ultrasound. Given that both studies were conducted in different centers, the manufacturers 

of the imaging tools were also different. This had to be taken into account at the time of 

making the platform flexible so these different images could be read properly. The 

echocardiograms used were either flow velocity profiles or tissue Doppler imaging 

patterns. An example of each is shown in the figure below. 

 

Figure 4. Doppler echocardiograms. Aortic outflow velocity (right) and septal wall velocity (left) 

 

In the MEDIA study, subjects were studied at both rest and submaximal exercise. As 

previously mentioned, HF symptoms get exacerbated when increasing even further the 

cardiac output needs.  

The patterns contained in these images are the features we want to input to the MKL 

algorithm. To that end, we coded a computational platform written in Python, so we can 

extract the information from these images. Ultimately, the platmorm outputs the patterns 

corresponding to both TDI and flow Doppler correctly aligned in a cardiac cycle so they 

can be comparable at the time of using machine learning. 

 The whole user interface and underlying image processing algorithms are explained 

down below. 

Python is an open source programming language. One of its main strengths is the amount 

of libraries available for multiple tasks such as machine learning, image processing and 

creation and edition of data structures. For this and other reasons we decided to implement 
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the platform in this language. The whole user interface was developed using PyQt, a set 

of bindings which allow for the use of Qt in Python.  

The algorithms and functions used were mainly from the libraries: 

1. Sci-kit and OpenCV: For a broad range of image processing steps (contrast 

stretching, median filtering and connectivity based component removal of noise) 

2. NumPy: For Signal processing and overall mathematical operations.  

3. PyQtgraph: To display images, signals and the combination of both. 

4. Simplejson: To read the JSON files as well as to create the files containing the 

paths to the images in the database. 

This platform uses pairs of png images and JSON files. These are obtained by processing 

DICOM images through the online tool developed at UPF (https://rkt-viewer.surge.sh/), 

shown in the figure below. The png file contains the pixel RGB values whereas the JSON 

file contains the metadata of the DICOM, this information encapsulates among other 

things the coordinates of the image in order to crop it or the equivalency constant between 

a pixel and cm/s.  

 

Figure 5. Image Classification Tool developed at UPF 

The user interface was divided in three different compartments. From left to right, the 

database tree, the tissue Doppler windows and the flow velocity patterns. On top we find 

the septal wall velocities and the mitral inflow. At the bottom are the lateral wall image 

and the aortic outflow image. 
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Figure 6. Representation of the Echocardiography Image Analysis tool 

 
 
2.2.1. Database and image reading 

Firstly, the platform reads the whole database and creates a tree structure where, 

hierarchically, the labels corresponding to study, center, patient ID and modality. This 

last makes reference to the MEDIA subjects, who underwent imaging at both rest and 

submaximal exercise. When clicking the specific bottom level label the platform opens 

the corresponding images in the windows. Then it is time to process the images. 

2.2.2. Tissue Doppler Images 

Tissue Doppler images provide information on the velocity of the ventricular walls. This 

is done by placing the reading window on top of the wall at the time of acquiring the 

image. Due to the very nature of the ultrasound modality, the profile produced is a yellow 

band around the values it takes. These images tend to contain more noise around the zero 

line, so the signal may get decreased at the time of extraction and high or low peaks will 

not be easy to capture. 

The approach followed to recover the signal was to segment the barycenter of each 

column and adjusting for the distance to the zero line, so further values get increased in 

order to compensate the noise. This compensation takes place within a “weighting 
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window”, which is comprised between two lines parallel to the zero line, at the same 

distance from it, one above it and the other below. 

The user selects the ECG onsets, represented in red in the image, which will be used to 

define different cycles. Next, low pass filtering is applied to the signal with a cutoff 

frequency proportional to the heart rate. This means that the higher the heart rate the 

higher the cutoff frequency. Lastly, if there is more than one cycle, they will be averaged 

producing a unique, more robust descriptor. 

Some parameters as the length of the weighting window and the cutoff frequency are able 

to be changed manually if necessary. This allows for better segmentations in some cases 

where the automatic algorithm has not been able to find the best values for these 

parameters.  As a last resource strategy, manual segmentation of the signal has been 

implemented with the ability to place fiducial points over the image to create a signal 

when connecting the dots with a third degree spline. 

 

Figure 7. TDI processing 

    In the figure above, the left image shows the pattern computed after processing the 

image, this is useful if the user is not satisfied with the results and wants to refine the 

segmentation. On the left image, the final averaged profile is shown, the platform stores 
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this signal as a 1D vector containing 100 samples. This vector will be saved as a txt file 

within the same folder as the images. 

 

2.2.3. Valve flow velocities 

The mode of acquisition of flow velocities was pulsed-wave Doppler ultrasound. This 

modality is better at detecting the velocities within the window of analysis than 

continuous-wave Doppler where high velocities are better captured at expenses of not 

knowing exactly where they are produced. 

Pulsed wave Doppler results in a filled pattern, so the approach followed aimed at 

capturing the border line of it. The extraction of these profiles contained several image 

processing algorithms applied sequentially in order to recover the final profile. Firstly, 

the user selects the valve openings and closures, as only the pattern contained within will 

be taken into account.  

 

Figure 8. Flow velocity processing 

Once the events have been selected, the platform starts by using contrast stretching 

followed by a median filter to both enhance the brightness and remove the noise known 

as “salt and pepper”. This leads to the next step, binarization, noise removal and hole 
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filling. The platform computes the optimum binarization threshold at the time of 

classifying the foreground, then removes spurious noise islands using connectivity based 

algorithms, resulting in the elimination of those “blobs” of white pixels which do not 

correspond to the foreground. Lastly, it fills the holes within the computed binarization 

to obtain a uniform segmentation.  

 

Figure 9. Binarized flow velocity images 

Once the segmentation has been obtained, another connectivity based algorithm is run 

column-wise to detect to detect the largest amount of non-zero pixels which correspond 

to the envelope of the segmentation -either on top in mitral flows or at the bottom in aortic 

images-. When the whole envelope is computed, the resulting profile is filtered with a 

low-pass filter, yielding a smoother signal.  

Now that we have segmented the edges of the profile, we can extract from the JSON file 

the conversion constant to compute the final signal. And on the same note, if there is more 

than one cycle they will be averaged. The computed averaged descriptor also contains 

100 samples and is stored in a txt file in the same folder as the images.  
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Figure 10. Blood flow velocity profiles 

The user interface allows to manually change the values of the parameters corresponding 

to the binarization threshold and the cutoff filtering frequency, if necessary. As in TDI 

processing, there is also the chance to manually segment the signal placing fiducials over 

the flow which will then be connected through a third degree spline.  

 
2.3. Multiple Kernel Learning (MKL) 
 
2.3.1. General overview and rationale 
 
Unsupervised MKL is based on the combination, linear or not, of several kernels for 

creating an output space that preserves similarities in the input features. A kernel is 

defined as a matrix of pairwise similarity between samples [14], [16].  

 

Flow velocity patterns, longitudinal strain or tissue Doppler imaging profiles can be 

regarded as features of each patient -i.e. each patient could be described depending on the 

shape and amplitude of them- from which we can then compute a kernel, keep in mind 

that the patterns have been aligned to a single cardiac cycle in order to be comparable. 

This will result in a number of kernels equal to the number of features. These profiles will 

be extracted form echocardiography images using the Echocardiographic Image Analysis 
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platform we developed and imported into MATLAB, where the MKL algorithm was 

implemented. 

 

In this project we use the unsupervised formulation of MKL to explore the data in an 

agnostic setting. As given the specific scenario of HFpEF, where diagnostic labels may 

be affected by human error due to its difficult identification, our results will not be 

affected by it but rather provide information about the true nature of the patients [16]. 

 

2.3.2. Mathematical insight 
 
Following the formulation of unsupervised MKL proposed by Lin et al. and used in the 

work of Sánchez-Martínez et al., we define it exactly as it is shown in the literature, so 

consider this section being a quotation from those works. 

 

The input data { x m,i } (m,i ) ∈ [1 ,M] ×[1 ,N] ∈ X m , consist of N samples with M features each. 

For each feature an affinity matrix K m is computed, using a Gaussian kernel function: 

 
Where m represents the feature and i and j relate to the subjects.  Once the kernel for 

each feature has been computed, the global affinity matrix W is computed as: 

 
M stands for the total amount of features.  K̂m = (Km) 1 /αm and αm results from dividing 

the variance of kernel Km by the variance of the smallest variance kernel among the total 

M kernels. This prevents the highest variability features from dominating the rest of the 

features in the construction of the global affinity matrix W. Then, this matrix is made 

sparse by retaining the entries within a fixed neighborhood (Ŵ). Next, we proceed to 

define the MKL conditions and minimization functions in a scenario with multiple 

features to obtain the output space with reduced dimensions.  
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Where D is a diagonal weight matrix, whose entries are the result of a row-wise 

summation of Ŵ. N is the number of samples, x i is the value of the only descriptor 

associated to sam- ple i in the input space and v is the matrix that projects it to the output 

space. The unknowns to the problem at hand are: A, the rotation matrix that maps the 

input to the output space, which is N −1 dimensional since the smallest eigenvalue is 0; 

and β= [β1 . . . βM], the weights given to the different features. Matrix K (i) is defined for 

the i-th sample as: 

 
Lastly, the inputs can finally be mapped to the output space using the formula: 

 
The resulting matrix Y ∈ RN−1 ×N contains on each column the coordinates for each input 

sample xi in the output space. Notice that the dimensions of the space are reduces due to 

the term N-1. Depending on the purpose of the experiment, the matrix Y can be cut down 

to a d ×N version, this will further reduce the dimensions of the space when considering 

the d smallest eigenvalues [14], [16]. 

 

2.4. Kernel Regression 
 
Once the output space with reduced dimensions has been obtained, we will proceed to 

observe how the features change when advancing in a specific dimension. Given that in 

our case the features are patterns of either strain, flow velocities or wall velocities, we 

will be able to observe how their properties change. To do so we used the technique 

described in the work of Bermanis et al. where a multiscale extension method is defined 
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for allowing the reconstruction of the features from a space obtained by using 

dimensionality reduction [15].  

This technique may provide clinical insights, as studying which are the main modes of 

variation of the patterns and seeing how they might be coupled can be new physiological 

knowledge in the HFpEF community. 

 

2.5. Clustering analysis 
 
Clustering is a technique used to create groups within the data, so as to generate classes 

of objects that share common characteristics. To summarize, we could say that the goal 

is for objects within a group to be similar (or related) with one another and different from 

(or unrelated to) the objects in other groups. The greater the similarity (or homogeneity) 

within a group and the greater the difference between groups, the better or more distinct 

the clustering will be [11]–[13]. 

As proposed by the work of Shah et al., HFpEF may present different phenotypic groups, 

all of them suffering from the syndrome but with different underlying pathologies. In 

addition, different phenotypic groups may benefit from different treatment approaches, 

helping both diagnosis and prognosis of these patients [12].  

To that end, we performed clustering so we could observe if healthy and HFpEF subjects 

were different in the MEDIA cohort. The algorithm used was hierarchical clustering. 

The MEDIA hierarchical clustering was performed in a semi-supervised approach. We 

launched the clustering in a step-wise fashion. This procedure is done by feeding the 

algorithm n+1 dimensions in each step, starting with n=1, and computing how well these 

two centroids are at the time of agreeing with clinical labels [16].  

To illustrate the concept of clustering, we plotted the result of applying K-means with the 

elbow method to the output space obtained using flow velocities and longitudinal strains 

in the TOPCAT cohort, but note that those clusters have not been analyzed yet.  
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Figure 11.  Clustering 

Represented in different colors, we can observe the different clusters. We must note that 

depending on the number of dimensions we fed the clustering algorithm may produce 

different clusters.  

 

 

 

 

 

 

 

 

 

 

 21 



 

3. RESULTS 
 
3.1 Echocardiographic Image Analysis platform 

To begin with, we would like to show the results obtained with the platform we 

developed. We validated the results by observing the profiles obtained and comparing 

them to the raw image from where they were extracted. Using our platform we processed 

378 patients, corresponding to 966 images. The platform proved to be able at the time of 

reading images from the manufacturers General Electrics, Philips, ACUSON, Toshiba, 

Esaote, Agilent Technologies and ATL. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 12. Validation of the 
Echocardiography Analysis 

Platform 
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As we can see, the profiles obtained are correct and can be used for our purpose. Both 

shape and amplitude are correctly preserved in the extraction of the profiles. An 

approximate 30% had to be segmented manually –the tuning of parameters was not 

enough to improve the segmentation- using the placement of fiducial points, this is due 

to the presence of noise in stress protocol imaging in MEDIA and also due to the difficulty 

of acquiring clean images in overweight patients. 

In addition, and for the sake of data exploration, we plotted the profiles altogether to 

check that all of them fell in the correct range and there were no distant outliers. As 

expected, all the profiles are correct. 

 

3.2. MEDIA 

Aiming at separating both groups, diseased and healthy, we launched the MKL algorithm 

fusing the patterns obtained from TDI and flow velocity profiles. Once the output space 

was obtained, we represented the first three dimensions of the total of 104 that the MKL 

algorithm produces. We then represented the 33 subjects in blue and the 72 diseased in 

red, using the labels provided by clinical diagnosis. As it can be observed in the figure 

below, there is already a possible separation between them in the output space. 

 

Figure 13. MKL Output space for the MEDIA cohort.  
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To evaluate how good this separation was, we performed the clustering as explained in 

section 2.3. We present the results of the algorithm in the table below, where we also 

tuned the kernel band-widths (first two columns) to ensure the best result. The different 

results are shown below, were the best agreement was found using the first nine 

dimensions. 

 

KERNEL 1  KERNEL 2 SENSITIVITY SPECIFICITY ACCURACY NUM. 
DIMS 

KAPPA 

16 7 0.90278 0.78788 0.86667 9 0.69 
16 8 0. 91667 0. 69697 0.8472 14 0.63446 
15 7 0.91667 0.75758 0.86667 10 0.68549 
15 8 0.90278 0.69697 0.8381 13 0.61489 
15 9 0.88889 0.66667 0.81905 12 0.56958 
14 7 0.88889 0.75758 0.84762 9 0.64646 
14 8 0.90278 0.66667 0.82857 15 0.58877 
10 10 0.91667 0.57576 0.80952 13 0.52703 

Table 1. Results of clustering 

Once the two centroids were obtained, we measured the Mahalanobis distance from each 

subject to both centroids.  It is defined as: 

 

Where Sc are the class-related subgroups and c ∈ {‘healthy’, ‘diseased’}. Here, μc ∈ Rd 

and Ʃc ∈ Rd ×d are the mean vector and covariance matrix of Sc. This resulted in the figure 

shown below. 

 

Figure 14. Mahalanobis distances to the centroids 
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In green we can observe the healthy controls while in blue we represented the diseased 

patients. The x axis encodes the distance to the healthy centroid while the y axis does it 

for the diseased cluster, the red line would represent an equal distance to both clusters. 

We shall remark that the clinical labels could contain human errors, and could be 

considered an approximation of ground truth. 

Despite of very few outliers, most healthy subjects are closer to the healthy centroid and 

most diseased participants are closer to the diseased centroid. To have a quantitative 

assessment, we computed the sensitivity, specificity and Cohen’s Kappa for this 

classification. The results compared to those obtained by the previous work of Sánchez-

Martínez et al. are [16]: 

 Present work (n=105) Sánchez-Martínez et al. (n=55) 

Sensitivity (%) 90.3 78.9 

Specificity (%) 78.78 86.4 

Cohen’s Kappa (%) 69 65.5 

Table 2. Comparison of results 

Considering the Cohen’s Kappa as the overall measure of performance, as it considers 

randomly classifying correctly an instance, we can say we improved the classification in 

an even larger cohort. Note also that the comparison cannot be straight forward as the 

sample size in this work is almost twice as big. 

 
3.3. TOPCAT 
 
As for the results obtained in the TOPCAT cohort, the kernel regression along the first 

four dimensions of the output space provided very interesting results.  

 

Below we can see a series of plots, each column from left to right corresponds to the first, 

second, third and fourth dimensions. The five profiles shown in each plot correspond to 

the mean, one and two standard deviations. These patterns are synthetic, meaning that 

there is not necessarily any patient that has such a profile. The top row shows the mitral 

inflows and the bottom plots the aortic patterns.  
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Figure 15. Kernel Regression in the first four dimensions of the output space of TOPCAT 

 
Regarding the four first dimensions of the MKL output space we observe that: 

- In dimension one, we observe the variability in the amplitude of the early filling 

peak (E) coupled with the rounding of the aortic profile.  

- In dimension two we observe an inverse relation between the amplitude of the 

early filling peak (E) with the atrial contraction wave peak (A). No differences are 

observed regarding the aortic patterns in dimension two.  

- In dimension three, the velocity at which the filling peaks take place is encoded. 

In addition, we can also observe time variability in the E peak. Moreover, coupling 

with the rounding of the aortic outflow is also observed in this dimension.  

- Dimension four encodes the decrease of E while the A peak increases. Unlike 

dimension one, there is no coupling with the aortic profiles as they remain the 

same.  
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4. DISCUSSION AND CONCLUSION 

Observing the work as a whole, we achieved three important milestones: 

1. We successfully implemented and validated an Echocardiographic Image 

Analysis platform able to read databases and extract the information contained 

in either echocardiographic images acquired with Tissue Doppler imaging or 

Doppler Ultrasound from a broad range of manufacturers. 

2. We were able to obtain a separation between healthy subjects and diseased in 

cohort comprised of 105 patients better than in current bibliography. 

3. We were able to capture the modes of cardiac dysfunction in the output space of 

MKL learned with the TOPCAT patients. 

In conclusion, being able to separate with a relatively high confidence the participants 

who had HFpEF from those who are healthy, strengthens the rationale of using 

unsupervised MKL for unraveling the complexities in this syndrome. It gives an insight 

on the capacity of this algorithm to agnostically learn a space in which patients can get 

classified. The improvement can be due to both using a larger cohort and the fusion of 

flow and wall velocities, which feds the algorithm with more information about how the 

function of the heart. Although the separation proved to be good, this findings must be 

validated with externally and clinical outcomes should correlate strongly with the 

classification  

Moreover, observing the changes in both mitral and aortic flows in the same way as in 

the worsening described in clinical literature –see figure describing the changes in the 

mitral and TDI profiles - can be used to confirm the relevance of this patterns. An 

interesting observation we can make is the coupling between changes in both types of 

flows, mitral and aortic, when the disease worsens. 

All in all, important results have been obtained from which even more information can 

be extracted. For this reason we also present a list of possible continuations to this project 

in the following section. 
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4.1. Future work 
 
Taking into account that the building blocks of this work can be combined in a very broad 

number of ways, most of them able to provide new and interesting ways of exploring the 

data, there are many possible future experiments that can be carried out. 

 

To begin with, regression in the clusters obtained in the MEDIA output space could shed 

light on the differences between healthy and disease participants, allowing for a 

physiological and clinical understanding of their meaningfulness. Also, regression in the 

dimensions of this output space could be done so as to determine which changes in the 

patterns correlate to being classified as healthy or diseased.  

 

On the other hand, clustering in the TOPCAT output space should be carried out and 

analyzed to see which physiological differences separate the groups. If the results were 

significant, clinical knowledge could be produced, and phenogroups could benefit from 

personalized therapies. 

 

Analyzing the solutions obtained using different features, for instance, using only the flow 

velocities or the tissue Doppler, would be relevant at the time of determining the role 

these features play at the time of creating the output space. 

 

Finally, the isovolumic contraction time and relaxation times could be computed from the 

images in order to produce two more relevant features which have potential to improve 

the pathophysiological insights. 
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ESC Clinical guidelines for HFpEF  
 
The material included in this section is directly extracted from the corresponding 

guidelines and has the purpose to illustrate the point presented in this project: Poor 

diagnosis of HFpEF patients is due to an oversimplification of the syndrome and the lack 

of usage of complex descriptors at the time of diagnosing. 

 

1- European Society of Cardiology (ESC) 2016: 
 (https://academic.oup.com/eurheartj/article/37/27/2129/1748921#109986804 ) 

“Symptoms are often non-specific and do not, therefore, help discriminate between HF and other 

problems. Symptoms and signs of HF due to fluid retention may resolve quickly with diuretic 

therapy. Signs, such as elevated jugular venous pressure and displacement of the apical impulse, 

may be more specific, but are harder to detect and have poor reproducibility. 

Symptoms and signs may be particularly difficult to identify and interpret in obese individuals, in 

the elderly and in patients with chronic lung disease. Younger patients with HF often have a 

different etiology, clinical presentation and outcome compared with older patients”. 
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Relating to the scalar indexes discussed in this dissertation it says: 

“A normal ECG and/or plasma concentrations of BNP <35 pg/mL and/or NT-proBNP <125 pg/mL make 

a diagnosis of HFpEF, HFmrEF or HFrEF unlikely. 

• The presence of symptoms and/or signs of HF (see Table 4.1) 

• A ‘preserved’ EF (defined as LVEF ≥50% or 40–49% for HFmrEF) 

• Elevated levels of NPs (BNP >35 pg/mL and/or NT-proBNP >125 pg/mL) 

• Objective evidence of other cardiac functional and structural alterations underlying HF (for details, 

see below) 

• In case of uncertainty, a stress test or invasively measured elevated LV filling pressure may be 

needed to confirm the diagnosis (for details, see below). 

The next step comprises an advanced workup in case of initial evidence of HFpEF/HFmrEF and consists 

of objective demonstration of structural and/or functional alterations of the heart as the underlying cause 

for the clinical presentation. Key structural alterations are a left atrial volume index (LAVI) >34 mL/m2 or 

a left ventricular mass index (LVMI) ≥115 g/m² for males and ≥95 g/m² for females.65,67,72 Key functional 

alterations are an E/e′ ≥13 and a mean e' septal and lateral wall <9 cm/s.65,67,70,72,80–84 Other (indirect) 

echocardiographically derived measurements are longitudinal strain or tricuspid regurgitation velocity 

(TRV).72,82 An overview of normal and abnormal values for echocardiographic parameters related to 

diastolic function is presented in Web Table 4.3. Not all of the recommended values are identical to those 

published in previous guidelines, because of the inclusion of new data published in recent reports, in 

particular by Cabarello et al.70 

A diastolic stress test can be performed with echocardiography, typically using a semi-supine bicycle 

ergometer exercise protocol with assessment of LV (E/e′) and pulmonary artery pressures (TRV), systolic 

dysfunction (longitudinal strain), stroke volume and cardiac output changes with exercise.85,86 Different 

dynamic exercise protocols are available, with semi-supine bicycle ergometry and echocardiography at rest 

and submaximal exercise being used most often.85 Exercise-induced increases in E/e′ beyond diagnostic 

cut-offs (i.e. >13), but also other indirect measures of systolic and diastolic function, such as longitudinal 

strain or TRV, are used. Alternatively, invasive haemodynamics at rest with assessment of filling pressures 

[pulmonary capillary wedge pressure (PCWP) ≥15 mmHg or left ventricular end diastolic pressure 

(LVEDP) ≥16 mmHg] followed by exercise haemodynamics if below these thresholds, with assessment of 

changes in filling pressures, pulmonary artery systolic pressure, stroke volume and cardiac output, can be 

performed.87 

The diagnosis of HFpEF in patients with AF is difficult. Since AF is associated with higher NP levels, the 

use of NT-proBNP or BNP for diagnosing HFpEF probably needs to be stratified by the presence of sinus 

rhythm (with lower cut-offs) vs. AF (higher cut-offs). LAVI is increased by AF, and functional parameters 

of diastolic dysfunction are less well established in AF, and other cut-off values probably apply. On the 

other hand, AF might be a sign of the presence of HFpEF, and patients with AF and HFpEF often have 
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similar patient characteristics. In addition, patients with HFpEF and AF might have more advanced HF 

compared with patients with HFpEF and sinus rhythm. 

Patients with HFpEF are a heterogeneous group with various underlying etiologies and pathophysiological 

abnormalities. Based on specific suspected causes, additional tests can be performed (Web Table 4.4).71,88–

94 However, they can only be recommended if the results might affect management.”. 

It further states that “Clinicians responsible for managing patients with HF must frequently make treatment 

decisions without adequate evidence or a consensus of expert opinion. The following is a short list of 

selected, common issues that deserve to be addressed in future clinical research”. 
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Exploratory experiments in TOPCAT 

A larger trial like TOPCAT collected a big amount of markers from the patients enrolled. 

To exploit this, the first approach we tried was to represent the first three dimensions of 

the output space, which we remind are the ones that encode the main modes of variation 

within the population, using several biomarkers. For instance, we represented in shades 

of gray the estimated glomerular filtration rate (eGFR) as it is a marker of renal function 

very likely associated to HFpEF. Also, we used body mass index, age, sex and time to 

event (primary, HF hospitalization and all-cause mortality). 

We could only observe differences when representing the eGFR, shown below, where we 

observe one side of the output space darker than the other side. We remind that in this 

representation darker means lower, which at translates in impaired renal function. Given 

the qualitative nature of these results, these were not included in the main section 
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Moreover, we employed the time to event data to run several survival analyses. These 

were done with a Cox-Regression Proportional Hazards model. In this case, we run the 

analyses using the first six dimensions as covariates. 

 

We also conducted the same procedure for the solutions of MKL obtained with flows and 

strains separately and then with a combination of both. In red we showed the models that 

yielded significant results, meaning that there was a correlation between the position 

along that dimension and the probability of having an event. 

  
FLOWS AND STRAINS 

PRIMARY OUTCOME             

Dimension 1 2 3 4 5 6 

b -0.0064066 -0.1551 0.12577 -0.013152 0.20501 0.07391 

Hazard Ratio 0.99361 0.85633 1.134 0.98693 1.2275 1.0767 

p-Value 0.96131 0.19857 0.28723 0.90957 0.12604 0.56639 

              

HF Hospitalization             

Dimension 1 2 3 4 5 6 

b -0.36664 -0.25105 0.11349 0.19961 0.43493 0.0032508 

Hazard Ratio 0.69306 0.77798 1.1202 1.2209 1.5449 1.0033 

p-Value 0.10905 0.10168 0.45281 0.13842 0.022297 0.98426 

              

All Cause Mortality             

Dimension 1 2 3 4 5 6 

b 0.19186 0.012653 -0.0056057 -0.018618 0.091715 0.26086 

Hazard Ratio 1.2115 1.0127 0.99441 0.98155 1.0961 1.2981 

p-Value 0.17531 0.92989 0.9676 0.89886 0.53168 0.08881 
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FLOWS 

PRIMARY OUTCOME      

Dimension 1 2 3 4 5 6 

b 0.011409 0.14984 0.28193 0.014479 -0.06909 0.28349 

Hazard Ratio 1.0115 1.1616 1.3257 1.0146 0.93324 1.3278 

p-Value 0.92415 0.24058 0.020389 0.9042 0.59679 0.007812 

       

HF Hospitalization      

Dimension 1 2 3 4 5 6 

b -0.0036569 0.029014 0.27732 -0.22893 0.15312 0.3511 

Hazard Ratio 0.99635 1.0294 1.3196 0.79539 1.1655 1.4206 

p-Value 0.98192 0.8466 0.061598 0.13964 0.39141 0.0022468 

       

All Cause Mortality      

Dimension 1 2 3 4 5 6 

b 0.008875 0.21365 0.1359 -0.066811 -0.29555 0.05827 

Hazard Ratio 1.0089 1.2382 1.1456 0.93537 0.74412 1.06 

p-Value 0.94562 0.15081 0.37653 0.61878 0.037386 0.67214 
 
  

 37 



 

 
  

STRAINS 

PRIMARY OUTCOME           

Dimension 1 2 3 4 5 6 

b 0.083638 0.33246 0.2259 0.0071157 0.26027 0.0561 

Hazard Ratio 1.0872 1.3944 1.2534 1.0071 1.2973 1.0577 

p-Value 0.42663 0.0006683 0.020774 0.93559 0.005719 0.57393 

              

HF Hospitalization           

Dimension 1 2 3 4 5 6 

b -0.091077 0.39807 0.21339 0.10423 0.27887 -0.06062 

Hazard Ratio 0.91295 1.489 1.2379 1.1099 1.3216 0.94118 

p-Value 0.51303 0.0010527 0.074642 0.31809 0.011662 0.62849 

              

All Cause Mortality 

Dimension 1 2 3 4 5 6 

b 0.16499 0.18297 0.091836 0.011885 0.23205 0.23518 

Hazard Ratio 1.1794 1.2008 1.0962 1.012 1.2612 1.2651 

p-Value 0.1774 0.12096 0.43007 0.91339 0.042266 0.047776 

 
 

We shall firstly address that these results are not straight-forward to analyze, they are 

rather an interesting insight into the possibilities of the analysis of the output space. Even 

though, we obtained some dimensions associated with a significant p-value, thus 

understanding the information encoded in those dimensions may prove of utility at the 

time of clinical interpretation. 
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Next on, we computed the difference between the solutions obtained with the different 

combinations of features. We did so by computing the kernel function of each solution 

and seeing the correlation between the different kernels. 

 

 

 

 
 

 

In this experiment we observed a very strong correlation between the solution obtained 

with the strain feature and the one which combines both flow and strain. This is not trivial 

to explain, but a cause may lie in the similarity in the strain patterns among all patients, 

whereas flow patterns are more diverse. As explained in the paper by Sanchez-Martinez 

et al. (Characterization of myocardial motion patterns by unsupervised multiple kernel 

learning. Medical image analysis. 2017), MKL gives more weight to correlated features 

rather than those that differ more between patients.  
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Echocardiographic Image Analysis Platform Tutorial 
 
A video tutorial of the platform can be found here: 
https://www.youtube.com/watch?v=tWI-FZ0aZYY  
 
We will now proceed to explain step by step how the platform works, showing all of its 
capabilities. 
 
Once the platform is launched, the user will face the following interface. 
 

 
Next, the user will have to select the specific patient he wants to process in the left 
column, where a tree will represent the database, containing all the patients. 
 

 
When the case is clicked, the images corresponding to that patient will be loaded as shown 
in the image. On the left side will be the tissue Doppler images and on the right will be 
the blood flow velocities. 
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Starting with the processing of the TDI images, the user can start by clicking the ECG 
onsets, which will appear as a vertical white line. 
 

 
 
When all ECG onsets have been determined, the button QRS Complexes Selected needs 
to be clicked, it will store the timings for the ECG onsets and represent them with a red 
dashed line as in the next image. 
 

 
 
Following, the button Segment Barycenter needs to be clicked. It will run the image 
processing algorithms needed to obtain the profile, which will be shown on top of the 
image in blue. This is represented in the next caption. 
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If the result of the segmentation is not good enough, the Advanced Options button can be 
pressed. It will open a new window, where two parameters can be modified for improving 
the segmentation. The result of changing the parameters will be shown in real time. 
 

 
If the result after changing the parameters is good, the user can proceed to close the 
window and click on the Preprocessing complete button. When this is done, the averaged 
descriptor will be plotted and stored. 
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For the sake of showing the possibilities of the platform, we will now proceed to manually 
segment the image using fiducial points. This is to be done when the image is so noisy 
that automatic tools do not perform well enough. The first thing that needs to be done is 
to open the advanced options window by clicking on its button. 

  
 
Then the  buttons Begin septal/lateral fiducials should be clicked. Once this is done the 
user can proceed to place point on top of the signal by double clicking. The spline 
connecting the points will appear as soon as there are more than three points and it will 
show the result in real time as mor points are added. 
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When the user has finished placing fiducial points, the advanced options window needs 
to be opened to press the septal/lateral fiducials profile button. This will average the 
cycles, plot the result and store it.  
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Now on to the flow velocity segmentation. As in TDI, the user starts by selecting the ECG 
onsets and clicking the QRS complexes selected button.  

 
 

  
 
The onsets will appear as red dashed lines and the user can proceed to select the opening 
and closures of the valves. Which will appear in cyan. This is needed as one of the features 
of the platform still in development is to store the times between the ECG onsets and the 
openings and closures of the valves, which can be used as machine learning descriptors. 
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When this is done, the user shall click on the Openings and Closures Selected button. This 
will run the segmentation algorithms and plot the contour of the segmentation on top of 
the image. 

 
 
If needed, the user can open the advanced options window by clicking on its button and 
tune the segmentation parameters to refine the segmentation. This is illustrated below. 
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Once the segmentation is good enough, the user can close the window and click the 
Preprocessing complete button. This will plot the final descriptors which will be stored. 
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We also represented the placing of fiducial points for valve flow, although the procedure 
is the same as in the TDI images. 
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