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Cancer LncRNA Census reveals evidence for deep
functional conservation of long noncoding RNAs
in tumorigenesis
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Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating

the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains

debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions

could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis

of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC),

a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast

to existing databases, CLC requires strong functional or genetic evidence. CLC genes are

enriched amongst driver genes predicted from somatic mutations, and display characteristic

genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased,

genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing

mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1.

Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a

novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
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Tumorigenesis is driven by a series of genetic mutations that
promote cancer phenotypes and consequently experience
positive selection1. The systematic discovery of such driver

mutations, and the genes whose functions they alter, has been
made possible by tumour genome sequencing. By collecting the
entirety of such genes for every cancer type, it should be possible
to develop a comprehensive view of underlying processes and
pathways, and thereby formulate effective, targeted therapeutic
strategies.

The cast of genetic elements implicated in tumorigenesis has
recently grown as diverse new classes of non-coding RNAs and
regulatory features have been discovered. These include the long
non-coding RNAs (lncRNAs), of which tens of thousands have
been catalogued2–5. LncRNAs are >200 nt long transcripts with
no protein-coding capacity. Their evolutionary conservation and
regulated expression, combined with a number of well-
characterised examples, have together led to the view that
lncRNAs are bona fide functional genes6–9. Current thinking
holds that lncRNAs function by forming complexes with proteins
and RNA both inside and outside the nucleus10,11.

LncRNAs have been shown to play important roles in various
cancers. For example, MALAT1, an oncogene across numerous
cancers, is restricted to the nucleus and plays a housekeeping role
in splicing12,13. MALAT1 is overexpressed in a variety of cancer
types, and its knockdown potently reduces not only proliferation
but also metastasis in vivo in mouse xenograft assays14. MALAT1
is subjected to elevated mutational rates in human tumours,
although it has not yet been established whether these mutations
drive tumorigenesis15,16. On the other hand, lncRNAs may also
function as tumour suppressors. LincRNA-p21 acts as a down-
stream effector of p53 regulation through recruitment of the
repressor hnRNP-K17.

Demonstrably conserved functions between human and mouse is
potent evidence for gene’s importance, both in cancer and more
generally. For well-known protein-coding genes with cancer roles in
human, such as TP53 and MYC, mutations in mouse models can
recapitulate the human disease18,19. For lncRNAs, evolutionary
evidence has been mainly limited to discovery of sequence or
positional orthologues, with no evidence for conserved functions20.
Further doubt has been introduced by the fact that mouse knock-
outs of iconic cancer-related lncRNAs MALAT1 and NEAT1 dis-
play little to no aberrant phenotype21–24. However, a recent study of
human and mouse orthologues of LINC-PINT showed that both
have tumour-suppressor activity in cell lines, acting through a
relatively short, conserved region25. Nevertheless, it remains unclear
whether this generalises to other identified lncRNAs, and whether
mutations in them can induce tumours.

These and other examples of lncRNAs linked to cancer, raise the
question of how many more remain to be found amongst the ~99%
of annotated lncRNAs that are presently uncharacterised5,26,27.
Recent tumour genome sequencing studies, in step with advanced
bioinformatic driver-gene prediction methods, have yielded hun-
dreds of new candidate protein-coding driver genes28. For eco-
nomic reasons, these studies initially restricted their attention to
exomes or the ~2% of the genome covering protein-coding exons29.
Unfortunately such a strategy ignores mutations in the remaining
~98% of genomic sequence, home to the majority of lncRNAs5,12.
Driver-gene identification methods rely on statistical models that
make a series of assumptions about and simplifications of complex
tumour mutation patterns30. It is critical to test the performance of
such methods using true-positive lists of known cancer driver genes.
For protein-coding genes, this role has been fulfilled by the Cancer
Gene Census (CGC)31, which is collected and regularly updated by
manual annotators. Comparison of driver predictions to CGC genes
facilitates further method refinement and comparison between
methods32–35.

In addition to its benchmarking role, the CGC resource has
also been useful in identifying unique biological features of
cancer genes. For example, CGC genes tend to be more con-
served and longer. Furthermore, they are enriched for genes
with transcription regulator activity and nucleic acid binding
functions36,37.

Until very recently, efforts to discover cancer lncRNAs have
depended on classical functional genomics approaches of differ-
ential expression using microarrays or RNA sequencing17,27.
While valuable, differential expression per se is not direct evi-
dence for causative roles in tumour evolution. To more directly
identify lncRNAs that drive cancer progression, a number of
methods, including several within the Pan-Cancer Analysis of
Whole Genomes (PCAWG) Network16, have recently been
developed to search for signals of positive selection using muta-
tion maps of tumour genomes. OncodriveFML utilises
nucleotide-level functional impact scores like those inferred from
predicted changes in RNA secondary structure together with an
empirical significance estimate, to identify lncRNAs with an
excess of high-impact mutations34. Another method, ExInAtor,
identifies candidates with elevated mutational load, using
trinucleotide-adjusted local background15. Furthermore, The
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
(PCAWG) Consortium aggregated whole genome sequencing
data from 2658 cancers across 38 tumour types generated by the
ICGC and TCGA projects38, and applied diverse tools to identify
cancer driver lncRNAs16. A clear impediment in such analyses
has been the lack of true-positive set of known lncRNA driver
genes, analogous to CGC. Valuable resources of cancer lncRNAs
have been created, notably LncRNADisease39 and Lnc2Cancer40.
These include minimally filtered data from numerous sources,
which is beneficial in creating inclusive gene lists, but has
drawbacks arising from permissive criteria for inclusion
(including expression changes), and inconsistent gene identifiers.

To facilitate the future discovery of cancer lncRNAs, and gain
insights into their biology, we have compiled a highly-curated set
of cases with roles in cancer processes. Here we present the
Cancer LncRNA Census (CLC), the first compendium of
lncRNAs with direct functional or genetic evidence for cancer
roles. We demonstrate the utility of CLC in assessing the per-
formance of driver lncRNA predictions. Through analysis of this
gene set, we demonstrate that cancer lncRNAs have a unique
series of features that may in future be used to assist de novo
predictions. Finally, we show that CLC genes have conserved
cancer roles across the ~80 million years of evolution separating
humans and rodents.

Results
Definition of cancer-related lncRNAs. As part of recent efforts
to identify driver lncRNAs by the Drivers and Functional Inter-
pretation Group (PCAWG-2-5-9-14) within the ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes Network (henceforth
PCAWG)16,38, we discovered the need for a high-confidence
reference set of cancer-related lncRNA genes, which we hence-
forth refer to as cancer lncRNAs. We here present Version 1 of
the Cancer LncRNA Census (CLC).

Cancer lncRNAs were identified from the literature using
defined and consistent criteria, being direct experimental (in vitro
or in vivo) or genetic (somatic or germline) evidence for roles in
cancer progression or phenotypes (see Methods). Alterations in
expression alone were not considered sufficient evidence.
Importantly, only lncRNAs with GENCODE identifiers were
included to allow direct integration and comparison between
large-scale genomic projects41. For every cancer lncRNA, one or
more associated cancer types were collected.
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Attesting to the value of this approach, we identified several
cases in semi-automatically annotated cancer lncRNA databases
of lncRNAs that were misassigned GENCODE identifiers, usually
with an overlapping protein-coding gene39. We also excluded a
number of published lncRNAs for which we could not find
evidence to meet our criteria, for example CONCR, SRA1 and
KCNQ1OT142–44. We plan to collect these excluded lncRNAs in
future versions of CLC.

Version 1 of CLC contains 122 lncRNA genes, however, eight of
them are annotated as pseudogenes rather than lncRNAs by
GENCODE. The remaining 114 CLC genes correspond to 0.72% of
a total of 15,941 lncRNA gene loci annotated in GENCODE v245,45

(Fig. 1). For comparison, the Cancer Gene Census (CGC)
(COSMIC v78, downloaded 3 October 2016) lists 561 or 2.8% of
protein-coding genes31. The entire remaining set of 15,827 lncRNA
loci is henceforth referred to as non-CLC (Fig. 1). The full CLC
dataset is found in Supplementary Data 1.

The cancer classification terminology used amongst the source
literature for CLC was not uniform. Therefore, using the
International Classification of Diseases for Oncology46, we
reassigned the cancer types described in the original research
articles to a reduced set of 29 (Fig. 1 and Supplementary Fig. 1).

Altogether, CLC contains 333 unique lncRNA-cancer type
relationships. Out of 122 genes, 77 (63.1%) were shown to
function as oncogenes, 35 (28.7%) as tumour suppressors, and 10
(8.2%) with evidence for both activities depending on the tumour
type (Fig. 1 and Supplementary Fig. 1). It is unclear whether the
difference in the frequencies of oncogenes and tumour suppres-
sors has a biological explanation, or is simply the result of
ascertainment bias. For protein-coding genes in the CGC
(COSMIC v85, downloaded 25 May 2018), approximately equal
numbers of oncogenes and tumour-suppressor genes are recorded
(43% and 44%, respectively). It is important to take into account
that the oncogene and tumour-suppressor classifications were
deduced from the collected references. While a gene has shown
oncogenic properties in a particular cancer type, future publica-
tions could show that it functions as tumour suppressor in a
different tissue, for example, the most studied lncRNAs in CLC
(top of Fig. 1) are enriched in dual functions.

The most prolific lncRNAs, with ≥16 recorded cancer types,
are HOTAIR, MALAT1, MEG3 and H19 (Fig. 1 and Supplemen-
tary Fig. 1). It is not clear whether this reflects their unique pan-
cancer functionality, or is simply a result of their being amongst
the most early-discovered and widely-studied lncRNAs.

In vitro experiments were the most frequent evidence source,
usually consisting of RNAi-mediated knockdown in cultured cell
lines, coupled to phenotypic assays such as proliferation or
migration (Supplementary Fig. 1). Far fewer have been studied
in vivo, or have cancer-associated somatic or germline mutations.
Nineteen lncRNAs had three or more independent evidence
sources (Supplementary Fig. 1).

CLC and other databases. There are a number of relevant
lncRNA databases presently available: the Lnc2Cancer database
(n= 654)40, the LncRNADisease database (n= 121)39 and
lncRNAdb (n= 191)26. CLC covers between 17% and 31% of these
databases (Lnc2Cancer and LncRNADisease, respectively) but none
of these resources contain the complete list of genes presented here
(Fig. 2a). It is important to note that the other databases also
include a minority of non-GENCODE genes, ranging from 40 to
316 (33 and 48%) (Fig. 2a). In addition, we intersected the four
databases (Supplementary Fig. 2) using only GENCODE-annotated
genes. It is clear that CLC has the greatest overlap with the other
three, suggesting that it has the greatest specificity.

We sought to use recent unbiased proliferation screen data to
independently compare cancer lncRNA databases9,47. Using only
GENCODE-annotated genes, CLC is the resource that overall has
the most nearly-significant (p-value= 0.08, Fisher’s exact test)
fraction of independently-identified proliferation lncRNAs,
although the sparse nature of the data means that this conclusion
is not definitive (Fig. 2b).

Finally, we downloaded and collected 8416 bioinformatically-
predicted Gencode v24 lncRNAs from a recent TCGA publica-
tion48, but found no significant overlap with CLC (69 gene;
p-value= 0.13, Fisher’s exact test).

CLC for benchmarking lncRNA driver prediction methods.
One of the primary motivations for CLC is to develop a high-
confidence functional set for benchmarking and comparing
methods for identifying driver lncRNAs. In the domain of
protein-coding driver-gene predictions, the Cancer Gene Census
(CGC) has become such a gold standard training set31. Typically,
the predicted driver genes belonging to CGC are judged to be true
positives, and the fraction of these amongst predictions is used to
estimate the positive predictive value (PPV), or precision. This
measure can be calculated for increasing cutoff levels, to assess
the optimal cutoff.

First, we used CLC to examine the performance of the lncRNA
driver predictor ExInAtor15 in recalling CLC genes using
PCAWG tumour mutation data16. A total of 2687 GENCODE
lncRNAs were tested here, of which 82 (3.1%) belong to CLC.
Driver predictions on several cancers at the standard false
discovery rate (q-value) cutoff of 0.1 are shown for selected
cancers in Fig. 3a. That panel shows the CLC-defined precision
(y-axis) as a function of predicted driver genes ranked by q-value
(x-axis). We observe rather heterogeneous performance across
cancer cohorts. This may reflect a combination of intrinsic
biological differences and differences in cohort sizes, which differs
widely between the datasets shown. For the merged pan-cancer
dataset, ExInAtor predicted three CLC genes amongst its top ten
candidates (q-value < 0.1), a rate far in excess of the background
expectation (baseline, fraction of all lncRNAs in CLC). Similar
enrichments are observed for other cancer types. These results
support both the predictive value of ExInAtor, and the usefulness
of CLC in assessing lncRNA driver predictors. In addition, we
repeated the same analysis for each of the three mentioned
databases (lnc2cancer, lncRNAdb and lncRNAdisease) (q-value <
0.2) (Supplementary Fig. 3). The precision level of all databases is
around 40%, except lncRNAdisease that shows the overall lowest
precision. As deduced from Fig. 2, the low number of intersecting
genes does not allow a definitive conclusion. However, it is
interesting to notice that CLC shows a similar performance to the
other databases in terms of sensitivity while increasing specificity.
This is likely due to the stringent, function-based inclusion
criteria of CLC.

Finally, we assessed the precision (i.e. positive predictive value)
of PCAWG lncRNA and protein-coding driver predictions across
all cancers and all prediction methods16. Using a q-value cutoff of
0.1, we found that across all cancer types and methods, a total of 8
(8.5%) of lncRNA predictions belong to CLC (Fig. 3b), while a
total of 139 (23.1%) of protein-coding predictions belong to CGC
(Fig. 3c). In terms of sensitivity, 9.8% and 25.1% of CLC and CGC
genes are predicted as candidates, respectively. Despite the lower
detection of CLC genes in comparison with CGC genes, both
sensitivity rates significantly exceed the prediction rate of non-
CLC and nonCGC genes (p-value= 0.007 and p-value < 0.001
Fisher’s exact tests, respectively), again highlighting the usefulness
of the CLC gene set (Fig. 3c).
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Fig. 1 Overview of the Cancer LncRNA Census. Rows represent the 122 CLC genes, columns represent 29 cancer types. Asterisks next to gene names
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CLC genes are distinguished by function- and disease-related
features. We recently found evidence, using a smaller set of
cancer-related LncRNAs (CRLs), that cancer lncRNAs are dis-
tinguished by various genomic and expression features indicative
of biological function15. We here extended these findings using a
large series of potential gene features, to search for those features
distinguishing CLC from non-CLC lncRNAs (Fig. 4a).

First, associations with expected cancer-related features were
tested (Fig. 4b). CLC genes are significantly more likely to have
their transcription start site (TSS) within 100 kb of cancer-
associated germline SNPs (cancer SNPs 100 kb TSS), and more
likely to be either differentially expressed or epigenetically-
silenced in tumours49 (Fig. 4b). Intriguingly, we observed a
tendency for CLC lncRNAs to be more likely to lie within 1 kb of
known cancer protein-coding genes (CGC 1 kb TSS). While
searching for additional evidence of functionality for CLC genes,
we found that they are significantly closer to non-cancer,
phenotype-associated germline SNPs (non-cancer SNPs 100 kb
TSS) in comparison with non-CLC genes (Fig. 4b). Proximity to
cancer and non-cancer SNPs support the both cancer roles and
general biological functionality of CLC genes.

We next investigated the properties of the genes themselves. As
seen in Fig. 4c, and consistent with our previous findings15, CLC
genes (gene length) and their spliced products (exonic length) are
significantly longer than average. No difference was observed in
the ratio of exonic to total length (exonic content), nor overall
exon repetitive sequence coverage (repeats coverage), nor GC
content.

CLC genes also tend to have greater evidence of function, as
inferred from evolutionary conservation. Base-level conservation
at various evolutionary depths was calculated for lncRNA exons
and promoters (Fig. 4d). Across all measures tested, using either
average base-level scores or percent coverage by conserved
elements, we found that CLC genes’ exons are significantly more
conserved than other lncRNAs (Fig. 4d). The same was observed
for conservation of promoter regions.

High levels of gene expression in normal tissues are known to
correlate with lncRNA conservation, and are hypothesized to be a
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reflection of functionality50. In addition, genes with oncogenic
roles tend to be highly expressed in cancer samples36. We found
that CLC has consistently higher steady-state expression levels
compared with non-CLC genes across PCAWG tumours (Fig. 4e),
as well as healthy organs and cultured cell lines (Supplementary
Fig. 4). As deduced from proximity to cancer and non-cancer
SNPs, high levels of expression in cancer and normal samples
reflect important functionality for CLC genes.

Finally, we investigated whether CLC transcripts might be
initiated by any types of Transposable Elements (TEs) (see
Methods). We found that CLC TSSs are enriched for one
category, “Simple repeats” (Supplementary Fig. 5).

Evidence for genomic clustering of non-coding and protein-
coding cancer genes. In light of recent evidence for colocalisation
and coexpression of disease-related lncRNAs and protein-coding
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genes51, we were curious whether such an effect holds for cancer-
related lncRNAs and protein-coding genes. We asked, more
specifically, whether CLC genes tend to be closer to CGC genes
than expected by chance, and whether this is manifested in a
more co-regulated expression.

To this aim, we computed TSS-TSS distances from lncRNAs to
protein-coding genes and we found that CLC genes on average tend
to lie moderately closer to protein-coding genes of all types,
compared with non-CLC lncRNAs (Supplementary Fig. 6A, B).
Since CLC genes are enriched for functional features (i.e. expression
and conservation), we could not rule out the possibility that
proximity to protein-coding genes is a feature of functional
lncRNAs rather than cancer lncRNA genes. In order to further
investigate this possibility, we repeated the analysis dividing the
non-CLC set into potentially functional non-CLC genes (PF-non-
CLC) (non-CLC genes sampled to match CLC expression and
conservation, N= 149, Supplementary Fig. 7) and “other nonCLC”
(the rest of non-CLC). Interestingly, when comparing distances to
any type of protein-coding genes, both CLC and PF-non-CLC are
significantly closer than the rest of lncRNA (Wilcoxon test, p-value
= 0.03 and 0.007, respectively), being the PF-non-CLC genes the
closest ones (median 21.9, 29 and 37.8 kb, for PF-non-CLC, CLC
and other non-CLC, respectively) (Supplementary Fig. 6C).
However, when assessing specifically for distance to CGC genes,
only CLC set is significantly closer than the rest of lncRNAs
(Wilcoxon test, p-value= 0.0008) and it represents the group with
the lowest distance (median 1122, 1330 and 1607 kb for CLC, PF-
non-CLC and other non-CLC, respectively) (Fig. 5a). Thus,
although proximity to protein-coding genes seems to be a feature
of potentially functional lncRNAs, CLC genes are closer to cancer
genes compared with other lncRNAs with similar function-like
properties.

It has been widely proposed that proximal lncRNA/protein-
coding gene pairs are involved in cis-regulatory relationships,
which is reflected in expression correlation52. We next asked
whether proximal CLC-CGC pairs exhibit this behaviour. An
important potential confounding factor, is the known positive
correlation between nearby gene pairs53, and this must be
controlled for. Using gene expression data across 11 human cell
lines, we observed a positive correlation between CLC-CGC gene
pairs for each cell type (Fig. 5b). To control for the effect of
proximity on correlation, we next randomly sampled a similar
number of non-CLC lncRNAs with matched distances (TSS-TSS)
from the same CGC genes, and found that this correlation was
lost (Fig. 5b, “nonCLC-CGC”). To further control for a possible
correlation arising from the simple fact that both CGC and CLC
genes are involved in cancer, and CLC genes are in general
enriched for conservation and expression, we next randomly
shuffled the CLC-CGC pairs 1000 times, again observing no
correlation (Fig. 5b, “Shuffled CLC-CGC”). Together these results
show that genomically proximal protein-coding/non-coding gene
pairs exhibit an expression correlation that exceeds that expected
by chance, even when controlling for genomic distance.

These results prompted us to further explore the genomic
localization of CLC genes relative to their proximal protein-
coding gene and the nature of their neighbouring genes. Next, we
observed an unexpected difference in the genomic organisation of
CLC genes: when classified by orientation with respect to nearest
protein-coding gene5, we found a significant enrichment of CLC
genes immediately downstream and on the same strand as
protein-coding genes (“Samestrand, pc up”, Fig. 5c). Moreover,
CLC genes are approximately twice as likely to lie in an upstream,
divergent orientation to a protein-coding gene (“Divergent”,
Fig. 5c). Of these CLC genes, 20% are divergent to a CGC gene,
compared with 5% for non-CLC genes (p-value= 0.018, Fisher’s
exact test) (Fig. 5d), and several are divergent to protein-coding

genes that have also been linked or defined to be involved in
cancer, despite not being classified as CGCs (Supplementary
Data 2).

Given this noteworthy enrichment of CGC genes among the
divergent protein-coding genes of the CLC set, we next inspected
the functional annotation of those protein-coding genes.
Examining their Gene Ontology (GO) terms, molecular pathways
and other gene function related terms, we found this group of
genes to be enriched in GO terms for “sequence-specific DNA
binding”, “DNA binding”, “tube development” and “transcrip-
tional misregulation in cancer” (Fig. 5e and Supplementary Data
3), contrary to the GO terms of the divergent protein-coding
genes of the non-CLC set (Supplementary Data 4). These results
were confirmed by another, independent GO-analysis suite (see
Methods). Interestingly, three out of the top four functional
groups were observed previously in a study of protein-coding
genes divergent to long upstream antisense transcripts in primary
mouse tissues54.

Thus, CLC genes appear to be non-randomly distributed with
respect to protein-coding genes, and particularly their CGC
subset.

Evidence for anciently conserved cancer roles of lncRNAs. In
mouse, numerous studies have employed unbiased forward
genetic screens to identify genes that either inhibit or promote
tumorigenesis55. These studies use engineered, randomly-
integrating transposons carrying bidirectional polyadenylation
sites as well as strong promoters. Insertions, or clusters of
insertions, called “common insertion sites” (CIS) that are iden-
tified in sequenced tumour DNA, are assumed to act as driver
mutations55, and thereby implicate the overlapping or neigh-
bouring gene locus as either an oncogene or tumour-suppressor
gene. Although these studies have traditionally been focused on
identifying protein-coding driver genes, they can in principle also
identify non-coding RNA driver loci55.

We thus reasoned that comparison of mouse CISs to
orthologous human regions could yield independent evidence
for the functionality of human cancer lncRNAs (Fig. 6a). To test
this, we collected a comprehensive set of CISs in mouse56,
consisting of 2906 loci from seven distinct cancer types
(Supplementary Data 5). These sites were then mapped to
orthologous regions in the human genome, resulting in 1301 non-
overlapping human CISs, or hCISs. 6.9% (90) of these CISs lie
outside of protein-coding gene boundaries.

Mapping hCISs to lncRNA annotations, we discovered
altogether eight CLC genes (6.6%) carrying at least one insertion
within their gene span: DLEU2, GAS5, MONC, NEAT1, PINT,
PVT1, SLNCR1, XIST (Table 1). Two cases, DLEU2 and MONC,
each have two independent hCIS sites. In contrast, just 64 (0.4%)
non-CLC lncRNAs contained hCISs (Fig. 6b). A good example is
SLNCR1, shown in Fig. 6c, which drives invasiveness of human
melanoma cells57, and whose mouse orthologue contains a CIS
discovered in pancreatic cancer. It is noteworthy that no hCIS
was found to overlap MALAT1 despite its being amongst the
most widely-studied cancer lncRNAs14. This agrees with the lack
of strong phenotypic effects when deleting this gene in mouse
models, as discussed in the Introduction21–23. We examined the
possibility that hCIS insertions in these CLC genes could in fact
be caused by nearby, protein-coding cancer genes. However, none
of these eight CLC genes are within 100 kb of a CGC gene, with
the exception of PVT1 lncRNA, lying 58 kb from c-MYC
oncogene.

This analysis would suggest that CLC genes are enriched for
hCISs; however, there remains the possibility that this is
confounded by their greater length and possible overlap with
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protein-coding genes. To account for this, we only selected hCIS
elements that do not overlap protein-coding regions (90 hCIS)
and we performed two separate validations using only regions
that do not overlap protein-coding genes from the CLC and non-
CLC genesets. First, groups of non-CLC genes with CLC-matched
length were randomly sampled, and the number of intersecting
hCISs per unit gene length (Mb) was counted (Supplementary

Fig. 8A). Second, CLC genes were randomly relocated in the
genome, and the number of genes intersecting at least one hCIS
was counted (Supplementary Fig. 8B). Both analyses showed that
the number of intersecting hCISs per Mb of CLC gene span is far
greater than expected in comparison with both non-CLC genes
(Supplementary Fig. 8A) and intergenic space (nucleotides that
do not overlap neither lncRNAs neither protein-coding genes)
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(Supplementary Fig. 8B). Interestingly, non-CLC genes also show
an enrichment for hCIS sites in comparison with intergenic
regions (Supplementary Fig. 8C), suggesting that more cancer
lncRNAs remain to be discovered.

We further compared the enrichment of hCIS in protein-
coding genes, lncRNA genes and other intergenic space.
Compared with the genomic space they occupy, there is a clear
enrichment of hCIS elements in both protein-coding CGC genes,
as well as CLC lncRNAs (Fig. 6d). Expressed as insertion rate per
megabase of gene span, it is clear that CLC genes are targeted
more frequently than background intergenic DNA and non-
cancer-related lncRNA genes. Of note are the non-background
insertion rates for non-cancer-related protein-coding (nonCGC)
and lncRNA genes (non-CLC), suggesting that there remain
substantial numbers of undiscovered cancer genes in both groups.

Together these analyses demonstrate that CLC genes are
orthologous to mouse cancer-causing genomic loci at a rate
greater than expected by random chance. These identified cases,
and possibly other CLC genes, display cancer functions that have
been conserved over tens of millions of years since human-rodent
divergence.

Discussion
We have presented the Cancer LncRNA Census, the first con-
trolled set of GENCODE-annotated lncRNAs with demonstrated
roles in tumorigenesis or cancer phenotypes.

The present state of knowledge of lncRNAs in cancer, and
indeed lncRNAs generally, remains incomplete. Consequently,
our aim was to create a gene set with the greatest possible con-
fidence, by eliminating the relatively large number of published
cancer lncRNAs with as-yet unproven functional roles in disease
processes. Thus, we defined cancer lncRNAs as those having
direct experimental or genetic evidence supporting a causative
role in cancer phenotypes. By this measure, gene expression
changes alone do not suffice. By introducing these well-defined
inclusion criteria, we hope to ensure that CLC contains the
highest possible proportion of bona fide cancer genes, giving it
maximum utility for de novo predictor benchmarking. In addi-
tion, its basis in GENCODE ensures portability across datasets
and projects. Inevitably some well-known lncRNAs did not meet
these criteria (including SRA1, CONCR, KCNQ1OT1)42–44; these
may be included in future when more validation data becomes
available. We believe that CLC will complement the established
lncRNA databases such as lncRNAdb, LncRNADisease and
Lnc2Cancer, which are more comprehensive, but are likely to
have a higher false-positive rate due to their more relaxed
inclusion criteria26,39,40.

De novo lncRNA driver-gene discovery is likely to become
increasingly important as the number of sequenced tumours
grow. The creation and refinement of statistical methods for
driver-gene discovery will depend on the available of high-quality

true-positive genesets such as CLC. It will be important to con-
tinue to maintain and improve the CLC in step with anticipated
growth in publications on validated cancer lncRNAs. Very
recently, CRISPR-based screens9,47 have catalogued large num-
bers of lncRNAs contributing to proliferation in cancer cell lines,
which will be incorporated in future versions.

We used CLC to estimate the performance of de novo driver
lncRNA predictions from the PCAWG project, made using the
ExInAtor pipeline15. Supporting the usefulness of this approach,
we found an enrichment for CLC genes amongst the top-ranked
driver predictions. Extending this to the full set of PCAWG driver
predictors, approximately ten percent of CLC genes (9.8%) are
called as drivers by at least one method16, which is lower to the
rate of CGC genes identified (25.1%).

The low rate of concordance between de novo predictions and
CLC genes may be due to technical or biological factors. Indeed, it
is important to state that we do not yet know whether CLC holds
“cancer driver” lncRNAs, and indeed, how many such genes exist.
In principle, lncRNAs may play two distinct roles in cancer: first,
as driver genes, defined as those whose mutations are early and
positively-selected events in tumorigenesis; or second, as
“downstream genes”, which do make a genuine contribution to
cancer phenotypes, but through non-genetic alterations in cellular
networks resulting from changes in expression, localisation or
molecular interactions. These downstream genes may not display
positively-selected mutational patterns, but would be expected to
display cancer-specific alterations in expression. A key question
for the future is how lncRNAs break down between these two
categories, and the utility of CLC in benchmarking de novo driver
predictions will depend on this. However, the identification of
lncRNAs whose silencing or overexpression is sufficient for
tumour formation in mouse, would seem to suggest that they are
true “driver genes”.

Analysis of the CLC gene set has broadened our understanding
of the unique features of cancer lncRNAs, and generally supports
the notion that lncRNAs have intrinsic biological functionality.
Cancer lncRNAs are distinguished by a series of features that are
consistent with both roles in cancer (e.g. tumour expression
changes), and general biological functionality (e.g. high expres-
sion, evolutionary conservation). Elevated evolutionary con-
servation in the exons of CLC genes would appear to support
their functionality as a mature RNA transcript, in contrast to the
act of their transcription alone58. Another intriguing observation
has been the colocalisation of cancer lncRNAs with known
protein-coding cancer genes: these are genomically proximal and
exhibit elevated expression correlation. This points to a regulatory
link between cancer lncRNAs and protein-coding genes, perhaps
through chromatin looping, as described in previous reports for
CCAT1 and MYC, for example59.

One important caveat for all features discussed here is ascer-
tainment bias: almost all lncRNAs discussed have been curated

Fig. 5 Evidence for genomic clustering of non-coding and protein-coding cancer genes. a Cumulative distribution of the genomic distance of lncRNA
transcription start site (TSS) to the closest Cancer Gene Census (CGC) (protein-coding) gene TSS. LncRNAs are divided into CLC (n= 122), potentially
functional non-CLC genes (PF-non-CLC) (n= 149), and other non-CLC genes (n= 15,678). b Boxplot shows the distribution of the gene expression
correlation between CLC and their closest CGC genes in 11 human cell lines, including two control analyses (distance-matched non-CLC-CGC pairs, and
shuffled CLC-CGC pairs). Correlation was calculated for gene pairs within each cell type, using Pearson method. p-value for Kolmogorov–Smirnov test is
shown. c Genomic classification of lncRNAs. Genes are classified according to distance and orientation to the closest protein-coding gene, and these are
grouped into three categories: genes closer than 10 kb to closest protein-coding gene, genes overlapping a protein-coding gene and intergenic genes
(>10 kb from closest protein-coding gene). p-values for Fisher’s exact tests are shown. d The percentage of divergent CLC (left bar) and non-CLC (right
bar) genes divergent to a cancer protein-coding gene (CGC). Numbers represent numbers of genes with which the percentage is calculated. p-value for
Fisher’s exact test is shown. e Functional annotations of the 20 protein-coding genes (pc-genes) divergent to CLC genes from panel (c). Bars indicate the
–log10 (corrected) p-value (see Methods) and are coloured based on the “enrichment”: the number of genes that contain the functional term divided by the
total number of queried genes. Numbers at the end of the bars correspond to the number of genes that fall into the category.
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from published, single-gene studies. It is entirely possible that
selection of genes for initial studies was highly non-random, and
influenced by a number of factors—including high expression,
evolutionary conservation and proximity to known cancer genes—
that could bias our inference of lncRNA features. This may be the
explanation for the observed excess of cancer lncRNAs in divergent
configuration to protein-coding genes. However, the general

validity of some of the CLC-specific features described here—
including high expression and evolutionary conservation—were
also observed in recent unbiased genome-wide screens9,15, sug-
gesting that they are genuine.

Despite the relatively low concordance of CLC genes with
PCAWG driver predictions, the results of this study strongly
support the value and key cancer role of identified lncRNAs in
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element types (intergenic). Arrows indicate the number of hCIS and the percentage for each element type. e Number of overlapping hCIS per megabase of
genomic span for each gene class.
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cancer. Most notably, the existence of a core set of eight lncRNAs
with independently-identified mouse orthologues with similar
cancer functions, is a powerful evidence that these genes are bona
fide cancer genes, whose overexpression or silencing can drive
tumour formation. To our knowledge this is the most direct
demonstration to date of anciently conserved functions and dis-
ease roles for lncRNAs. It will be intriguing to investigate in
future whether more human-mouse orthologous lncRNAs have
been identified in such screens.

Methods
Manual curation. All lncRNAs in lncRNAdb and those listed in Schmitt and
Chang’s recent review article were collected26,60. To these were added all cases from
LncRNADisease and Lnc2Cancer databases39,40. This primary list formed the basis
for a manual literature search: all available publications for each gene were iden-
tified by keyword search in PubMed. If publications were found conforming to at
least one of the inclusion criteria (below) and the gene has a GENCODE ID, then it
was added to CLC, with appropriate information on the associated cancer, biolo-
gical activity. For the numerous cases where no GENCODE ID was supplied in the
original publication, any available ID, or primer or siRNA sequence was used to
identify the gene using the UCSC Genome Browser Blat tool61.

Inclusion criteria sufficient to define a cancer lncRNA and link it to a cancer
type were

Class t: In vitro demonstration that their knockdown and/or overexpression in
cultured cancer cells results in changes to cancer-associated phenotypes. These
typically include proliferation rates, migration, sensitivity to apoptosis, or
anchorage-independent growth.

Class v: In vivo demonstration that their knockdown and/or overexpression in
cancer cells alters their tumorigenicity when injected into animal models.

Class g: Germline mutations or variants that predispose humans to cancer.
Class s: Somatic mutations that show evidence for positive selection during

tumour formation.
An additional criterion was allowed to link an lncRNA to a cancer type, only if

at least one of the above criteria was already met for another cancer:
Class p: Prognosis, the lncRNAs expression is statistically linked to disease

progression or response to treatment.
If an lncRNA was found to promote tumorigenesis or cancer phenotype, it was

defined as “oncogene”. Conversely those found to inhibit such phenotypes were
defined as “tumour suppressor”. Several lncRNAs were found to have both
activities recorded in different cancer types, and were given both labels. For every
lncRNA-cancer association, a single representative publication is recorded. Finally,
it is important to note that no lncRNAs were included based on evidence from
previous driver-gene discovery studies of the types represented by OncodriveFML,
ExInAtor, ncdDetect or others described in PCAWG15,16,34,62.

CLC set at this stage relies on GENCODE v24 annotation, and therefore all CLC
genes have a GENCODE v24 ID assigned. However, data relative to GENCODE
v24 was not available for all types of data and analyses used in this study (i.e. all
data relative to PCAWG is based on GENCODE v19). Thus, for some analyses only
genes also present in GENCODE v19 could be used (specified in the corresponding
methods sections) and the total number of genes analyzed in these cases is slightly
lower (107 instead of 122 CLC genes and 13,503 instead of 15,827 non-CLC).

LncRNA and protein-coding driver prediction analysis. LncRNA and protein-
coding predictions for ExInAtor and the rest of PCAWG methods, as well as the
combined list of drivers, were extracted from the consortium database16. Para-
meters and details about each individual methods and the combined list of drivers

can be found on the main PCAWG driver publication16 and false discovery rate
correction was applied on each individual cancer type for each individual method
in order to define candidates (q-value cutoffs of 0.1 and 0.2, specified in the
corresponding sections). This way, we combined the predicted candidates of each
individual method in each individual cancer type (including pan-cancer). To cal-
culate sensitivity (percentage of true positives that are predicted as candidates) and
precision (percentage of predicted candidates that are true positives) for lncRNA
and protein-coding predictions we used the CLC and CGC (COSMIC v78,
downloaded 3 October 2016) sets, respectively. To assess the statistical significance
of sensitivity rates, we used Fisher’s exact test.

Feature identification. We compiled several quantitative and qualitative traits of
GENCODE lncRNAs and used them to compare CLC genes to the rest of lncRNAs
(referred to as “non-CLC”). Analysis of quantitative traits were performed using
Wilcoxon test while qualitative traits were tested using Fisher' exact test. These
methods principally refer to Figs. 4 and 5 as well as Supplementary Figs. 4, 5,
6 and 7.

Cancer SNPs: On 4 October 2016, we collected all 2192 SNPs related to
“cancer”, “tumour” and “tumor” terms in the NHGRI-EBI Catalog of published
genome-wide association studies63,64 (https://www.ebi.ac.uk/gwas/home). Then we
calculated the closest SNP to each lncRNA TSS using closest function from
Bedtools v2.1965 (GENCODE v24).

Non-cancer SNPs: On 31 July 2017, we collected all 29,813 SNPs not related to
“cancer”, “tumour” and “tumor” terms in the NHGRI-EBI Catalog of published
genome-wide association studies63,64 (https://www.ebi.ac.uk/gwas/home). Then we
calculated the closest SNP to each lncRNA TSS using closest function from
Bedtools v2.1965 (GENCODE v24).

Epigenetically-silenced lncRNAs: We obtained a published list of 203 cancer-
associated epigenetically-silenced lncRNA genes present in GENCODE v2449.
These candidates were identified due to DNA methylation alterations in their
promoter regions affecting their expression in several cancer types.

Differentially expressed in cancer: We collected a list of 3533 differentially
expressed lncRNAs in cancer compared with normal samples49 (GENCODE v24).

Sequence/gene properties: Exonic positions of each gene were defined as the the
union of exons from all its transcripts. Introns were defined as all remaining non-
exonic nucleotides within the gene span. Repeats coverage refers to the percent of
exonic nucleotides of a given gene overlapping repeats and low complexity DNA
sequence regions obtained from RepeatMasker data housed in the UCSC Genome
Browser66. Exonic content refers to the fraction of total gene span covered by
exons. For this section we used GENCODE v19.

Evolutionary conservation: Two types of PhastCons conservation data were
used: base-level scores and conserved elements. These data for different
multispecies alignments (GRCh38/hg38) were downloaded from UCSC genome
browser66. Mean scores and percent overlap by elements were calculated for exons
and promoter regions (GENCODE v24). Promoters were defined as the 200 nt
region centred on the annotated gene start.

Expression: We used polyA+RNA-seq data from 10 human cell lines produced
by ENCODE67,68, from various human tissues by the Illumina Human Body Map
Project (HBM) (www.illumina.com; ArrayExpress ID: E-MTAB-513), and from
cancer samples from PCAWG RNA-seq expression data16. In this last case, for
each cancer type we computed the expression mean of genes across all RNA-seq
samples belonging to that cancer type (GENCODE v19).

Transposable elements: We downloaded 5,520,016 transposable elements from
the UCSC table browser69 on 3 August 2017. We separated them by element types
and counted how many of them intersected or not with the transcription start sites
of CLC and non-CLC genes, in order to detect any association with the Fisher'
exact test.

Distance to protein-coding genes and CGC genes: For each lncRNA we
calculated the TSS to TSS distance to the closest protein-coding gene (GENCODE

Table 1 List of intergenic CIS human (GRCh38)/mouse (GRCm38) gene pairs.

Human
CLC name

Human CLC ID Chr human Start human End human Chr mouse Start mouse End mouse PubMed ID Cancer type
mouse

DLEU2 ENSG00000231607 chr13 50,048,971 50,049,063 chr14 61,631,880 61,631,972 24316982 Liver
DLEU2 ENSG00000231607 chr13 50,049,117 50,049,206 chr14 61,632,026 61,632,110 24316982 Liver
GAS5 ENSG00000234741 chr1 173,864,370 173,864,435 chr1 161,038,091 161,038,156 25961939 Sarcoma
MONC ENSG00000215386 chr21 16,539,096 16,539,161 chr16 77,598,935 77,599,000 23685747 Nervous System
MONC ENSG00000215386 chr21 16,561,654 16,561,655 chr16 77,616,439 77,616,440 24316982 Liver
NEAT1 ENSG00000245532 chr11 65,444,511 65,444,512 chr19 5,825,497 5,825,498 24316982 Liver
PINT ENSG00000231721 chr7 131,049,455 131,049,456 chr6 31,179,149 31,179,150 22699621 Pancreatic
PVT1 ENSG00000249859 chr8 128,007,970 128,007,971 chr15 62,186,646 62,186,647 22699621 Pancreatic
SLNCR1 ENSG00000227036 chr17 72,507,275 72,507,276 chr11 113,137,613 113,137,614 22699621 Pancreatic
XIST ENSG00000229807 chrX 73,841,539 73,841,540 chrX 103,473,862 103,473,863 24316982 Liver
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v24) or CGC gene (downloaded on 3 October 2016 from Cosmic database)31 using
closest function from Bedtools v2.1965. In order to divide non-CLC genes into
potentially functional non-CLC (PF-non-CLC) and others, we sampled the list of
all non-CLC genes to get a subsample that has a matched distribution to CLC genes
in conservation (% of conserved elements, from Vertebrate Multiz Alignment 100
Species from UCSC genome browser data, in exonic regions). Then we sampled
again the resulting subset to get a final subset that also matches CLC genes in terms
of expression (median of expression across 16 human tissues, data from Illumina
Human Body Map Project (HBM)). To create the non-CLC samples we used the
matchDistribution script: https://github.com/julienlag/matchDistribution.

Coexpression with closest CGC gene: We took CLC-CGC gene pairs whose
TSS-TSS distance was <200 kb. RNA-seq data from 11 human cell lines from
ENCODE was used to assess expression levels67,68. ENCODE RNA-seq data were
obtained from ENCODE Data Coordination Centre (DCC) in September 2016,
https://www.encodeproject.org/matrix/?type=Experiment. All data is relative to
GENCODE v24. We calculated the expression correlation of gene pairs within each
of the
11 cell lines, using the Pearson measure. To control for the effect of proximity, we
randomly sampled a subset of non-CLC-CGC pairs matching the same TSS-TSS
distance distribution as above, and performed the same expression correlation
analysis (“non-CLC-CGC”). Finally, to further control for the fact that CLC and
CGC are both cancer genes, which may influence their expression correlation, we
shuffled CLC-CGC pairs 1000 times, and tested expression correlation for each set
(“Shuffled CLC-CGC”).

Genomic classification: We used an in-house script (https://github.com/gold-
lab/shared_scripts/tree/master/lncRNA.annotator) to classify lncRNA transcripts
into different genomic categories based on their orientation and proximity to the
closest protein-coding gene (GENCODE v24): a 10 kb distance was used to
distinguish “genic” from “intergenic” lncRNAs. When transcripts belonging to the
same gene had different classifications, we used the category represented by the
largest number of transcripts.

Functional enrichment analysis: The list of protein-coding genes (GENCODE
v24) that are divergent and closer than 10 kb to CLC genes (or non-CLC) was used
for a functional enrichment analysis (20 unique genes in the case of CLC analysis
and 1202 in the case of non-CLC analysis). We show data obtained using g:Profiler
web server70, g:GOSt, with default parameters for functional enrichment analysis of
protein-coding genes divergent to CLC and using Bonferroni correction for
protein-coding gene divergent to non-CLC. For CLC analysis we performed the
same test with independent methods: Metascape (http://metascape.org)71 and
GeneOntoloy (Panther classification system)72,73. In both cases similar results
were found.

Mouse mutagenesis screen analysis. We extracted the genomic coordinates of
transposon common insertion sites (CISs) in Mouse (GRCm38/mm10) http://
ccgd-starrlab.oit.umn.edu/about.php56. This database contains target sites identi-
fied by transposon-based forward genetic screens in mice. LiftOver61 was used at
default settings to obtain aligned human genome coordinates (hCISs) (GRCh38/
hg38). We discarded hCIS regions longer than 1000 nucleotides for all the analyses;
and also those that overlap protein-coding genes (except for Fig. 6b). The
remainders (90 hCISs) were intersected with the genomic coordinates of CLC and
non-CLC genes that do not overlap protein-coding genes.

To correctly assess the statistical enrichment of CLC in hCIS regions, we
performed two control analyses:

Length-matched sampling: To calculate if the enrichment of hCIS intersecting
genes in CLC set is higher and statistically different from non-CLC set, while
controlling by gene length, we created 1000 samples of non-CLC genes with the
same gene length distribution as CLC genes. Each sample was intersected with
hCIS, and the number of intersecting hCISs per Mb of gene length was calculated.
To create the non-CLC samples we used the matchDistribution script: https://
github.com/julienlag/matchDistribution. Finally, we calculated an empirical p-
value by counting how many of the simulated non-CLC enrichments were higher
or equal than the real CLC value.

Randomly repositioning of CLC and non-CLC genes: We randomly relocated
CLC/non-CLC genes 10,000 times within the non-protein-coding regions of the
genome using the tool shuffle from BedTools v1965. In each iteration, we calculated
the number of genes that intersected at least one hCIS, and created the distribution
of these simulated values. Finally, we calculated an empirical p-value by counting
how many of the simulated values were higher or equal than the real values. This
analysis was performed separately for CLC and non-CLC genes.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data reported in this study are summarized in the manuscript and its Supporting
Information files. The list of CLC genes are also available from the GOLD Lab website
(https://www.gold-lab.org/clc). Somatic and germline variant calls, mutational signatures,
subclonal reconstructions, transcript abundance, splice calls and other core data
generated by the ICGC/TCGA Pan-cancer Analysis of Whole Genomes Consortium is

described here38 and available for download at https://dcc.icgc.org/releases/PCAWG.
Additional information on accessing the data, including raw read files, can be found at
https://docs.icgc.org/pcawg/data/. In accordance with the data access policies of the
ICGC and TCGA projects, most molecular, clinical and specimen data are in an open tier
which does not require access approval. To access potentially identification information,
such as germline alleles and underlying sequencing data, researchers will need to apply to
the TCGA Data Access Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov/
aa/wga.cgi?page=login) for access to the TCGA portion of the dataset, and to the ICGC
Data Access Compliance Office (DACO; http://icgc.org/daco) for the ICGC portion. In
addition, to access somatic single nucleotide variants derived from TCGA donors,
researchers will also need to obtain dbGaP authorisation.

Code availability
Custom code are available from the corresponding author upon request. The core
computational pipelines used by the PCAWG Consortium for alignment, quality control
and variant calling are available to the public at https://dockstore.org/search?
search=pcawg under the GNU General Public License v3.0, which allows for reuse and
distribution.
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