
Source code documentation for: 

 

[1] Malvestio I, Kreuz T, Andrzejak RG:  
“Robustness and versatility of a nonlinear interdependence method for directional coupling 
detection from spike trains.” 
 Physical Review E, 96 (2017) 022203. 
 
Relevant literature: 
 

[2] Andrzejak RG, Kreuz T: “Characterizing unidirectional couplings between point processes and 

flows.” EPL, 96 (2011) 50012. 

 

[3] Satuvuori E, Mulansky M, Bozanic N, Malvestio I, Zeldenrust F, Lenk K, Kreuz T: "Measures of 

spike train synchrony for data with multiple time scales." Journal of Neuroscience Methods 287 

(2017): 25-38. 

 
 

[4] http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html. 

 

 

The source code allows you to calculate the measure L first introduced in [2] with the 
improvements introduced in [1]. Please cite Ref. [1] if you use this code.  
 

In order to understand the following documentation you should at first read Ref. [1]. In particular, 

we here use the same notation for mathematical symbols as in this paper. Additional comments 

can be found throughout the source code. In case you have any questions, please contact the 

authors at malvestio.irene@gmail.com. 

 

 
To get started, copy the folder cSPIKEmex and the files: MalvestioPRE2017Example.m, 
MalvestioPRE2017HpointProcess.m, MalvestioPRE2017FromHtoL.m, 

MalvestioPRE2017Example024.mat, InitializecSPIKE.m, SpikeTrainSet.m into 
some directory.  
 

 
To run the program, call the function MalvestioPRE2017Example(signal1, signal2, Q, 
s_div, N_wo, dchoice, k). 

If you do not insert any input parameters, then the simulated example stored in 
MalvestioPRE2017Example024.mat will be loaded (see below for more details). This file 
includes signal1 and signal2. Furthermore, the other input parameters will be set to default 
values.  
 

signal1:  Times of the spikes in the first signal, vector of dimension (1, N1), where N1 is the 
number of spikes in the first signal.  
signal2:  Analogous to signal1 but for the second spike train.  

mailto:malvestio.irene@gmail.com


Q:  total recording time in the same time unit as the spike times. 
s_div: Factor of overlap between windows ( s_div = q/s). 
N_wo: Number of windows without overlap (N_wo = Q/q). 
dchoice: Allows you to select the spike train distance  

1 : ISI-distance  
2 : SPIKE-distance 
3 : Adaptive ISI-distance 
4 : Adaptive SPIKE-distance 

  
k:  Number of nearest neighbors  
 

 
The example we provide in the file MalvestioPRE2017Example024.mat is derived from 
coupled Hindmarsh-Rose dynamics studied in Ref. [1] to illustrate the code.  It includes two 
example signals:  
 

signal1: A point process derived from dynamics X. 

signal2: A point process derived from dynamics Y. 

 

The dynamics X is driving dynamics Y with coupling strength epsilon = 0.24. 

 

 

The matrix of the ranks, derived from the distance matrix, is calculated using:  

 
function  

HP = MalvestioPRE2017Hpointprocess(spiketimes,Q,q,s,W,W_ex,dchoice) 

 

Here spiketimes is a vector containing the times of the spikes. The length of the vector is 
determined by the number of spikes. The other parameters are automatically derived from the 
ones described above in the function MalvestioPRE2017Example.  
 

In Ref. [1] the performance of the adaptive ISI- and the adaptive SPIKE-distance are compared (so 

dchoice = 3 and dchoice = 4). In this release of the source code also the original versions of 

the ISI- and the SPIKE-distance are implemented. 

In contrast, the Victor-Purpura distance and the van Rossum distance are not included here. If you 

are interested in the code, they are available here: 

http://www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html.  

 

The output HP is a matrix of dimension (N_w, N_w) with elements HP(i,j) = g_{i,j} as introduced in 

Ref. [1] just before Eq. 1.  

Compared to previous versions of this code (see source code documentation for [2]), this function  
gives as output the rank derived from the distance matrix (g_{i,j}), instead of the distance matrix 
(d_{i,j}). This choice makes the code considerably faster.  
 

http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html


The folder cSPIKEmex, and the files SpikeTrainSet.m and InitializecSPIKE.m are needed 

to calculate  the distance matrix with the recently introduced implementation of the adaptive 

versions introduced in [3].  It uses MEX files with C++ backend in order to increase the speed. For a 

detailed description please refer to [4].   

 

 

The main function is: 

 
function [Lj, L] = MalvestioPRE2017FromHtoL(Hranks,k,W) 

 

Hranks is a 3-D array of size (N_w, N_w, N_node). N_node  is the number of signals for 
which L is computed. In the case of the paper  N_node = 2. 
For each signal w = 1: N_node, Hranks(i, j, w) is g_{i,j} for the signal w. The individual 
rank matrix for each signal can be obtained with the function 
MalvestioPRE2017Hpointprocess described above. 
 
L is a 2-D array of size (N_node, N_node). For example, L(1,2) contains L(signal1| signal2) = 
L(spike train from the driving dynamics X| spike train from the response dynamics Y).  The 
diagonal is set to zero. For the present example, since X is driving Y, we get a higher value for 
L(1|2) than for L(2|1). 
 
Lj is a 3-D array of size (N_node, N_node, N_w). It corresponds to the values of L for separate 
individual windows, before the final average is taken. In the paper these values are not used, but 
we provide them here because they can be useful for checking the meaningfulness of L in different 
settings.   
 

 

 


