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Abstract 

In this survey we review the literature and concepts of the data mining of social networks, with special emphasis on their 

representation as a graph structure. The survey is divided into two principal parts: firstly we conduct a survey of the 

literature which forms the ‘basis’ and background for the field; and secondly we define a set of 'hot topics' which are 

currently in vogue in congresses and the literature. The ‘basis’ or background part is divided into four major themes: 

graph theory, social networks, online social networks and graph mining. The graph mining theme is organized into ten 

subthemes. The second, ‘hot topic’ part, is divided into five major themes: communities, influence and recommendation, 

models metrics and dynamics, behaviour and relationships, and information diffusion. 

1. Introduction 

The analysis of social networks has recently 

experienced a surge of interest by researchers, due to 

different factors, such as the popularity of online 

social networks (OSNs), their representation and 

analysis as graphs, the availability of large volumes 

of OSN log data, and commercial/marketing interests. 

OSNs also present interesting research challenges 

such as the search/matching of similar sub-graphs, 

community analysis/modelling, user classification 

and information propagation. Hence, OSN data 

analysis has a great potential for researchers in a 

diversity of disciplines. However, we propose that 

OSN analysis should be placed in the context of its 

sociological origins and its basis in graph theory. 

Thus, we have devised a survey which firstly presents 

the key historical and base research ideas and the 

different associated themes, and secondly presents a 

selection of the latest research and tendencies taken 

from international conferences. 

Graph Mining of on-line social networks is a 

relatively new area of research which however has a 

solid base in classic graph theory, computational cost 

considerations, and sociological concepts such how 

individuals interrelate, group together and follow one 

another.  

For the purposes of the survey, we will divide the 

base themes as follows: graph theory, social 

networks, OSNs and SN dataset analysis, and graph 

mining. The 'graph mining' theme is divided into sub-

themes as is shown in Fig. 1. Then the ‘hot topics’ 

are divided into five sub-themes, as is illustrated in 

Fig. 1. The ‘hot topic’ themes were selected by 

classifying the papers found in recent editions of four 

major conferences: WWW 2012, ICSWM 2012, 

WOSN 2010 and WCCI 2012. 

The structure of the paper is as follows: Section 

Two consists of a survey of the four major ‘base’ 

themes and ten sub-themes, highlighting the key 

concepts and authors. Then in Section Three we 

present five ‘hot topics’ in which we summarize a 

selection of the latest research. Section Four 

concludes with a summary of the survey and of the 

identified key tendencies. In Fig. 1 we see a 

schematic representation of the structure of the 

complete survey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Scope of the Survey indicating the division of base topics and hot topics 

 

2. Base survey 

In this Section we consider the base themes related to 

graph mining of OSNs: graph theory, social 

networks, online social networks and graph mining. 

2.1. Graphs 

In this section we will summarize some of the key 

abstract concepts of graphs. We will see that graph 

mining has a solid basis in classical graph theory. 

In general, a graph G is represented as G(V, E) 

where V is a set of vertices (or nodes) and E is a set 

of edges (or links) connecting some vertex pairs in V. 

Statistically, a graph can be characterized by derived 

values such as the average degree of the nodes and 

the average path length between nodes. Additional 

characteristics are the graphs diameter, the number of 

triangles, the number of isomorphisms and the 

clustering coefficient, among others.  

In Fig. 2 we see an elementary graph with five 

vertices and five edges. As there are no arrows, we 

assume it is undirected, and as the edges have no 

additional information attached we assume it is un-

weighted. We see that nodes A, B and D have degree 

2, node C has degree 3 and node E has degree 1, 

hence the degree sequence is {1, 2, 2, 2, 3}. 

In this survey we are more interested in a graph as 

an abstract data type rather than a mathematical 

entity, the former being used to represent the latter. 

Different algorithms exist which perform higher level 

operations on graphs, such as finding its degree, 

finding the connectivity between its neighbours 

(clustering coefficient), finding a path between two 



  

nodes, (using depth-first search or breadth-first 

search), or finding the shortest path from one node to 

another. Refer to [1] for a general introduction to 

different types of graph algorithms which are relevant 

to OSNs. 

 

 

 

 

 

 

 

Fig. 2. Simple graph with five vertices and five edges. 

A list of typical lower level graph processing 

operations could be the following: 'adjacent', tests if 

the exists an edge between two nodes; 'neighbours', 

finds all the nodes which have an edge with a given 

node; 'add', adds an edge between two nodes; 'delete', 

deletes an edge between two nodes; 'get' and 'set' 

values associated with nodes: 'get' and 'set' values 

associated with edges. 

How to represent a graph in computer memory is a 

key issue, due to the potentially high computational 

cost of many of the higher level operators we wish to 

perform. Two of the most popular data structures are 

'adjacency lists' and 'adjacency matrices'. Refer to [2] 

for more details about these structures. 

Two other data structures, 'incidence lists' and 

'incidence matrices' are similar to the former, with the 

distinction that the information stored indicates if 

edges and vertices are incident. 

With respect to computational cost, an adjacency 

list is preferred when the graph connectivity is sparse, 

whereas an adjacency matrix is preferred if the graph 

is dense[2]. 

There are many types of graphs: directed 

(digraphs), undirected, graphs with weights on the 

edges, vertices or both, random, bipartite, and so on. 

In the current survey, we will principally consider 

non-directed graphs, directed graphs and some graphs 

with edge weights. An 'undirected graph' has no 

information about the direction or flow between 

nodes. That is, the edge between two vertices A and 

B is identical to the edge between vertices B and A. 

A 'directed graph', on the other hand, does include 

directional information. Each edge will have a 

direction associated with it, which can be 

unidirectional AB or bidirectional AB. A 

'weighted graph' includes additional information 

associated with an edge or a vertex. The meaning of 

the weight depends on the data domain, such as the 

number of telephone calls between two people in the 

last month, or the cost, benefit, capacity, and so on. 

Isomorphism: A key property of interest in 

graphs is the isomorphic property, which refers to an 

exact match between two given graphs, in terms of 

structure, dimensionality, connectivity and mapping 

of corresponding nodes. Two graphs G1 = (V, E1), G2 

= (V, E2) are designated as being isomorphic if a 

permutation p exists such that p(G1) = G2. That is, 

with the same set of vertices, the edges of G1 can be 

rearranged to fit G2. 

In Fig. 3 we see an example of two graphs, one of 

which is an isomorphism of the other, by the 

permutation {(A, V), (B, W), (C, X), (D, Z), (E, Y)}. 

Graph matching is a key activity in different 

pattern recognition applications, in which high and 

low level information may be represented. However, 

graph matching has a high computational cost, and 

the task of finding isomorphic sub-graphs is a 

problem which is NP-complete. Later, in Section 

2.4.8.3 we will look at some specific graph matching 

and search algorithms. 

For those readers who wish to enter into more 

detail about graph theory, West in [3] reviews the 

following topics: trees and distance, matching and 

factors, connectivity and paths, graph colouring, 

edges and cycles and planar graphs. An introduction 

to graphs and networks from a more theoretical 

viewpoint is found in [4], which serves as a useful 

and simply described reference for common graph 

metrics and topologies. Definitions are given for 

directed and undirected graphs, unconnected graphs 

and connected components, complete and star graphs 

and lattices. The following metrics are considered: 

clustering coefficient, average path length, centrality, 

and a degree distribution function. Two theoretical 

models are evaluated: (i) a lattice structure with 

shortcuts, and (ii) incremental graph evolution. 

 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Graph Isomorphisms: the upper and lower graphs 

are isomorphic if an adequate mapping can be defined 

between the two. 

 

2.2. Social networks 

A social network is a social structure comprised of a 

set of participants (individuals, organizations, …) and 

the mutual ties between these participants. The vision 

of a social structure as a network facilitates the 

understanding and analysis of this structure, such as 

the identification of local and global characteristics, 

influential participants and the dynamics of networks 

[5]. Social network analysis is an interdisciplinary 

endeavour including such fields as social psychology, 

sociology, statistics, and graph theory.  

Georg Simmel [6][7] was one of the earliest to 

define structural theories in sociology, such as the 

dynamics of triads (subgroups involving three 

participants) and the development of individualism. 

As an example of triad dynamics consider three 

persons A, B, and C, in which person A has a direct 

dyadic relation with C and an indirect relation with C 

via B. In this case, person B may act to influence the 

relation between persons A and C. 

Commencing in the 1930’s, Jacob L. Moreno 

developed a representation called ‘sociograms’ which 

facilitated the study of interpersonal relationships, 

choices and preferences within groups [8]. A 

‘sociogram’ is a diagram of the structure and patterns 

of group interactions, which can be based on criteria 

such as social relations, channels of influence, lines 

of communication, and so on. 

During the 1950s a mathematical formalization 

was developed for social networks which became the 

basis for modern social and behavioural sciences, as 

well as complex network analysis in general [5]. 

Mc Pherson, in [9] combines a sociological focus 

to social network analysis with mathematical and 

graph theory approaches.  McPherson considers the 

hypothesis that social network structures are 

influenced by the idea that similar persons are 

attracted to each other (the colloquial term "birds of a 

feather" is mentioned). Demographic factors are 

considered, such as race and ethnicity, gender, age, 

religion, education, occupation and social class. For 

organizations/institutions with a predefined structure, 

the individuals’ position/role in the network is said to 

be a key aspect, especially if the organization is 

hierarchical. With reference to behavioural 

characteristics, these are especially important for 

'affinity grouping', for example, in the case of 

teenagers where achievement or delinquency can 

create affinities, which are socially positive or 

negative, respectively.  More ephemeral factors are 

defined as being attitudes, abilities, beliefs and 

aspirations.  

In terms of the causes of "homophily" (i.e. love of 

the same), geography is stated as being a key factor, 

together with family ties, and organizational foci 

(school, work, voluntary organization participation) 

for non-kin ties. The simple conclusion is that in 

general people tend to associate with others who are 

similar to them. Finally, tie-dissolution is considered, 

that is, the causes of why people break ties. It is 

stated that weaker ties, such as those characterized by 

cross-gender, cross-race, or a wide age difference, are 

more likely to dissolve. In summary, the strongest 

sociological grouping factors are found to be gender, 

age, religion and education, with secondary factors 

being occupation, network position, behaviour 

patterns and intrapersonal values. 

A research work which combines a sociological 

viewpoint with graph theory concepts of structures 

and graph generator models and their 

parameterization, is that of Robins et al. [10]. The 

central theme of this wide ranging paper, is that the 

overall structure of a large graph is determined by its 

structure at a local level, specifically in terms of the 



  

proportion of a given number of predefined 

structures. The authors evaluate different graph 

model generators, in terms of the frequency of 

occurrence of these structures in the whole generated 

graph. One interesting observation is that, during 

graph evolution, a phase transition occurs at a given 

"temperature" at which regular structure formation 

gives way to a stochastic (random, probabilistic, 

natural) behaviour.  

Robins et al. cite a specific analogy of local 

behaviour and global structure in a real social 

network, that of the Medici family of 15th century 

Florence. It is proposed that this family became a 

key player in the general social network of Florence, 

because they were at the centre of a star-like structure 

of marriage and business alliances. Their efficient 

networking capability with the other key players in 

the network was simpler and faster than the complex 

relationships which existed between other key 

players, who were their political rivals, and were also 

mutual rivals. 

However, it is stated that this success on a global 

level was due to outcomes of local social processes, 

such as marriage ties and business partnerships. Thus, 

the Medici did not need a global vision of the 

network in order to eventually dominate it.  In graph 

theory terms, an overall structural balance was 

achieved by local triadic structures. Also, the authors 

propose that the small world phenomenon is a global 

property of the graph which is a consequence of 

repeated local structures, such as the prevalence of 

short paths, thus giving a low overall average path 

length.  

In order to model these observations Robins et al. 

proposed different graph generators, such as one 

based on random edge addition and triangle 

formation, which promotes a clustering tendency. 

Another mechanism for "growing networks" is that of 

"preferential attachment", in which a new node is 

attached to existing nodes with a probability which 

depends on the distribution of the degrees of the 

existing nodes. However, in order for this method to 

work optimally, it is necessary to know the 

distribution across the whole network. If this 

information cannot be obtained, then it can be 

approximated by sampling and fitting by successive 

iterations which refine the model parameters. 

However, it is observed that in real OSNs, node 

attachment is also influenced by the "friends of 

friends" phenomenon, whose consequence is that the 

probability of attachment is biased to form 

"triangles".  

2.3. Social networks and computers 

In this section we look at three aspects of social 

networks and computers. Firstly we review a brief 

history of online social network applications. 

Secondly we review some of the classic and most 

recent benchmarking datasets used by the SN and 

OSN analysis community. Thirdly we briefly 

mention some of the applications and development 

software used for SN graph analysis.  

2.3.1 On-line social network applications 

In social network applications, each user is typically 

defined by a profile, together with a functionality 

which facilitates searching for and aggregating 

contacts in a contact list. For each contact to be 

established, both parties have to mutually accept to 

create the 'link'. Other functionality is provided such 

as a ‘chat’, ‘photo albums’ and a ‘wall’ in which the 

user can publish messages and content which are 

‘broadcast’ to the contact list. Online applications, 

such as games, allow the user to participate, compete 

and collaborate with other users. 

An online social network can be generically 

understood to be some kind of computer application 

which facilitates the creation or definition of social 

relations among people based on acquaintance, 

general interests, activities, professional interests, 

family and associative relations, and so on. 

Some of the most popular worldwide OSNs are 

Facebook, Twitter, LinkedIn, Google+ and MySpace, 

with a number of users ranging from 800 million (in 

2011) for Facebook to 61 million for MySpace. 

Different countries also have their specific 

applications which are most popular domestically. In 

the case of China, RenRen (the equivalent of 

Facebook), has approx. 160 million registered users, 

of which 31 million are considered active. Weibo (a 

social microblogging application similar to Twitter) 

is claimed to have 300 million registered users. Spain 

has Tuenti, Hi5 is popular in Central and South 

America, Orkut (India and Brazil), StudiVZ 

(Germany), and Skyrock (France), among others[11]. 



   

Some applications are specific to photo sharing, such 

as Flickr or Picasa, or videos and music, such as 

YouTube or Spotify. 

A Brief history. Starting in the 1960's, some of the 

first online networking services, such as Usenet[12], 

ARPANET and BBS, America Online and 

CompuServe, already displayed rudimentary OSN 

features[13].  

With the advent of the WWW, in 1994 

Geocities[14] became one of the first applications to 

make use of this new environment to facilitate the 

interaction between people via chat rooms. 

Subsequently, in 1997, applications such as 

SixDegrees[15] incorporated more contemporary 

OSN functionality  to manage "user profiles" and 

"friend lists". Other notable applications were 

Friendster in 2002, followed by MySpace and 

LinkedIn in 2003 [16]. 

Facebook[17] was launched in 2004, and by 2009 

it became the largest social networking site. We 

could say that the great period of growth in the use of 

OSN applications manifested itself throughout the 

years 2005-2010. 

2.3.2. The analysis of social network datasets 

In this section we distinguish between three types of 

datasets used by social network analysts: (i) social 

networks which have been represented in a form 

which allow them to be analyzed by computer 

programs; (ii) data logs of computer applications 

which are not strictly OSN applications, such as 

email systems, mobile telephone logs, and so on; (iii) 

data logs of online social networks. 

(i) In the first type of dataset, we have, for 

example, Karate[18] and Dolphins[19], which are 

small graphs which have been used extensively for 

benchmarking. Zachary's "Karate club", consists of 

34 members of a Karate club, where two key nodes 

are the club's administrator and the club's instructor. 

There is a polarization, in more or less equal parts, of 

the club's members towards these two key members. 

The Dolphins data set represents a social network of 

a community of 62 bottlenose dolphins studied by 

Lusseau et al. in New Zealand [19]. Lusseau et al. 

compiled the dolphin data from a 7 year field study in 

which ties between dolphin pairs were established by 

observation of statistically frequent associations. 

In [20] Girvan and Newman conducted empirical 

tests on different datasets, including "College 

football", in which the teams are the vertices and the 

edges are the games between respective teams, a 

"collaboration network" consisting of 271 vertices 

which correspond to scientists resident in the Santa 

Fe Institute over a two year period, and a "food web" 

consisting of 33 vertices corresponding to an 

ecosystems principal taxa (species) and in which the 

edges represent trophic relationships (which taxa eats 

which). 

Many large graphs for benchmarking, some of 

which have been used extensively in the literature, 

are available from the SNAP Stanford Large Network 

Dataset Collection[21]. For example, the dataset cit-

HepTh[22], represents relations between citations and 

cited authors of scientific papers in the high energy 

physics field, comprising of 27,770 nodes and 

352,807 edges; a collaboration network of high 

energy physics papers, ca-HepTh[23] has 9,877 

nodes and 51,971 edges. 

(ii) In the second type of graph dataset we have, 

for example, the Enron dataset[24], made up of a log 

of emails sent and received between employees of the 

Enron Corporation during a given time period. This is 

available online from the SNAP dataset collection, 

and consists of 36,692 nodes and 367,662 edges. 

Also, in [25], Seshadri et al. analyze a large dataset of 

mobile phone calls (one million users and ten million 

calls). Seshadri examines the distributions of three 

key factors: phone calls per customer, duration time 

per customer, and number of distinct calling partners 

per customer. 

(iii) In the third type of graph dataset we have the 

Epinions ‘Who-trusts-whom’ network[26], consisting 

of 75,879 nodes and 508,837 edges; The LiveJournal 

online social network dataset[27] consisting of 

4,847,571 nodes and 68,993,773 edges; the 

wiki-Vote Wikipedia ‘who-votes-on-whom’ 

network[28] with 7,115 nodes and 103,689 edges;  

the Flickr images sharing common metadata[29] with 

105,938 nodes and 2,316,948 edges; and finally the 

Twitter dataset[30] made up of 476 million tweets 

collected between June-Dec 2009, representing 

17,069,982 users and 476,553,560 tweets. All of 

these datasets are available at the SNAP website[21] 

We also note that some applications such as 

Twitter[31] and LinkedIn[32] have made APIs 

(Application Programming Interfaces) available for 

programmers who wish to perform their own 



  

‘scraping’ of these OSNs, given certain data privacy 

restrictions.  

Finally, as well as the three types of graph data we 

have mentioned in this section, there is also the 

synthetic data generated by different models and by 

different researchers for specific purposes. Through 

the rest of the survey we will comment examples of 

synthetic datasets and of course the many other 

datasets used by researchers in their work.  

2.3.3. Applications and software for social network 

analysis 

With respect to software for OSN analysis, on the 

one hand there are the “off the shelf” applications 

such as Gephi[33] for visualizing graphs and 

calculating different graph statistics, including 

community labelling. Gephi includes as standard the 

following metrics: node centrality, between-ness, 

closeness, density, path length, diameter, HITS, 

modularity, and clustering coefficient. Gephi also has 

a Java API interface for developers. Another popular 

application is NetMiner[34] which is a commercial 

software system with specific modules for Twitter 

data analysis. 

On the other hand there are software development 

libraries and databases for programmers. ‘Neo4J’ 

[35] is a graph database software for high 

performance processing with a Java API for ‘big 

data’ requirements. The ‘Python NetworkX’ graph 

library [36] includes generators for classic graphs, 

random graphs, and synthetic networks, standard 

graph algorithms, and network structure/analysis 

measures. JUNG (the Java Universal Network/Graph 

Framework) [37] is an open source graph modelling 

and visualization framework written in Java. 

Finally, for those who prefer programming in the 

‘C’ language, there is the ‘igraph’ library and API 

[38], and the Stanford Network Analysis Platform 

(SNAP) [39] is a general purpose, high performance 

system for analysis and manipulation of large 

networks, written in C++. 

2.4. Graph mining 

In this section we cover the chosen key themes of 

graph mining: ‘classification/topologies’, 

‘prediction’, ‘efficiency’, ‘pattern detection’, 

‘measurement and metrics’, ‘modelling, evolution 

and structure’, ‘data processing’, ‘influence and 

recommendation’ and ‘communities’. 

2.4.1. Preamble 

Graph Mining can be considered a specialization of 

Data Mining, the objective of the latter being to 

process data which is difficult for humans to 

meaningfully interpret, and identify/extract high 

value knowledge from the data. For example, a data 

mining application may analyze a 1 Terabyte 

database of insurance transactions in order to identify 

patterns of fraudulent behaviour. The techniques 

which are used to process the data and extract the 

knowledge are in general statistical analysis and 

modelling techniques and/or machine learning 

methods using artificial intelligence concepts. Thus, 

we could say that the objective of Graph Mining is 

similar to that of Data Mining but applied to graphs. 

However, graphs have specific properties, 

especially with respect to the way the data is 

represented and interrelated, which differentiate it 

from ‘tabular’ data, and require specialized 

techniques. In [40], Cook and Holder define graph 

based data mining as the task of finding novel, useful 

and understandable graph-theoretic patterns in a 

graph representation of data.  

2.4.2. Prediction/supervised learning 

The objective of prediction and supervised learning is 

to create a data model which is able to learn 

outcomes from a historical data set, and apply them 

to a new dataset for which the outcomes are 

unknown. For example, we can train a model to 

classify users from three years of historical 

transactional data, and apply it to classify new users 

in an online application. This is clearly a wide field, 

and in this section we will limit the scope to look at 

two examples of contrasting use. In the first example 

prediction is used predict link formation between 

nodes in a social network, and in the second example 

machine learning is used for identifying common 

sub-graphs. 

Firstly, the prediction of link formation in social 

networks is considered by Liben-Nowell and 

Kleinberg in [41]. The authors evaluate different 

metrics for link-prediction in social networks, that is, 

how to infer which new links are likely to be created 

between nodes in the near future. Their approach is 



   

based on measures for analysing the "proximity" of 

nodes in a network, extracted from the network 

topology alone. A benchmarking is carried out using 

a battery of different predictor measures for assigning 

a "score" (Jaccard, SimRank, hitting time, rooted 

Pagerank, Katz, ...). The test datasets include 'astro-

ph', 'cond-mat', 'hep-ph', and 'qr-qc', which represent 

"co-authorship" networks of authors in different 

academic disciplines. The relative performance of 

their method is compared with 'random prediction', 

'graph-distance prediction' and 'common-neighbours 

prediction'. Also the number of common predictions 

between methods is evaluated. It is found that the 

best predictor (Katz on the gr-qc dataset) only has a 

predictive success rate of between 15% and 48%. 

Cook and Holder, in [40], discuss the task of 

identifying frequently occurring sub-graphs in graph 

transactions, with minimum levels of support. In the 

context of machine learning, Cook proposes a non-

supervised method (hierarchical conceptual 

clustering). With respect to supervised learning, the 

problem of choosing adequate examples and counter 

examples is discussed. Also, "blurred graphs" are 

proposed as a possible solution for cases which are 

difficult to categorize, and more generally this could 

be considered a form of "fuzzy" representation.  

2.4.3. Efficiency  

As we have already mentioned, computational cost is 

a key aspect of almost any operation or calculation 

that we realize on a graph. Many operations, such as 

calculating the average path length, or looking for 

isomorphic sub-graphs, are NP-Hard, thus we need to 

use an efficient data representation and/or heuristic in 

order to achieve a reasonable execution time and 

memory usage. Two typical data structures used for 

representing graph data are adjacency matrices and 

adjacency lists.  

The adjacency matrix is a commonly used 

solution, in which a graph with N nodes is 

represented by a N × N matrix, and the ones and 

zeroes in the cells indicate if two corresponding 

nodes are connected, or not, respectively. 

Ramamoorthy’s 1966 paper [42] is a key theoretical 

reference in this field, which considers the analysis of 

a graph using connectivity considerations. Graphs are 

considered as representing physical systems 

represented by weighted graphs, and which have 

characteristic "generating functions". Some key 

aspects are defined, such as the identification of 

"essential" and "inessential" nodes in a graph, testing 

for "strong connectivity" and sub-graph 

identification. A matrix representation is used for the 

graph where a cell with a "1" means that a direct 

connection exists between the corresponding nodes 

and a "0" means there is no direct connection. A node 

j in a given sub-graph T is considered essential with 

respect to T if it can be reached by all other nodes i in 

T, and if the terminal node t in T can be reached from 

j. A graph is considered strongly connected if and 

only if any node is reachable from any other. The set 

of all strongly connected sub-graphs is found by 

constructing the reachability matrix for each sub-

graph and then checking for non-zero row vectors. 

A method which reduces the computational costs 

of processing an adjacency matrix can be found in 

[43]. "Colibri" [43] is a method for Low Rank 

Approximation (LRA) applied to the adjacency 

matrix of a graph, which the authors claim is as 

effective as existing methods, such as CUR or CMD, 

while giving a 100 times reduction in computational 

cost. LRA is an important tool in graph mining for 

detecting communities in graphs and also for 

detecting outliers. 

Nair et al. in [44] present a unified approach to 

learning task-specific bit vector representations for 

fast nearest neighbour search. This type of search is 

necessary for applications such as information 

retrieval and nearest neighbour classification. They 

propose a learning-to-rank formulation to learn the 

bit vector representation of the data. The 

‘LambdaRank’ algorithm is used for learning a 

function that computes a task-specific bit vector from 

an input data vector. The authors claim that their 

method outperforms the state-of-the-art nearest 

neighbour methods they have benchmarked on a 

number of real world text and image classification 

and retrieval datasets. The method was shown to be 

scalable and able to learn a 32-bit representation on 

1.46 million training cases in two days. 

In Section 2.4.7.1 we will consider the mechanism 

of ‘streams’ as an efficient form of data processing 

within Section 2.4.7 which deals with data 

processing. 

 



  

2.4.4. Pattern detection 

The detection of different kinds of patterns and 

structures (specific, similar, outliers, and so on) is a 

basic task for graph data miners.  The earlier work of 

Gibson, Kleinberg et al. [45] and Kleinberg et al. [46] 

on detecting ‘higher level’ patterns such as 

communities (which we will see later in more detail 

in Section 2.4.9), contrasts with the ‘lower level’ 

patterns such as frequent sub-graphs[47][48] and 

isomorphisms[49]. 

A key pattern detection task is that of finding 

frequent sub-graphs, which also requires an efficient 

form of navigation through the graph. In [47], 

Chakrabarti and Faloutsos tested different algorithms 

and paradigms for finding frequent sub graphs, such 

as "Apriori-like algorithms", “suboptimal greedy 

beam search”, and “ILP inductive logic 

programming”. The authors propose that navigation 

in graphs could be done efficiently, for example, by a 

search guided by the power-law degree distribution. 

This method would navigate the network via high 

degree nodes and poll each one to see if it knows the 

desired information. Alternatively, nodes could be 

ordered by degree value and a binary search 

performed for a given degree value. It is stated that 

some sort of backtracking mechanism is often 

required in crawling.  

Frequent substructure analysis is also considered 

in [48]. In this paper, Yan and Han define a technique 

called "gSpan" (graph-based Substructure pattern 

mining), which discovers frequent substructures 

without the need for generating candidate solutions. It 

uses a sparse DFS (Depth First Search) code 

representation for the graph, which achieves a 

significant reduction in the computational cost in 

searching. A lexical value ("x", "y", "z", ....) is 

assigned to each node and these values are ordered to 

form a "code", which is used by the DFS process. 

This is equivalent to the use of a sparse adjacency list 

representation to store the graphs.  

Another work which considers mining frequent 

substructures from graph data is that of Inokuchi et 

al. [49], which presents a novel “a priori” based 

algorithm. The method identifies isomorphisms and 

is applied to chemical compound data. Basic 

isomorphism search in a graph has a computational 

cost which is “NP-Hard”, thus the authors propose 

some improvements in search efficiency by using an 

“adjacency matrix” to represent the data, and frequent 

patterns are identified by an extended basket analysis 

method. 

Later, in Section 2.4.7.3 we will consider graph 

matching in detail, and in Section 2.4.10 we will 

consider community detection algorithms. 

2.4.5. Measurement & metrics 

A diversity of metrics exist for measuring, processing 

and characterizing graphs, the most typical being 

averaged statistics derived from the degree, clustering 

coefficient and average path length of the nodes and 

edges. In [47], Chakrabarti and Faloutsos conduct a 

review of graph metrics, defining typical graph 

metrics such as: number of nodes and edges in the 

graph; degree of each node; average degree for all 

nodes in graph; cc, clustering coefficient for the 

whole graph; cc(k), clustering coefficient for all 

nodes of degree k; power law exponent; and 

time/iterations since start of processing (supposing 

that the graph is being generated/processed by some 

algorithm). Some key data mining themes considered 

in [47] are as follows: (i) detection of abnormal sub 

graphs, edges and nodes. In order to do this, a 

definition has to be made for what are considered 

'normal cases'; (ii) simulation studies on synthetic 

graphs generated to be as close as possible to the real 

equivalent; (iii) sampling on large graphs - the 

smaller graph has to match the patterns of the large 

graph or it will not be realistic; (iv) graph 

compression - data can be compressed using graph 

patterns which represent regularities in the data.  

The authors comment that typical graph 

characteristics which occur in naturally occurring 

graphs are (a) power laws, (b) small diameters and 

(c) community effects. Power laws can be traditional 

or can be skewed, for example, as a consequence of 

the presence of a significant sub-community within 

the global community. In order to show this, the 

authors plotted the power law distributions of the 'in-

degree' and 'out-degree' for the 'Epinions' and 'click 

stream' datasets. In the latter case (click stream), the 

plot showed a skewed effect, given that this data was 

known a priori to contain a significant sub-

community. The authors commented that two of the 

most common deviations are exponential cut-offs and 

lognormals.  



   

As different interpretations of the ‘centrality’ of a 

node, the following metrics are considered: (a) a 

‘centrality metric’, in which a high degree for a node 

implies it is more central; (b) degree of indirect 

neighbours; (c) ‘closeness centrality’, defined as the 

inverse of the average path length of a node to other 

nodes; (d) ‘betweenness centrality’, defined as the 

number of shortest paths which pass through a node; 

(e) ‘flow centrality’, defined as the number of all 

paths which pass through a node.  

Thus, following the scheme described in [47], 

OSN graphs can be characterized by:(i) power laws 

(of degree distributions, and other values); (ii) small 

diameters (OSNs  6); (iii) community structure as 

shown by high clustering coefficients, and other 

indicators.  

As the second reference in this section on metrics, 

Mislove et al., in [50], define a series of properties 

for OSNs, such as the power-law distribution, the 

small-world phenomenon, and the ‘scale-free’ 

characteristic. Mislove et al. statistically analyse four 

OSNs (Flickr, YouTube, LiveJournal and Orkut) in 

terms of these different properties. The authors 

comment that in OSNs, the 'in degree' of nodes tends 

to match the 'out degree', that OSN networks contain 

a densely connected core of high degree nodes, and 

that this core links small groups of strongly clustered, 

low degree nodes at the fringes of the network. The 

Power-law defines that the probability a node will 

have degree k is proportional to k
-
, for large k and > 

1. Scale free networks are defined as a class of 

power-law networks in which the high-degree nodes 

tend to be connected to other high-degree nodes. 

Small world networks are defined as having a 

small diameter and exhibiting high clustering. 

Mislove’s analysis focuses on the WCC (Weakly 

Connected Component), which, it is proposed, is the 

most "interesting" part of the network. As measures, 

the correlation of the 'in degree' with the 'out degree' 

is considered, together with the JDD (joint degree 

distribution). The JDD indicates the frequency with 

which nodes of different degrees connect to each 

other, and is approximated by the degree correlation 

value. The latter is a mapping between the 'out 

degree' and the average 'in degree' of all nodes 

connected to nodes of a given 'out degree'. Scale free 

behaviour is studied, that is, the extent to which the 

graph has a hub-like core, in which high degree nodes 

are connected to other high degree nodes. 

Mislove also defines the 'Assortativity coefficient', 

as a measure of the likelihood for nodes to connect to 

other nodes with a similar degree (for example, high 

with high, medium with medium and low with low). 

The 'Core' is defined as follows: (i) a minimal set of 

nodes which must be necessary for the connectivity 

of the network; (ii) a set of nodes strongly connected 

with a relatively small diameter.  

It is found, in general (for the four OSNs studied), 

that the average path length (apl) increases sub-

logarithmically with the size of the core. In the 

specific case of Flickr, the overall apl was found to 

be 5.67, of which 3.5 hops involved 10% of the nodes 

in the core with the highest degrees. This implies that 

high degree core nodes are within approximately four 

hops of each other, and the remaining nodes (the 

majority of the network) are at most a few hops away 

from the core nodes.  

One interesting region of the graph is stated as 

being a 'tightly clustered fringe', characterized by 

graph properties of local neighbourhoods outside of 

the core, and which can be identified by using the 

clustering coefficient statistic.  

Mislove states that the clustering coefficient of social 

networks is between three and five times larger than 

their corresponding random graphs, and one order of 

magnitude greater than random power law graphs. It 

is proposed that this higher than expected clustering, 

implying strong local clustering, occurs because links 

tend to be created as a consequence of mutual 

introductions between people.  

The authors confirm that user groups represent 

tightly clustered communities of users in the social 

network. Low degree nodes tend to have low 

community membership whereas high-degree nodes 

tend to be members of multiple groups. In general, an 

OSN is structured into a large number of small, 

tightly clustered local user communities held together 

by high degree nodes. Thus, the clustering coefficient 

is inversely proportional to node degree. It is stated 

that users in the "core" represent "super nodes" in a 

two-level hierarchy. In terms of the observed 

'temporal invariance', although there was a great 

increase in the size of the Flickr network over time 

(observed during a five month period in 2007), the 

overall basic structure stayed similar. Finally, 



  

Mislove et al. concluded that OSNs tend to have 

more symmetrical links and higher levels of local 

clustering, than networks in general (including the 

Web). 

Given the importance of the ‘closeness centrality’ 

statistic in identifying key nodes and regions, some 

work has been done on reducing the computational 

cost of its calculation. In [51], a fast approximation 

algorithm for the closeness centrality statistic in 

weighted graphs was presented. In this paper, 

Eppstein and Wang present an algorithm designed to 

process “small world graphs”. For this type of graphs 

the algorithm estimates the centrality of all vertices 

with a high probability and with a time cost of O(m), 

where m is the number of edges in the graph. 

With respect to degree correlations, in [52], a 

metric is defined which measures the ‘mean degree of 

the nearest neighbours of a vertex as a function of the 

degree k of that vertex’. We recall that vertices of 

high degree k tend to be connected to others of low 

degree, and vice versa. Another metric is the variance 

of the distribution. The high transitivity (clustering), 

in topological terms means there is a high density of 

triangles ‘ABC’ in the network. That is, if B has two 

neighbours A and C, it is likely that A and C are also 

connected, by virtue of their common relation to B. 

Another measure is the probability of there being 

exactly m vertices of degree k in the network, and no 

vertices of degree greater than k. It is mentioned that 

the real clustering coefficient of the WWW is 0.11 

whereas the expected (modelled) calculation gives a 

value of 0.048. With reference to community 

structure in networks, the authors comment that the 

deviance from expected values can be explained 

mathematically by a phenomenon coined as ‘bond 

percolation’, which increases the probability of 

mutual links. Two probabilities are defined: ‘rm’ is 

the probability that an individual belongs to ‘m’ 

groups; and ‘sn’ is the probability that a group 

contains ‘n’ individuals. The authors develop a 

generative model for graph networks based on 

conditional probabilities.  

2.4.6 Modelling, evolution and structure 

In this section we consider three interrelated aspects: 

modelling (simulation) of OSN graphs, how they 

evolve over time, and their structure. 

In order to model an OSN graph, we have to 

understand what are its basic building blocks and 

characteristics. Robins et al., in [10], define the 

typical characteristics of a graph as being (i) the 

distribution of degree frequencies, for which dk is the 

number of nodes having degree k; (ii) the q-star, 

which is a sub graph of (q+1) nodes in which one 

central node is connected to exactly q nodes; (iii) 

triangles; (iv) the geodesic between two nodes, 

defined as the shortest path between them; and (v) the 

local clustering coefficient of a node. Aspects such as 

clustering, 'characteristic path length' and 

'connectedness' are also mentioned, as well as 

'exponential random graph models' and their 

simulations, which are studied in some detail. A 

probabilistic formula is given which relates a random 

graph to an observed graph, in terms of the links 

defined in the corresponding adjacency matrices. 

However, in social networks the assumption of 

independent ties is stated as being generally 

implausible. As a consequence of this, the authors 

proposed a "Markov dependencies" model, more 

specifically a parameterized Markov model in which 

the parameters are proportional to the frequency of 

four structures in the graph: single edges, two-stars, 

three stars and triangles. 

Robins et al. [10] conducted a simulation for graph 

sizes ranging from 30 to 500 nodes. For a 100 node 

graph, up to 500,000 iterations were necessary to 

reach a stabilization of the statistical values. 

The model statistics used were:  

(i) Number of edges 

(ii) Number of 2-stars  

(iii) Number of 3-stars 

(iv) Number of triangles 

Aggregate measures (the graph statistics) are then 

calculated for:  

(a) Degree distributions  

(b) Geodesic distributions  

(c) Clustering coefficient  

A difficulty was found in the case of the "degree 

distributions", given that each sample had its own 

distribution. 

An "energy" value was defined and calculated for 

the graph at each iteration, the objective being to find 

the situation in which the energy reached a minimum. 

A formula was derived for this value, and results 

were shown in terms of the values for edges, 2 stars, 
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3 stars, triangles and the clustering coefficient. This 

was done for two different sampling methods, 

"Markov random graph sampling" and "Bernoulli 

sampling". 

Robins also studied different types of graph 

structures, contrasting them with the 'small world' 

model. For example, in the "long path network” the 

average path length tends to be much longer and the 

graph is characterized by “long thin strings of nodes”. 

A low clustering value was also found for this type of 

networks.  

The authors cite four key conditions in order for a 

small world network to develop: 

(i) The individuals seek more than one network 

partner. 

(ii) The costs of maintaining many partners is 

high, therefore there is a tendency against a multitude 

of partners. Dunbar’s limit [53] gives a natural 

cognitive, sociological and anthropological maximum 

of 150. We also comment this limit and more recent 

studies in Section 2.4.6.3 of this survey. 

(iii) There exists some tendency for network 

partners to agree about other possible partners, which 

leads to structural balance and clustering.  

(iv) If point (iii) is applied in excess this produces 

cliques with insufficient links between nodes in order 

to give smaller path lengths. On the other hand, if it is 

not applied enough there will be insufficient 

clustering in the network. 

Robins et al. also comment another type of graph, 

the "Caveman graph", which is a sort of "worst case 

scenario". This graph consists of several fully intra-

connected sub graphs in which the sub graphs are not 

inter-connected. That is, sub graph A is completely 

disjunctive from sub graph B, also A is disjunctive 

from C and B is disjunctive from C. 

To conclude this first part on models, we consider 

the R-Mat model defined by Chakrabati et al. in [54]. 

This model uses a statistical approach and a recursive 

process. The objective of the research is to model an 

existing graph of real data, thus deriving its 

parameterization in terms of given descriptor 

variables. A typical adjacency matrix of {0,1} values 

is used to represent the graph (nodes, edges). The 

authors state that one of the challenges in modelling 

real graphs, such as social networks, is replicating the 

power law distributions, skew distributions, and other 

reported structures, such as the "bow-tie" and the 

"jellyfish" (in Internet), while maintaining a small 

diameter for the graph. The computation cost of 

generating the graph is also an issue. The authors 

indicate that a model of a social network must also 

display a "community structure", giving examples 

such as soccer and automobile enthusiasts, the latter 

of which can be further subdivided into motorcycle 

and car enthusiasts. They also consider cross-links 

between communities which denote persons with 

diverse interests (e.g. soccer AND automobiles). In 

order to represent this, a recursive partitioning is 

carried out, which can be considered as a binomial 

cascade in two dimensions. The expected number of 

nodes ck with out-degree k is given by: 
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where 2
n
 is equal to the number of nodes in the R-

MAT graph (typically n = log2N),  is the probability 

of an edge falling into partition a plus the probability 

of an edge falling into partition b, and E is the 

number of edges in the real graph. The method is 

tested on two real datasets, "Epinions" and "click 

stream". Descriptive parameters are used such as 

degree distributions, number of reachable pairs, 

number of hops, effective diameter and stress 

distribution. 

2.4.6.1 Evolution: The general consideration of this 

theme is how the evolution (growth) of social 

networks can be modelled and empirically measured. 

A diversity of approaches to the analysis and 

modelling of evolution in OSN graphs can be found 

in the literature, ranging from authors who just 

statistically analyze evolution in real OSN datasets 

(typically over time), such as Viswanath et al., in [55] 

and Kossinets and Watts in [56], to authors who 

study specific aspects and try to ‘model’ the 

evolution process. With reference to the latter, Tang, 

et al., in [57] try modelling a ‘multi-mode’ network, 

that is, one which contains different types of user and 

actions by those users, whereas Leskovec et al. in 

[58] define a graph generator called the “forest fire” 

model which tries to reflect the way link creation 

propagates through the network. Finally, [59] focuses 

on the disconnected components of the graph and the 



  

incorporation of weights, and the authors propose an 

improved version of the “forest fire” model. 

The theme of community evolution in Dynamic 

Multi-Mode networks is studied in [57]. The authors 

propose that an understanding of the structural 

properties of a network will help in balancing 

problems and identifying key influential factors. A 

crucial aspect for modelling evolution is of course the 

temporal dimension. The authors give a theoretical 

presentation and pseudo code for modelling a "multi-

mode network", that is, a network which has different 

types of user and actions by those users. The idea is 

to progressively refine the model using data with 

ordered time stamps, and weighted attribute values. 

From this, each user can be assigned to a 

corresponding community. In order to evaluate the 

model, different "noise" levels are introduced into 

synthetic datasets. The model is found to work well 

for a medium level of noise. In order tune the model's 

parameters, online clustering and evolutionary multi-

mode clustering are applied to the data. Apart from 

the synthetic data, two real world datasets were 

tested: (i) the Enron email corpus and (ii) the DBLP 

academic publications database. The Enron data is 

filtered to only include users who send and receive at 

least 5 emails, which reduces the dataset to 2359 

users. Different methods were used to evaluate the 

results, although it is stated that the true community 

clusters could not be exactly known a priori. One 

clear observable trend was the evolution over time of 

each dataset, as shown by each snapshot. One 

drawback of the method is the requirement of an a 

priori definition of the number of communities and 

the weights for temporal and interaction information. 

The structure and evolution of online social 

networks can also be analyzed from data logs of 

applications like Yahoo360 and Flickr. In the study 

carried out by Kumar, et al. in [60], the authors 

discovered three regions: (a)singletons which do not 

participate in the network, (b) isolated communities 

which display a dominant star structure, and (c) a 

giant component anchored by a well connected core 

region. The authors present a simple model which 

captures these three structural aspects. Their model 

parameters are (i) user type distribution (passive, 

inviter, linker); (ii) preference for giant component 

over the middle region; (iii) edges per time step. 

A specific data-log of the Facebook application, 

corresponding to the New Orleans geographical 

region, was collected and analyzed by Viswanath, et 

al., in [55]. Their study focused on the evolution of 

user interaction, in which it was found that the 

structural network (links between accepted friends) is 

not a very true picture of the real friends of an 

individual, because many of the users (in Facebook) 

are not very discriminative when they aggregate 

persons as "friends". Thus, Viswanath proposed that 

the measure of "activity" will give a much better 

picture of who communicates with whom, where the 

intensity of "activity" is proportional to the strength 

of the relation. However the activity measure used is 

that of "writes to wall", and many users of Facebook 

also use others communications channels, such as the 

chat box, sending an email, and so on. Also the 

dataset used is skewed with respect to the general 

Facebook community, because the users were 

selected by geographical region (New Orleans, USA). 

However, some useful conclusions and implications 

can be derived from their study. 

An empirical analysis of the evolution of a social 

network in which the authors collected their own data 

from a university faculty environment, is described 

by Kossinets et al. in [56]. The authors constructed 

their own dataset from emails and other data about 

students, faculty and staff of a large university. The 

data covers a one year time period. They use three 

types of data: (i) registry of e-mail interactions - each 

email message has the timestamp, sender and list of 

recipients, but not the content; (ii) personal attribute 

information such as status, gender, age, department 

affiliation, number of years in the community; (iii) 

complete lists of classes attended or taught, for each 

semester. It was found that the network is influenced 

by the organizational structure of the environment 

(the university, in this case), and by the network 

topology. The authors found that the general network 

characteristics tend to reach equilibrium and are more 

or less constant, whereas the individuals are much 

more volatile. However, we assume that the natural 

volatility of the student population has skewed the 

results in this direction. Some key structures looked 

for were triadic closures, cyclic and focal closures. A 

multivariate survival analysis was conducted using 

the following attributes: ‘strong indirect’, ‘classes’, 

‘acquaintances’, ‘same age’, and ‘same year’. The 



   

effect of gender was studied by comparing pairings of 

male-male with female-male, and female-female with 

female-male. It was found that the ‘average vertex 

degree’, the ‘fractional size of the largest component’ 

and the ‘mean shortest path length’ all exhibit 

seasonal changes. On the other hand, the distribution 

of "tie strength" was found to be stable in the network 

as a whole over time. Users who were part of bridges 

also had a tendency to be transient. Although the 

bridges may act to diffuse information across whole 

communities, Kossinets et al. found them to be 

unstable and not permanently represented by 

particular individuals. It was found that users did not 

"strategically manipulate" their networks, even 

though it was technically possible, because there was 

no motivation. The results are interesting although 

they have to be considered in the specific context of 

the study data and environment, and therefore the 

findings may not necessarily be generalizable to other 

OSN domains. 

A model called “Forest Fire” (with reference to 

the way link creation propagates), is presented in by 

Leskovec, et al., in [58]. It has been extensively 

referenced in the literature, hence we will consider it 

in some more detail in this Section. In order to define 

their model, the authors first study four "social 

network" datasets over time, in order to see how they 

change with respect to static models. The datasets 

studied are ‘arXiv citation HEP-TH’, ‘patents 

citations’, ‘autonomous systems (internet routers)’ 

and ‘affiliation graph (ArXiv)’. The main conclusions 

are that the graphs tend to get denser over time, and 

the diameter tends to shrink, this last conclusion 

going against ‘conventional wisdom’. They define a 

new graph generator, called the "Forest Fire" model, 

which is defined by the following:  

 

- A densification exponent 

- A difficulty constant 

- A difficulty function 

- The number of nodes and edges at time 't' 

- A community branching factor; 

- The expected average node out-degree 

- The height of the tree 

- H(v, w) , which is the least common ancestor  

        height of v, w 

- The forest fire ‘forward burning probability’ 

- The forest fire ‘backward burning probability’ 

- The ratio of backward and forward burning  

        probability 

 

In terms of structure, the "rich-get-richer" (or 

preferential attachment) phenomenon is cited as the 

explanation of the heavy tailed in-degree power-law 

distribution. Recursive community structures were 

found for computer networks based on geographical 

regions. For the patents dataset, the same situation 

was found in which conceptual groups ("chemistry", 

"communications", ...) exist. In true OSNs on the 

other hand, users tend to group together based on 

"self-similarity". It is noted that in a citation database, 

a paper only generates outward bound links when it is 

created. On the other hand, inward bound links will 

be progressively generated and incremented over 

time. As a consequence of their observations, the 

authors require that their model creates a graph with 

the following characteristics: (i) "rich get richer"; (ii) 

"copying" which leads to communities; (iii) 

community guided attachment (densification); (iv) 

shrinking diameters.  

In the basic "Forest Fire" model, two probabilities 

are used: p, which controls ‘forward burning’, and r 

which controls ‘backward burning’.  

The generative model is as follows. Node v forms 

out-links to nodes in Gt according to the following 

process:  (i) v first chooses an ‘ambassador node’ w 

uniformly at random, and forms a link to w; (ii) a 

random number x is generated that is binomially 

distributed with mean (1- p)
-1

 . Node v selects x links 

incident to w, (among links in and out), but selecting 

in-links with probability r times less than out-links. 

w1, w2, ... wx are designated as the other ends of the 

chosen links; (iii) v forms out-links to w1, w2, ... wx 

and then applies step (ii) recursively. As the process 

continues, only unvisited nodes are included, thus 

avoiding cycles. In general, the "burning" of links in 

the "forest fire" model begins at w, spreads to w1, w2, 

... wx, and proceeds recursively until it dies out. 

In contrast, a study which focuses on the 

disconnected components of a graph and the 

incorporation of weights is that of McGlohon et al. 

[59]. The following questions are posed: how do the 

non-giant weakly connected components behave over 

time? What distributions and patterns are maintained 

by weighted graphs? Can a generator be produced 

which models these two behaviours? The following 



  

definitions are given: GCC, Giant Connected 

Component; NLCC, Next-Largest Connected 

Component; the Diameter as the 90
th

 percentile of the 

pair wise distance among all reachable pairs of nodes; 

the weighting scheme of edges can be multi-edge or 

edge-weights; E(t) is the number of edges over time, 

N(t) is the number of nodes over time, and W(t) is the 

total weight of the edges over time. 

Ten different datasets are tested, including, arXiv, 

patents, IMDB (movies), BlogNet, NetTraffic and 

DBLP. As the result of an empirical analysis over 

time, the following observations were made: (i) real 

graphs exhibit a "gelling point" at which the diameter 

spikes and several disconnected components gel into 

a giant component; (ii) after the gelling point, the 

secondary and tertiary connected components 

(NLCCs) remain of approximately constant size; (iii) 

a "fortification effect" occurs in which an increase in 

the number of edges in the E(t) graph gives rise to a 

total weight W(t) which is super-linear with respect 

to E(t); (iv) the power law distribution is similar at 

different snapshots over time for the 'in' and 'out' 

degrees; (v) the 'self-similar weight' displays a 

'bursty' behaviour over time, with a parametrical 

fractal dimension; (vi) it is possible to calculate an 

entropy from the 'self-similar weight'. These 

empirical observations lead the authors to define 

what they call a "butterfly model", which, it is 

claimed, is more robust than the "forest fire" model. 

Its properties are: constant NLCC sizes; densification 

following the power law; a shrinking diameter (after 

the gelling point); and power laws for 'in' and 'out' 

degree distribution. It has parameters, phost , plink and 

pstepi , uniformly assigned from [0,1]. In the model, 

incoming nodes may choose more than one starting 

point, and a new node ki has probability phost to select 

the next starting point h. h is randomly picked and 

has probability plink to be linked by ki, and ki has 

probability pstepi to pick one of h's neighbours and 

continue this process recursively. 

In [54], Chakrabarti et al. study the tendency of 

how OSN networks grow. They observe that new 

links tend to form on nodes following a power law 

distribution of their degree (the current number of 

links they have). The authors comment that the 

tendency can be defined in sociological terms as "the 

rich getting richer" (or "cumulative advantage"). The 

implication is that new nodes will tend to be attracted 

to form links with existing nodes which have a high 

degree. They define the in-degree distribution as a 

power law with exponent given by: in = 1 / (1-).  

Some mention is given to fractal structures for the 

geographical distribution of Internet routers.  

2.4.6.2 Structure 1: How OSN graphs are structured 

is related to modelling and to the basic elements we 

have considered in the previous Section. However, in 

this Section we will focus on what structure means 

for the overall graph topology.  

The simple definition of graph density is the 

number of edges E divided by the number of vertices 

V. In [61], Randic and deAlba extend this definition 

by defining what they call ‘relative density’. This is 

defined in terms of the following two metrics: E/E*, 

where E* is the number of edges in the complete 

graph having the same number of vertices, and Z/Z* 

which is defined as the quotient of the number of 

zeroes Z, divided by the number of ones in the 

adjacency matrix Z*. A taxonomy of graphs is given 

with the following categorization: planar/no planar, 

cyclic, acyclic, transitive, Eulerian, Hamiltonian, 

bipartite, polyhedral, n-connected, cubic, complete, 

complete bipartite, isospectral, endspectral, cages, 

hypercubes, saturated and maximally saturated. 

The structure and function of complex networks is 

considered by Newman in [62]. This study makes an 

inventory of definitions of metrics and topologies 

similar to those of [52] and [50], however some 

distinct definitions are made. For example, a 

hyperedge is defined as an edge which joins more 

than two vertices together, and a hypergraph is 

defined as a graph which contains one or more 

hyperedges. A bipartite graph is defined as a graph 

which contains vertices of two distinct types, with 

edges running only between unlike types. A 

component is defined as a set of vertices that can be 

reached from a given node by paths running along 

edges of the graph. Different kinds of networks are 

considered: social, informational, technological and 

biological. Network resilience is considered, and a 

plot is made of the fraction of vertices removed 

versus the mean vertex-vertex distance. Community 

structure is also considered and the dendrogram 

(hierarchical clustering) is described as a way of 

identifying communities. The specific domain of 

epidemiological processes is discussed in the context 

of the spread of viruses. The SIR and SIS models are 



   

mentioned. With reference to network search, 

Newman proposes using Web keywords or making 

use of the skewed degree distribution to find results 

more quickly. ‘Phase transition’ is considered on 

networks modelled by statistical mechanical models. 

It was commented that in the limit n -, a model has 

a finite-temperature transition for all values of the 

shortcut density > 0.  

Newman and Park, in [52], consider non-trivial 

clustering (network transitivity) and positive 

correlations (assortative mixing) between degrees of 

adjacent vertices. They comment that social networks 

are often divided into groups or communities. The 

"small world" effect is mentioned, together with the 

skewed degree distributions, and positive degree 

correlations between adjacent vertices (in most other 

networks they have negative correlations). They also 

mention ‘network transitivity’, that is, the propensity 

for vertex pairs to be connected if they share a mutual 

neighbour.  

One specific graph element of interest is the 

“bridging node”, which, as the name suggests, acts as 

a link between different areas of the graph. Hwang, et 

al., in [63], present and empirically evaluate a metric 

called "bridging centrality", which the authors 

propose is highly selective for identifying "bridges" 

in networks. They identify an impediment of current 

definitions of bridge metrics which tend to have a 

broad specificity but a narrow selectivity. Bridges are 

defined as a sensitive part of a network given that 

their deletion may produce a major disruption to the 

entire graph. Hwang also presents a novel graph 

clustering approach, using the "bridging" points as 

limits. A "bridge" is defined as a node or an edge 

which connects "modular" regions in a graph. The 

clusters are validated by calculating their precision 

and recall values. They test their methods on the 

following datasets: synthetic data; two social 

networks (a "physics collaboration network" and a 

"school friendship network"); the AT & T Web 

Network; and a biological network (Yeast Metabolic 

Network). They state that social networks differ from 

computer and biological networks in their clustering 

properties and in that they show positive correlations 

between degrees of adjacent nodes. 

2.4.6.3 Structure 2: One of the characteristics of 

graph mining which differentiates it from data mining 

in general is the way in which data records (nodes, 

edges) are inter-linked. The links (edges) between 

nodes create a structural dependence and the analysis 

and search for the structural forms themselves 

become an objective of graph mining. Online social 

networks represent a particular type of graphs which 

have their own peculiarities, such as the “small world 

phenomena”, and the presence of “cliques”.  

An example of the analysis of the topological 

characteristics of large online social networks is that 

of Ahn et al. [64]. Ahn et al. define the topological 

characteristics as a set of different metrics which can 

be used for measuring/characterizing the graph, but 

not for classifying different sub-graph types. Three 

different social networks (Cyworld, MySpace and 

Orkut) are evaluated. 

Ahn comments that in social networks, a network 

of normal friend relations displays different 

characteristics to a 'clique' based network. Some 

examples of clique based networks would be: movie 

actors (similar to a guild type network), scientific 

collaborators, or members of a dating web. Also, a 

testimonial (or recommendation) network, such as 

‘Cyworld’, is different because it is a closer 

representation of the real off-line relationships 

between individuals. Ahn et al. use the typical 

metrics for measuring a graph: degree distribution, 

clustering coefficient, average path length (also 

known as degree of separation), and graph diameter. 

Another metric, the degree correlation (or 

assortativity) is also defined, which measures the 

correlation between the degree of a node and the 

degree of its neighbours. That is, a mapping between 

a node of degree k and the mean degree of nearest 

neighbours of those nodes of degree k. If a graph's 

assortativity is negative this means that hubs (nodes 

with many links) tend to be connected to non-hubs, 

and vice versa. It is commented that social networks 

tend to be assortative whereas other types of 

networks tend to be disassortative (hubs tend to be 

connected to other hubs). It is said that this is a 

unique characteristic of social networks with respect 

to other types of networks. The results of plotting the 

power law distribution for the Cyworld network gives 

a curious result in that two different distributions are 

found for the users, which the authors propose 

implies that CyWorld is two different networks in 

one, corresponding to two different types of user: 

users with testimonials and users without 
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testimonials. Finally, Dunbar's limit [53] is 

mentioned, which states that on a neurological, 

sociological and anthropological basis, the maximum 

theoretical limit of the number of friends of an 

individual is approximately 150. Recent studies, such 

as that of Goncalves [65], have validated this limit for 

OSNs, by analysing Twitter conversation logs. 

However, the motivation of users for aggregating a 

greater number (than 150)  of 'friends' may due to 

'marketing' and 'broadcasting' purposes rather than 

the intention of one to one interaction. 

The "small-world phenomenon" is a characteristic 

that differentiates OSN graphs from graphs in 

general. The phenomenon represents the observation 

that only a small number of connections are 

necessary to link two nodes in very large OSN 

graphs. In human relation terms, it means that two 

people, highly differentiated socio-economically and 

geographically, are often only a small number of 

links (on average, six) away from each other in an 

OSN graph. This phenomenon is studied by 

Kleinberg in [66], in which an algorithmic 

perspective is presented in order to analyse and 

explain why it occurs. Questions are posed such as 

“Why doesn't this overload/saturate the network?” 

and “Why the number ‘6’?” With respect to the first 

question, it is proposed that although a node is 

potentially just six steps away from any other node, 

the probability that a given node sends a 

message/tries to contact a node at distance 6, is very 

low. With respect to the second question (why the 

number 6), the author proposes that it has to do with 

the inverse square law. In order to show this, a 

formula is derived in terms of powers of two which 

includes the number six (the maximum number of 

steps from one node to another), as an upper bound 

for the inverse-square distribution, thus: 
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where log is the natural (e) log, n is the number of 

individuals, u is a given node, v is another (target) 

node in the graph, and d(u, v) is the distance between 

the two. 

Finally, in contrast to the particular topology of 

OSNs, the topology of the WWW has also been 

studied by different authors, however it is out of the 

scope of the current survey to enter into details of the 

structure of the Web. We can briefly state that the 

topology of the WWW has a distinctive structure, 

which was first defined by Broder in [67] as looking 

like a "bowtie", made up of a central “strongly 

connected” component (SCC), one side of the bow 

being an ‘IN’ component, the other side the ‘OUT’ 

component, and with ‘Tendril’ components attached 

to the IN/OUT components. It is noted that the Web 

has a very large SCC, and is therefore very resilient 

to node deletions.  

2.4.7. Data processing  

In this section we consider three key aspects of 

processing OSN graphs, which are especially relevant 

for high volume data: processing the data as a stream, 

sampling and searching. 

2.4.7.1 Streams: One solution to the problem of 

processing very large graphs is to input the data as a 

‘stream’. A streaming model is defined as being a 

data feed in which data is received as a continuous 

flow, and in which the graph is revealed one edge at a 

time. One work which considers this approach is that 

of Feigenbaum et al. in [68], which presents a 

‘hybrid’, or semi-streaming model. A semi-streaming 

model receives the data as a stream but also has 

available a data space of n × m bits, where n is the 

number of nodes and m is the number edges, and 

which acts as a sort of “cache”. The stream may be 

organized in different ways, for example, if the graph 

data consists of an adjacency matrix or adjacency list, 

the edges incident to each vertex can be grouped 

together. It is clear that specialized algorithms, which 

act in several passes, are required to calculate metrics 

such as the shortest path or the network diameter, 

when the graph data is revealed progressively in a 

stream. 

Another paper which considers how to efficiently 

process graph data when the data arrives as a data 

stream is [69]. The authors consider graph streaming 

in terms of two key parameters: (i) the number p of 

sequential passes over the data, and (ii) the size s of 

the working memory in bits.  Another parameter is 

the ‘per item processing time’, which the authors 

propose should be kept small. In order to define 

lower bounds on these values, a trade off is 

considered between p and s. A model, called W-

Stream uses an intermediate temporary stream, which 

is generated on the fly, in order to increase processing 



   

efficiency for graph calculations such as "directed 

shortest path", which can be solved in O((n log
3/2

 n) 

s) passes, and "undirected graph connectivity", 

which can be solved in O((n log n) s) passes. An 

example is given of a computer with 1GB of 

available main memory using a trade-off algorithm 

that runs in p = (n log n)/s passes, and which can 

process a graph with 4 billion vertices and 6 billion 

edges stored in a 50GB file in less than 16 passes. 

The specific problem of estimating the PageRank 

value of web documents for a stream of graph data is 

considered in [70] by Das Sarma et al. . The authors 

state that the overall objective of the streaming model 

is to use a small amount of memory (preferably sub-

linear with respect to the number of nodes n) and a 

smaller number of passes. The specific graph 

computation considered is the probability distribution 

after a random walk of length l. The authors state that 

by applying their algorithm for computing probability 

distribution on the web-graph, they can estimate the 

PageRank p of any node within a given error margin. 

The computation cost is O(nM
-1/4

) for space and 

O(M
3/4

) for passes, in comparison with the standard 

implementation of the PageRank algorithm which 

requires O(n) space and O(M) passes. We observe 

that an equilibrium has been sought between space 

and passes. The random walk of length l is modelled 

as a matrix-vector computation, and the probability 

distribution is estimated by performing a number (K) 

of random walks.  An improvement in the space 

complexity of the random walk is achieved by 

calibrating/reinterpreting the accuracy parameter. 

2.4.7.2 Sampling: Sampling is another key aspect of 

processing large graph datasets, when it becomes 

increasingly difficult to process the graph as a whole 

due to memory and/or time constraints. Sampling 

should not be confused with filtering. Filtering 

eliminates records from the complete dataset 

according to some criteria, for example, “remove all 

nodes with degree equal to one”. On the other hand, 

sampling, tries to maintain the statistical distributions 

and properties of the original dataset. For example, if 

10% of the nodes have degree = 1 in the complete 

graph, in the sample the same would be true.  

Typical sampling techniques which work for 

tabular data do not tend to give good results for graph 

data. In this Section, we will see how techniques such 

as the “Snowball” method are specifically designed 

for sampling graph data.  

Snowball sampling: the original generic 

algorithm was defined by Goodman[71] and is as 

follows. The algorithm has two parameters: N, the 

number of iterations and K, the number of neighbours 

to be included from each current node at each 

iteration.  

When the algorithms terminates, the whole sample 

set will consist of the union of the samples S1 to SN, 

which, as defined in the algorithm, are mutually 

exclusive. 

In Fig. 4 we see an example of the application of 

Snowball sampling, propagating from three initial 

seed nodes (square shaped nodes labelled with S). 

The number of nodes to be sampled at each iteration 

(K) is set to three and the number of iterations (N) is 

set to two. The nodes chosen during iteration 1 are 

labelled I1 (circular shaped) and the nodes chosen 

during iteration 2 are labelled I2 (triangular shaped). 

We observe that some of the neighbours of two of the 

seed nodes are unchosen, given that only up to K 

neighbouring nodes can be chosen for any given 

sample node. Also, we see that a region of the graph 

was not sampled, because there was no seed node in 

that region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Snowball sampling: example propagation from three 

initial seed nodes. 

 



  

---------------------------------------------------------------- 

Snowball Sampler Algorithm 

---------------------------------------------------------------- 

Initialization: a random sample SR of individuals is 

drawn from a given finite population.  

 

For each iteration I=1 to N: 

Do 

Each individual i in the current sample SI is asked 

to choose k different individuals in the population. 

The k individuals chosen would typically be i’s "k 

best friends," or the "k individuals with whom i 

most frequently associates," or the "k individuals 

whose opinions Si most frequently seeks," and so 

on.  

It is assumed that i cannot include him/herself in 

the list of k individuals chosen by i. 

If this is the first iteration: 

The individuals who were not in the random 

sample SR but were named by individuals in it 

will form the next sample SI+1.  

Else: 

The individuals who were not in the random 

sample SR or any other previous sample S1…SI-

1,  but were named by individuals in it will form 

the next sample SI+1.  

Efor 

---------------------------------------------------------------- 

The simplest interpretation of this algorithm in the 

context of an OSN graph is that a given node will 

choose its immediate neighbours as the individuals to 

be included in the next sample. Likewise, those 

neighbours will choose their respective immediate 

neighbours, and so on. The result will be a “rippling 

out” from the original seed nodes, one hop at a time.   

A crucial aspect of the Snowball algorithm is the 

way of choosing the initial seed nodes. In the original 

version, the choice is random, which would be 

statistically correct. However, by inspection this may 

favour the inclusion of a disproportionate number of 

nodes which are neighbours of high degree nodes. 

That is, nodes with higher degrees will consume all 

of their quota (K neighbours) whereas nodes whose 

degree is less than K will consume less than their 

potential quota. This may result in a skew of the final 

distribution of the degree of the nodes in the 

complete sample. In the following we describe the 

work of some authors who have considered these 

problems and their proposed solutions.  

Two sampling methods are compared in [54]: (i) a 

full graph data collection and (ii) the Snowball 

method. The latter is implemented by taking well 

connected seed nodes and growing a graph around 

them. However the authors confirm the general 

consensus in the literature that although 

‘snowballing’ is an adequate technique for graph 

sampling, it tends to miss out isolated individuals and 

include a disproportionate number of neighbours of 

high degree nodes. In order to solve these problems, 

the authors propose a random or probabilistically 

weighted selection of seeds.  

BFS and DFS are two common algorithms for 

crawling graphs, however, it is often not 

computationally feasible to use them to crawl a 

complete graph, and therefore sampling methods 

must be used. In [50], Mislove et al. conduct 

empirical sampling and crawling tests on datasets 

derived from Flickr, LiveJournal and YouTube. The 

Snowball method is defined as being a technique for 

crawling a graph by the 'early termination of a BFS'. 

However, the authors confirm that the method tends 

to overestimate the node degree and underestimate 

the level of symmetry. Mislove et al. also found that 

the Snowball method often missed out isolated nodes, 

the majority of which were characterized as having a 

low degree and being members of small, isolated 

clusters. 

One possible way to improve the Snowball 

sampling method is by assigning weights which 

influence the selection of vertices. This approach is 

presented by Snijders in [72], which states that 

without weights, the Snowball method tends to bias 

the sample giving preference to vertices with a high 

number of connections. In order to smooth this, a 

general solution is adopted which weights the 

selection of vertices. More specifically, one approach 

is to include only symmetric relations (although for 

social networks this could be a problem), and another 

approach is to estimate the frequency of 

characteristics such as "transitivity", which is defined 

as the number of chains of length two, divided by the 

number of triangles. Another consideration is the 

randomness of the initial sample, which, in order to 

be evaluated, ideally requires auxiliary external 

information about the network. 

In a more recent evaluation, Shafie [73] considers 

design estimators for Snowball sampling. Again it is 
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stated that assigning equal weighting causes a heavy 

bias on high degree vectors, therefore Shafie 

recommends that sampled elements be weighted by 

the reciprocal of their selection properties (that is, 

their degree value). Four weighting schemes are 

tested, and the one found to be the optimum defines 

the initial vertex with an inclusion probability of 
N

1  , 

where N is the number of vertices in the graph. 

Successive vertices will then have an inclusion 

probability of  di / 
N

i

id , where di is the degree of 

vertex i. Hence, the sample selection probability for 

each possible sample is approximately inversely 

proportional to: 
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The Snowball sampling is carried out in 'waves', in 

which the sampling size of wave wj depends on the 

degrees of the vertices selected in the previous wave 

wj-1 . Shafie executed a total of five 'waves'. It was 

concluded that the weightings made a significant 

improvement, but only for the initial waves, which is 

when the selection bias has most impact. The best 

weighting scheme used the observed mean degrees of 

the samples obtained to estimate the inclusion 

probabilities. However, in the empirical evaluation, 

only two synthetic datasets were tested, the first with 

two equally sized population groups and the second 

with two unequally sized population groups. It was 

suggested that the MSE (mean square error) and 

variance should be used for larger simulations. 

A key aspect in sampling is the choice of the 

initial starting nodes (or ‘seeds’) for extracting the 

sample. Another aspect is how to measure the 

‘quality’ of the derived sample. Both these aspects 

are considered by Bartz, et al. in [74]. In the first part 

of the paper Bartz conducts an empirical study of the 

geometry of three real OSN networks, in which the 

nodes represent 'prisoners', 'assembly line workers' 

and 'karate club members', respectively. Structures 

such as 'terminal nodes', 'two-stars' and 'triangles', are 

especially studied. Two different graph generator 

models are defined in terms of the frequency of these 

structures: (i) an exponential random graph model, 

and (ii) a maximum likelihood estimation (MLE) 

model. The latter part of the paper then deals with 

sampling. The quality of the model was plotted with 

the "triangle parameter" on the x-axis and the "two-

star parameter" on the y-axis. Two sampling methods 

were tried: "multiple bridge sampling" and "Snowball 

sampling". In the case of the first method, 

convergence problems were found, MLE being used 

as the accuracy measure. A critical aspect was found 

to be the selection of S starting points, which are 

chosen as one MPLE (Maximum Pseudo-Likelihood 

Estimator, calculated with multiple bridge sampling 

using the "two-star", "triangle" and "edge" values as 

coefficients) and S-1 SMLE's (Snowball method 

which uses MLE, fitted to the subsample of n/2 

nodes). It was found that the estimators for the initial 

vertices helped convergence when placed in the 

initial mix, ensuring a more accurate first step. 

However, the convergence was still considered as 

sub-optimal, given that between 2% and 4% of the 

tests did not converge. 

The solution to obtaining a good sample from a graph 

resides in achieving that its distribution fits, or is 

representative of, the whole graph. One way of doing 

this is by obtaining a priori knowledge about a 

graph’s structure which can be used by the sampling 

process. An approach which tries this is found in 

[75]. In this paper Snijders considers synthetic graph 

generators (specifically, exponential random graph 

generators) which induce sub graphs from a complete 

graph with given statistical distributions. The idea is 

to elicit knowledge about the way these graphs are 

generated and apply it to sampling, specifically for 

the case of the Snowball technique. A parameterized 

formula was given for the distribution of an induced 

sub graph (which represents a "weak condition"), and 

for which a proof was given by mathematical 

induction. The authors stated that one key problem in 

Snowball sampling is the leaving out of elements 

from the sample which are "loosely connected", and 

which are outside the giant component. Examples of 

such elements are isolated nodes, isolated dyads 

(edges), isolated two-stars and isolated triangles. It 

was stated that the total number of these small 



  

structures is dependent on the parameters that 

determine how larger structures are formed and the 

connectivity between the smaller and larger 

structures. It was assumed that mutually disconnected 

parts of the graph are independent. The analogy was 

made between trying to obtain a correct distribution 

from different random samples, and how arbitrary 

node deletion would affect the distribution of the 

whole graph. It was said that in the case of 

unconnected sub graphs, the Snowball sample would 

be a truer representation of those sub graphs. 

However, it was also observed that the Snowball 

method tends to influence, or place certain conditions 

on, the results. 

2.4.7.3 Search and matching: Once we have 

decided on how to represent and obtain our data, 

search is the next activity we will probably do. The 

obvious problem in large graphs is the computational 

cost. Search can be performed for different motives, 

for example, (i) in order to calculate some graph 

metric such as shortest path or clustering coefficient, 

or (ii) to find a given pattern or substructure. 

Dijkstra’s classic paper of graph theory literature 

[76], presents an efficient algorithm for finding the 

shortest path length between n nodes. From the 

shortest path length between all node pairs, the 

average shortest path length for the whole graph can 

be calculated. More recently, in [77] a shortest path 

searching method was presented with a heuristic for 

limiting the search area. The objective of the method 

was to improve on the performance of Dijkstra's 

basic algorithm while maintaining accuracy, by 

exploiting the spatial characteristics of networks. The 

test data consisted of a road network graph, and the 

empirical test made a correlation between the shortest 

path and the Euclidean distance. 

A favourite computational cost benchmark is that 

of finding the number of triangles in a graph, where a 

triangle is defined by three nodes in which each node 

is connected to the other two. In [78], the problem of 

counting triangles in graphs is considered, and two 

space bound algorithms are presented which process 

an undirected graph defined as a stream of edges. The 

first algorithm assumes an unordered stream and the 

second assumes that the stream is ordered such that 

all edges incident to the same vertex appear 

consecutively. The algorithms calculate an 

approximation of 1+  with a probability of 1 - , 

where  and  are application specific. The authors 

claim that their method offers a significant 

improvement in space usage. In another study of 

computational cost reduction, [79] considers the 

efficient identification of ‘centre-piece sub graphs’. 

That is, given Q nodes in an OSN, how can we find 

the node that is the ‘centrepiece’, that is, a node 

having direct or indirect connections to all or most 

other Q – 1 nodes in the graph? The authors apply 

their algorithm to an authorship network and a DBLP 

dataset. 

Isomorphic matching of graphs: Recently, new 

efficient matching algorithms for isomorphic 

matching have become available, such as VF[80]. We 

recall from the definition of Section 2.1 that two 

graphs which are isomorphic not only have the same 

topological structure but also have a one to one 

mapping of all their corresponding labelled nodes.  

VF[80] is based on a depth-first search strategy 

and uses a set of rules to efficiently prune the search 

tree. An improved version of VF, called VF2[81], 

uses more effective data structures in order to further 

reduce the computational cost of matching. VF2 has 

subsequently become widely used in the graph 

mining community. We show the pseudo-code of the 

matcher is as follows: 

---------------------------------------------------------------- 

VF2 Isomorphism Matcher Algorithm [81] 

---------------------------------------------------------------- 
PROCEDURE Match(s) 
INPUT: an intermediate state s;  
              the initial state s0 has M(s0)= 
OUTPUT: the mappings between the two graphs 

IF M(s) covers all the nodes of G2 THEN 
    OUTPUT M(s) 
ELSE 
    Compute the set P(s) of the pairs candidate for    
    inclusion in M(s) 
    FOREACH (n, m)(s) 
        IF F(s, n, m) THEN 
            Compute the state s’ obtained by adding  
            (n, m) to M(s) 
            CALL Match(s’) 
        END IF 
    END FOREACH 
Restore data structures 
END IF 
END PROCEDURE 

---------------------------------------------------------------- 
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 Washio and Motoda, in [82], consider some 

theoretical definitions (sub-graph isomorphism, graph 

invariants, mining measures), and approaches of 

graph mining which derive from the AI and Data 

Mining fields. The graph mining approaches are: 

greedy search, inductive database approach, 

mathematical graph theory based approach, and the 

kernel function based approach.  They comment that 

two frequent application domains are the analysis of 

chemical compounds for medical problems (such as 

carcinogenesis prediction of chemical compounds), 

and the pharmaceutical industry's focus on drug 

discovery. Although these are not OSN graphs, the 

algorithmic work done in these fields has a direct 

impact on the data mining of OSN graphs. One 

specific activity on these application domains is the 

search for similar patterns/sub-graphs, using nodes 

which are labelled. A feature space is constructed as a 

label sequence, and a count is maintained of the 

number of times a particular vertex appears in a sub-

graph. However, for simply anonymized social 

network graphs, we would have to consider which 

aspects of these approaches are useful and/or 

applicable. With reference to sub-graph 

isomorphisms, a graph G is represented as G(V, E, f) 

where V is a set of vertices, E a set of edges 

connecting some vertex pairs in V, and f  a mapping f 

: E  V  V between edges and vertices, for 

example, f(e1) = (v1, v2). Thus, two sub-graphs will be 

isomorphic if their respective graphs, represented by 

G(V, E, f), are identical. Graph invariants are defined 

as quantities which characterize the topological 

structure of a graph. An important observation is that 

if two graphs are isomorphic then their invariants will 

be identical, but the reverse property does not hold. 

Therefore, a search based on graph invariants would 

find similar graphs, but not necessarily isomorphic 

ones. Graph invariants can be the number of vertices, 

the degree of each vertex, and the number of cyclic 

loops. An initial search based on graph invariants can 

be used to reduce the search space for a posterior 

search for isomorphisms. The following mining 

measure is defined as “support”. Given a graph data 

set D, the support of the sub-graph Gs,  sup(Gs)  is: 
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Different search methods are commented, such as 

heuristic, complete, direct and indirect matching. 

Direct matching finds isomorphisms while indirect 

matching uses some similarity measure to find 

similar sub-graphs.  

Other similarity measures for graph matching: 

an alternative approach to the topological mapping of 

all nodes and edges is to use some sort of distance 

measure based on graph statistics such as degree, 

clustering coefficient and number of edges. The latter 

approach, although an approximation of the former, 

has the advantage of a potentially significantly lower 

computational cost. For example, consider the 

following metric which calculates the distance 

between the sub-graph formed by the immediate 

neighbours of a given reference node N1, with the 

sub-graph formed by the immediate neighbours of 

another reference node N2.  

distance(A, B) =   

 (DR(A), DR(B))   +  

 (NE(A), NE(B))    +  

 (CC(A), CC(B))    +  

 (ADAN(A), ADAN(B))    

 (SDAN(A),  SDAN(B))   

                                                                           (5) 
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(a)              (b)                              (c) 

Fig. 5. Three similar graphs, with additional information indicated by labels, shapes and edge activity (shown by thickness of 

line) 

The weight vector {, , , , } can be calibrated 

using a suitable supervised learning technique and 

target values. 

This similarity metric calculates a distance based 

on sub-graph characteristics which can be pre-

calculated. The sub-graph characteristics are: degree 

of the reference node DR; number of edges in the 

immediate neighbourhood sub-graph NE, clustering 

coefficient CC, normalized average degree of 

adjacent nodes ADAN, normalized standard deviation 

of degree of adjacent nodes SDAN. The first three 

characteristics are designed to reflect the internal 

structure of the sub-graph, whereas the last two 

characteristics reflect a key aspect of the neighbours 

(their degree), which effectively considers the 

neighbourhood one hop further out (with the 

reference node as ‘ground zero’). We observe that in 

order to perform the calculation, all values are 

normalized against the maximum and minimum 

corresponding values in the complete graph.  

Finally, we can consider additional information 

when matching a graph, other than its structure. One 

type of additional information could be the activity 

registered along the edges, such as the number of 

Tweets, emails, call durations, etcetera.  A second 

type could be external information about each 

node/user, such as age, gender, likes/dislikes, geo-

location, and so on.  

In Figs. 5 we see a depiction of three sub-graphs. 

At first glance it would appear that in purely 

topological terms, graphs 5a and 5b are the most 

similar. However, if we also take into consideration 

additional information, such as the node labels (A, B, 

C, …), node shapes and edge activity (indicated by 

thickness of line) we observe that it is graph 5c which 

corresponds the best with graph 5a in these terms. 

If we use Formula 5, with weights set to 1 to 

calculate the respective distances between the three 

graphs of Fig. 5, the results are: distance(a, b) = 0, 

distance(a, c) = 5,  distance(b, c) = 5. The five 

descriptive factor vectors are {4, 5, 0.33rec, 2.25, 

0.957} for graph 5a, {4, 5, 0.33rec, 2.25, 0.957} for 

graph 5b and {5, 6, 0.2, 1.4, 0.547} for graph 5c. We 

note that in order to calculate the distance, the values 

are normalized against the maximum and minimum 

values for all graphs. For example, for the reference 

node, the min degree value is 4 (graphs 5a and 5b) 

and the maximum degree value is 5 (graph 5c). 

Hence the normalized degree values of the reference 

node would be 0, 0 and 1 for graphs 5a, 5b and 5c, 

respectively. 

2.4.8 Influence and recommendation  

Which persons are the most influential in an OSN? 

Which Internet Web pages are most influential in a 

given topic? These are questions which can clearly be 

of commercial interest as well as being key aspects 

which help us understand interactions and 

information flow in an OSN graph.  

In this section we refer to three key papers which 

consider, respectively, authoritative sources in a 

Hyperlinked web environment [83], finding 

‘influential’ individuals [84][24] and how to 

maximize the spread of influence through a social 
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network[84].  

In the context of Web pages, [83] considers the 

theme of authoritative sources in a Hyperlinked 

environment. This paper is related to Kleinberg's 

work with co-author Gibson on the HITS algorithm 

[45], which defined and considered Hubs and 

Authorities. An iterative algorithm for computing 

hubs and authorities was defined. Also, in the social 

network context, the concepts of "standing", "impact" 

and "influence" were defined theoretically. In the 

scientific citations domain, the "impact factor" was 

considered, and an improvement was proposed, 

called the "influence weight". The "influence weight" 

considers that a journal is "influential" if it is heavily 

cited by other influential journals which are defined 

in the same manner, and so on, recursively. The 

authors stated that overall, their algorithm finds the 

most densely linked collection of hubs and authorities 

in a sub-graph G defined by a query string . Other 

concepts were considered, such as "diffusion" and 

"generalization". 

In the context of finding ‘influential’ individuals 

(that is, individuals who are able to influence other 

individuals in a social network), Kempe et al. [84] 

consider how to maximize the spread of influence 

through a social network. The initial problem is 

defined as being how to choose a subset of N 

individuals from the whole graph, who if they were 

to make a decision, for example, if to buy a given 

product/service, would influence the maximum 

number of other individuals in the whole graph to do 

the same thing. Finding these individuals stated as 

being NP-hard, and in order to reduce the 

computation search cost, the "degree centrality" and 

"distance centrality" metrics were proposed as search 

heuristics. Two diffusion models, the ‘Linear 

Threshold’ and ‘Independent Cascade’ are 

considered. These models represent two different 

approaches to solve the influence maximization 

problem. All empirical tests are carried out using the 

ArXiv high energy physics citation dataset, which 

once filtered, gave 10748 nodes and 26500 edges. 

The high degree heuristic (based on node centrality) 

chooses nodes v in order of decreasing degree size d. 

The centrality measure assumes that a node with 

short paths to other nodes in a network will have a 

higher chance of influencing them. Four variants 

were tried for finding the most influential nodes: 

'greedy search', 'high degree', 'degree centrality' and 

'random'. 'Greedy' combined with 'degree centrality' 

was found to give the best results, whereas 'degree 

centrality' on its own worked well to choose the first 

node but after that showed little or no improvement. 

This is because the first node tends to be connected to 

other candidate nodes. However, combining 'degree 

centrality' with a 'greedy search', in which the already 

chosen nodes were excluded as candidates, gave 

significantly better results.  All the search methods 

were applied using a 'weighted cascade model'. 

Another study which focuses on finding influential 

individuals in an OSN is that of Shetty and Adibi 

[24]. Their approach, in which they analyzed the 

Enron email database, proposes a "graph entropy" 

method for discovering important nodes. We recall 

that the Enron email database contains emails from, 

among others, top executives of the Enron 

Corporation. Three types of users are defined: 

leaders, middlemen and followers. For "graph 

entropy", they have used Körner's definition [85], 

which is as follows: a function H(G, P) is associated 

with a graph G and an arbitrary probability 

distribution P on its vertex set: 

 

 

    

                                                                           (6) 

where S(G) represents the family of stable sets of 

vertices in G , and a subset of the vertex set is stable 

if it does not contain any edge. If the mutual 

information I(X  Y) measures the degree of 

independence between the random variables X and Y, 

then the graph entropy will measure the level of 

independence of the stable sets of G with respect to 

the vertices. 

Shetty and Adibi examined each email to see if it 

was similar to other emails received by a given 

individual, and if one transaction was recent with 

respect to another for a given time window. The basic 

idea was to measure the change in entropy of the 

whole graph when a given node was deleted from it. 

The authors applied their method to the Enron data 

and it successfully identified the key nodes 

(employees), benchmarking against the "betweenness 

centrality" metric. The latter method found nodes in 

the centre of the graph but not those with the highest 

authorities, whereas the entropy method did. For 



  

example, the key user/node "Louise Kitchen" was 

only ranked fifth by the "betweenness centrality" 

measure but second by the entropy model. One clear 

difficulty of generalizing the entropy model method 

as defined by Shetty and Adibi to detect important 

nodes in graphs, is the computational cost. Each node 

in the network has to be tested individually, that is, 

dropped from the network, and the entropy 

recalculated. 

The distributions of the number of emails per user 

and the number of emails sent over time were plotted. 

The emails were also compared for similarity using 

Jaccard's Algorithm [86] (also known as Jaccard's 

Index or Similarity) on the text bodies. 

2.4.9 Community identification: early work and 

communities in the Web 

In this Section we take general look at initial 

approaches of defining and analysing community 

structure, and some specific applications for the Web.  

One key structure in an OSN, and indeed in any 

social network, is the community. Humans are social 

creatures and tend to aggregate into subgroups based 

on similar characteristics, shared interests, 

geographical proximity, and so on. However, given a 

seemingly chaotic OSN represented as a graph, how 

do we go about identifying the community structure? 

The study of community structure in social 

networks has been of interest for many years, by 

multidisciplinary researchers such as Zachary [18], 

and Freeman [87]. More recently, with the advent of 

online social networks (Facebook, Twitter, etc.) 

research in this area has been given a great impulse 

due to the availability of (some) of this online data 

for analysis [23][24][47][54][55][88][89][90]. 

Authors such as Kleinberg[91] and Kumar et al. [60], 

among others, ‘set the stage’ for research in this area. 

Chakrabarti and Faloutsos, in [54], comment that 

the clique is the classic community structure, for 

which there are several "relaxed" definitions, 

including accessibility criteria such as "at least K 

nodes" or "at most N hops". Several variants of 

cliques are proposed, such as "clan", "hops", "core" 

and "plex". The equivalence of nodes is expressed as 

"structural", "automorphic" or "regular". The concept 

of ‘social capital’ is proposed in order to define what 

is to be considered a "well connected node" in an 

OSN. This may be a node which occupies a special 

place in the graph, for example, which allows it to 

broker information or facilitate the work of others. A 

special node may exploit "structural holes" in the 

graph or be connected into a dense sub graph. A ‘key 

player’ node can be identified as a node whose 

removal maximizes the disruption to the network, or 

a node which is maximally connected to the rest of 

the network. Some interesting OSN datasets that [54] 

considers in this context are:  "who-trusts-whom" 

(Epinions), "who-reads-whose-weblog" (Blogspace), 

and "who-knows-whom" (Friendster).  

Newman, in [62], defines and tests three different 

algorithms derived from the "shortest path 

betweenness" metric. The idea of "shortest path 

betweenness" is simply a counter for each edge E 

which registers how many shortest paths (to/from 

nodes in the graph), pass along E. Thus, it is a sort of 

measure of importance of the edge in the network: if 

we remove edge E what impact will that have on the 

nodes in the graph. One difficulty, as always in graph 

processing, is the computational cost. Complete 

graph partitioning is NP-complete and runs in time 

O(n
3
) for sparse graphs. Social networks are 

considered as having a "community structure" made 

up of a number of different communities with dense 

internal links, which are connected by lower density 

"inter-community" links. Different analysis methods 

are considered, such as hierarchical trees 

(dendrograms) and agglomerative clustering. It is 

said that the dendrograms are more successful in 

representing intra and inter community links, whereas 

agglomerative clustering tends to lose the inter type 

links. Three algorithms are tested: (i) 'shortest path 

betweenness'; (ii) 'random walk betweenness'; and 

(iii) 'resistor networks'. The random walk is similar to 

the shortest path measure except that instead of 

counting the shortest paths that traverse an edge, it 

counts the number of random walks that traverse the 

edge. The resistor network is based on electrical 

theory and applies a "resistance" value to each edge, 

along which the "current" flows according to 

Kirchhoff's laws. Then the 'random walk 

betweenness' algorithm is applied to each edge. A 

metric is defined for measuring the quality of the 

solution found, which is based on assortative mixing, 

and derived in terms of the fraction of edges in the 

network that connect vertices in the same 

communities. If this value is high, it implies a good 



   

division of communities. The following test datasets 

are used: (i) an artificially generated network 

consisting of 128 nodes which contain four 

communities of 32 nodes each; (ii) Zachary's karate 

club [18], which contains 34 nodes, two of which are 

hub nodes; (iii) a collaboration network of scientists 

(Physics E-print Archive at arxiv.org), consisting of 

145 scientists in the largest component of the 

network, and the remaining 90 scientists belong to 

smaller components; (iv) a social network of a 

community of 62 bottlenose dolphins studied by 

Lusseau et al. in New Zealand [19].  

Lusseau et al. compiled the dolphin data from a 7 

year field study in which ties between dolphin pairs 

were established by observation of statistically 

frequent associations. The network splits into two 

main groups, and the larger of these groups 

subdivides into four smaller subgroups. It was found 

that the dolphin community behaves in a similar 

manner to a human community, fragmenting when 

certain key individuals are lost. With respect to the 

algorithms tested, the 'random walk' and 'shortest 

path' gave similar results, however the computational 

cost of both is high and in the case of 'random 

sampling', the 'betweenness' characteristic is often 

lost. 

One specific area of interest is the study of 

hyperlink topologies in Internet in order to infer 

“communities”. Gibson et al., in [45], used the HITS 

algorithm in order to do this, HITS being one of the 

most well known algorithms for Internet ranking. It 

considers two types of important pages: “hubs” and 

“authorities”. A hub is a page which points to many 

“authoritative” pages, whereas an authoritative page 

is one which is pointed to by many hubs. A “good” 

hub is one which points to many “good” authoritative 

pages, and a “good” authoritative page is one which 

is pointed to by many “good” hubs. Thus, a 

community should contain each of these special page 

types.  

How communities emerge in the Web is also 

evaluated by Gibson et al. in [45]. Questions are 

posed such as: ‘how does this evolution depend on 

the “root set” of sources?’ and ‘how long does it take 

in temporal terms for a community to form?’ Six 

topics for generating communities are evaluated: 

“Harvard”, “cryptography”, “English literature”, 

“skiing”, “optimization” and “operations research”. 

The HITS algorithm is applied to form communities 

based on these themes. The resulting community 

structures are evaluated in terms of (i) robustness; (ii) 

topic generalization; (iii) topic hierarchy (tree); and 

(iv) temporal aspects. A community is considered 

'robust' if it doesn't change even though the initial 

root set is altered. Temporal aspects are considered, 

such as the definition of a time period over which the 

community changes significantly. The “core” of the 

community is defined as the part which does not 

change over a given time period, whereas other parts 

of the community are transient. In order to analyze 

the factors which influence a topic, the author 

proposes that the HITS algorithm, with its use of 

eigenvectors, can be used to discover multiple 

communities associated with a given topic. For 

example, a single principal and an arbitrary number 

of sparser non-principal communities could be 

identified.  Empirical tests: for each topic, tests were 

made for root sizes of 25, 50, 100 and 200. It was 

found that between 3 and 50 iterations (of HITS) 

gave similar results, in terms of overlap of the topic 

community with respect to the full community. A 

fairly lineal increase (of overlap) was shown from 0 

to 10% for an initial root set size of 25, up to a 

maximum of 20% for a root set size of 200. 

Following on from [45], in [46] Kleinberg et al. 

defined a new algorithm to "trawl" the web for cyber-

communities. The “trawling algorithm” differentiates 

from HITS in that the latter searches for high-quality 

pages about a specific topic, whereas the “trawling 

algorithm” is designed to search for N defined topics. 

It does this by identifying "bipartite cliques" and 

"bipartite cores", where a "bipartite clique" Ki,j is 

defined as a graph in which every one of i nodes has 

an edge directed to each of j nodes, and a "bipartite 

core" Cij is defined as a graph on i + j nodes that 

contains at least one Kij as a sub graph. However, it is 

stated that the computational cost of a simple 

algorithm to search for these structures is not 

practicable. Thus Kleinberg proposes a two step 

algorithm: (step i) elimination and (step ii) 

generation, consisting of sub steps of successive 

passes and sorts on the data. The graph is stored as a 

set of binary relations. To gain speed, two aspects are 

exploited: (i) the fact that the in/out degree of each 

node drops monotonically after each step; and (ii), 

nodes are eliminated or included as they are 



  

respectively excluded or included as belonging to a 

core. Other sub graphs stated as being of interest are 

‘bidirectional stars’, cliques and directed trees.  

Community structure: a community is stated as 

being a set of nodes where each node is closer to the 

other nodes in the community than to nodes outside 

it, a typical measure being the clustering coefficient. 

Transitivity occurs iff triangles exist in the graph, that 

is, connected triples. The authors propose that 

communities can be extracted from graphs by two 

main methods; (a) bottom up construction starting 

with individual nodes and constructing successive 

hierarchies,  using a method such as Dendrograms; 

(b) top down analysis by identifying edges with a 

high "betweenness" and deleting them. One difficulty 

is defined as how to choose the initial seed nodes. As 

a possible solution, the authors propose the HITS 

algorithm, which uses hub and authority nodes to 

bootstrap the algorithm. Another consideration is the 

resilience of a graph, that is, the effect on the graph 

of removing nodes from it. Other metrics commented 

are the 'in/out degree correlation', the 'average 

neighbour degree', and the 'neighbour degree 

correlation'.  

2.4.10 Communities in OSNs: identification and 

extraction 

In this section we will consider two specific 

algorithms for automatic community extraction from 

a complete graph: that of Newman and Girvan[88], 

and that of Blondel et al. [89]. Newman and Girvan’s 

algorithm was effective but slow, whereas that of 

Blondel et al., designated as the Louvain Method[89], 

was developed four years later and is much more 

efficient in computational terms, having now become 

an ‘industry standard’. In this Section we will briefly 

describe both algorithms, and discuss some of the 

results of community extraction for two benchmark 

datasets. 

2.4.10.1 Newman & Girvan’s community search 

algorithm – implementation details: In this section 

we describe the high level algorithm for the search 

and evaluation of communities on complex networks, 

based on the method detailed in [88]. 

Newman and Girvan’s algorithm [88] focuses on 

how to extract a community structure from social 

network graph data. Two main approaches are 

defined: (i) the identification of groups around a 

prototypic nucleus defined in terms of the 'most 

central' edges, an adjacency matrix being used as the 

basis to calculate the weights; and (ii) the 

identification of groups by their boundaries, using the 

least central edges (frontiers). This second metric is 

also referred to as "edge betweenness", and is based 

on Freeman's "betweenness centrality measure" [87]. 

A summary of the algorithm is as follows: (a) 

calculate the betweenness for all edges in the graph; 

(b) remove the edge with the highest betweenness; (c) 

recalculate betweennesses for all edges affected by 

the removal; (d) repeat from step (b) until no edges 

remain. 

In order to understand the community extraction 

algorithms, we first explain what ‘modularity’ is, a 

measure used during community extraction to 

measure the ‘goodness’ of the current partitioning. 

Modularity[88]: During the elicitation process, 

the graph is successively divided in components, and 

the correctness of the community partitions is 

measured. The quality metric used for a given 

community is called the modularity. For a graph 

divided into k communities, a symmetrical matrix e is 

defined of order k2 whose elements     are the subset 

of edges from the total graph which connect the 

nodes of communities i and j. 

The trace of matrix e, denoted as  r e   eiii  gives 

the fraction of edges in the graph which connect 

nodes of the same community. Hence, a good 

division in communities should obtain a high value 

for the trace of matrix e. However, this value alone is 

not sufficient as a good quality indicator, given that if 

all the edges are placed in the same community this 

would give the maximum value, Tr e = 1 , but 

without having created any useful structure. Thus it is 

necessary to define the sum of the rows ai  ei  , 

which represents the fraction of edges which connect 

nodes of community i. Following on from this, the 

modularity metric was defined as: 

 

    eii ai
2 

i

 Tr e   e2  

                                                                                (7) 

where     indicates the sum of the elements of 

matrix x. This parameter measures the fraction of 

edges in the graph which connect vertices in the same 

community, minus the expected value of the same 



   

number of edges in the graph with the same 

community partitions but with random connections 

between their respective nodes. 

If the number of intra-community edges shows no 

improvement on the expected value, then the 

modularity would be Q=0. On the other hand, Q 

approaches a maximum value of 1 when the 

community structure is strong. According to [88], the 

usual empirical range for Q is between 0.3 and 0.7. 

The modularity is calculated after each iteration of 

the elicitation algorithm, when two new components 

have been created due to the elimination of an edge. 

At this point a test is made to see if a global 

maximum, or some predefined expected maximum, 

has been reached. 

Discussion: the major problem of this algorithm is 

the computational cost which grows as the potential 

of the number of edges in the network being 

analyzed. If the network has a clear community 

structure, it will be divided into components after the 

first iterations of the algorithm. However, for more 

disperse networks, the computation cost can become 

very significant. This problem can be partially 

mitigated by sampling and/or early termination of the 

algorithm, as was proposed by Martínez-Arqué and 

Nettleton in [92]. 

Example community structure extraction and 

visualization: In [92], Martínez-Arqué and Nettleton 

presented a benchmarking of Newman’s method, 

which used sampling as a pre-processing step. In the 

following, and with reference to Figs. 6a and 6b, we 

briefly summarize their results. For the ArXiv-GrQc 

dataset[23] and with reference to Fig. 6a, the 

optimum modularity using Newman’s method was 

found at iteration 56 with Q=0.777 (modularity 

value), which partitioned the sampled version of the 

dataset in 57 communities. With reference to Fig. 6a, 

the greatest community (lowest part of the Figure), 

included 16.29% of the nodes in the complete graph. 

The following two communities by number of nodes 

together represent 10% of the graph.  

For the Facebook dataset, with reference to Fig. 6b 

the optimum modularity was found at iteration 40, 

with Q=0.87, resulting in a total of 190 communities. 

This value was influenced by the low clustering 

coefficient of the complete graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              (a)          (b) 

Fig. 6. Newman’s Method: (a) Visualization of the principal communities extracted from a sampled arXiv-GrQc citation 

dataset; (b) Visualization for a sampled Facebook writes to wall log [92] 

 



  

---------------------------------------------------------------- 

Community Search Algorithm (Newman[88]) 

---------------------------------------------------------------- 

Find_communities: 

WHILE modularity  0 OR  

              current_iteration < max_iterations DO: 

1.1 Select the component to be considered.  

Initially this will be the biggest component. 

1.2 Calculate the edge similarity of the    

component {Edge_betweenness_edge_erasing}  

until it becomes divided. 

1.3 Save the two new components and   

eliminate the one which was analyzed. 

1.4 Calculate the {Modularity_Q}. 

EWHILE 

 

Once the iterative process has terminated, assign 

the nodes in the network to the communities. 

 

Edge_betweenness_edge_erasing: 

WHILE the analyzed component is not divided in  

         two parts DO: 

2.1 Calculate the betweenness scores of the  

edges 

2.2 Find the edge Eh with the highest score 

2.3 Eliminate Eh from the current component 

2.4 Recalculate the betweenness of the edges  

and  return to step 2.2. 

EWHILE 

 

Modularity_Q: 

Generate the matrix of communities with size k
2
  

where k is the number of components of the  

current network: 

3.1 Calculate the Trace of the matrix of  

communities created previously 

3.2 Calculate the sum of the matrix 

3.3 Calculate the modularity 

 

Other results in the literature for community 

extraction using the same or similar datasets are as 

follows: for the arXiv-GrQc dataset, Xie[93] reported 

499 communities using a “Label Propagation 

Algorithm” and 605 communities using a “Clique 

Propagation Algorithm”. For the Facebook dataset, 

Viswanath in [55] reported a high fragmentation into 

small communities, and Leskovec in [94] also 

reported a relatively high fragmentation of 

communities in other OSNs akin to Facebook. In 

[92], the authors commented that the fragmentation 

of this particular dataset was also probably influenced 

by the interaction metric (writes to wall) used to 

define the strength of activity between users. 

2.4.10.2 The ‘Louvain’ method [89]: this can be 

considered an optimization of Newman’s method, in 

terms of computational cost. Firstly, it looks for 

smaller communities by optimizing modularity 

locally. As a second step, it aggregates nodes of the 

same community and builds a new network whose 

nodes are the communities. These two steps are 

repeated iteratively until the modularity value is 

maximized. The optimization is based on evaluating 

the modularity gain, which is done by performing a 

local calculation of the change in modularity for a 

given community, caused by moving each node from 

it to an adjacent community. With each iteration the 

number of nodes to test quickly reduces (due to the 

aggregation of the corresponding nodes), and the 

computational cost is reduced in the same order. 

3. Hot topics and latest work 

In this Section we consider leading edge research and 

hot topics, based on papers presented in a selection of 

the major congresses in the last two years (2010-

2012), which include OSN analysis themes: 

communities; influence and recommendation; 

models, metrics and dynamics; behaviour and 

relationships; and information diffusion. 

The ‘hot topic’ references are taken from the 

following congresses: WWW 2012, ICWSM 2012, 

WOSN 2010 and WCCI 2012. 

3.1. Communities 

As would be expected, much of the most recent 

research on OSN communities is dedicated to the 

data mining of datasets from the most popular current 

online applications, such as Twitter, Baidu, Epinions, 

BitTorrent and DBLP. Among the specific themes 

studied are community similarity metrics, clustering 

methods, models and detection algorithms. This 

research is potentiated by the ever growing 



   

availability of datasets for analysis, and commercial 

motivations. 

The following selected is summarized: a study of 

online expert panels in question answering 

communities[95]; Cross-community influence in 

discussion forums[96]; Community detection in 

incomplete information networks[97]; the economics 

of BitTorrent communities[98]; using content and 

interactions for discovering communities in Twitter 

and the Enron Email corpus[99]; a scalable 

constraint-based clustering algorithm based on a 

global similarity measure that takes into 

consideration the users’ constraints and their 

importance in social networks[100]; an analysis and 

comparison of two applications dedicated to 

‘community question answering’ (C A), ‘Yahoo! 

Answers’ and ‘Baidu Zhidao’[101]; and finally, a 

spectral partitioning method to detect communities in 

a co-authorship network[102]. 

Firstly, Pal et al. [95] present a study of online 

expert panels in question answering communities, 

whose objective is to evaluate changes in the 

behavioural patterns of the users over time. 

Unsupervised machine learning methods are used to 

identify interesting evolution patterns which help to 

distinguish between experts. Supervised classification 

methods are used to show that the models based on 

how users evolve over time can be more effective at 

expert identification than the models that do not 

consider evolution. 

Cross-community influence in discussion forums 

is the theme considered in [96]. The authors pose 

several questions: (i) how to identify communities 

which persistently affect other communities; (ii) 

given a specific community, which communities does 

it influence; (iii) which communities are dependent 

on the activity of others; and (iv) how to identify that 

a community is being increasingly influenced or 

incorporated into another community. Two measures 

are proposed: (a) the degree of community 

membership of the users; (b) the centrality of the 

users within each community. 

Community detection in incomplete information 

networks is considered by Lin et al. in [97], who 

address the problem of how to learn a global metric 

which can be used to measure the distance between 

any pair of nodes in a given incomplete information 

network. This is done by solving an optimization 

problem, which makes use of auxiliary information 

obtained from the link relations in the network and 

the set of dissimilar node pairs. 

By optimizing an objective function, a matrix M is 

obtained which serves as a metric which can be used 

to measure the distance between any two nodes in the 

graph. This idea is borrowed from density-based 

clustering approaches which cluster nodes from a 

higher to a lower density. The distance-based 

clustering approach, called DSHRINK, is designed to 

detect the overlapped and hierarchical communities 

subjacent in the graph. 

In order to reduce the computational cost of the 

clustering process, an approximation is allowed in the 

determination of the mutual nearest neighbours and 

local communities. 

The method is tested on two DBLP Datasets, 

which provide bibliographic information on computer 

science journals and proceedings. 

From this data, the authors derive a new dataset 

with incomplete information, obtained by applying a 

Snowball sampling process to extract one group of 

connected local regions at a time. A node is randomly 

selected and a Breadth First Search is performed to 

incorporate neighbouring nodes into the sample until 

a fixed number of nodes are obtained. This process is 

repeated until a given number of local regions have 

been sampled. As a consequence, the links within the 

local regions are maintained whereas the remaining 

links in the network are lost. 

For empirical testing, Lin et al. used k-Means with 

the Euclidean metric is compared against the 

proposed algorithm using (i) a diagonal Mahalanobis 

matrix and (ii) a full Mahalanobis matrix. The 

authors claimed that with these methods their results 

showed that it is possible to learn a metric 

(represented in the M matrix) which can be used as 

input to a clustering algorithm in order to elicit the 

communities, with only a small information loss with 

respect to the complete dataset. 

The economics of BitTorrent communities, which 

are private file-sharing communities built on the 

BitTorrent protocol, is considered in [98] by Kash et 

al.. It is observed that some of these communities 

have developed their own policies for motivating 

members to share content and contribute resources, 

such as the requirement for members to maintain a 

minimum share ratio between uploads and 

downloads. In this way a private community 

establishes a ‘credit system’, which could be 

considered as a simple economic system. The authors 

state that previous studies of these communities have 



  

focused on the information technology aspects rather 

than the economic aspects. Hence they conducted an 

economic study of the DIME community which 

shares live concert recordings.  

It was found that users take into consideration the 

cost differential when deciding which files to 

consume. The DIME community defined a 

significant difference between the cost of new and 

old files. Frequent visitors can quickly accumulate 

credit by consuming newer files, and users 

compensate the higher cost of older files by 

downloading more copies of newer files, and then 

preferentially consuming older files during specially 

designated periods. 

From the study[98], Kash et al. proposed some 

community rule changes for the DIME community in 

order to improve its functionality. From an 

informatics point of view, the two main 

recommendations were (i) restricting access of new 

users to older files and (ii) increasing demand for 

files in general. From an economics point of view, 

the three key recommendations were (a) distribution 

of wealth through progressive taxation; (b) the 

providing of incentives to add new files to the 

system; and (c) the relaxation of some of DIME's 

`rigid' rules, for example, the number of torrents that 

are allowed to be seeded. 

Sachan et al., in [99], considered using content and 

interactions for discovering communities in social 

networks. Two real datasets were processed, the first 

extracted from Twitter and the second being the 

Enron Email corpus. 

A person’s membership to a community is 

conditioned by the social relationship, the type of 

interaction and the information communicated with 

other members of that community. The authors 

defined a generative model which facilitates the 

discovery of communities based on the discussed 

topics, interaction types and the social connections 

among people. 

The authors defined four models: a topic user 

community model, two variants of a topic user 

recipient community model and a ‘Full TURCM” 

which represents a composite of the first three 

models. 

The first model, ‘topic user community model’, 

performs a latent community discovery in a network 

using the content being discussed by users in the 

form of latent topics and the type of posts generated 

by them. From this, a topic extraction was performed 

and the role of each user was identified. 

The first model was formally defined as follows: 

W is the set of words in the corpus; X is the set of 

interaction types observed on the social graph among 

the set U of users (senders); Z and C are the set of 

latent topic and community assignments for every 

post, respectively. Then the joint probability 

distribution of users, posts, interaction types, topics 

and community assignments is given by: 
 

L= P( W, X, U, Z, C,  ,  ,  ,   

     , , , ) 
                                                                                (8) 

The last seven parameters of formula (8) were 

estimated by sampling the conditional distribution of 

each variable using a Block-Gibbs sampling based 

approximate inference. The topic assignment and 

community assignment were sampled for each post 

from a conditional distribution for the current 

assignment given the observation and other 

assignments. From this a Markov chain was defined 

in which the state transitions were simulated by 

repeatedly sampling from the conditional 

distributions. 

Benchmarking was performed against two existing 

methods from the literature: CUT(Community-User-

Topic) and CART (Community-Author-Recipient-

Topic). The CUT model uses the semantic content of 

social graphs to discover communities, whereas the 

CART model combines both content and link 

information available in a social network.  

In [100], Alsaleh et al. present a scalable 

constraint-based clustering algorithm based on a 

global similarity measure that takes into 

consideration the users’ constraints and the 

importance of these constraints in social networks. 

Each constraint’s importance was calculated based on 

the occurrence of the constraint in the dataset. 

Performance of the algorithm was demonstrated on a 

dataset obtained from an online dating website using 

internal and external evaluation measures. Their 

results claim that the proposed algorithm is able to 

increase the accuracy of matching users in social 

networks by 10% in comparison to other algorithms. 

For a clustering solution C = {C1 … Cq}, taking 

into account the number of users in each cluster, a 

‘closeness’ function was defined as: 

 



   

Closeness C  
 

S Ci 

W(Ci)
r   Ci 

q

i 1

  Ci 
q

i 1
 ConsPurq

 

                                                                               (9) 

where S(Ci) represents the occurrence of every 

distinct value in a cluster Ci, W(Ci) represents the 

number of distinct values in the cluster Ci, |Ci| means 

the number of users in cluster Ci, r is a positive real 

number called ‘repulsion’ to control intra-cluster 

similarity, q is the number of clusters and ConsPurq is 

a measure used to find the purity of constraint in 

cluster q. 

 

Also, the constraint purity measure for a cluster q was 

defined as follows: 
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where Xn can be between 0 (where the constraint does 

not exist) and 1 (where the constraint exists with full 

weight) depending on the weighting of the constraint. 

As a result ConsPurq will get a value between 1 

(where all constraints are satisfied) and 0 (where all 

constraints are not satisfied with full weight). 

The algorithm was benchmarked against three 

methods from the literature: the k-means clustering 

algorithm, the Clope clustering algorithm, and a 

semi-supervised constrained clustering algorithm. 

To summarize, the authors, Alsaleh et al., have 

developed a scalable weighted constraint-based 

clustering algorithm (WSCClust) to efficiently cluster 

users in social networks, which uses a global 

similarity measurement function and takes into 

consideration the users constraints in social networks. 

The method was tested on a dataset obtained from an 

online dating website using internal and external 

evaluation measures. The results showed that 

WSCClust performed better in clustering people 

compared to three existing clustering algorithms (k-

means, Clope and SSCClust). 

‘Community question answering’ (C A) is the 

theme studied by Li et al. in [101], in which the 

authors performed an analysis and comparison of two 

applications, ‘Yahoo! Answers’ and ‘Baidu Zhidao’. 

A comparison of the similarities and differences of 

the two communities was made, with respect to their 

influence on solving questions. Specific aspects were 

studied: (i) the social network structures of ‘Yahoo! 

Answers’ and ‘Baidu Zhidao’; (ii) a comparison of 

the social community characteristics of top 

contributors; (iii) the identification of the behaviour 

of users in different categories in these two portals; 

and (iv) the identification of temporal trends. Also, 

the efficiency and effectiveness for answering 

questions was compared for ‘Yahoo! Answers’ and 

‘Baidu Zhidao’. 

The social network structure of the data was first 

analysed in terms of the well known ‘bow tie’ 

structure representation. Then a centrality analysis 

was conducted to identify the top contributors (users 

who contribute a great number of answers or 

questions) and the composition and characteristics of 

those contributors was studied. 

Following this first analysis, the Louvain method 

[89] was then applied to detect sub-communities 

(with a minimum number of 10 users) in the four 

principal categories of users identified. The 

corresponding categories in Yahoo! Answers and 

Baidu Zhidao are identified by a mapping process, 

and then a statistical analysis is performed on the four 

typical category pairs in each application to identify 

similarities and differences between their sub-

communities. 

The weighted entropy was calculated for all 

detected sub-communities as follows: Let S denote 

the number of sub-communities detected, SCs 

represents the s
th

 sub-community and cij represents 

the number of questions users ui have asked 

(answered, asked or answered) in category j. Then, 

the weighted mean entropy Ewm was defined as 

follows: 
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where T is the total number of categories. Also, the 

entropy was calculated for the largest sub-

communities, SC. 

A fitness measurement is defined to represent the 

degree of matching for two categories, in which Fit(i, 

j) denotes the Fitness of mapping the j-th category of 



  

Yahoo! Answers to the i-th category of Baidu 

Zhidao, thus: 

 

Fit i,j  
2 m(i,j)

 m(i,j)X
i 1   m(i,j)Y

j 1

 

                                                                               (14) 

The following points summarize the work of Li et 

al[101]: (i) Sub-communities were identified in 

Yahoo! Answers and Baidu Zhidao based on a 

reduced number of categories; (ii) it was shown that 

Yahoo! Answers had a certain amount of asker-

answerers while in Baidu Zhidao askers and 

answerers were dominant and there were much fewer 

asker-answerers; (iii) it was found that in Yahoo! 

Answers more people preferred to ask or answer 

questions in a greater diversity of categories while in 

Baidu Zhidao, most people (especially the top 

contributors) preferred to ask or answer questions in a 

few categories in which they were most interested. 

The results were derived from datasets dated 2008 to 

2010 for both applications. 

Krömer et al., in [102], employ a spectral 

partitioning method to detect communities in a co-

authorship network. It was commented that spectral 

partitioning and clustering methods are often used for 

graph and matrix analysis, as well as to detect 

structures in real world networks and databases. The 

Spectral clustering method constructs graph partitions 

based on eigenvectors of the adjacency matrix. This 

makes use of the observation that bi-partitions of a 

graph are closely connected with the second 

eigenvector of the graph Laplacian, and hence this 

eigenvector can be used to partition a graph. 

However, it was found that the partitioning was 

highly dependent on the weighting of the underlying 

network.  

The authors used an intuitive weighting scheme 

based on ‘ant colony optimization’ (ACO). They 

compared the communities found by spectral 

partitioning when using the ACO inspired weighting, 

with those found by using trivial weighting based on 

the number of interactions between the users (co-

authors in the DLBP database). 

Ant Colony Optimization (ACO) is a meta-

heuristic method which has recently gained following 

in the computational intelligence community. It is 

based on certain behavioural patterns of foraging 

ants, in which the emulation of the ants’ behaviour 

can be used as a probabilistic computational 

technique for solving complex problems that can be 

reduced to finding optimal paths in graphs. Krömer et 

al. used the ACO inspired approach for assigning 

weights to edges for the co-authorship network. The 

ACO mechanisms of pheromone increase and 

pheromone evaporation were used to model how the 

strength of ties varied between authors over time. 

A first algorithm (simple iterative spectral 

partitioning, SimpleISP) divides the initial connected 

graph into two sub-graphs, each containing vertices 

(and incident edges) with positive valuation and 

vertices (and incident edges) with negative valuation 

respectively. For benchmarking, the DBLP dataset 

was used (dated April 2010). It was stored in an 

XML format and pre-processed. All conferences 

were selected that were held by IEEE, ACM or 

Springer, giving a total of 9,768 conferences. 

To illustrate the partitioning process, the 

communities were computed for two authors with 

distinct characteristics (one highly collaborative and 

highly active). They were selected on the basis of a 

previous analysis of the DBLP dataset. The 

communities to which the authors belonged were 

found to diverge during the final iterations of the 

SimpleISP algorithm when using the trivial 

weighting. The highly active author was found to 

belong to less well connected communities than the 

highly collaborative author. However, when using the 

ACO inspired weighting, the communities of both 

authors were found to be more similar in terms of 

connectivity. 

Summary of research in community detection: 
in this Section we have seen that current researchers 

are defining their own community detection models, 

which are customized depending on the type of data 

being analyzed and the research objective. Pal et al. 

[95] use supervised classification methods, whereas 

Lin et al. [97] use a density clustering method to 

process incomplete information. Sachan et al. [99] 

define a model based on interactions between users, 

whereas Alsaleh et al. [100] perform clustering based 

on a customized similarity measure. Finally, Krömer 

et al. [102] employ a spectral partitioning method. To 

summarize, we can see that researchers are 

developing their own paradigms for defining, 

detecting and partitioning the data into communities, 

rather than using per se the community detection 

algorithms of Newman and Girvan [88] or Blondel et 

al. [89] we saw in the base topic Section 2.4.10. 



   

3.2. Influence and recommendation 

It is reasonable to assume that online social networks 

will reflect natural human social orders and 

characteristics, hence different researchers have 

analysed log data in order to identify manifestations 

of, for example, trust between individuals, mutual 

support and hierarchies (pecking orders). 

The following selected research illustrates these 

themes: language effects and power differences in 

social interaction[103]; a general framework for 

estimating the prevalence of deception in online 

review communities[104]; and the use of 

recommendations to boost content spread in social 

networks[105]. 

The theme of language effects and power 

differences in social interaction is considered in 

[103], in which Danescu-Niculescu-Mizil et al. 

propose that these aspects are key to understanding 

social interaction within groups for online 

communities. The authors propose the hypothesis that 

the power of individuals in a network can be 

measured in terms of the degree to which their style 

influences that of others. The authors consider how 

conversational behaviour can reveal power 

relationships in two distinct domains: discussions 

among Wikipedians and arguments before the U. S. 

Supreme Court. 

The two datasets processed are (i) discussions 

among Wikipedia editors, containing approx. 

240,000 conversational exchanges; and (ii) oral 

arguments presented before the U.S. Supreme Court, 

containing 50,389 conversational exchanges among 

Justices and lawyers.  In order to carry out an 

evaluation which is domain independent and which 

can be generalized, function word classes are used 

rather than domain-specific substantive content. 

One initial hypothesis is that if person A 

communicates with person B and person B uses 

many articles, prepositions or personal pronouns, 

then person A will tend to increase his/her usage of 

these language constructs, even if person A does not 

consciously realize this. 

In the case of the Wikipedia, a user can be 

promoted to administrator status through a public 

election, usually after extensive historical 

contribution to the community. By studying the 

communications of editors over time, the authors 

study how linguistic coordination behaviour changes 

when a user becomes an administrator. 

In the case of the US Supreme Court, conversations 

are analyzed between judges and lawyers, taking into 

account gender and also whether it is perceived a 

priori that the judge will be favourable or not towards 

the lawyers case. This latter aspect is considered 

given that a judge often comes into a case with a 

general leaning toward one side or the other based on 

their judicial philosophy. The lawyers, through their 

preparation for the case will often be able to evaluate 

the leaning of the given judge. 

One of the key findings was that in terms of 

gender, female lawyers tend to coordinate more than 

male lawyers when talking to Judges, whereas Judges 

tend to coordinate more towards male lawyers than 

towards female lawyers. 

Finally, in the context of the Wikipedia, it was 

found that users coordinated more with a given user 

U after this user had been promoted to administrator 

status, than previously when user U was just a normal 

user.  

In [104], Ott et al. present a general framework for 

estimating the prevalence of deception in online 

review communities. The framework is based on the 

output of a noisy deception classifier, trained using a 

SVM. Using this framework, the authors conducted 

an empirical study of the prevalence of deception 

among positive reviews in six popular online review 

communities (Orbitz, Priceline, Expedia, Hotels.com, 

Yelp and TripAdvisor), identifying factors which 

influence deceptive opinion. 

A signal cost function was defined which employs 

an inference mechanism based on Bayes’ Theorem 

and signal theory. The signal cost of positive online 

reviews was defined as a function of the posting costs 

and exposure benefits of the review community in 

which it is posted.  Based on this theory, the authors 

defined two hypotheses, which were supported by the 

empirical results: 

(i) Review communities with low signal costs (that 

is, low posting requirements and high exposure), such 

as TripAdvisor and Yelp, will have more deception 

than communities with high signal costs, such as 

Orbitz. 

(ii) Increasing the signal cost will decrease the 

prevalence of deception. For example, by excluding 

reviews written by novice reviewers, the prevalence 

and the growth rate of deception is reduced in the 

corresponding community. 

In [105], Ranu et al. consider the use of 

recommendations to boost content spread in social 



  

networks. The authors proposed that content sharing 

in social networks is an important mechanism for 

content propagation on the Internet. 

However, the degree to which content is 

distributed throughout the network depends on the 

relationships and connectivity between nodes. The 

authors stated that many current schemes for 

recommending connections are based on the number 

of common neighbours and the similarity of user 

profiles, but without taking into account the volume 

of relevant content found by a given user. 

Hence the authors proposed a novel algorithm for 

recommending connections that boosts content 

propagation in a social network while maintaining the 

relevance of the recommendations. A novel aspect of 

their approach is a search based on edges instead of 

nodes, with a bound on the number of incident edges 

per node. 

The model is called RMPP (Restricted Maximum 

Probability Path), and was benchmarked against four 

existing methods: ‘greedy’, ‘continuous greedy’, 

‘degree based selection’ and ‘friend of friend’. 

The following is a brief summary of each of these 

methods. In the case of the ‘greedy’ method, edges 

with the largest lift in the current set of edges in the 

graph, are added one at a time; in ‘continuous greedy’ 

(CG), edges are added to the original graph by 

considering δ intervals of width 1/δ, and in each 

iteration incrementing yi values of edges ei in a 

feasible edge set Y with the maximum sum of 

gradients  
 F

 yi
ei  Y

.This is followed by randomized 

rounding; ‘degree based selection’ is based on adding 

edges between high degree node pairs, in which one 

of the members of the pairs possesses a given content 

c; finally, in ‘friend of friend’ based selection, node 

pairs are ranked by the number of common 

neighbours, then edges are added between 

unconnected node pairs ordered by the ranking. 

Returning to the authors RMPP model, the 

‘content maximization problem’ was defined as 

follows: given a graph G = (V, E) and a constant k, 

find an edge set X ⊆ {(i, j) : i, j   V } such that: (i) at 

most k edges from X are incident on any node in V, 

(ii) for each (i, j)   X , i   Nj and j   Ni and (iii) f(X) 

is maximum. 

In order to evaluate the performance of the method 

with respect to the different edge selection methods, a 

lift metric was define as: 

 

Lift X   
f E X   f(E)

f(E)
 100 
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where E is the set of edges in the original graph G, 

f(.) is a content spread function and X is the set of 

recommendations computed by a given edge 

selection method. 

For empirical testing, four OSNs datasets were 

used: Wikipedia, Flickr, Epinions, and Twitter. The 

authors stated that these datasets were chosen 

because they capture a variety of different social 

relations, such as trust, follower-following and 

friendship. 

Summary of research in influence and 

recommendation: we recall that in the base research 

of Section 2.4.8, the focus was on the overall 

structure of Internet pages and emails, based on graph 

topological characteristics[83][84[24]. On the other 

hand, the hot topics have involved specific case 

studies which also take into account sociological and 

psychological aspects of how and why users interact, 

for example, in the domains of US Supreme court 

decisions and Wikipedia editors[103]. Another 

psychological aspect, that of deception, is considered 

in [104], in which Bayes Theorem and signal theory 

are employed to measure this factor in a reviewing 

community 

Recommendation is of course a key aspect of 

facilitating the spread of content [105] through a 

social network, while maintaining the relevance of 

the content for the receiving users. This topic is also 

related to the Information Diffusion hot topic which 

we cover separately in Section 3.5. 

3.3. Models, metrics and dynamics 

Within this theme, some of the current key areas of 

interest are the use of geographical information, how 

networks form, and how to efficiently process large 

datasets. Some of the applications which are currently 

most popular for analysis are YouTube, LiveJournal 

and especially Twitter.  

We briefly describe the following research: a 

model for OSNs based on the notion of embedding 

the nodes in a geometric space, using a link 

probability based on a ranking of the nodes[106]; a 

graph analysis based approach and metrics to study 

social networks taking into account geographic 

information[107]; a node distance estimation 



   

mechanism which maps nodes in high dimensional 

graphs to positions in low-dimension Euclidean 

coordinate spaces[108]; the analysis of a Twitter data 

log in order to study the effect of restrictions on the 

number of connections in OSNs[109]; the emergence 

of social conventions (‘retweet’ and ‘via’) in OSNs 

(Twitter)[110]; a study of the YouTube social 

network[111]; a study of the strategy behind how 

credit networks form[112]; a solution for predicting 

missing links for a social network in Social Media by 

using user activity data[113]; and the clustering of 

keywords in Tweets[114]. 

In [106], Bonato et al. present a model for OSNs 

based on the notion of embedding the nodes in a 

geometric space, and a link probability based on a 

ranking of the nodes. OSN users were defined as 

points in an m-dimensional Euclidean space. Each 

node has a region of influence, and nodes may be 

joined with a certain probability if they become 

positioned within each others region of influence. 

The nodes were ranked by their popularity from 1 to 

n, where 1 is the highest ranked node and n the 

number of nodes. Nodes that are ranked higher have 

larger regions of influence, and so are more likely to 

acquire links over time. Only undirected graphs were 

considered. The number of nodes n was fixed but the 

population was defined as dynamic: at each time-

step, a node is created and one is removed. 

Scellato et al., in [107], present a graph analysis 

based approach to study social networks with 

geographic information. They define some novel 

metrics to characterize how geographic distance 

affects social structure. The authors analyze four 

large-scale OSN datasets (BrightKite, FourSquare, 

LiveJournal and Twitter) and their results show that a 

significant percentage  of users have short-distance 

links and that clusters of friends are often 

geographically close. The results show that location-

based OSNs such as FourSquare and BrightKite tend 

to have more geographically confined triangles than 

social networks more focused on content production 

and sharing such as LiveJournal and Twitter. They 

propose some new metrics, “node locality” and 

“geographic clustering coefficient” which incorporate 

the geographic positioning and distances of the 

nodes. 

Zhao and Zheng, in [108], propose a novel node 

distance estimation mechanism that effectively maps 

nodes in high dimensional graphs to positions in low-

dimension Euclidean coordinate spaces. This allows 

the node distance computation to be performed in 

constant time. The work is motivated by the need to 

reduce the computational cost for shortest path 

calculations in large graphs. 

Ghosh et al., in [109], study the effect of 

restrictions on the number of connections in OSNs by 

analyzing a Twitter data log. They use a network 

growth model based on preferential attachment in 

order to assess the effects of different types of 

restrictions on OSNs, which also supports the design 

of new restrictions of varying rigidity. 

Kooti et al., in [110], study the emergence of the 

social conventions ‘retweet’ and ‘via’ in the Twitter 

OSN. Their key findings were: (i) retweeting 

conventions arise ‘organically’, as a consequence of 

the perceived need to forward other people’s tweets 

efficiently in Twitter; (ii) early adopters of the 

retweeting conventions were more active and well-

connected than the remaining adopters or typical 

users; (iii) the majority of early and later adopters had 

a Twitter colleague who adopted the same convention 

prior to them, thus demonstrating that conventions 

mainly spread via internal social links in Twitter; (iv) 

the conventions spread through a dense network, thus 

avoiding “bottleneck” users. 

In [111], Wattenhofer et al. study the YouTube 

social network, and find it to have distinct network 

characteristics with respect to traditional online social 

networks. Some examples of these distinct 

characteristics are homophily, reciprocative linking, 

and assortativity. However, Youtube was found to 

have similar characteristics to Twitter, the latter being 

another example of a content-driven online social 

network. By studying the social and content aspects 

of user popularity, they found a strong correlation 

between a user’s social popularity and his/her most 

popular content. 

The strategy behind how credit networks form is 

considered by Dandekar et al. in [112]. The authors 

starting point was the modelling of abstract credit 

networks in order to capture the dynamics of trust 

and obligations among agents over a series of 

transactions. The key characteristics of a distributed 

credit model were cited as being: robustness to 

intrusion, bounded risk, and a wide distribution of 

transaction pairings including sparse direct credit 

relationships.  

Dandekar et al. considered the question of how 

this type of networks come into being from the 

decisions of autonomous self-interested agents to 



  

grant credit to others, and where agents in the 

network transact only with other agents that they 

directly trust. Under this restriction the authors 

demonstrate that when the ‘Nash equilibrium’ is true, 

agents allocate credit budgets in a socially optimal 

manner. Another model is also considered, in which 

agents have common beliefs about the default risk of 

others. In this model it is found that in equilibrium, 

all parties tend to issue credit to the same agents. 

Formally, a simple undirected graph G(V;E) is 

defined as representing the underlying graph, in 

which V contains n nodes (agents), and E contains m 

edges (relationships between agents). Each node is 

constrained to extend credit only to nodes it trusts, 

which are considered as being its neighbours in G, 

and in this way the total utility is maximized. 

Activity in the network (giving credit to 

neighbouring nodes) converts G into a directed graph, 

G = (V;E), in which nodes are entities or agents and 

edges represent pair-wise credit limits between 

agents. An edge(u, v)  E has capacity cuv> 0, which 

implies that u has extended a credit line of cuv units to 

v in v’s currency. If a node y needs to pay p units in 

its currency to node z (for example, to buy a good 

that z is selling), the payment can go through if the 

maximum credit flow from z to y is at least p units. 

The payment will get routed through a chain of nodes 

from y to z, where each link on the chain carries at 

least the requisite credit capacity. If an edge (u, v) 

routes p units of payment from u to v, the credit 

capacity cuv increases by p while cvu decreases by p. 

Dandekar et al. conducted a series of empirical 

game experiments in order to evaluate the behaviour 

of network formation. The first game experiment 

included the following eight possible strategies: (i) a 

‘zero strategy’ in which an agent does not necessary 

have to extend any credit, but may participate in the 

credit network as long as other agents extend credit to 

it; (ii) a ‘random link strategy’ in which agents 

extend c = 5 units of credit to each of the other agents 

with probability ¼; (iii) a ‘low default strategy’ in 

which an agent extends 5 units of credit to other 

agents whose probability of defaulting is below a 

given threshold; (iv) a ‘high transaction probability’ 

strategy in which an agent extends 5 units of credit to 

other agents with whom the creditor has a high 

probability of transacting as a buyer; (v) a ‘high 

expected value’ strategy in which an agent extends 5 

units of credit to the agents from whom the creditor 

expects to gain the most value; (vi) a ‘high transact 

and low default’ strategy which commences by 

eliminating all agents with a very high probability of 

defaulting and then issues 5 units of credit to the 

remaining agents with whom the creditor is most 

likely to transact; (vii) a ‘high expected value and 

low default’ strategy which eliminates the same high-

default-risk agents from consideration, but then uses 

the ‘high expected value’ method to select which of 

the remaining  agents to issue 5 units of credit; (viii) 

the ‘high expected value or low default strategy, 

which offers 5 units of credit to agents with 

especially low default probability and also to agents 

with especially high expected net transaction value. 

To summarize the work of Dandekar et al., from 

the empirical experiments, it was found that players 

consistently chose the Low Default strategy in 

equilibrium. This resulted in a centralized credit 

network structure in which a few highly connected 

agents facilitate trade among the rest, in a similar 

manner to a central currency model. It was found that 

the central agents attracted credit allocations for two 

reasons: (i) they had relatively low default risk and 

(ii) as a consequence that they were receiving credit 

from many others in the network, this converted them 

into hub nodes with high connectivity to many other 

nodes in the network. 

In [113], Kamei et al. propose a solution for 

predicting missing links for a social media network 

by using user activity data. The solution was based 

on a probabilistic model with latent features (traits) 

for simultaneously generating links and activities in 

the set of nodes. It employed an efficient method for 

learning the model from the observed links and 

activities. In order to estimate the total number of 

latent features and the probability distribution of 

them for each node from the observed data, a 

hierarchical Dirichlet process (HDP) was 

incorporated into the model. The learned model was 

then used to predict missing links in a social network. 

The experimental results used synthetic data and a 

Japanese word-of-mouth communication website for 

cosmetics (@cosme). The authors showed that the 

proposed learning method could accurately estimate 

the link creation probabilities when there was 

sufficient training data. 

Miyamoto et al., in [114], consider the clustering 

of keywords in Tweets. A series of tweets was 

handled as a sequence of words and an inner product 

space was introduced to a set of keywords on the 

basis of positive definite kernels using a fuzzy 



   

neighbourhood defined on a given sequence. Two 

clustering methods were tested: agglomerative 

hierarchical clustering and c-Means. Pair wise 

constraints were introduced to improve the 

interpretability of clusters. 

Summary of research in models, metrics & 

dynamics: in comparison with the base themes we 

saw in Sections 2.4.5 and 2.4.6, the most recent 

research is more domain specific and takes more into 

account the nature of the users as well as the 

topological graph characteristics and information 

propagation dynamics we saw previously in [58][59]. 

We see the incorporation of multimedia and geo-

location information [107] and the study of the 

evolution of specific domains such as credit 

networks[112], also related to themes such as trust 

between users, which we considered in Section 3.2. 

Another research area is how to map a higher 

dimension space to a lower one[108], which is related 

to the theme of how to process large datasets (‘big 

data’) which we looked at in the base Section 2.4.7. 

Finally, we observe that Twitter is currently one of 

the most popular applications among 

researchers[109][110][114] for analysis purposes, 

partially due to the availability of datasets, APIs for 

extracting the data and ‘off the shelf’ analytical tools 

specifically for Twitter. 

3.4. Behaviour and relationships 

Three current aspects of interest of the theme of 

behaviour and relationships are ‘location based 

analysis', identifying relations from how users 

interact, and how to form optimum teams from the 

human resources who are users of an OSN. Hence, in 

this subsection we briefly describe the following 

research: the analysis of historical data from location-

based social networks (LSBNs)[115]; the prediction 

of relationships from social behaviour data[116]; and 

online team formation in social networks[117]. 

The analysis of historical data from location-based 

social networks (LSBNs) is considered in [115] by 

Gao et al.. LBSNs provide location related services 

that allow users to “check-in” at geographical 

locations and share their experiences with their 

friends. The authors defined two behaviour models: 

(i) a historical model (HM) and (ii) a social-historical 

model (SHM). The results were contrasted with three 

baseline models: (a) Most Frequent Check-in model 

(MFC), (b) Most Frequent Time model (MFT), and 

(c) Order-k Markov Model. The MFC baseline model 

considers the power-law property in terms of the rich-

get-richer effect, the MFT model considers only the 

temporal pattern, whereas the Order-k Markov Model 

considers the short-term effect of historical check-ins. 

Adali et al., in [116], deal with the prediction of 

relationships from social behaviour data, using a set 

of behavioural features that capture the “function" of 

a specific relationship without the need for textual 

features. The behavioural features were based on the 

statistical properties of communication patterns 

between individuals such as reciprocity, assortativity, 

attention and latency. A new methodology was 

presented for determining how such features could be 

compared to textual features, and a Twitter dataset 

was processed to illustrate how these features could 

be used to accurately capture the contextual 

information which is present in textual features. 

In the context of Twitter, Adali et al. considered 

three principal actions: PAIR represents any 

exchange between the two individuals. It considers 

directed messages; CONV represents  

“conversations”, which are defined as sustained 

exchanges of directed messages between two 

individuals in a short amount of time; (iii) PROP 

considers “propagations", that is, messages of any 

kind from A to B which are later propagated by B to 

a third party. 

The following statistical behavioural features were 

defined. USER: user's network (USER-A, USER-B) 

measures social and behavioural features of the user 

which are not specific to a pair; A-ATTN: A's 

relative attention measures how much B is getting A's 

total attention; B-ATTN: B's relative attention 

measures how much of B's attention is given to 

messages from A; BAL: Balance measures the degree 

similarity of two users (assortativity); RECIP: 

Reciprocity measures to which extent a node 

reciprocates the actions of another; TIME: measures 

the actual time in hours it takes for a user to respond 

to another person; PRI: Priority measures to which 

degree a person prioritizes another person over all 

their acquaintances; DEL: Delay measures how much 

a user is typically delayed to get an answer or how 

many other messages are prioritized over a message 

from the given user. 

Anagnostopolous et al., in [117], consider the 

problem of online team formation in social networks. 

The authors proposed solving this problem by 

formulating an algorithm that assembles teams of 
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experts to deal with tasks. This is done in such as 

way so that the coordination costs are bounded and 

the workload is fairly allocated. In order to 

conceptualize the scenario, the authors formalize 

what they call a ‘balanced social task assignment’ 

problem and conduct empirical tests on two real-

world datasets, IMDC and Bibsonomy. They claim 

that, compared with solutions that do not take into 

account user workloads, their algorithms achieve a 

significant decrease in the imbalance of the workload 

(60%–70%) while incurring only a small increase of 

the coordination overhead (5%–10%). 

The algorithm works as follows: upon arrival of a 

new task J, a team is formed for task J by solving an 

instance of the ‘social task assignment problem’. The 

‘social task assignment sub-problem’ for task J 

consists in selecting the team Q that minimizes a 

specific cost allocation function a(Q) subject to a 

constraint on the coordination cost c(Q). The social 

task assignment problem for task J is defined as 

follows: 
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Anagnostopolous et al. consider two models for 

online team formation. In the first model, 

denominated “Implicitly Connected  eams (IC )”, 

each team Q is not required to form a connected 

graph. It is only necessary that the communication 

paths between people in the team are through other 

members of the social network (not necessarily 

present in Q). The model is considered realistic if the 

existence of a short chain of acquaintances is 

sufficient to declare people as “compatible.” 

The second model, called “Explicitly Connected 

Teams (ECT)”, requires that each team Q forms a 

connected graph using the set of edges T ={ (p
i
, p

j
 ) : 

p
i
, p

j 
 Q}, and the distances computed in sub-graph 

(Q, T ) are designated by d. 

In computational terms, the ICT model computes 

the coordination cost over the whole social network, 

whereas the ECT model only computes the 

coordination cost over the sub-graph induced by the 

team. 

Two measures, designated Steiner(Q) and 

Diam(Q), were considered for the coordination cost 

of a given team Q. 

1. Steiner(Q) is the cost of the min cost Steiner 

tree T whose terminal nodes are the team members. 

2. Diam(Q) = maxpi,pi’Q d
j
(i, i’) for which the 

objective is to find a team of users Q with diameter at 

most B which minimizes a(Q). In contrast to 

‘Steiner’, ‘Diam’ does not build a new problem 

instance to combine the load with the social cost 

function - instead it solves the problem directly. 

The empirical tests were performed on datasets 

extracted from the IMDB (Internet Movies) and 

Bibsionomy databases. A brief describe of how they 

are interpreted in the context of the paper follows. 

In the case of IMDB, two types of movie 

personnel (experts) were defined as directors and 

actors, and the movie genres were used as the skills. 

For example, Alfred Hitchcock {director} has the 

skills of {comedy, crime, film-noir, mystery, 

romance, thriller}. 

The Bibsonomy dataset, on the other hand, 

represents a social-bookmarking and publication-

sharing system, and contains a large number of 

computer science related publications, each of which 

is written by a set of authors. The Bibsonomy website 

is visited by a large community of users who annotate 

the publications using tags, such as ‘theory’, 

‘software’, or ‘ontology’. The set of tags associated 

with the papers of an author are used to represent the 

skill set for the corresponding author. 

The empirical results presented by 

Anagnostopolous et al. plot the Steiner cost against 

max. load and average team size for the IMDB and 

Bibsonomy datasets, and the Diam cost Vs max. load. 

Summary of research in behaviour and 

relationships: this theme is related to base Sections 

2.4.6 (Modelling, evolution and structure), 2.4.8 

(Influence and Recommendation) and hot topic 3.2 

(Influence and Recommendation). We have seen in 

this Section that geographical location data is now ‘in 

vogue’ [115] given that this type of data has recently 

become available from smart phone applications. 

Where users visit and in what sequence can be 

represented by Markov type models[115]. 

Also, new types of interactions between 

individuals are considered [116], such as reciprocity, 

attention and latency for Twitter data. Finally, team 

formation is considered [117] for social tasks where 

the teams may be implicitly or explicitly connected. 
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Fig. 7. Information Diffusion: (a) Spammer (A) has many outgoing links but very few incoming, whereas true hubs (B and C) 

have many outgoing and incoming links and intercommunicate between each other; (b) word of mouth viral communication 

may propagate via many low degree interlinked nodes. 

3.5. Information diffusion 

Information diffusion is a key aspect of interest for 

those who for commercial reasons wish to get the 

right publicity to the right people. Also it is of 

interest to analysts who want to track what is being 

transmitted through a given network and by whom.  

We could say that on the one hand we have the 

‘legitimate’ diffusion of information (solicited, such 

as news bulletins to which a user subscribes or 

relevant targeted commercial information) and on the 

other hand we have the ‘undesirable’ diffusion of 

information (unsolicited, such as SPAM, or ad-hoc 

badly targeted commercial information, criminal 

activity and under false pretences). Another focus of 

research is how users propagate information from one 

to another (analogous to ‘word of mouth’) and a 

promising way of analyzing this is based on ‘memes’. 

In Fig. 7a we see how a high volume spammer can 

be easily identified in a network. One the other hand, 

Fig. 7b depicts how viral marketing uses bona fide 

users to spread a message by ‘word of mouth’. In a 

recent MIT study [118], advertisers are recommended 

to be social rather than commercial in their marketing 

messages. For example, advertising programs should 

use phrases such as ‘be like your friend’, ‘your friend 

knows this is a good cause’, ‘learn from your friend’ 

and ‘don’t be left out’, in order to provoke ‘viral’ 

propagation through the network. 

In order to illustrate some of these themes, we 

briefly describe the following research: a model for 

representing information in OSNs[119]; the analysis 

of spammers’ social networks in order to identify 

criminal individuals and groups[120]; the role of 

social networks in information diffusion[121]; 

detecting ‘Internet buzzes’ or ‘amplification 

phenomena’[122]; contextual entity tracking using 

'memes'[123], and its application to micro-blogging 

platforms such as Twitter[124]; finally, the 

categorization of Tweets in a  large Twitter 

dataset[125]. 

A model for representing information in OSNs, 

which assigns two parameters to each information 

item, called endogeneity and exogeneity, is presented 

by Agrawal et al., in [119]. The endogeneity of an 

item quantifies its tendency to spread primarily 

through the connections between nodes. On the other 

hand, the exogeneity quantifies its tendency to be 

acquired by the nodes, independently of the 



  

underlying network. The authors extend the item-

based model to take into account the openness of 

each node to new information. ‘openness’ is 

quantified by introducing the receptivity of a node as 

an additional parameter in the model. Given a social 

network and data related to the ordering of the 

adoption of information items by nodes, a maximum-

likelihood based method is defined for estimating the 

endogeneity, exogeneity and receptivity parameters. 

Yang et al., in [120], consider the analysis of 

spammers’ social networks in order to identify 

criminal individuals and groups. By analyzing inner 

social relationships in a criminal account community 

they find that criminal accounts tend to be socially 

connected, forming a small-world network. Also, 

criminal hubs, located in the centre of the social 

graph, are more inclined to follow criminal accounts. 

By analyzing outer social relationships between 

criminal accounts and their social friends outside the 

criminal account community, three categories of 

accounts are revealed which have close friendships 

with criminal accounts. From this a criminal account 

inference algorithm is defined by exploiting criminal 

accounts’ social relationships and semantic co-

ordinations. 

The “Mr.SPA” algorithm (Malicious Relevance 

Score Propagation Algorithm) propagates an MR 

score Mi to each node Vi after the initialization phase, 

using the following three score-assigning policies: 

Policy 1: MR Score Aggregation. An account’s score 

should sum up all the scores inherited from the 

accounts it follows. Policy 2: MR Score Dampening. 

The amount of MR score that an account inherits 

from other accounts should be multiplied by a 

dampening factor of α according to their social 

distances, where 0 < α < 1. Policy 3: MR Score 

Splitting. The amount of MR score that an account 

inherits from the accounts it follows should be 

multiplied by a relationship-closeness factor Wij, 

which is the weight of the edge in the malicious 

relevance graph. 

A second algorithm, called CIA, is designed to 

infer more criminal accounts based on a small known 

seed set, by analyzing the social relationships and 

semantic co-ordinations among accounts. 

Bakshy et al., in [121], consider the role of social 

networks in information diffusion, conducting a large 

scale field experiment using 250 million Facebook 

users. The experiment randomizes exposure to 

signals about friend’s information sharing. A first 

finding is that those who are exposed are 

significantly more likely to spread information, and 

do so sooner than those who are not exposed.  

A second finding is with respect to the role of strong 

and weak ties in information propagation. The 

authors confirm that stronger ties are individually 

more influential. However they find that is the weak 

ties, which are much more frequent, which account 

for the propagation of novel information. The users 

were demographically identified by gender, age and 

country. 

The specific data analysis technique used was 

“temporal clustering”, which was used to identify the 

degree of proximity of the actions of the users. 

Tie strength was measured in terms of four types 

of interactions: (i) frequency of private online 

communication between the two users in the form of 

Facebook messages; (ii) frequency of public online 

interaction in the form of comments left by one user 

on another user's posts; (iii) number of real-world 

coincidences captured on Facebook in terms of both 

users being labelled as appearing in the same 

photograph; and (iv) number of online coincidences 

in terms of both users responding to the same 

Facebook post with a comment. These four types of 

interactions are summarized as: comments received, 

messages received, photo coincidences and thread 

coincidences. 

In [122], Lesot et al. address the task of detecting 

‘Internet buzzes’, which are defined as ‘amplification 

phenomena’, that is, the diffusion on a very large 

scale of an Internet content, massively taken up 

within a short period of time. The authors propose 

two approaches based on the citation graph that 

represents hyperlinks relations between websites. The 

first approach detects temporal abnormalities in the 

number of citations of an information source, 

identifying information sources that undergo a surge 

of their direct citations. The second approach exploits 

higher level cues, based on the definition of the 

‘dynamic cumulative visibility’ of an article, thus 

representing a ‘citation cascade’ which is 

characteristic of a ‘rumour’ type ‘buzz’. Both 

approaches are tested on real Web data (citation 

graph) and simulated data. 

A ‘buzz’ is characterized by two key aspects: 

‘intensity’ and ‘suddenness’. The citation graph is 

composed of nodes that correspond to Web pages 

representing information sources, and each source is 

composed of articles published by that source. 



   

The method proposed by Lesot et al. is related to 

the area of contextual entity tracking, and its 

application to micro-blogging platforms such as 

Twitter. An information unit can be precisely 

identified (called a ‘meme’ [123]) and ‘expressions’ 

are employed to propagate ideas. There has recently 

been an increase in interest [124] in the concept of 

‘memes’ and its use as a basis to analyze online 

social media interaction. A meme [123] is a concept 

which can be used to explain principles for the 

evolution and diffusion of ideas and cultural 

phenomena. Memes can be defined as recognisable 

cultural entities transmitted through imitation 

phenomena, via text, speech or gestures. It is said that 

the WWW has potentiated the creation and 

propagation of memes, in the form of textual word 

expressions, which has become an area of study with 

the objective of detecting and tracking ‘hot topics’. 

Twitter user and message logs are currently being 

analyzed by many authors as an OSN application 

However, Twitter messaging data tends to have a 

high volume, which includes noise and spam. Also, 

many Tweets are difficult to classify given the 

limited or abbreviated information which comprise 

the Tweets themselves.  Poschko, in [125] processes 

a large Twitter dataset and classifies Tweets into 

specific categories: geo-location (Europe, 

Scandinavia, ...), person (Obama, Gates, ...), 

organization (Google, Greenpeace, ...), event (Easter, 

election, ...) and category (photography, politics, ...). 

The Python programming language was used to 

extract the Tweets from the raw data, a dataset 

collected over a 2 year time span, consisting of 85000 

hash tags corresponding to 2.8million Tweets. Co-

occurrence analysis was performed on the hash tags, 

and a machine learning approach (maximum entropy 

classifier) was used to classify them. A two step 

classification was performed: in Step 1 tags are 

classified in terms of Tweets and in Step 2 the tag is 

classified as the average of all classifications in Step 

1.  

Summary of research in information diffusion: 

this theme is related to the base Section 2.4.8 

(Influence and Recommendation) and hot topic 

Section 3.2 (Influence and Recommendation). In the 

base Section 2.4.8, the focus was on the overall 

structure of Internet pages and emails, based on graph 

topological characteristics. Contrastingly, in the 

recent research we have seen in this Section, there 

appears to be a greater interest in the information 

theory properties of information items for 

propagation purposes. For example, properties such 

as ‘endogeneity’ and ‘exogeneity’ as defined in 

[119]. There is also an interest in how OSNs 

communities are related to information 

diffusion[121], viral type diffusion[122] and memes 

as transferable information units in [123][124]. 

4. Summary and concluding remarks 

The analysis of OSN data is still in its infancy. 

However, it has a solid basis and starting point in 

disciplines such as graph theory and social 

psychology. There are also strong motivations, such 

as how to efficiently propagate the right information 

to the right people, and the consolidation of the use of 

OSNs by a growing percentage of the population, all 

of which foresee that it will become a research area 

of increasing importance. 

On the one hand, algorithms such as VF2 for 

isomorphic matching and the Louvain method for 

community detection, make it possible to efficiently 

process the large data volumes which are found in the 

typical logs generated by OSN applications such as 

Twitter, Facebook, LinkedIn, Flickr, LiveJournal, 

Baidu, Epinions, BitTorrent and DLBP. 

On the other hand, the dynamicity of OSNs make 

it an exciting field to work in, identifying real trends 

in individual and collective user behaviour and 

interactions, and how the OSN networks evolve over 

time. 

The tendencies that we have identified from the 

research presented in the hot topic Sections include 

the analysis of specific user domains, and the study 

of socio-psychological aspects such as trust, deceit, 

hierarchies, and so on. Also the more topological and 

structural considerations of the graph have been 

superseded by the employment of information theory 

concepts to solve problems such as how to define and 

characterize information items in order to optimize 

their propagation. 

We note that those who work in the research 

departments of large Internet companies such as 

Facebook, Twitter, Yahoo, Google, Microsoft, and so 

on, will have an advantage over those whose 



  

university computers have more limited processing 

capacity and who have less access to real OSN data 

logs. This can be mitigated by the availability of ‘in 

the cloud’ processing such as that offered by BigML 

[126] and APIs which facilitate the ‘scraping’ of 

some OSN applications (Twitter, LinkedIn). 

We envisage that as OSNs become more and more 

a part of our everyday lives, they will capture more 

accurately the real interactions which are generated 

between groups of human beings and therefore will 

become a virtual mirror of reality which can be 

profitably analyzed.   

However, on the other hand we could say OSNs 

will always lack the complete picture of what users 

are doing, as there are many forms of interaction, 

technological and otherwise, which are missing from 

the log datasets. Cross application studies and the 

addition of external demographic and dynamic geo-

location data can help to mitigate this difficulty.  
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