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Summary 
 
In the present study we present a new modeling approach of a whole-brain network model based on a 

combination DTI-driven anatomical connectivity of the brain and Jansen and Rit neural mass model. We 

also propose an approach to personalize such brain network model with subject specific EEG and MRI 

data. We study the structural and functional relationship and the inter- and intra-subject variability for two 

healthy patients with different conditions, eyes open and eyes closed resting-state EEG. The personalization 

is based on a comparison of functional connectivity estimates between simulated and real data to fit the 

parameters of the model. The vision of this study is to generate a proof of concept that which such models 

we can personalize virtual brains models in order to customize treatment for neurological diseases. 
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MAIN SECTION 

1. INTRODUCTION 
 

Personalization has become a standard practice in medical diagnosis, treatment and 

product design. Healthcare industries are investing on it due to the clear impact that 

individual variability has on the effectiveness of the therapy. In this work we propose a 

first step towards a solution to these personalized-oriented practices related to 

neurological conditions. We present subject-specific brain network models (BNM) based 

on a combination of noninvasive electrophysiological and neuroimaging techniques (e.g., 

MRI, EEG and Diffusion Tensor Imaging, DTI) and computational models of brain 

activity.  

 

The present study is an excellent starting point to gain insight into the effects of different 

neurological therapies such as transcranial stimulation (tCS, TMS) or drugs on individual 

subjects, and thus could to lead to the development of personalized treatment strategies. 

 

The human brain is an inherently dynamical system that can be defined as a network of 

networks, deployed at multiple scales and with different levels of complexity. Multiple 

studies in theoretical and computational neuroscience have developed whole-brain 

network models (Bansal et al., 2018; Cabral et al., 2014; Deco et al., 2011) to explore the 

relationship between the brain function and its underlying connectivity. This increased 

interest in finding the origin behind the structure-function relationship has led to a new 

developing field known as Network Neuroscience (Bassett & Sporns, 2017), which relies 

on network theory to study the brain across its multiple scales and complexities.  

 

In this framework, the nodes of the BNM are mathematical equations that describe the 

temporal electric brain activity. Traditionally, two main classes of models have been used 

to represent the electrical brain dynamics.  

 

On one hand we have the spiking neuron models such as the integrate-and fire and more 

detailed models like Hodgkin-Huxley (Hodgkin & Huxley, 1990). These models are 

appropriate for single cell recordings in animals or brain slices, but their state variables 

do not directly capture the functional activity recorded with macroscopic level techniques 

such as EEG, MEG or mesoscopic LFP measurements.  

 

In contrast, neural mass models (NMM) are more relevant when modeling brain activity 

at a larger spatial and temporal scale since they describe the mean activity of whole neural 

populations, represented by their averaged firing rates and membrane potentials. Despite 

the fact that they are less detailed, they are still able to represent the physiology of the 

brain: their parameters emerge from microscopically measurable quantities, such as 

dendritic time constants and mean excitatory/inhibitory post synaptic potentials. 

Moreover, they provide connections to macroscopically measurements such as EEG. 

 

The most used NMM are modifications of Wilson and Cowan oscillators or Jansen and 

Rit model (Jansen et al, 1995, 1993). There are some other studies such as (Cabral et al., 

2012; Cabral et al., 2014) that use simpler models such as Kuramoto oscillators to 

simulate the electric brain activity, but they lack a direct physiological meaning. More 

detailed versions are emerging rapidly (Wendling et al., 2012, 2016). 
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Depending on the complexity of the model, network nodes can represent either single 

cells, cortical patches, or whole brain areas. The decision of the scale depends either on 

the data available or the scenario that we want to model. See an extended review by 

Breakspear (Breakspear, 2017) for a detailed discussion on the choices for the dynamical 

equations. 

 

Accordingly, network edges are also defined to describe appropriately the links between 

nodes.  If there’s subject specific structural connectivity data available, network edges are 

commonly derived in proportion to the number of white matter tracts between brain areas 

(when modeling whole-brain dynamics), usually using the well-known human 

connectome(Hagmann et al., 2007). However, when this data is not available researchers 

have substituted the connectivity data for functional connectivity or have used available 

datasets of generalized structural connectivity, as we are doing in our approach. 

 

Bansal and colleagues (Bansal et al., 2018) present a review of the latest work using 

personalized brain network models to study the structure-function relationship in human 

brains. However, most of the studies cited in that review are based on static network 

structures with fixed connection strength and time delays, failing to reproduce some 

meaningful features of brain dynamics. 

 

 
Figure 1. Brain Network Model. A) Network nodes symbolize brain areas whose electric activity is 

described by Jansen and Rit NMM, a set of mathematical equations based on the abstraction of the human 

cortex physiology. B) Integration of real data to represent either the connection strength between nodes 

(derived from DTI) and the transmission delay (proportional to the distance between AAL areas). 

 

 

In this work we propose a to fit the coupling gain (connection strength) and mean 

conduction velocity with subject-specific EEG and MRI, making our BNM sensitive to 

individual variability, using an extension of Jansen and Rit neural mass model to represent 

the network nodes. 

 

A) 

B) 
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We chose to use Jansen and Rit NMM here since it is able to simulate mesoscopic and 

macroscopic activity of the brain and it can be tuned to simulate either physiopathological 

electric signals (Wendling et al., 2000; Wendling et al., 2010; Cabral et al., 2012) or its 

possible response to interventions like transcranial stimulation (tCS, TMS) (Kunze et al., 

2016; Merlet et al., 2013; Molaee-Ardekani et al., 2013; Muldoon et al., 2016) or drugs 

(Kurbatova et al., 2016; Liang et al., 2015).  

 

Driven by the fact that we are performing the fitting of the parameters resting-state EEG 

form the entire brain (unlike intracortical EEG where we record brain patches), each of 

the neural masses represents a brain region defined by a parcellation scheme taken from 

available atlases. Consequently, network edges represent the anatomical links (structural 

connectivity) between each of the brain areas. Moreover, the presented BNM also 

considerers the time delays between the interconnected regions of the brain to be 

proportional to the structural distance between them (Cabral et al., 2011), see Figure 1 for 

an illustrative scheme of how the presented brain network model is built. 

 

The coupling gain and mean velocity are the parameters of our model that are used to 

include connectivity data in the neural mass model, as derived from DTI. These 

parameters, coupling gain and velocity, scale the overall connectivity strength across 

nodes and, together with the measured distance between parcellated regions of the brain, 

the time delays between regions. The decision why we choose to fit these two parameters 

is because they come from an averaged representation across different subjects (not the 

ones the MRI and EEG were recorded from), are the least known or most variable 

parameters across subjects and address directly global phenomena we will use to 

optimize, that is EEG. (Figure 2).  

 

 
 
Figure 2. Personalized Brain Network Model. Customization of the brain network model based on non-

invasive subject-specific data (EEG, MRI). The personalization is based on the fitting of the parameters 

that scale the generalized human-brain data we use to build the BNM. 

 

 

The fitting process is based on the correlation between the functional connectivity (FC) 

profile of the simulated brain areas and the FC profile of the inversion of the subject’s 
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EEG on a 3D mesh of the brain reconstructed from its own MRI and averaged among the 

same parcellation that we use to define the scale of the model. 

 

This FC estimate is based on (Cabral et al., 2014), which takes into account the fact that 

resting state BOLD signal fluctuations are driven by slow modulations in the power (and 

therefore, amplitude) of brain oscillations in different frequency ranges (Figure 3). 

Studies mentioned in (Cabral et al., 2014) show that simultaneous recordings of EEG-

fMRI point to an inverse correlation between BOLD signals and the power of alpha (8-

14Hz) and beta (13-30Hz) brain waves (Mukamel et al., 2005), which might be related 

with the deactivation and decreased metabolic rate. Moreover, recent MEG studies of 

resting-state activity have found slow fluctuations in the power of the oscillations that 

correlate across distant brain areas, especially when considering beta (13-30Hz) 

oscillations. 

In general, recent studies indicate that resting-state functional connectivity in BOLD 

responses corresponds to a spatially structured amplitude modulation of neural 

oscillations in the alpha-beta range (8-30Hz). 

 

A)  B)  
Figure 3. BOLD signals and fMRI Functional Connectivity. A) Correlation of the different LFP 

predictors with the average fMRI BOLD signal in Heschl’s gyrus (orange) and with the spile predictor 

(cyan) as a function of frequency band (Figure from (Mukamel et al., 2005)). B) (Top) fMRI functional 

connectivity is assessed as the correlation between the BOLD signals recorded at different locations. 

(Bottom) Resting-state functional connectivity in MEG, assessed by first band-pass filter the MEG signal, 

extracting the amplitude envelope (red and blue lines) of the underlying carrier frequency (black). This 

strategy results in a set of frequency-specific FC (Figure from (Hipp et al., 2012).  

 

This parameter fitting approach based on FC profiles correlation has been already shown 

to be significant when comparing brain network models with MEG real signals. Indeed, 

in the work done by (Cabral et al., 2011) it was shown that there is an optimal fit with 

resting-state BOLD functional connectivity occurred in a critical range of model 

parameters of  interconnected Kuramoto oscillators. 

 

In this work, we use our biophysically realistic BNM to explore how slow and structured 

amplitude envelopes of band-pass filtered signals are generated spontaneously and vary 

with time and position.  We also study how well the extension of Jansen and Rit’s model, 

combined with standard structural data, fits subject specific data based on FC profiles. 

Finally, we will explore how this fit depends on model parameters and on different subject 

data. 
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2. MATERIALS AND METHODS 
 

2.1 Subject data: EEG and MRI 
 

In this work we used EEG and MRI data of two different healthy subjects, labeled as 

subject 55 and subject 60. The data was collected for the purpose of another study carried 

out at BIDMC (Harvard Medical school), but the PI (Dr. Santarnecchi) gave us 

permission to use it in this work. EEG data was recorded during resting state for 2 minutes 

and for two different conditions, eyes closed and eyes open (sampling rate 1000 Hz, 64-

channels, for other information see Appendix A). MRI structural data was acquired using 

T1-weighted images (256 x 256 x 256 voxels). 

 

2.2 From MRI to electric brain model 
 

In this section we introduce the steps followed to obtain the electric field distribution in 

a 3D brain model of a specific subject (Figure 4). This electric brain model will be 

necessary to perform the source estimation of the resting state EEG from the same subject 

since our goal is to compare model and measured electrical activity at the cortical level. 

For this purpose, we use a personalized cortical mapping algorithm (CM) to map 

electrode space data to cortical mesh space following an approach based on the reciprocity 

theorem (G. Ruffini, 2016; Miranda et al., 2012). We first calculate the electric field (𝐸-

field) distribution in the brain by injecting current through the same electrodes used in the 

EEG recordings (this in embodied in the reciprocity theorem as discussed in section 2.4). 

 

The electrostatic potential (𝑉 in volts) in the brain induced during transcranial current 

stimulation can be obtained from the Laplace’s equation with appropriate boundary 

conditions: 

∇2𝑉 = 0 

From it we can obtain the electric field vector (𝐸⃗ , in volts per meter) anywhere in the 

brain: 

𝐸⃗ = −∇⃗⃗ 𝑉 

The calculation of Laplace’s equation requires knowledge about the geometry of head 

tissues, the geometry of the electrodes, the electrical conductivity of the tissues (𝜎 in 

Siemens per meter) and the current injected in each electrode (𝐼 in Ampères). 

 

An analytical solution of this equation is only possible in simple head geometries (as in 

spherical head models) so numerical methods are commonly employed. A frequently used 

method is the Finite Element Methods (FEM) (Feischl, 2017). In this method, the 

geometry is discretized into simple geometrical shapes (usually tetrahedra for 3D 

models), finite elements, forming the finite element mesh. Within each element, it is 

assumed that the distribution of the solution to Laplace’s equation is a linear combination 

of simpler shape functions (usually second order polynomials are used). With this 

approximation it is possible to show that the distribution of 𝑉 within each finite element 

can be obtained by solving a system of linear equations.   

 

In this work, a software package (COMSOL Multiphysics version 5.3a) was used to 

implement the finite element method and perform the 𝐸-field calculations. 
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The geometry of the head model created in COMSOL was obtained from MRI data. The 

T1 weighted image was segmented into scalp, skull Cerebral Spinal Fluid (CSF), air 

pockets, cerebral grey matter (GM) and cerebral white matter (WM). 

 

Segmentation was performed using three different software tools: MARS 

(https://www.nitrc.org/projects/mars/) and Freesurfer 

(https://surfer.nmr.mgh.harvard.edu/). Triangulated surface meshes of these tissues were 

created using iso2mesh (Fang et al, 2009), a MATLAB toolbox 

(http://iso2mesh.sourceforge.net/cgi-bin/index.cgi)(Fischer et al., 2017). Models of the 

electrodes used in the EEG recording (cylindrical electrodes 1cm radius, 3mm thickness) 

were placed on the scalp’s surface according to the positions defined in the 10/10 EEG 

system. Those positions were defined based on manually placed anatomical landmarks 

(inium, nasium and pre-auricular left and right points). 

 

After generation of the surface meshes for all the tissues and electrodes the finite element 

volume mesh was created using iso2mesh (256 x 256 x 256 tetrahedral elements). The 

finite element mesh was then imported into COMSOL where tissue conductivities were 

assigned (0.33 𝑆/𝑚 for the scalp, 0.008  𝑆/𝑚 skull, 1.79 𝑆/𝑚 CSF, 0.4 𝑆/𝑚 GM, 

0.15 𝑆/𝑚 WM and 10−5 air) (Fischer et al., 2017). The electrodes were represented as 

conductive gel (4 𝑆/𝑚).  

 

In order for the CM algorithm to be implemented, 𝐸-field calculations had to be 

performed for every bipolar montage with Cz as the cathode (−1𝑚𝐴) and each of the 

other electrodes as anodes (+1𝑚𝐴). All calculations were performed in COMSOL using 

second order finite elements and using an iterative method to solve the system of linear 

equations (geometric multigrid solver). A typical calculation took 7 min in a computer 

with 16 GB of RAM and an Intel Core i7 CPU. 

 

After each calculation we exported the component of the 𝐸-field normal to the cortical 

surface (𝐸𝑛 = 𝐸⃗ · 𝑛⃗ , where 𝑛⃗  is a vector normal to the cortical surface and pointing 

inwards).  

 

The final step was to downsample the grey matter surface mesh and its electric field 

distribution over the surface to a 25% (~40 000 nodes) of its original size. This step was 

necessary in order to make the CM inverse solution viable from a computational resources 

point of view (memory). This reduction was performed using iso2mesh. 

 

 

 
Figure 4. From MRI to 𝑬⃗⃗  field model. Pipeline to generate a personalized electric brain model from the 

subject’s MRI.  
 

In what follows, we will be using the grey matter brain mesh to inverse-map the EEG 

data since dipole sources in the brain are generally distributed in the grey matter volume. 

https://www.nitrc.org/projects/mars/
https://surfer.nmr.mgh.harvard.edu/
http://iso2mesh.sourceforge.net/cgi-bin/index.cgi
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Recorded EEG activity is also thought to come from the sum of post synaptic potentials 

occurring on pyramidal cells, oriented perpendicularly to the GM surface.  

 

2.3 EEG pre-processing 
 

The EEG was preprocessed with EEGLAB (https://sccn.ucsd.edu/eeglab/index.php) a 

MATLAB toolkit containing all necessary functions to be able to clean and design an 

EEG pre-processing pipeline to further perform the cortical mapping inverse problem.  

 

The main steps performed to clean the raw EEG were: 

1. Line noise removal: we used the EEG-Clean (http://vislab.github.io/EEG-Clean-

Tools/) plug-in that uses an iterative version of a method that estimates the 

amplitude and size of a deterministic sinusoid at a specified frequency embedded 

in locally white noise. The model is applied in sliding windows to adjust for not 

stationarity. 

2. Reject data by visual inspection: before identifying the channels bad channels 

(channels that could saturate our cortical inversion), we selected 1 min of 

recording out of unknown artifacts that couldn’t be filtered without losing 

essential information of the recorded signal. In case that we were processing eyes 

open EEG, we rejected the eye blinks the same way, by visual inspection. 

3. Reject the data channels based on channel statistics:  EEGlab provides an 

automatic detection of bad channels based on the kurtosis and spectrum statistics.  

With the predefined automatic detection and visual inspection, we detected the 

channels that need to be rejected so the inverse mapping is not contaminated 

4. Interpolate the bad channels. It is well known that the inverse mapping improves 

its accuracy as more channels are used (Hassan et al., 2014). For this reason and 

because the computation of the mappers is really time consuming and depends on 

the number of electrodes, we opted for the interpolation of data in the electrodes 

that were rejected. 

5. The final step was to re reference the data to Cz in order to use the generated 

electric brain model of each of the subjects, which used the same referencing 

scheme for electrical stimulation. 

 

2.4 Personalized Cortical Mapping 
 

Cortical mapping (or inverse modelling) consists in finding the dipole distribution on the 

cortical surface that could generate the EEG pattern. The transformation from voltage 

space to source space (dipoles) is linear and governed by the Poisson equation, so we just 

need to find the transformation matrix 𝐾 (commonly referred as the “lead field” matrix). 

The following equations are based on the reciprocity theorem derived by H. Helmholtz 

in 1853. For more information about how the mappers are developed using this theorem 

see(Ruffini, 2016; Ruffini, 2015). 

 

In short, the reciprocity theorem states that there is relationship between the observed 

potential difference between two points in the scalp (𝑉𝑎𝑏
(1)

) due to a lone dipole current in 

the brain (𝐽 𝑛
(1)

) in a volume 𝛿𝑉.  It also states that there’s a relation between an imposed 

stimulation (𝐼𝑎𝑏
(2)

) between these two points and the resulting current density in the brain 

(𝐽 (2)). 

https://sccn.ucsd.edu/eeglab/index.php
http://vislab.github.io/EEG-Clean-Tools/
http://vislab.github.io/EEG-Clean-Tools/
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Then, the reciprocity relation is: 

𝑉𝑎𝑏
(1)

𝐼𝑎𝑏
(2)

= −𝐽 (1) · 𝐸⃗ (2)𝛿𝑉 

 

From this equation we can derive the voltage 𝑉𝑎𝑏 at a point 𝑏 with respect to a point 𝑎 

due to a lone dipole 𝐽 (1): 

𝑉𝑎𝑏
(1)

= −∑
𝐸⃗ 𝑛

(2)
𝛿𝑉𝑛

𝐼𝑎𝑏
(2)

𝐽 𝑛
𝑛

 

Where 𝑛 refers to the voxel location ID. 

Then we have already the linear transformation we want, where 𝐾 is the forward mapper: 

𝑉𝑎𝑏
(1)

= 𝐾 ·  𝐽 𝑛
(1)

 

 

The “lead field” matrix 𝐾is associated to unitary currents 𝐼𝑎𝑏
(2)

= 1 𝑚𝐴, so we just need 

to find the electric field distribution produced by a reciprocal montage at 𝑎 and 𝑏 using 

our head model. 

 

Once we have the forward mapping matrix 𝐾, we need to invert the transformation to 

infer cortical activity from electrode measurements. There are infinite solutions to this 

problem, i.e., to generate the inverse mapper of 𝐾, to go from voltage space to source 

space (𝐾−1) – the problem is ill-posed. To address it we will use spatial regularization to 

produce the inverse solution based on a criterion of spatial smoothness derived from the 

geodesic distance between mesh points of the head model. In this approach, the data and 

the curvature (which we want to minimize) constraints are treated equally.  

 

We will use the 2D geodesic distance (over the surface of the mesh, 𝑑(𝑥, 𝑥′)) across 

cortical surface points of the geometric representation of the grey matter for each of the 

subjects. The matrix for regularization then will be: 

 

𝑅(𝑥, 𝑥′) = 𝛿(𝑥, 𝑥′) −
𝑑(𝑥, 𝑥′)−2

∑ 𝑑(𝑥, 𝑥′)−2
𝑥≠𝑥′

 

 
The condition RJ=0 basically states that the value of J at a mesh point should be equal to 

a local spatial average of its neighbor values, with a particular (1/r2) weighting (others 

could be used, e.g., gaussian). The weight of this condition is controlled by a parameter 

alpha. 

Finally, the inverse mapping would be done by: 

𝐽 = [𝐾𝑇𝐾 + 𝛼𝑅𝑇𝑅]−1𝐾𝑇 𝑉 
Where 

𝐽 = 𝐾−1 · 𝑉 

 

Once we have the mappers, we can transform the recorded EEG into source space to 

find the electric distribution of the sources in each of the AAL areas (see section 2.6). 
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2.5 Extension of Jansen and Rit Neural Mass Model 

 

a) Introduction 
 

The Jansen and Rit model (Jansen & Rit, 1995; Jansen et al., 1993) comes from the 

abstraction of the physiology of the human cortex (see Figure 1A).  

The number of layers, composition, thickness and organization are not the same over the 

surface of the cortex, divided by small regions where those characteristics are 

homogeneous and have different functionalities.  

 

The basic cortical physiological unit for information processing are the cortical columns, 

sometimes referred as microcolumn or functional column. This statement comes from a 

columnar hypothesis which states that the cortex is composed of discrete, modular 

columns or neurons, characterized by a consistent electrical and functional profile. Each 

of these columns contains populations of neurons, 80% excitatory pyramidal cells and 

20% of excitatory and inhibitory interneurons, contained in a 300 − 500𝜇𝑚 patch 

displaying similar electrical activities (Lodato et al., 2015; Mountcastle, 1997).  

 

Jansen and Rit model simulates a population of pyramidal neurons that receive excitatory 

and inhibitory feedback from subpopulations of interneurons residing in the same column 

and excitatory input from other columns or from subcortical regions like the thalamus.  

 

As mentioned before, we are using NMM since they have the ability to represent 

macroscopic measurements of the brain. The electric potential generated by an individual 

neuron is far too small to be picked up by EEG or MEG. EEG reflects the summation of 

the synchronous activity of thousands or millions of neurons that have similar spatial 

orientation, and pyramidal neurons are thought to produce most of the EEG signal 

because they are well aligned and can fire together. 

 

 

 

 
 

Figure 5. Jansen and Rit NMM. A) Representation of each of the subpopulations of the model in the 

cortical layers. B) Abstraction of A) and schematic representation of the NMM. C) Block diagram 

representing the equations that governing the model. 
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b) Jansen and Rit model of cortical columns 
 

Jansen and Rit developed a model based on the previous work of Lopes da Silva (Lopes 

da Silva et al. 1974), which developed a model for the thalamus, and based on the PSP 

transformation that van Rotterdam developed (van Rotterdam et al., 1982).  

 

A schematic representation of the model is shown in Figure 5. The main population are 

the pyramidal cells located in the layer V of the cortex (represented by triangles and violet 

color). They receive inhibitory inputs from a sub-population of interneurons, dendrite 

targeting cells like bitufted, bipolar and double bouquet cells (blue circles in the 

illustration). Actually, the excitatory feedback must be considered as coming from 

pyramidal neurons themselves (from other cortical layers, III and VI) more than from 

genuine excitatory interneurons, which are not numerous in the cortex (red star-shaped 

figures).  

 

The excitatory input is represented by an arbitrary firing rate 𝑝(𝑡) that we model as noise 

accounting for a non-specific background activity. This input could be also modeled as 

an impulse function simulating a flash or signal from other regions like the thalamus 

(Merlet et al., 2013). In section 2.5.d we overview the stability of the model based on this 

certain parameter. 

 

In Figure 5C the 𝐶𝑖 constants represent the interactions between the three types of sub-

populations (see table 1 for the biological meaning of each of the constants in the model 

and the standard values) and their values are based on several neuroanatomical studies 

where they estimate these constants by counting synapses.  

 

 

Table 1. Parameters, interpretation and values of the original model to produce alpha oscillations. 
 

Each of the populations is characterized by two different type of boxes, wave-to-pulse 

𝑆(𝑣), and pulse-to-wave, ℎ𝑒,𝑖(𝑡) functions, which link the two state variables of the 

model: average membrane potentials, 𝑦(𝑡), and average firing rates, 𝑥(𝑡). These boxes 

have been previously designed by van Rotterdam (van Rotterdam, Lopes da Silva, van 

Parameters Interpretation Value 

𝐴 Maximal amplitude of EPSP 3.25 mV 

𝐵 Maximal amplitude of IPSP 22 mV 

𝑎 Time constant of average EPSP 100 Hz 

𝑏 Time constant of average IPSP 50 Hz 

𝐶 Connectivity constant 135 

𝐶1 Connectivity constant from pyramidal (Pyr) to 

excitatory (Exc) populations 
C 

C2 Connectivity constant form Exc to Pyr. 0.8 · C 

C3 Connectivity constant from Pyr to inhibitory 

(Inh) populations 
0.25 · C 

C4 Connectivity constant form Inh to Pyr. 0.25 · C 

v0 Potential when 50% of firing rate is achieved 6 mV 

e0 Half of the maximum firing rate 2.5 Hz 

r Slope of the wave-to-pulse function at v0 0.56 mV−1 

𝑝(𝑡) Excitatory input noise (positive mean gaussian 

white noise) 
𝜇 = 90𝑝𝑢𝑙𝑠𝑒𝑠 · 𝑠−1 
𝜎 = 30 𝑝𝑢𝑙𝑠𝑒𝑠 · 𝑠−1 
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den Ende, Viergever, & Hermans, 1982b) to reproduce the two essential characteristics 

of real post-synaptic potentials: shape and excitatory/inhibitory ratios. 

 

The 𝑆(𝑣) box, also called “pre-synaptic” box, introduces a nonlinear component that 

transforms the average membrane potential of a population (𝑦(𝑡) in volts 𝑉) into firing 

rate (𝑥(𝑡)): 

𝑆(𝑉) =
2𝑒0

1 + 𝑒𝑟(𝑣0−𝑣)
 

 

The pulse-to-wave box, or post-synaptic box, converts the average rate of action 

potentials constructing the input of a population into an average post-synaptic potential 

(PSP). This filtering process is introduced as a second order differential linear 

transformation: 

 

𝑦̈(𝑡) = 𝐴𝑎𝑤(𝑡) − 2𝑎𝑦̇(𝑡) − 𝑎2 𝑦(𝑡) 

 

where 𝑤(𝑡) is the output of the sigmoid function 𝑆(𝑉). This second order differential 

equation can be decomposed in a system of two equations, 

 

𝑦̇(𝑡) = 𝑧(𝑡) 
𝑧̇(𝑡) = 𝐴𝑎𝑤(𝑡) − 2𝑎𝑧(𝑡) − 𝑎2𝑦(𝑡) 

 

There are three main state variables in the system, the average membrane potential of 

each of the subpopulations of the system, 𝑦0 for the pyramidal cells and 𝑦1, 𝑦2 for the 

excitatory and inhibitory interneurons, respectively.  

 

Then, the Jansen and Rit model can be described with a set of six differential equations, 

each pair corresponding to each of the populations: 

 

𝑦0̇ = 𝑦3(𝑡) 
𝑦3̇(𝑡) = 𝐴𝑎𝑆(𝑦1(𝑡) − 𝑦2(𝑡)) − 2𝑎𝑦3(𝑡) − 𝑎2𝑦0(𝑡) 

𝑦1̇(𝑡) = 𝑦4(𝑡) 
𝑦4̇(𝑡) = 𝐴𝑎{𝑝(𝑡) + 𝐶2𝑆(𝐶1𝑦0(𝑡))} − 2𝑎𝑦4(𝑡) − 𝑎2𝑦1(𝑡) 

𝑦2̇(𝑡) = 𝑦5(𝑡) 
𝑦5̇(𝑡) = 𝐵𝑏𝐶4𝑆(𝐶3𝑦0(𝑡)) − 2𝑏𝑦5(𝑡) − 𝑏2𝑦2(𝑡) 

 

Where ℎ𝑒 stands for excitatory and ℎ𝑖 inhibitory post-synaptic boxes and 𝑦 = 𝑦1 − 𝑦2 is 

the membrane potential form the main family of neurons, the output (𝑦) we will be using 

to represent the artificial signal for each of the areas. 

 

c) Connecting multiple Jansen-Rit populations 
 

In order to explore the hypothesis that visual evoked potentials are due to an interaction 

between cortical columns, Jansen and co-workers proposed a model in which two 

populations were coupled (Jansen & Rit, 1995). 

 

The purposes of this section are 1) to establish the general expression of the set of ODEs 

that describe a new model of multiple coupled populations and 2) to explain how the 

generalized structural data and special data are incorporated in the model.  
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We are basing this modification of the original model on the assumption that all the 

connections between columns are from pyramidal to pyramidal population and thus are 

always excitatory. The average pulse density of action potentials from the main cells of 

one population, 𝑥(𝑡), is used as an excitatory input to another population of neurons. 

However, as neuronal populations represent distinct and distant cerebral areas, new 

parameters are introduced to account for the structural connection among the areas and 

the delays associated with these connections. For simplicity, we are also assuming that 

the same cortical column model can be used for all the cortical areas of the brain, 

considering that the basic neuronal architecture of the cortex is similar throughout its 

areas. 

 

Inspired by the work developed by Wendling and co-workers (Wendling et al., 2000; 

Wendling et al., 2010; Wendling & Chauvel, 2008) , a gain constant 𝐾𝑖𝑗 is used to define 

the degree of coupling between population 𝑖 and 𝑗. In their work, the 𝐾 constant is usually 

fixed in a range where they obtain the desired output, ignoring the physiological meaning 

of the connections.  

 

At this point is where our new extension of the model introduces a DTI-driven 

connectivity matrix to connect the Jansen and Rit NMMs derived from the so called 

structural connectome (Hagmann et al., 2007), such as  the work done by (Kunze et al., 

2016). In our case, 𝐾 is given by the normalized structural connectivity matrix scaled by 

a factor 𝐺, the first of the free parameters of our BNM (Figure 6). See section 2.6.d for 

an overview of the stability of the system as a function of this parameter.  

 

 
Figure 6. Extension to coupled Jansen and Rit NMMs. On the left, the block diagram where the 

components out of the box represent the extension to the original model.  On the right, the two parameters 

of the model that are scaled with real data to represent the structural connections between the areas. 
 

 

In the work done by Wendling and co-workers (Wendling et al., 2000; Wendling et al., 

2010; Wendling & Chauvel, 2008), they represented the time delay as another pulse-to-

wave box as done by (Jansen & Rit, 1995), but that was inconsistent with a physiological 

representation of the model and, moreover, added two more differential equations per 

connection, increasing its dimensionality. Furthermore, the time constant they use to 

represent the delay was dependent on the number of areas involved in the synaptic 

transmission between known physiological pathways. In case we want to model specific 
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information processing pathways like visual or language processing interconnected areas, 

this approach would be appropriate. In our case, when describing whole brain networks 

based on the structural connection among areas with the goal of comparing model outputs 

to resting state EEG, this approach becomes inconsistent. 

 

Here we propose a simpler and alternative representation of the time delay, proportional 

to the Euclidian distance (𝐷𝑒) between the center of mass of the aforementioned AAL 

areas, and the conduction velocity 𝑣, 𝜏𝐷 = 𝐷𝑒/𝑣 (Figure 6).  For simplicity, this 

conduction velocity is assumed to be homogenous across the brain (Deco et al., 2009). 

 

 

The final equations used to simulate the brain dynamics in a brain region are: 

 
𝑦0̇(𝑡) = 𝑦3(𝑡) 

𝑦3̇(𝑡) = 𝐴𝑎𝑆(𝑦1(𝑡) − 𝑦2(𝑡)) − 2𝑎𝑦3(𝑡) − 𝑎2𝑦0(𝑡) 

𝑦1̇(𝑡) = 𝑦4(𝑡) 

𝑦4̇(𝑡) = 𝐴𝑎 (𝑝(𝑡) + 𝐶2𝑆(𝐶1𝑦0(𝑡)) + ∑ 𝐾𝑖𝑗𝑥𝑗

𝑁

𝑗=1, 𝑗≠𝑖

(𝑡 − 𝜏𝐷
𝑖𝑗
)) − 2𝑎𝑦4(𝑡) − 𝑎2𝑦1(𝑡) 

𝑦2̇(𝑡) = 𝑦5(𝑡) 
𝑦5̇(𝑡) = 𝐵𝑏(𝐶4𝑆(𝐶3𝑦0(𝑡))) − 2𝑏𝑦5(𝑡) − 𝑏2𝑦2(𝑡) 

 

 

The AAL template (Tzourio-Mazoyer et al., 2002) was used to parcellate the brain 

originally into 90 regions, but we were restricted to reduce the parcellation to 78 cortical 

areas according to (Achard, 2006; Gong et al., 2009). We performed such reduction 

because we use subject specific 3D grey matter meshes of each of the subjects and when 

performing the automatic parcellation into the 90 AAL atlas, some of the subcortical areas 

are not represented in any of the nodes. In the end, the model includes 78 cortical areas, 

39 for each of the hemispheres (See Table SI-1 for the names and the represented order 

of the AAL areas). 
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d) Bifurcation analysis 
 

When the input noise 𝑝(𝑡) is varied smoothly the eigenvalues of the fixed points of the 

system of equations that describe the Jansen and Rit NMM move across the complex 

plane leading to Hopf and global bifurcations. For a deep study on the bifurcations that 

characterize Jansen and Rit model of a cortical column see (Grimbert, 2005). To 

summarize it, the Hopf bifurcations generate the alpha activity seen in (Jansen et al., 

1993) (Figure 7, blue) and the Global bifurcations generate the spike-like epileptic 

activity that Wendling and colleges (Wendling et al, 2002; Wendlinget al., 2005) use to 

simulate the SEEG recordings in epileptic patients (Figure 7, orange).  

 

 
Figure 7. Bifurcation diagram and column activity for increasing values of p. A) Bifurcation diagram 

of the system (figure adapted from (Grimbert, 2005)). In yellow we can see the unstable fixed points, in 

green the stable fixed point, in orange the global bifurcations and in blue the Hopf bifurcations. B) Activity 

of a single column for increasing values of p. 
 

When connecting multiple columns (e.g. generating the BNM), we have observed that 

our system stability also changes in a similar way than when varying the input noise 𝑝.  

See (Ableidinger et al.,2017; Ahmadizadeh et al., 2018; David & Friston, 2003; Kunze et 

al., 2016) for an extended study on the effect of the coupling factor in different networks 

of Jansen and Rit models of cortical columns. 

 

We have generated three different BNMs depending on the initial stability (𝐺 = 0) of the 

system and on the underlying connectivity: 

- Case I, background activity. We have set the initial 𝑝 value as gaussian noise with 

a mean (𝑝𝜇) of 90 pulses/s and a standard deviation (𝑝𝜎) of 30 pulses/s (Figure 7 

top). 

- Case II, alpha activity. In this case, we set the parameter 𝑝 similar to the one that 

Jansen and co-workers (Jansen & Rit, 1995)found to generate alpha activity: 𝑝𝜇 =

250 pulses/s and 𝑝𝜎 = 100 pulses/s (Figure 7 bottom). 

- Case III, same as Case I but it integrates randomized structural and distance 

matrices (keeping exactly the same coupling weights and distances). This case is 
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studied to investigate how much of the brain space-time structure is responsible 

for the for the output of the BNM. 

 

In Figure 8 you can see the effect of increasing values of the coupling gain 𝐺 on a random 

node picked form each of the BNM initial cases (We didn’t include Case III since at the 

node level has the same activity as Case I). 

  

 
 
Figure 8. Effect of increasing coupling G in the BNM. (Top) Case I, the initial input noise is set to 

generate background activity (green). For increasing G we see that the system hit upon the two bifurcations, 

global (orange) and Hopf (blue). (Bottom) Case II, the initial conditions are set to generate alpha activity 

(blue). In this case the system returns to the background activity (green) after being set to start in the Hopf 

bifurcation. 
 

As you can see form Figure 8, the system is really sensitive to the coupling factor, leading 

to a similar behavior as for increasing of the input noise 𝑝.  

 

2.6 Functional connectivity estimate 
 

In this section we are going to explain how the FC profile is estimated either from the 

subject specific data (the corresponding source distribution extracted from the EEG and 

MRI of each subject and condition) and form the BNM output.  

 

First, we averaged the source distribution of the real data (see sections 2.1-2.4) for each 

of the 78 cortical areas (mentioned in section 2.5c)). Since we used an automatic 

parcellation of the brain meshes, the output areas where very heterogeneous, ranging from 

~10 to ~1000 number of nodes/area. This lead to an almost equal activity among the 78 

brain regions.  

In order to deal with this issue and the leakage of the signal between regions generated 

from the inversion (zero-lag correlations), we removed the common mode of the time 

series. 

 

What is usually done to remove the zero-lag correlations in source space distribution is 

to orthogonalize the time courses for each pair of nodes (Hipp et al., 2012). Initially, we 

account for ~60 EEG channels, so it is impossible to generate 78 independent 

components.  That's why we couldn't perform the orthogonalization and instead we 

performed the common mode extraction. 
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Following the pipeline stablished in (Cabral et al., 2012), and considering that BOLD 

signal fluctuations observed in the brain at rest are associated to slow fluctuations in the 

power of neuronal oscillations occurring in a particular frequency range (Hipp et al., 

2012), we band-pass filtered the real data and the BNM output (time courses of each of 

the 78 areas) into 5 different frequencies: delta (<4Hz), theta (4-8Hz), alpha (8-14Hz), 

beta (14-30Hz), gamma (30-58Hz) (following the Recommendations for the Practice of 

Clinical Neurophysiology: Guidelines of the International Federation of Clinical 

Physiology (EEG Suppl. 52)). 

 

Then, since the low-frequency component of the envelope fluctuations have been found 

to be optimal for measuring spontaneous functional connectivity (Hipp 2012, Bro2011), 

we first extracted the amplitude envelope using Hilbert transform and then low-pass 

filtered the time courses with a cut-off frequency of 0.5 Hz. 

 

Finally, the Pearson Correlation Coefficient (PCC) was extracted between areas, 

representing the final FC profile of the BNM and real data. 

 

The last step was to correlate the real and simulated FC profiles and see how well our 

model fits the real data. This FC-correlation error function was also used to optimize our 

two parameters, and it is done by comparing the PCC for each pair of parameters 𝐺 and 

𝑣. See Figure 9 for a summary of the pipeline followed. 

 

 

  



 

 17 

 

 

 

 

  

Figure 9. Summary of the pipeline followed. A) Generation of the simulated brain activity in each of 

the 78 AAL areas from Standard Brain Data. B) Processing of the real data to obtain the activity for 

each of the 78 AAL areas. C) Signal processing steps to obtain the FC profile. Note that just one of the 

five frequency bands is shown. 
 

A) 
 

B) 
 

C) 
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3. RESULTS 

 

3.1 Correlation with the underlying connectivity 
 

The relationship between functional and structural connectivity is not trivial and has been 

subject of investigation for several theoretical and computational research groups over 

the last decade (Deco et al., 2009; Honey et al., 2007; Ponce-Alvarez et al., 2015). These 

works have proved using whole-brain network models how the anatomic structure can 

shape spontaneous brain activity on slow fluctuations, showing consistent patterns of 

Functional Connectivity.  

 

In this section we show the correlation between the structural connectivity matrix and the 

generated FC matrix for each of our BNM cases (Figure 10). 

 

 
 

Figure 10. Functional and Structural matrices correlation of the BNM. (left) Correlation maps between 

functional and structural connectivity for each of the cases (See Section 2.5d) and pair of parameters 𝐺 

and 𝑣. (right) FC profile of the BNM in Case I which as the set of parameters that generate the higher 

correlation with the structural connectivity matrix:𝑓𝑟𝑒𝑞 = 4 − 8𝐻𝑧, 𝜌 = 0.74, 𝐺 = 28, 𝑣 = 16𝑚/𝑠. Note 

that the parameter range for Case II is lower since it was enough to englobe the system bifurcations. 
 

In Figure 10 (left) we can see that the underlying structural connectivity of the BNM has 

indeed a strong effect in the FC profiles, achieving maximum values of 𝜌𝐼 = 0.74, 𝜌𝐼𝐼 =
0.67 and 𝜌𝐼𝐼𝐼 = 0.74, respectively. Note that Case III has the same initial noise conditions 

than Case I (See Figure 8) but with a randomized structural and distance connectivity 

matrices.   
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The emergence of these correlations is obtained when the coupling gain 𝐺 is such that the 

system operates in the bifurcations (see Figure 8). For Case I and III, when 𝐺~10, is 

when the system experiences the global bifurcations (Figure 8, orange line, spiking 

regime), shaping the structural connectivity behind.  

 

The other regime where we observe the highest correlation is when the whole BNM 

produces alpha activity (Figure 8, blue line, alpha activity, 8-14 Hz), clearly seen in 

Figure 10 for the Case II in the alpha frequency band. Note that when 𝐺 = 0, for Case II, 

the system is already operating in the Hopf bifurcation, but we don’t start to see the 

correlation with the structure connectivity until 𝐺 reaches higher values, which denotes 

again the high impact of the Structural Connectivity in the BNM. 

 

In Case I (and Case III), for increasing values of 𝐺 the system goes from background 

activity, to spiking activity (4-8Hz), to alpha activity (4-14Hz) and finally returns to 

background (see Figure 8). This variety of frequency oscillations that the system 

experiences is reflected in the mean correlation of each of the narrow bands. In Case II, 

since the BNM just creates alpha activity, we just see a higher correlation in the alpha 

band.  

 

3.2 Correlation with real data 
 

The FC profiles obtained with simulations were compared with the ones from real EEG 

data (subject 60 with eyes open condition, EO) for a range of model parameters 𝐺 and 𝑣 

like the previous section. As it can be observed in Figure 11A, the fit between real and 

simulated FC profiles is really sensitive to the coupling gain 𝐺 and mean velocity, 𝑣. To 

ensure the significance of the results we have also masked the obtained results with a 𝑝 −
𝑣𝑎𝑙𝑢𝑒 < 0.001 (Figure 11B).  Figure 13 shows the correlation maps for the subject 60 

eyes closed condition (EC) and subject 55 EO, with Case I BNM. 

 

The model shows the best agreement with reality for similar range of parameters as the 

ones mentioned in the previous section, where the system operates in the edge of 

bifurcations (Figure 8). Even though in this case we observe noteworthy differences 

between Case I and Case III, where in the latter there’s no correlation at all with real data. 

This shows the big relevance of the underlying structural connectivity when comparing 

to the real data. 

 

We also find in Figure 11 that the mean functional correlations are stronger in theta band 

(4-8Hz) for Case I and alpha band (8-14Hz) for Case II, with higher values in Case I. This 

significant difference is due to the higher range of frequency oscillations that Case I 

exhibits for increasing values of 𝐺 (See figure 8, where it Case I is shown to reproduce 

theta, orange line, and alpha, blue line, oscillations). 

 

The FCs, envelope correlation matrices, for each frequency band of real and simulated 

data obtained where the model showed the best agreement with the real FC estimate (Case 

I, 𝐺 = 30, 𝑣 = 12𝑚/𝑠, freq range = 4 − 8𝐻𝑧) are represented in Figure 12.  
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A) 
 

B) 
 

Figure 11. Correlation of real and simulated FC profiles as a function of 𝑮 and 𝒗. A) Correlation 

of the simulated FC with the real FC profiles extracted from Subject 60 with EO condition. B)  Same 

as A) but with a mask of a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.001. 

 

Figure 12. FC profiles for the best parameter fit in Case I. (top) Simulated FC profiles of each of 

the studied frequency bands. (bottom) Real FC profiles of subject 60 with EO condition. 
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Figure 13. Correlation maps for subject 60-EC and 55-EO. (top) Simulated FC profiles of each of 

the studied frequency bands. (bottom) Real FC profiles of subject 60 with EO condition. 

 

3.3 Subject and condition variability 
 

In this section we compare the same results for each of the subjects (Subject 60 and 55) 

and conditions (eyes open, EO, and eyes closed, EC) to observe the inter and intra subject 

variability. Figure 14 shows the mean, maximum and minimum correlation between the 

BNM – Case I and each of the subjects and conditions. We have chosen to compare with 

real data Case I BNM for its larger range of neural activity types when varying the 𝐺 

factor. 

 

 
 
Figure 14. Inter and intra subject variability in the FC profile comparison with the BNM in Case I. 

(left) Mean Correlation within subjects and conditions for Case I BNM in each frequency range. (center) 

Minimum correlation. (right) Maximum correlation. 
 

As shown in Figure 14 there are significant differences between subject and conditions. 

In general, subject 60 show higher correlations with the simulated data than subject 55, 

which has more set of parameters that lead to a negative correlation between FCs. 
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Moreover, subject 60 has a notably higher mean correlation for alpha and beta frequencies 

compared with subject 55.   
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4. DISCUSSION 
 

 

Relevance of the structural connectivity and coupling gain G 

 

The FC extracted from the BNM proposed in this study show a tight relationship with the 

underlying structural connectivity (Figure 10, 𝜌𝑚𝑎𝑥 = 0.74), even higher than shown in 

previous studies (Cabral et al., 2012). The highest correlation occur when the whole-brain 

model operates at the Hopf bifurcations of the Jansen and Rit NMM. This increased 

correlation when the model parameters are such that the system operates at the 

bifurcations can is also found when comparing real FC profiles and simulated FC profiles 

(Figure 11). It seems to be a common factor of these type of models, since other studies 

have observed similar outcomes (Cabral et al., 2011; Deco et al., 2009). 

 

Another fact that adds importance to the underlying structural connectivity data is the 

comparison with simulated activity of Case III (with random distributed structural and 

distance data). We can observe that, even its FC profiles of Case III are strongly correlated 

with the underlying anatomical connectivity (Figure 10), they do not show any correlation 

with real data FC profiles (Figure 11).  

 

The relevance of the structural connectivity observed in the mentioned results, together 

with the fact that the model stability is really sensitive to the coupling gain, rise the belief 

that the personalization of the model (fitting of the coupling 𝐺 parameter) could be 

improved using subject specific DTI-driven structural connectivity matrix. 

 

 

Mean velocity of transmission 

 

The model stability has shown lower sensitivity to the mean velocity of transmission for 

the range of the study (1 − 20𝑚/𝑠). These results could be enhanced if instead of using 

the Euclidean distance between the center of masses of each of the AAL regions we could 

compute the geodesic distance which seems to be more realistic. Such geodesic distance 

could be extracted from the brain meshes of the subjects, instead of using generalized 

data. 

 

Further studies regarding parameter fitting of the velocity of could be done. For example, 

comparing healthy and amyotrophic lateral sclerosis (ALS) patients. It could be 

investigated if the proposed parameter fitting could be a predictor of the ALS chronic 

disease, showing an increased correlation for a lower range of 𝑣 parameter in ALS 

subjects compared with control. 

 

 

Positive correlation with BOLD fluctuations 

 

An important fact to take in account is that we have observed a majority of positive 

correlations in each of the frequency bands when generating the real and simulated FC 

profiles. This is contradictory with the evidence shown in (Mukamel et al., 2005) and 

several studies mentioned in (Cabral et al., 2014), which point to an inverse correlation 

between BOLD signals and the power of alpha (8-14Hz) and beta (13-30Hz) brain waves 

(Figure 3).  
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Limitations 

 

There are several limitations we have faced in this project that lead to future 

improvements if possible.  

 

First, we had not enough parcellated areas. We had a constrain of a 78 cortical regions 

because the automatic segmentation didn’t recognize some of the areas in the subject’s 

head models. We could either change such automatic parcellation and segment each of 

the areas in homogeneous (regarding the number of nodes) smaller regions. It has been 

shown that an atlas with approximately 140 brain regions produces a good agreement 

with experimental data (Proix et al., 2016). 

 

Another clear limitation has been the ratio of number of electrodes and simulated areas. 

We had just 60 electrodes per subject, thus was not possible to generate 78 independent 

areas. Moreover, the detailed study of (Hassan et al., 2014) show a clear improvement in 

accuracy of different Inverse Methods, where the wMNE (similar to the one we are using) 

shows the best result when accounting for 180 electrodes. 

 

A further study of the effect of the EEG pre-processing has to be done to acknowledge 

the effects that this cleaning has on the estimated FC profile. It’s still unclear if the 

interpolation of the bad channels could add some noise to the process.  

 

 

An open door for further studies in virtual brains 

 

This present study is a proof of concept to show that the proposed modelling approach of 

the BNM (a combination of structural connectivity data and Jansen and Rit NMM) has 

the potential to represent meaningful features of EEG data. It also shows that the pipeline 

used to extract the functional connectivity and further correlation between simulated and 

real data is sensitive to subject’s variability and conditions. 

 

Thus, further studies can be done with this modelling approach to gain insight into the 

effect of neurological therapies such as transcranial stimulation (tCS, TMS) (Kunze et al., 

2016; Merlet et al., 2013; Molaee-Ardekani et al., 2013; Muldoon et al., 2016) or drugs 

(Kurbatova et al., 2016; Liang et al., 2015) on individual subjects, and therefore could to 

lead to the development of personalized treatment strategies. 

 

Jansen and Rit model is able to simulate either physiological and physiopathological 

neuronal signals (Wendling et al., 2000; Wendling et al., 2010; Cabral et al., 2012). This 

also opens the possibility to tune such NMM in order to reproduce different frequency 

bands, such as epileptic spikes, and perform the same fit of parameters (or other 

parameters of the model that regulate the excitability of the system, such as 𝐴), and 

observe which parameter range reproduce the best fit with the patient’s data to further 

develop a personalized therapy.  
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SUPPORTING INFORMATION 
 

# Left hemisphere # Right Hemisphere 

1 L Precentral 40 R Temporal Inf 

2 L Frontal Sup 41 R Tempr Pol Mid 

3 L Front Sup Orb 42 R Temporal Mid 

4 L Front Mid 43 R Tempr Pol Sup 

5 L Front Mid Orb 44 R Temporal Sup 

6 L Front Inf Ope 45 R Heschl 

7 L Front Inf Tri 46 R Paracentr Lob 

8 L Front Inf Orb 47 R Precuneus 

9 L Rolandic Oper 48 R Angular 

10 L Supp Motor Ar 49 R SupraMarginal 

11 L Olfactory 50 R Parietal Inf 

12 L Front Sup Med 51 R Parietal Sup 

13 L Front Med Orb 52 R Postcentral 

14 L Rectus 53 R Fusiform 

15 L Insula 54 R Occipital Inf 

16 L Cingulum Ant 55 R Occipital Mid 

17 L Cingulum Mid 56 R Occipital Sup 

18 L Cingulum Post 57 R Lingual 

19 L ParaHippocamp 58 R Cuneus 

20 L Calcarine 59 R Calcarine 

21 L Cuneus 60 R ParaHippocamp 

22 L Lingual 61 R Cingulum Post 

23 L Occipital Sup 62 R Cingulum Mid 

24 L Occipital Mid 63 R Cingulum Ant 

25 L Occipital Inf 64 R Insula 

26 L Fusiform 65 R Rectus 

27 L Postcentral 66 R Front Med Orb 

28 L Parietal Sup 67 R Front Sup Med 

29 L Parietal Inf 68 R Olfactory 

30 L SupraMarginal 69 R Supp Motor Ar 

31 L Angular 70 R Rolandic Oper 

32 L Precuneus 71 R Front Inf Orb 

33 L Paracentr Lob 72 R Front Inf Tri 

34 L Heschl 73 R Front Inf Ope 

35 L Temporal Sup 74 R Front Mid Orb 

36 L Tempr Pol Sup 75 R Front Mid 

37 L Temporal Mid 76 R Front Sup Orb 

38 L Tempr Pol Mid 77 R Frontal Sup 

39 L Temporal Inf 78 R Precentral 

 

Table SI-1. Cortical regions of the AAL areas. 
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