Hyperparameter-tuned prediction of somatic symptom disorder using functional near Infrared spectroscopy based dynamic functional connectivity

To cite this article before publication: Aykut Eken et al 2019 J. Neural Eng. in press https://doi.org/10.1088/1741-2552/ab50b2

Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2019 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.
Hyperparameter-Tuned Prediction of Somatic Symptom Disorder Using Functional Near Infrared Spectroscopy Based Dynamic Functional Connectivity

Aykut Eken1,2, Burçin Çolak3, Neşe Burcu Bal4, Adnan Kuşman3, Selma Çilem Kızılpinar3, Damla Sayar Akaslan3, Bora Baskak3,5

1. ICFO- Institut de Ciències Fotòniques Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
2. Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain
3. Ankara University, Faculty of Medicine, Department of Psychiatry, Ankara, Turkey
4. Health Sciences University, Department of Psychiatry, Istanbul, Turkey
5. Ankara University, Brain Research and Application Center, Ankara, Turkey

Corresponding author

Aykut Eken
The Institute of Photonic Sciences (ICFO)
Medical Optics Research Group
Av. Carl Friederich Gauss, 3, Castelldefels
Barcelona, Spain
Tel: +34 935542279
Fax: +34 935534000
e-mail: aykut.eken@icfo.eu
ABSTRACT

Objective: Somatic Symptom Disorder (SSD) is a reflection of medically unexplained physical symptoms that lead to distress and impairment in social and occupational functioning. SSD is phenomenologically diagnosed and its neurobiology remains unsolved.

Approach: In this study, we performed hyper-parameter optimized classification to distinguish 19 persistent SSD patients and 21 healthy controls by utilizing Functional Near Infrared Spectroscopy via performing two painful stimulation experiments, Individual Pain Threshold (IND) and Constant Sub-Threshold (SUB), that include conditions with different levels of pain (INDc & SUBc) and brush stimulation. We estimated dynamic functional connectivity time series by using sliding window correlation method and extracted features from these time series for these conditions and different cortical regions.

Main Results: Our results showed that we found highest specificity (85%) with highest accuracy (82%) and 81% sensitivity using SVM classifier by utilizing connections between Right Superior Temporal– Left Angular Gyri, Right Middle Frontal (MFG) – Left Supramarginal Gyri and Right Middle Temporal – Left Middle Frontal Gyri from INDc condition.

Significance: Our results suggest that fNIRS may distinguish subjects with SSD from healthy controls by applying pain in levels of individual pain-threshold and bilateral MFG, left Inferior Parietal and Right Temporal Gyrus might be robust biomarkers to be considered for SSD neurobiology.

Keywords: Somatic Symptom Disorder, fNIRS, Machine Learning, Dynamic Functional Connectivity, Hyperparameter Optimization
1. Introduction

Somatoform disorders are characterized by the presence of physical symptoms that suggest a general medical condition which are not fully explained by a general medical condition, by the direct effects of a substance, or by another mental disorder. According to the 5th version of Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric Association, 2013) somatoform disorder definition was replaced by ‘somatic symptom and related disorders’ and encompass a group of disorders such as somatic symptom disorder (SSD), illness anxiety disorder and conversion disorder. Particularly, the persistent SSD diagnosis require existence of somatic symptoms accompanied by excessive thoughts, feelings or behaviors related with somatic symptoms that endure more than 6 months. According to the DSM-5, in order to meet the diagnostic criteria, the symptoms must lead to clinically significant distress in daily life or impairment in social, occupational, or other areas of functioning.

Epidemiologically, the prevalence of SSD is estimated as 5-7% in the general population (American Psychiatric Association, 2013) and increases up to 17% in primary care admissions (Kurlansik & Maffei, 2016). Economic burden is also devastating. This group of disorders are associated with a high economic cost not only by overutilization of the health care system (Barsky et al., 2005), but unemployment and early retirement rates as well as absenteeism from work are also considerably high (Konnopka et al., 2013). In spite of this economic burden, current diagnosis of these disorders solely depends on direct observation
of symptoms and underlying neurobiology is not clear. Cognitive alterations in perception, processing an attribution of pain have been proposed (Barsky et al., 1988) and structural and functional neuroimaging studies revealed some of the underlying neural circuits. In an fMRI study, it was showed that patients display increased activity as response to painful stimuli in known pain processing regions such as thalamus, basal ganglia, operculo-insular cortex as well as prefrontal and temporal cortices (Stoeter et al., 2007). In another study Yoshino and colleagues found evidence regarding higher activity during resting state in the precentral gyrus which is also an element of the pain network (Yoshino et al., 2014). Browning and colleagues reviewed neuroimaging studies in somatoform disorders and concluded that when compared with nonclinical groups, somatoform diagnoses are associated with increased activity of limbic and cortical regions in response to painful stimuli and a generalized decrease in gray matter density (Browning et al., 2011). But great majority of these studies enrolled subjects with former definition of somatoform pain disorder and fibromyalgia where the prominent symptom was pain. Very few studies of patients with former diagnosis of ‘somatization disorder’ with a range of somatic symptoms have been published which reported anomalies in resting activation (Garcia-Campayo et al., 2001; Hakala et al., 2006) and some structural differences (Hakala et al., 2004). Browning and colleagues commented that published studies in somatization disorder involve small samples (maximum n=11, with similar cohorts of patients repeatedly analyzed in different studies) and therefore clear conclusions cannot be drawn about the patterns of activation associated with this diagnosis (Browning et al., 2011). Ever since that review, a literature survey fails to identify a functional neuroimaging study which evaluates response to painful stimuli in subjects with persistent somatic symptom disorder. Another review that focuses on functional somatic syndromes showed that central sensitization might be an common indicator for them (Bourke et al., 2015).
The vast majority of the studies conducted on somatoform disorders were performed using Functional Magnetic Resonance Imaging (fMRI). However, fMRI has several limitations compared with other neuroimaging modalities such as being expensive, noisy scanner, strict restrictions of motion and stressful environment that may cause several false positive activations (Scarapicchia et al., 2017) particularly in psychiatric populations (Baskak, 2018). fNIRS is a relatively new imaging technology capable of measuring cortical activity and can be simultaneously used with EEG (Chiarelli et al., 2018; Chiarelli et al., 2017; Dutta et al., 2015; Kassab et al., 2018; Koo et al., 2015; Peng et al., 2016). To perform experiments using fNIRS in a more naturalistic environment is more possible than using fMRI (Rolfe, 2000). Since fNIRS is relatively insensitive to motion artifacts, subjects can be examined in a natural sitting position, without any surrounding distraction (Takizawa et al., 2008). fNIRS may especially be suitable for subjects with SSD who may be sensitive to physical restriction and discomfort associated with MRI environment. Because, there are some indirect evidences that MRI environment leads to significant changes in hypothalamo-pituitary-adrenal axis (Tessner et al., 2006), a system which is found disturbed in subjects with functional somatic symptoms (Janssens et al., 2012).

Several techniques adopted from machine learning approaches have been utilized in neuroimaging for the classification of several pain related psychiatric disorders (see reviews (Davis et al., 2017; Lotsch & Ultsch, 2018)). In details, these algorithms were successfully employed for the classification of subjects with fibromyalgia (Gokcay et al., 2018; Lopez-Sola et al., 2017; Robinson et al., 2015; Sundermann et al., 2014) as well as chronic back pain (Callan et al., 2014; Lee et al., 2018; Mano et al., 2018).
We aimed to examine cortical activity in response to painful stimuli in subjects with DSM-5 persistent SSD with fNIRS. We tried to predict membership to SSD diagnostic category with sufficient sensitivity and accuracy by using features extracted from fNIRS signals acquired after an experimental task that includes painful and non-painful stimulation. Here it is important to note that as most psychiatric diagnoses, current diagnosis of SSD is made by assessing clusters of symptoms in a psychiatric interview and our aim is not to test a costly neuro-imaging based alternative. However, construct validity of psychiatric diagnoses is of great concern (Jablensky, 2016) and neurophysiologic measures including functional neuroimaging are proposed to test validity of these disorders by investigating possible biomarkers which may help to reveal the true neurobiology behind these (Andreasen, 1995; Linden & Fallgatter, 2009) disorders. We accordingly aimed (i) to assess robust, task-specific and region-based biomarker/s for SSD by using fNIRS, and (ii) to create a hyperparameter-tuned machine learning model by using these biomarkers that maximize the accuracy, sensitivity and specificity.

2. Methods

2.1. Participants

The index group comprised 19 consecutive outpatients with SSD. Participants were evaluated by two experienced psychiatrists and those diagnosed with DSM-5 persistent SSD were invited to participate. Inclusion criteria were (i) age between 18-65, (ii) being predominantly right handed, (iii) willing to participate into the study. Subjects with (i) major depressive episode (ii) history of neurological disorders, (iii) chronic general medical condition, (iv) head trauma (resulting in loss of consciousness longer than 30 minutes), as well as (v) alcohol and/or substance use disorder (except tobacco) were excluded. Depression and
SSD are highly comorbid disorders and although we excluded clinically established cases of depression, sub clinical depressive symptoms may also interfere with cortical processing of pain (Rodriguez-Raecke et al., 2014; Strigo et al., 2008; Vossen et al., 2006). We therefore applied Beck Depression Inventory (BDI) (Hisli, 1998) and subjects with BDI scores over 30 which corresponds to depressive symptoms above moderate level were also excluded (N=11). Thus the index group was composed of the remaining 19 subjects. The control group consisted of 21 healthy participants were also evaluated by two experienced psychiatrists in order to rule out existence or history of a psychiatric disorder and psychotropic drug use. Inclusion and exclusion criteria were the same as the index group. Handedness was assessed with Edinburgh Handedness Inventory (Oldfield, 1971). All participants stopped the intake for analgesic drugs at least 48 h before the experiment. They were also informed about the protocol that was approved by the Ankara University Ethical Board Committee (No. 04-240-18). The protocol was performed according to the Helsinki declaration and subjects signed informed consent before participation.

2.2. Pain Threshold Measurement

Pain threshold measurement was performed by applying Quantitative Sensory Testing (QST) method via electronic Von Frey (eVF) aesthesiometer (Ugo Basile Co, Italy) as previously published (Ambalavanar et al., 2006; KuKanich et al., 2005; Tena et al., 2012; Vivancos et al., 2004). We applied eVF five times on to the right thumb of every participant and they are asked to give a verbal response as soon as they feel unpleasant. After these five measurement, we calculated the average of this five measurements and result was recorded as individual mechanical pain threshold.
2.3. Experimental Design

We conducted two different painful stimulation experiments by using eVF to apply painful stimuli (i) at a constant sub-threshold level (SUB) and (ii) at the individual pain threshold level (IND). In both experiments, we also performed brush stimulation (BS) as the control condition. In BS condition, we used a toothbrush and applied it manually to the thumb 24 times during the stimulation period. In the SUB experiment during painful stimulation condition (SUBc), a constant painful stimulus (130 gf/cm$^2$) and in the IND experiment during painful stimulation condition (INDc) stimulus at the individual pain threshold that was calculated for each individual was applied. After 50 seconds resting period, we applied 24 seconds painful stimulation and 40 seconds resting period as three trials and 24 seconds brush stimulation with 40 seconds resting period as three trials. The experimental design is illustrated in Figure 1.a. While performing INDc and SUBc, the applicant applied the painful stimulation 12 times during 24 seconds. In Figure 1.b and c., painful stimulation for one trial and eVF are shown respectively. After every painful stimulus trial, we applied the Visual Analog Scale (VAS) to the participant to rate the pain intensity between 0-100.
Figure 1. Experimental design representation for SUB and IND. (a) Experimental block design (b) Painful stimulation in one pain condition. In this graph, the waveform represents a constant sub-threshold painful stimulation (SUBc) for 24 sec. (c) Electronic Von-Frey Anesthesiometer that was used to painful stimulation application.

2.4. fNIRS System

In our study, fNIRS experiments were carried out at Ankara University Brain Research Center (AÜBAUM) with Hitachi ETG-4000 continuous wave (CW) fNIRS system (Hitachi Co., Japan). Optical near-infrared light with two different wavelengths (695 and 830 nm) were sent to the head surface via a source optode and captured back by a detector optode. We used the 3 x 11 optode configuration including 52 channels. Source - detector distance were 2.5 cm. Sampling frequency was 10 Hz.

2.5. Probe Positioning

While positioning the probe on the scalp, we utilized the EEG 10-20 system to place the probe set. Due to performing a painful stimulation experiment, we focused on placing probes around
the postcentral gyrus that corresponds to the C3 and C4 channels in EEG 10-20 systems according to the previous studies (Koessler et al., 2009; Okamoto et al., 2004). In this system, 50% of the distance from nasion to inion corresponds to the channel Cz. After defining the position of Cz, we set the 3 x 11 probe holders for each hemisphere over the line passing through both ears. C3 and C4 electrode positions were defined by measuring the distance between both tragi, and 30% of this value gave us the position of C3 from left tragus and C4 from the right tragus, which corresponded to the left and right SI, respectively. Detector numbers 17 and 22 were placed onto the C3 and C4 electrode positions that correspond to left and right postcentral gyrus according to the previous studies. After positioning the probe holder we marked source and detector positions by using a three-dimensional digitizer (Polhemus Co., Vermont) to determine the exact position of each channel in a further step. After acquiring the position file, we utilized it for spatial registration to the Montreal Neurological Institute (MNI) template to determine the corresponding landmarks using NIRS analysis package (Fekete et al., 2011). Then, we averaged coordinate values of all participants (Asano et al., 2004). To obtain brain regions corresponding to MNI coordinates, we used LONI Probabilistic Brain Atlas (LPBA 40) (Shattuck et al., 2008). Channel configuration on the head is shown in Figure 2. Channel numbers and corresponding cortical regions with average MNI coordinates are shown in Table 1.
Figure 2. Channel and optode configuration of 3 x 11 probe setting. In this figure, locations that are represented as squares are channels. White circles that include numbers in black are detectors. Red circles that include numbers in black are sources. R : Right, L : Left

2.6. Data Analysis

We first converted our optical density time series to concentration changes of Oxy-hemoglobin ($\Delta$HbO$_2$) and De-oxyhemoglobin ($\Delta$Hb) time series by using Modified Beer–Lambert law (Cope & Delpy, 1988). After this procedure, we performed preprocessing to $\Delta$HbO$_2$ and $\Delta$Hb signals and performed a region of interest (ROI) analysis using only channel information and $\Delta$HbO$_2$ due to having higher SNR than $\Delta$Hb (Homae et al., 2010; Montero-Hernandez et al., 2018; Niu et al., 2011; Zhang et al., 2010) and it was more associated with CBF than $\Delta$Hb was (Strangman et al., 2002). We performed sliding window correlation (SWC) (Sakoglu et al., 2010) that was previously used in fNIRS (Z. Li et al., 2015) to obtain dynamic functional connectivity (dFC) changes by using time series in regions. After extracting dFC changes and averaging them according to the different conditions INDc, SUBc and BS, mean
averaged dFC values were used to create a feature vector for these conditions. Among these extracted features, we selected the most discriminative features by using least absolute shrinkage and selection operator (LASSO). Finally, we performed classification by using these features and utilizing different classification methods with defined optimum hyperparameters via Bayesian optimization. Our whole data analysis procedure are shown in Figure 3.

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Probability</th>
<th>Region</th>
<th>Mean X</th>
<th>Mean Y</th>
<th>Mean Z</th>
<th>Std. Dev (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.93</td>
<td>R middle occipital gyrus</td>
<td>52</td>
<td>-75</td>
<td>22</td>
<td>14.26</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>R angular gyrus</td>
<td>54</td>
<td>-64</td>
<td>44</td>
<td>11.92</td>
</tr>
<tr>
<td>3</td>
<td>0.88</td>
<td>R superior parietal gyrus</td>
<td>46</td>
<td>-54</td>
<td>60</td>
<td>9.09</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>R superior parietal gyrus</td>
<td>31</td>
<td>-48</td>
<td>74</td>
<td>6.85</td>
</tr>
<tr>
<td>5</td>
<td>0.83</td>
<td>R superior parietal gyrus</td>
<td>11</td>
<td>-45</td>
<td>79</td>
<td>5.89</td>
</tr>
<tr>
<td>6</td>
<td>0.69</td>
<td>L superior parietal gyrus</td>
<td>-12</td>
<td>-45</td>
<td>78</td>
<td>6.27</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>L superior parietal gyrus</td>
<td>-32</td>
<td>-49</td>
<td>71</td>
<td>6.64</td>
</tr>
<tr>
<td>8</td>
<td>0.78</td>
<td>L angular gyrus</td>
<td>-46</td>
<td>-56</td>
<td>58</td>
<td>8.25</td>
</tr>
<tr>
<td>9</td>
<td>0.97</td>
<td>L angular gyrus</td>
<td>-53</td>
<td>-68</td>
<td>41</td>
<td>11.21</td>
</tr>
<tr>
<td>10</td>
<td>0.98</td>
<td>L middle occipital gyrus</td>
<td>-51</td>
<td>-79</td>
<td>19</td>
<td>13.35</td>
</tr>
<tr>
<td>11</td>
<td>0.58</td>
<td>R middle occipital gyrus</td>
<td>60</td>
<td>-67</td>
<td>6</td>
<td>14.97</td>
</tr>
<tr>
<td>12</td>
<td>0.91</td>
<td>R angular gyrus</td>
<td>62</td>
<td>-56</td>
<td>32</td>
<td>12.36</td>
</tr>
<tr>
<td>13</td>
<td>0.64</td>
<td>R angular gyrus</td>
<td>56</td>
<td>-45</td>
<td>53</td>
<td>9.12</td>
</tr>
<tr>
<td>14</td>
<td>0.64</td>
<td>R superior parietal gyrus</td>
<td>42</td>
<td>-37</td>
<td>68</td>
<td>7.68</td>
</tr>
<tr>
<td>15</td>
<td>0.69</td>
<td>R postcentral gyrus</td>
<td>22</td>
<td>-31</td>
<td>77</td>
<td>4.81</td>
</tr>
<tr>
<td>16</td>
<td>0.34</td>
<td>R precentral gyrus</td>
<td>-1</td>
<td>-29</td>
<td>76</td>
<td>4.18</td>
</tr>
<tr>
<td>17</td>
<td>0.60</td>
<td>L postcentral gyrus</td>
<td>-25</td>
<td>-33</td>
<td>75</td>
<td>6.10</td>
</tr>
<tr>
<td>18</td>
<td>0.62</td>
<td>L superior parietal gyrus</td>
<td>-45</td>
<td>-39</td>
<td>65</td>
<td>6.90</td>
</tr>
<tr>
<td>19</td>
<td>0.67</td>
<td>L angular gyrus</td>
<td>-58</td>
<td>-49</td>
<td>49</td>
<td>9.19</td>
</tr>
<tr>
<td>20</td>
<td>0.93</td>
<td>L angular gyrus</td>
<td>-61</td>
<td>-61</td>
<td>26</td>
<td>12.15</td>
</tr>
<tr>
<td>21</td>
<td>0.60</td>
<td>L middle occipital gyrus</td>
<td>-57</td>
<td>-73</td>
<td>1</td>
<td>13.82</td>
</tr>
<tr>
<td>22</td>
<td>0.56</td>
<td>L middle temporal gyrus</td>
<td>68</td>
<td>-48</td>
<td>15</td>
<td>12.27</td>
</tr>
<tr>
<td>23</td>
<td>0.81</td>
<td>R supramarginal gyrus</td>
<td>67</td>
<td>-37</td>
<td>40</td>
<td>10.18</td>
</tr>
<tr>
<td>24</td>
<td>0.74</td>
<td>R supramarginal gyrus</td>
<td>54</td>
<td>-28</td>
<td>60</td>
<td>8.76</td>
</tr>
<tr>
<td>25</td>
<td>0.60</td>
<td>R precentral gyrus</td>
<td>33</td>
<td>-20</td>
<td>73</td>
<td>7.97</td>
</tr>
<tr>
<td>26</td>
<td>0.63</td>
<td>R precentral gyrus</td>
<td>10</td>
<td>-15</td>
<td>77</td>
<td>6.10</td>
</tr>
<tr>
<td>27</td>
<td>0.72</td>
<td>L precentral gyrus</td>
<td>-14</td>
<td>-16</td>
<td>78</td>
<td>6.96</td>
</tr>
<tr>
<td>28</td>
<td>0.69</td>
<td>L postcentral gyrus</td>
<td>-38</td>
<td>-23</td>
<td>71</td>
<td>7.16</td>
</tr>
<tr>
<td>29</td>
<td>0.74</td>
<td>L supramarginal gyrus</td>
<td>-56</td>
<td>-32</td>
<td>55</td>
<td>8.54</td>
</tr>
<tr>
<td>30</td>
<td>0.92</td>
<td>L supramarginal gyrus</td>
<td>-66</td>
<td>-42</td>
<td>34</td>
<td>11.17</td>
</tr>
<tr>
<td>31</td>
<td>0.82</td>
<td>L middle temporal gyrus</td>
<td>-66</td>
<td>-54</td>
<td>8</td>
<td>13.08</td>
</tr>
<tr>
<td>32</td>
<td>0.92</td>
<td>R middle temporal gyrus</td>
<td>71</td>
<td>-39</td>
<td>-5</td>
<td>13.66</td>
</tr>
<tr>
<td>33</td>
<td>0.50</td>
<td>R supramarginal gyrus</td>
<td>71</td>
<td>-27</td>
<td>22</td>
<td>11.12</td>
</tr>
<tr>
<td>34</td>
<td>0.86</td>
<td>R supramarginal gyrus</td>
<td>64</td>
<td>-17</td>
<td>46</td>
<td>9.36</td>
</tr>
<tr>
<td>35</td>
<td>0.53</td>
<td>R postcentral gyrus</td>
<td>45</td>
<td>-9</td>
<td>63</td>
<td>8.87</td>
</tr>
<tr>
<td>36</td>
<td>0.83</td>
<td>R superior frontal gyrus</td>
<td>21</td>
<td>-2</td>
<td>74</td>
<td>6.90</td>
</tr>
<tr>
<td>37</td>
<td>0.63</td>
<td>L superior frontal gyrus</td>
<td>-2</td>
<td>-1</td>
<td>73</td>
<td>6.40</td>
</tr>
<tr>
<td>38</td>
<td>0.61</td>
<td>L superior frontal gyrus</td>
<td>-26</td>
<td>-4</td>
<td>72</td>
<td>7.61</td>
</tr>
<tr>
<td>39</td>
<td>0.63</td>
<td>L postcentral gyrus</td>
<td>-49</td>
<td>-12</td>
<td>60</td>
<td>8.02</td>
</tr>
<tr>
<td>40</td>
<td>0.75</td>
<td>L supramarginal gyrus</td>
<td>-64</td>
<td>-22</td>
<td>41</td>
<td>9.88</td>
</tr>
<tr>
<td>41</td>
<td>0.91</td>
<td>L superior temporal gyrus</td>
<td>-69</td>
<td>-33</td>
<td>16</td>
<td>11.65</td>
</tr>
<tr>
<td>42</td>
<td>0.55</td>
<td>L middle temporal gyrus</td>
<td>-67</td>
<td>-45</td>
<td>-12</td>
<td>13.41</td>
</tr>
<tr>
<td>43</td>
<td>0.71</td>
<td>R superior temporal gyrus</td>
<td>71</td>
<td>-18</td>
<td>3</td>
<td>13.16</td>
</tr>
<tr>
<td>44</td>
<td>0.86</td>
<td>R postcentral gyrus</td>
<td>68</td>
<td>-8</td>
<td>29</td>
<td>11.35</td>
</tr>
<tr>
<td>45</td>
<td>0.82</td>
<td>R precentral gyrus</td>
<td>55</td>
<td>2</td>
<td>50</td>
<td>9.95</td>
</tr>
<tr>
<td>46</td>
<td>0.67</td>
<td>R middle frontal gyrus</td>
<td>34</td>
<td>9</td>
<td>65</td>
<td>8.52</td>
</tr>
<tr>
<td>47</td>
<td>1.00</td>
<td>R superior frontal gyrus</td>
<td>10</td>
<td>12</td>
<td>71</td>
<td>7.07</td>
</tr>
<tr>
<td>48</td>
<td>1.00</td>
<td>L superior frontal gyrus</td>
<td>-14</td>
<td>12</td>
<td>71</td>
<td>7.45</td>
</tr>
<tr>
<td>49</td>
<td>0.90</td>
<td>L middle frontal gyrus</td>
<td>-39</td>
<td>7</td>
<td>62</td>
<td>8.59</td>
</tr>
<tr>
<td>50</td>
<td>0.73</td>
<td>L precentral gyrus</td>
<td>-58</td>
<td>-3</td>
<td>45</td>
<td>9.50</td>
</tr>
<tr>
<td>51</td>
<td>0.77</td>
<td>L postcentral gyrus</td>
<td>-67</td>
<td>-13</td>
<td>22</td>
<td>10.96</td>
</tr>
<tr>
<td>52</td>
<td>0.90</td>
<td>L middle temporal gyrus</td>
<td>-70</td>
<td>-24</td>
<td>-4</td>
<td>12.23</td>
</tr>
</tbody>
</table>
Table 1. Channel numbers and average coordinate positions with corresponding cortical structures registered onto MNI space after using LPBA 40 cortical atlas. Probability values were obtained from LPBA 40 cortical atlas. (L : Left, R: Right).

2.6.1. fNIRS Preprocessing

We used MATLAB (MathWorks, Inc., Natick, Massachusetts) for preprocessing of $\Delta$HbO$_2$ data. Preprocessing pipeline included baseline correction, detrending to eliminate low frequency drift, filtering for removal of physiological confounding effects and motion artifacts and averaging of blocks in the same condition. First, we performed baseline correction by removing the mean of whole time series for every channel. Then, we removed the very low frequency global drift (<0.01 Hz) by using Wavelet-Based Minimum Description Length Detrending (Jang et al., 2009). To remove the physiological confounding effects such as Mayer waves, respiration and heart-beat, we performed a 0.01 – 0.1 Hz 2$^{nd}$ order butterworth band-pass filter. After, these preprocessing steps we visually checked the whole time series and performed motion artifact removal using wavelet filtering (Molavi & Dumont, 2012). We used daubechies 6 (db6) wavelet to remove the motion artifacts.
Figure 3. Data analysis procedure. In this diagram, after pre-processing and region of interest (ROI) analysis of two different regions (A & B) it was shown how to extract features. Dynamic functional connectivity was applied to estimate the correlation vector \( r_{AB}(t) \) to these regions by using sliding window correlation (SWC). Trial extraction and averaging was performed by utilizing boxcar function that includes related trials with Pain (P) and Brush (B) for both IND and SUB experiments. After trial extraction and averaging, we obtained mean \( r_{AB}(t) \) for both SUBc or INDc and BS conditions. After performing this procedure for every participant and every region, least absolute shrinkage and selection operator (LASSO) was performed to find the best features for 3 different conditions and hyperparameter tuned classification for SSD and HC was performed.

2.6.2. Region of Interest (ROI) Analysis

After preprocessing steps, we averaged the \( \Delta \text{HbO}_2 \) time series in channels that corresponds to the same region according to the LONI probabilistic atlas for every subject. After mapping the channels to this atlas, we reduced our 52 channels up to 20 bilateral regions. Among these 20 bilateral regions, we only excluded bilateral middle occipital gyrus.
from analysis due to less relevance with pain perception in SSD (Gundel et al., 2008; Stoeter et al., 2007) and also for the resting-state functional connectivity studies (Song et al., 2015; Su et al., 2014). Remaining 18 regions are bilateral angular gyrus (AG), superior parietal gyrus (SPG), supramarginal gyrus (SMG), pre central gyrus (PreCG), post central gyrus (PostCG), middle frontal gyrus (MFG), superior frontal gyrus (SFG), middle temporal gyrus (MTG) and superior temporal gyrus (STG). An example to our preprocessing and ROI analysis results are shown in Figure 4.

2.6.3. Identifying Ideal Features

2.6.3.1. Feature Extraction Using Sliding Window Correlation

After ROI analysis, we performed sliding window correlation (SWC) for every experiment and every region to estimate the dynamic functional connectivity (dFC) maps. For dFC estimation, \( \tau_{x,y} \) represents correlation coefficients vector, \( x \) and \( y \) are the \( \Delta \text{HbO}_2 \) signals.
for two different regions and \( i \) is the index. \( l \) and \( t \) represent the window size and index in this window (\( t: l, l + 1, l + 2, l + 3 \ldots \)).

\[
R_{xy}(l) = \frac{\sum_{i=t-l+1}^{t} (x_i - \bar{x}_i)(y_i - \bar{y}_i)}{\sqrt{\sum_{i=t-l+1}^{t} (x_i - \bar{x}_i)^2 \sum_{i=t-l+1}^{t} (y_i - \bar{y}_i)^2}}
\]

For this study, we chose time window 24 sec that represents 240 samples. After obtaining the correlation vector \( R_{xy} \), we performed trial extraction over this vector using the task waveform. We separately averaged the corresponding blocks for both brush and painful stimulation. After this block averaging, we estimated the mean value for both averaged trials. For 18 regions we had a 18 x 18 connection matrix for all conditions. However, we only used the upper diagonal part by excluding the diagonal side. Therefore, we obtained 18 x 17 / 2 = 153 values for both painful and brush stimulation \( \Delta HbO_2 \) responses. We applied this procedure for three different conditions (SUBc, INDc, BS) that we obtained from SUB and IND separately. Due to having BS conditions from both experiments, we averaged the BS values for every subject. Therefore, we obtained three feature vectors (SUBc, INDc, BS) that has dimensions of 40 x 153. Due to having values between [-1,1], we did not perform any normalization like z-score.

2.6.3.2. Feature Selection Using LASSO Regression

After creating the feature vectors for three conditions, we utilized least absolute shrinkage and selection operator (LASSO) regression to find the most informative features among the 153 features (Tibshirani, 1996). LASSO is a penalized regression method that estimates coefficient vector \( \hat{\beta} \) and adds an penalty factor to these coefficients by performing
L1 regularization. \( \hat{\beta} \) is the coefficient vector that has the \( d \) number of features. \( y_i \) is the binomial response that represents SSD as 1 and HC as 0 and \( x_i : (x_{i1}, x_{i2}, x_{i3}, ... x_{id})^T \) for \( i^{th} \) observation. \( N \) represents the number of observation. \( \lambda \) is a positive the regularization parameter on the L1 penalty. Our objective function and penalty factor are defined as;

\[
\min_{\beta} \left\{ \frac{1}{N} \sum_{i=1}^{N} (y_i - x_i^T \hat{\beta})^2 + \lambda \sum_{j=1}^{d} |\beta_j| \right\}
\]

LASSO is an effective feature reduction method over datasets that has small sample size and high number of dimension (Zou & Hastie, 2005). We performed LASSO with 5-fold cross validation to obtain optimal \( \lambda \) with mean squared error criterion. According to this optimal \( \lambda \) value, we selected the features that their corresponding coefficients are non-zero.

After performing LASSO, for INDc, connections between Right STG / Left AG, Right MFG / Left SMG, Right MTG / Left MFG, for SUBc condition, connections between Left MFG / Left SPG, Left SFG / Left AG, Right AG / Left STG, for BS condition connections between Right SFG / Left PreCG, Right MFG / Left MFG, Right PostCG / Left STG were used as features for these three feature vectors. Therefore, we obtained three 40 x 3 feature vectors for INDc, SUBc and BS conditions. Connections used as features for all these conditions are shown in Figure 5 and mean correlation vectors for these regions are shown in Figure 6.

2.6.4. Hyperparameter Optimization and Classification

After selection of most informative features for separate feature vectors of different conditions (INDc, SUBc, BS), due to having low number of features for both three feature sets, we performed Bayesian optimization algorithm on the models that we trained by using these datasets to choose the best parameters that minimizes the validation loss. In this method, we call the \( \Theta \) as set of hyperparameters and \( L(\Theta) \) validation loss function. Our objective is to find the \( \Theta^* \) values that minimizes this function.
\[ \theta^* = \arg\min_{\theta} L(\theta) \]

To minimize \( L(\theta) \), we used an acquisition function \( F \) to sample the \( L(\theta) \), at \( \theta_i \).

\[ \theta_i = \arg\max_{\theta} F(\theta | S_{1:k-1}). \]

In this equation, \( F \) is the acquisition function. In this study, we used Expected Improvement criteria as acquisition function to choose the next set of hyperparameters for all classifiers. \( S_{1:k-1} = [(\theta_1, C_1), (\theta_2, C_2), \ldots, (\theta_{k-1}, C_{k-1})] \) is the set hyperparameters for every run of classifier and validation loss values. \( k \) is the number of repetition 1,2,\ldots, \( k - 1 \).

Bayesian optimization algorithm works as below;

- Finding the next set of hyperparameters by optimizing the acquisition function \( F \) on
  \[ \theta_i = \arg\max_{\theta} F(\theta | S_{1:k-1}) \]
- Finding an time point that is possibly noisy \( \epsilon_k = L(\theta_k) + \epsilon_k \)
- Updating the hyperparameter and validation loss values set \( S_{1:k} = [S_{1:k-1}, (\theta_k, C_k)] \)

While performing hyperparameter optimization, we used leave one out cross validation (LOOCV) to generalize the minimum classification error. We applied hyperparameter tuning for Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) methods. For SVM, we considered linear, polynomial (deg. 2-10) and radial basis function (RBF) as kernel with regularization parameter (\( C \)) and sigma value (\( \sigma \)) for RBF. We used log transformed values between \( 10^{-6} - 10^6 \) for \( C \) and \( \sigma \). For DA, we considered linear, quadratic, diagonal linear, diagonal quadratic, pseudo linear, pseudo quadratic discriminant types with linear coefficient threshold (\( \delta \)) and regularization parameter (\( \gamma \)). For \( \delta \), we considered log transformed values between \( 10^{-6} - 10^6 \) and for \( \gamma \) we considered values
between 0-1. All these procedures were performed by using MATLAB Statistics and Machine Learning Toolbox (MathWorks, Inc., Natick, Massachusetts).

**Figure 5.** Selected connections as features by using 10-fold Cross Validation of LASSO for classifiers. Regions are defined according to the Table 1. a) Connections for INDc condition b) Connections for BS condition. c & d) Connections for SUBc condition.

### 2.6.5. Nested Cross Validation

After extracting features and creating feature vector with size of 40 x 3 for three conditions, we applied a nested cross validation (CV) procedure to optimize hyperparameters and generalize classifier results. In this nested cross validation model, the outer 10-fold CV loop was used to test generalization of classification model with the tuned hyperparameters (for SVM, kernel, C and σ for RBF and for DA, discriminant type, δ and γ). The inner loop includes the hyperparameter optimization with 10-fold CV.
Figure 6. Mean dynamic correlation vector ($r_{ab}(t)$) for (a) BS condition (b) SUBc condition (c) INDC condition of both SSD and HC groups. Green: Mean
2.6.6. Statistical Analysis of VAS Data

All statistical analyses were performed by using SPSS 20.0. For Age and Pain Threshold comparison we used paired t-test and for comparison of VAS ratings, we performed a 2 x 2 (Group (SSD & HC) x Condition (SUBc & INDc)) ANOVA to find whether there is a statistically significant difference between groups or stimulation. We performed Pearson’s correlation between clinical data and features for every condition.

3. Results

3.1. Clinical Data Analysis

Demographic and clinical scores are shown in Table 2. There was no difference between groups for Age (t-val. = 0.82, p=0.41) and Pain Threshold (t-val. = -0.62, p=0.53) variables. SSD patients showed significantly higher BDI (t-val. = 5.38, p<0.001) than healthy controls. VAS ratings of SUB were 48.59 ± 18.37 for SSD patients and 43.33 ± 16.00 for HC. For IND, VAS ratings were 68.94 ± 17.74 and 68.80 ± 14.61 for SSD patients and HC respectively. ANOVA results revealed that there was no group difference between SSD and HC groups (F(1,79)=0.91, p=0.34). There was a significant difference between SUBc and INDc (F(1,79) = 28.79, p=0.00). Post hoc results using Bonferroni correction revealed that INDc caused higher VAS score than SUBc (mean ± std. dev = 20.99 ± 3.91, 95% CI : 13.20-28.79). There was no interaction between group and stimulation type (F(1,79)=0.02, p=0.894).

<table>
<thead>
<tr>
<th></th>
<th>Somatoform Patients (n=19, 7 F,12 M)</th>
<th>Healthy Controls (n=21, 8 F,13 M)</th>
<th>t-value</th>
<th>95% -CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>43.47 ± 12.59</td>
<td>40.00 ± 13.97</td>
<td>0.82</td>
<td>-5.07 – 12.02</td>
<td>0.41</td>
</tr>
<tr>
<td>Pain Threshold (gf/mm²)</td>
<td>186.84 ± 22.12</td>
<td>190.47 ± 13.95</td>
<td>-0.62</td>
<td>-15.35 – 8.08</td>
<td>0.53</td>
</tr>
<tr>
<td>BDI</td>
<td>21.25± 12.67</td>
<td>5.50 ± 4.57</td>
<td>5.38</td>
<td>9.82 – 21.67</td>
<td>&lt;0.001**</td>
</tr>
</tbody>
</table>

Table 2. Clinical and Demographic information of participants. Mean and standard deviation values with t-values, 95%-Confidence interval and p-values are shown. BDI: Beck Depression Inventory
Inventory. CI: Confidence interval, gf / mm²: gram force / millimeter square, M: Male, F: Female. n: number of participants. **: p< 0.001, *: p<0.05

3.2. Classification and Hyperparameters Optimization Results

All classification results with optimum hyperparameters for both classifiers are shown in Table 3, scatter plot of data for every condition are shown in Figure 7 and all receiver operating characteristic (ROC) curves related with these classification results are shown in Figure 8. For feature vector of BS condition with SVM classifier, we found the mean and standard error of training accuracy, test accuracy, sensitivity, specificity and area under curve (AUC) values as 0.79 ± 0.01, 0.75 ± 0.01, 0.86 ± 0.07, 0.65 ± 0.13 and 0.89 ± 0.01 respectively. For DA classifier, the mean and standard error of training accuracy, test accuracy, sensitivity, specificity and AUC values were 0.75 ± 0.01, 0.72 ± 0.07, 0.78 ± 0.11, 0.70 ± 0.11 and 0.90 ± 0.02 respectively.

For feature vector of SUBc condition with SVM classifier, we found the mean and standard error of training accuracy, test accuracy, sensitivity, specificity and AUC values as 0.81 ± 0.01, 0.72 ± 0.07, 0.75 ± 0.08, 0.70 ± 0.11 and 0.89 ± 0.01 respectively. For DA classifier, the mean and standard error of training accuracy, test accuracy, sensitivity, specificity and AUC were 0.78 ± 0.01, 0.75 ± 0.06, 0.75 ± 0.08, 0.75 ± 0.08 and 0.88 ± 0.01 respectively.
Figure 7. Extracted Features from (a) BS condition, (b) SUBc condition (c) INDc condition. Black and red dots represent the mean correlation value of averaged extracted correlation vector for related condition of SSD patients and healthy controls respectively.

For feature vector of INDc condition with SVM classifier, the mean and standard error of training accuracy, test accuracy, sensitivity, specificity and AUC was found 0.80 ± 0.02, 0.82 ± 0.05, 0.81 ± 0.07, 0.85 ± 0.07 and 0.92 ± 0.02 respectively. For DA classifier, the mean and standard error of training accuracy, test accuracy, sensitivity, specificity and AUC values were 0.79 ± 0.01, 0.75 ± 0.07, 0.81 ± 0.07, 0.65 ± 0.13 and 0.89 ± 0.01 respectively.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Classifier</th>
<th>Training Accuracy</th>
<th>Test Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>SVM</td>
<td>0.79 ± 0.01</td>
<td>0.75 ± 0.06</td>
<td>0.86 ± 0.07</td>
<td>0.65 ± 0.13</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>DA</td>
<td>0.75 ± 0.01</td>
<td>0.72 ± 0.07</td>
<td>0.78 ± 0.11</td>
<td>0.70 ± 0.11</td>
<td>0.90 ± 0.02</td>
</tr>
<tr>
<td>SUBc</td>
<td>SVM</td>
<td>0.81 ± 0.01</td>
<td>0.72 ± 0.07</td>
<td>0.75 ± 0.08</td>
<td>0.70 ± 0.11</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>DA</td>
<td>0.78 ± 0.01</td>
<td>0.75 ± 0.06</td>
<td>0.75 ± 0.08</td>
<td>0.75 ± 0.08</td>
<td>0.88 ± 0.01</td>
</tr>
<tr>
<td>INDc</td>
<td>SVM</td>
<td>0.80 ± 0.02</td>
<td>0.82 ± 0.05</td>
<td>0.81 ± 0.07</td>
<td>0.85 ± 0.07</td>
<td>0.92 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>DA</td>
<td>0.79 ± 0.01</td>
<td>0.75 ± 0.07</td>
<td>0.81 ± 0.07</td>
<td>0.65 ± 0.13</td>
<td>0.89 ± 0.01</td>
</tr>
</tbody>
</table>

Table 3: Classification results of experiments after nested cross-validation. Results are shown as mean and standard error. BS: Brush stimulation, SUBc: Constant sub-threshold painful stimulation condition, INDc: Individual pain threshold stimulation condition. SVM: Support Vector Machine, DA: Discriminant Analysis. AUC: Area Under Curve

3.3. Correlation Between Features and Psychological Features
Among all conditions and all connections, for SUBc there was a significant negative correlation between L SFG – L AG connection and BDI score (r = -0.33, p<0.05). None of the features in any condition showed significant correlation with individual pain thresholds.

![ROC curve](image)

**Figure 8.** Receiver Operating Characteristic (ROC) curves for different feature sets and different classifiers.

4. **Discussion**

In this study, we used fNIRS task-based dFC features to classify SSD. Our objective was to estimate significant biomarker/s from different experiments that accurately discriminates SSD patients and healthy controls. After estimating dynamic functional connectivity based features using LASSO, we performed hyperparameter optimized classification using these features. According to our results, we found the most discriminative and accurate biomarkers as connections between Right STG – Left AG, Right MFG – Left SMG and Right MTG – Left MFG as a result of INDc condition by using SVM.

4.1. **Clinical Data**
We found SSD group showed significantly higher BDI scores than healthy controls. This is an expected finding. There are several studies that associates depressive symptoms with SSD (Bohman et al., 2010; Egger et al., 1999; Haug et al., 2004; Kroenke et al., 1997; van Boven et al., 2011). In addition to this, we could not find any significant difference between pain-thresholds and for VAS ratings we could not find any significant difference in group main effect and INDc condition caused higher VAS scores that SUBc as expected. These findings might suggest that SSD group might not include any painful disorder.

4.2. Features as Biomarkers for Different Conditions

After dFC estimation and selecting features, we found three discriminative features for every condition. Among these conditions we found the highest accuracy, specificity, AUC and 81% sensitivity for INDc. For INDc, the most discriminative features were found as Right STG – Left AG, Right MFG – Left SMG, Right MTG – Left MFG. Our initial approach for classification was to utilize statistical features HbO$_2$ response such as mean and variance that were previously used in BCI studies (Naseer & Hong, 2015) and then to perform the exactly same procedure stated above. However, the accuracy results for both three conditions (INDc, SUB, BS) varied between 55% - 60% which were below to be of use as a clinical marker. We therefore focused on the different features to increase the accuracy.

Right STG was found a common region in somatoform pain disorder patients both pain and stress condition (Stoeter et al., 2007) and also Fibromyalgia (Gracely et al., 2002). In addition to these information, RSFC study revealed that increased inferior temporal gyrus connectivity was found in SSD patients (Su et al., 2015). Moreover, temporal lobe was generally found active in painful stimulation studies in healthy participants (Bingel et al., 2002; Godinho et al., 2006; Moulton et al., 2011; Ploghaus et al., 2001; Ploghaus et al., 2000). Its functional role in pain processing is not well known, however some studies revealed that
superior temporal gyrus activation might be associated with moral judgements and sadness (Habel et al., 2005; Moll et al., 2002).

For subparts of inferior parietal lobe, RSFC studies revealed that Left AG was found significantly higher in SSD patients compared with HC (Song et al., 2015) and SMG (BA 40) causes difference between SSD and HC (Q. Li et al., 2016). Left SMG was found higher in somatoform pain disorder patients than healthy controls in a painful heat stimulation study (Gundel et al., 2008) and a recent study revealed that there is a decreased interhemispheric connectivity in AG and SMG regions for SSD patients (Su et al., 2016). SMG is also effective region in emotional network that may affect pain perception (Sommer et al., 2010) and also plays important role in temperature and pressure perception (Carlsson et al., 2000; Mima et al., 1999; Tseng et al., 2010). IPL was also found active in pain processing for Fibromyalgia patients (Gomez et al., 2009; Gracely et al., 2002). Some studies suggest that IPL activation might be related with attention to body or sensory stimuli (Bornhovd et al., 2002; Derbyshire et al., 1997; Downar et al., 2000, 2001; Seminowicz & Davis, 2006).

MFG is an effective region in pain processing and considered as a potential biomarker in nociception (Aasted et al., 2016; Coghill et al., 2001; Jahn et al., 2016; Ong et al., 2019; Perlaki et al., 2015; Symonds et al., 2006) however its contribution to pain processing is not well known. An fMRI study on healthy participants that compares the high and low levels of painful stimulation showed that Left MFG showed higher activation in during high levels of pain application than low levels of pain application (Kong et al., 2010).

4.3. Classification Results

Among classification results, we obtained highest test accuracy (82%) and specificity (85%) with 81% sensitivity from INDc with SVM classifier. Among all these results we found the highest sensitivity as 86% for BS condition by using an SVM classifier. In addition to these
results, we found the highest AUC value for INDc with SVM classifier. Due to these plus signs, we interpreted that our optimum classification results was found by performing INDc condition with a SVM classifier. A recent RSFC study that includes 53 participants (25 SSD, 28 HC) revealed that medial prefrontal cortex – anterior cingulate cortex connection difference between SSD and HC might be used to distinguish with 84% sensitivity and 85% specificity and suggests that this connection can be used as a biomarker (Ou et al., 2018). When we compared our results with this study, we found the same specificity score and a slightly lower the sensitivity score. We thought that this might be due to having less number of samples. Also, due to not having any accuracy result in that study, we could not compare our accuracy and AUC results. Another recent study that uses symptom self-rating scale (SCL-90) data with machine learning methods showed that SSD can be classified with an 96% accuracy, 90% specificity and 97% sensitivity (Lv et al., 2018) and another study that proposes to classify a framework for classification of SSD by using SCL-90 data showed that 95% accuracy, 97% sensitivity and 90% specificity (Luo et al., 2019). However, as we stated above, self-reporting is a subjective approach for diagnosis and can be significantly affected from external factors (Lee et al., 2018).

Another important finding in this study is that neural markers of BS stimulation discriminated the SSD and HC with a high sensitivity of 86%. A behavioral study by using Somatic Signal Detection Task (Lloyd et al., 2008) on SSD patients showed that tactile detection thresholds of SSD patients are significantly lower than control groups (Katzer et al., 2012). Another study that focused on tactile stimulus perception on Fibromyalgia (FM) and Somatoform Pain Disorder (SPD) which is a subtype of SSD showed that FM and SPD groups showed higher perceptual ratings to tactile stimulation to both their hands (Karst et al., 2005).
These perceptual differences might have neural reflections that can be utilized to discriminate SSD patients and healthy controls.

We also found a notable accuracy in both SUBc and INDc stimulation. Applying painful stimulus to these patients might reveal some differed neural activations compared with HC. Because, the term “central sensitization” might be an discriminative factor for diagnosis of SSD patients, which might be a common factor in somatic syndromes (Bourke et al., 2015). Compared with BS stimulation, INDc shows a notably higher sensitivity, which might show us painful stimulation based neural markers might be also an discriminative factors. An fMRI study focused on painful stimulation response in SSD patients revealed that SSD group showed an augmented prefrontal, temporal and parietal regions with sub cortical regions such as thalamus, basal ganglia and also an overactivation in STG which is a region that we utilized both in SUBc and INDc conditions to classify SSD was found (Stoeter et al., 2007). Another fMRI study also revealed that painful stimulation based neural activity in SMG was observed higher in SSD patients than healthy controls which is also we used in INDc for classification (Gundel et al., 2008).

Our study also proposed that fNIRS might be a robust tool for diagnosis of SSD. To our best knowledge, there is only one study that focuses on somatoform pain disorder by using fNIRS (Ren et al., 2017). In addition this, there are few fNIRS studies that focused on classifying neurological disorders by utilizing machine learning approaches such as ADHD (Monden et al., 2015; Sutoko et al., 2019), Alzheimer (Perpetuini et al., 2019), traumatic brain injury (Karamzadeh, Amyot, Kenney, Anderson, et al., 2016; Karamzadeh, Amyot, Kenney, Chowdhry, et al., 2016), depression (Zhu & Mehta, 2017), Fibromyalgia (Gokcay et al., 2018).

Classification accuracies with sensitivity and specificity scores showed that fNIRS can be considered as an essential tool suggests a neurobiological support to valid diagnosis of SSD.
that is phenomenologically diagnosed and for diagnosis of other psychological disorders (see reviews (Baskak, 2018; Ehlis et al., 2014; Lai et al., 2017)).

### 4.4. Correlation Results with Corresponding Biomarkers

Among our features, we obtained a significant negative correlation between BDI scores and L SFG – L AG connection of SUBc. Previous resting-state fMRI study that focused on sub regions of L SFG revealed that L AG is strongly associated with anteromedial and dorsolateral parts of SFG (W. Li et al., 2013). In addition to this, a recent study that focused on efficiency of electroconvulsive therapy on depression patients showed that increased functional connectivity strength of L AG was observed in depression patients after electroconvulsive therapy (Wei et al., 2018). These findings revealed that L AG – L SFG relationship might be an effective indicator for depressive symptom of SSD.

### 5. Limitations

In the current study, we used fNIRS to demonstrate its efficiency while diagnosing SSD in clinics and classify whether the participant has a SSD or not by using hyper-parameter tuned machine learning approaches. However, there are some points that should be addressed.

Our primary limitation is the number of subjects that participates to this study. While performing machine learning approaches in medicine, using larger samples provides to create more reliable and robust models. Due to this reason, more extensive research with larger population sizes must be realized.

Second limitation is while estimating the connections, we had to discard the subcortical activities due to being unable to measure deep regions more than 2-3 cm. Our features was estimated by considering only cortical regions. This deprived us to observe the some
direct connections between regions. We had to estimate the functional connectivity based features just considering the cortical regions.

Our third limitation was to be unable to use short source-detector separation for eliminating skin/scalp blood flow reaction to experimental stimuli from our time series. Due to not having any rule of thumb to remove this effect except using short separation, this effect might be available in our time series.

Finally our primary aim was to assess neurobiology of SSD and we therefore excluded subjects with major depressive disorder. Due to high comorbidity of these two disorders, this preference of ours inevitably led to a lower external validity. Our results may not be generalized to all subjects with SSD.

6. Conclusions

In this study we have shown that after controlling for depressive symptoms, subjects with DSM-5 diagnosis of SSD can be differentiated from healthy control subjects by means of a machine learning algorithm based on extracted features from estimated dynamic functional connectivity time series as response to painful stimuli. Our study includes several novel approaches. To our best knowledge, this is the first study that focuses on painful and non-painful stimulation effects together on SSD patients, proposes biomarkers for SSD by using fNIRS and performs a hyperparameter optimized classification using these fNIRS based biomarkers. Previous studies with similar methodology pointed out that some somatoform disorders such as somatoform pain disorder or fibromyalgia may also be associated with altered activity response to painful stimuli. Nevertheless, sample enrolled in the present study have prominent differences compared to those studies.
According to our findings, highest accuracy, highest specificity and 90% sensitivity were obtained by features that was derived from task based dynamic functional connectivity by performing an IND experiment. Right temporal, bilateral middle frontal and left inferior parietal gyri were found as important biomarkers. Although we have shown that this algorithm is capable of categorizing subjects with SSD with acceptable sensitivity and specificity, given that SSD is a phenomenologically diagnosed syndrome, it would be too assertive to suggest fNIRS as a diagnostic tool for this syndrome. Therefore the present study would rather be evaluated as a pilot study with positive results supporting the validity of the SSD diagnosis in the DSM-5.

**Conflict of Interest**

The authors declare that there are no conflicts of interest regarding the publication of this paper.

**Acknowledgements**

The authors express their gratitude to the Ankara University BAUM Center for data acquisition and Assoc. Prof. Dr. Didem Gökçay from Middle East Technical University to provide eVF anesthesiometer. We also acknowledge the support, in part, of the Fogarty International Center, United States/ NIH Grant (No: D43TW005807 - Bora Baskak, MD) during the preparation of this manuscript.

7. References


