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ABSTRACT

This paper focuses on Cover Song Identification (CSI),
an important research challenge in content-based Music
Information Retrieval (MIR). Although the task itself is
interesting and challenging for both academia and indus-
try scenarios, there are a number of limitations for the
advancement of current approaches. We specifically ad-
dress two of them in the present study. First, the num-
ber of publicly available datasets for this task is limited,
and there is no publicly available benchmark set that is
widely used among researchers for comparative algorithm
evaluation. Second, most of the algorithms are not pub-
licly shared and reproducible, limiting the comparison of
approaches. To overcome these limitations we propose
Da-TACOS, a DaTAset for COver Song Identification and
Understanding, and two frameworks for feature extraction
and benchmarking to facilitate reproducibility. Da-TACOS
contains 25K songs represented by unique editorial meta-
data plus 9 low- and mid-level features pre-computed with
open source libraries, and is divided into two subsets. The
Cover Analysis subset contains audio features (e.g. key,
tempo) that can serve to study how musical characteris-
tics vary for cover songs. The Benchmark subset contains
the set of features that have been frequently used in CSI re-
search, e.g. chroma, MFCC, beat onsets etc. Moreover, we
provide initial benchmarking results of a selected number
of state-of-the-art CSI algorithms using our dataset, and
for reproducibility, we share a GitHub repository contain-
ing the feature extraction and benchmarking frameworks.

1. INTRODUCTION

Cover songs play an important role in the history of
recorded music. Weinstein [42] argues that cover songs
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are peculiar to rock music, and some iconic early rock
bands, like The Beatles, The Rolling Stones and Led Zep-
pelin, recorded cover songs at the beginning of their ca-
reers. Artists from other genres eventually followed this
trend of reinterpreting recorded musical works. More re-
cently, audio and video online streaming platforms have
given rise to a great volume of fan versions of numerous
original songs, including so-called “Youtube covers”. Cat-
aloguing and tracking cover versions of songs are impor-
tant both from a historical and a legal standpoint, since
there is sometimes a fine line between creative license and
plagiarism [22]. However, this task often requires automa-
tion via content-based MIR strategies due to the explosion
of recordings across many repositories.

Automatic Cover Song Identification (CSI) systems
must contend with the myriad changes of musical facets
that can occur among versions. While cover songs may
share some musical characteristics, such as melody, har-
mony or chord progression, they are not identical musical
works. According to Serrà [28], one can categorize mu-
sical transformations between cover versions into 8 main
groups: timbre (due to production techniques and/or due
to instrumentation), tempo, timing, structure, key, har-
monization, lyrics and noise. Given this, the vast ma-
jority of CSI systems focus solely on the tonal content
[3, 8, 31, 33, 35], a characteristic thought to be least altered
between a song and its cover versions. Such systems work
on top of features which are invariant to these transforma-
tions, incorporating techniques such as beat-synchronous
features [12] to control for changes in tempo, or Optimal
Transposition Index (OTI) [29] to control for changes in
key.

In spite of Serrà’s taxonomy and intuition about what
makes a cover, to our knowledge, there are no large-scale
studies quantifying the extent to which the aforementioned
musical attributes change among cover versions. Further-
more, a variety of CSI algorithms have been designed un-
der different assumptions about what makes a cover, each
with different goals and trade-offs in mind, but the com-
munity lacks a large-scale open source dataset to compare
their performance; the largest benchmark set to date is the
SecondHandSongs dataset (SHS), a subset of the Million
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Song Dataset [4], with 18,196 songs but this contains pro-
prietary features. Motivated by both of these problems,
we propose a new dataset, which we call “Da-TACOS”; a
DaTAset for COver Song Identification and Understand-
ing (Section 3). This dataset consists of 25,000 songs
with a variety of audio descriptors, including low level
features such as frame level HPCPs/MFCCs, beat onsets,
and higher level information such as key, tempo, and audio
tags. We then split our collection of songs into two subsets.
The Cover Analysis subset is used to quantify what makes
a cover by looking at changes in key, local onset deviation,
tempo, rhythm, and audio tag descriptions (Section 4). In
our analyses, we also introduce some tools not previously
seen in the MIR community, such as ShapeDNA [25] and
topological time series analysis [26]. The Benchmark sub-
set is used for detailed benchmarking of a set of represen-
tative CSI algorithms selected across years of work on this
topic (Section 5). After we set the stage with our prelim-
inary experiments, we expect this dataset will enable re-
searchers to continue to explore both the what is a cover
question and benchmarking in more detail.

2. RELATED WORK

Most CSI systems have 3 main building blocks [23]: fea-
ture extraction, feature post-processing, and similarity es-
timation. An extensive review of the traditional cover song
identification systems can be found in Serrà et al. [30]. In
this section, we present a brief overview of these building
blocks, the datasets for this task, and the observed limita-
tions of current approaches.

Traditional CSI systems begin with low level feature
extraction from the audio. The most common audio de-
scriptors used in those systems are Pitch Class Profiles
(PCP), or Chroma features, which represent the tonal con-
tent of songs via the octave-folded energies for each of
the 12 pitch classes used in Western music theory. The
task at hand informs which strategy is chosen, and to im-
prove robustness, different variants of Chroma features
[31,34] were used in the CSI literature for this task. More-
over, many audio descriptors such as pitch salience [27],
chord profiles [16], self-similarity MFCC [39], cognition-
inspired descriptors [2] were also utilized; however, they
suffer from lower performance scores in isolation com-
pared to PCPs.

After the feature extraction, several feature post-
processing steps can be applied to achieve invariances in
several musical facets such as key, tempo and structure.
Key invariance can be obtained using OTI [29] or the 2D
Fourier Transform Magnitude (2DFTM) coefficients of the
tonal features [14]. Beat-synchronous features are used to
achieve tempo invariances [12, 38]. Similarity Matrix Pro-
file (SiMPle) [35], which is a “representation of the simi-
larity join between subsequences”, can be useful to control
for structural invariance or to obtain audio thumbnails of
songs which can be later used to estimate the similarity of
two songs [34].

The final step of this general CSI system framework is
the similarity estimation. For certain representations, e.g.

2DFTM, this step may consist of only a simple distance
function such as Euclidean or Cosine distances. However,
for more accurate smaller scale algorithms, a quadratic
alignment algorithm is often used to obtain tempo or struc-
tural invariance. Since global alignments between versions
don’t often exist in practice, CSI researchers put more em-
phasis on the Local Alignment methods such as Smith-
Waterman algorithm [36] that is designed to detect align-
ments among all possible subsequences by incorporating
local constraints. Depending on these constraints, many
versions of this algorithm were proposed, e.g. Qmax [31]
and Dmax [8]. The longest alignment is taken as the cover
similarity measure/distance generally after normalizing it
to the length of the reference track.

A number of previous works also explored combining
different features and similarity measures to improve their
systems. Salamon et al. [27] combine the distance values
obtained with Qmax for melody, accompaniment and bass
line. Chen et al. [8] use a technique called Similarity Net-
work Fusion (SNF) [41] to integrate the similarity matrices
obtained with Qmax and Dmax for the final similarity esti-
mation. Tralie [38] uses SNF to combine cross-similarity
matrices obtained with using HPCP and MFCC features to
get a final similarity score.

Over the years, new methods were proposed by the MIR
community to solve specific problems of the CSI task;
however, due to the O(N2) complexity of local alignment
algorithms, some have focused on alternative algorithms
that scale better. With the introduction of the SHS dataset
[4], techniques such as audio fingerprinting [3], database
pruning strategies [24] and multi-modal approaches [10]
were also explored in the literature. But the performance
scores of these scalable approaches obtained for SHS were
not satisfactory. Thus, a trade-off between efficiency and
robustness exists in the CSI task as well as in many other
MIR tasks, and the “Holy Grail” algorithm for CSI that is
both scalable and robust is still missing.

Although a large amount of previous works exist for
CSI task, there are only a few public datasets available for
benchmarking. Covers80, released by Ellis [13], contains
80 cliques, or cover groups, with 2 songs per clique. Al-
though small in terms of size, this dataset includes audio
files of the songs, which provides an opportunity for de-
veloping new features or fine-tuning the existing feature
extraction algorithms. The YoutubeCovers dataset [33]
contains 50 cliques with 7 songs per clique, and instead
of audio files, pre-computed Chroma, CENS and Chroma
DCT-Reduced log Pitch (CRP) features are included in this
dataset. SHS is a subset of Million Song Dataset, and it
contains pre-computed features extracted with EchoNest
API 1 for 12960 songs in 4128 cliques for the training sub-
set and 5236 songs in 726 cliques for the test subset [4].
Although comparatively larger in size, SHS comes with
features pre-computed with proprietary algorithms which
makes it impossible to reproduce or even use other audio
descriptors for the CSI task.

Based on the limitations of current CSI systems and dif-

1 http://the.echonest.com/
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ficulty in comparing them, we propose a new dataset, and
public frameworks for feature extraction and benchmark-
ing to give CSI research a uniform direction. Our contri-
butions can be summarized as follows:

• The largest benchmark set with 15,000 songs includ-
ing state-of-the-art audio features for CSI

• The Cover Analysis subset with 10,000 songs for
musicological studies

• First large-scale quantitative analysis on modified
musical characteristics

• Open Source frameworks for feature extraction and
benchmarking specifically created for the CSI task

• Open Source implementations of seven state-of-the-
art systems and their initial benchmarking results

3. DA-TACOS: DATASET FOR COVER SONG
IDENTIFICATION

For facilitating benchmarking and providing a set of anal-
yses regarding links among cover songs, here, we propose
a new dataset for CSI research. Da-TACOS, a DaTAset
for COver Song Identification and Understanding, contains
commercial or live recordings of 25,000 songs that are dis-
tributed into 2 subsets: the Cover Analysis subset and the
Benchmark subset with 10,000 and 15,000 songs, respec-
tively. The song annotations are collected from Second-
HandSongs.com 2 , and are licenced under Creative Com-
mons BY-NC 3.0 3 . Metadata for each song includes song
title, name of the performer, original song title, name of
the original writer and release year.

We have also matched the original metadata with Mu-
sicBrainz 4 [37] to obtain the MusicBrainz ID (MBID),
length and genre tags. Most songs belong to rock, pop,
metal and jazz genres. The average length of songs in the
dataset is 3.59 minutes.

Along with the metadata, we share low- and mid-level
features pre-computed with open source feature extraction
libraries from MIR community; a comprehensive list can
be found in Table 1. To increase the reliability of our re-
sults and assist future works, we share a common feature
extraction framework, with which we obtained the feature
values, in our GitHub repository.

In particular, Da-TACOS addresses two needs of the
current state of CSI research. First, in Section 2, we men-
tioned the difficulty of benchmarking CSI systems, and
with this dataset, we take a step toward tackling this chal-
lenge. We provide a large set of pre-computed features
that have been constantly used in CSI research, and we
provide initial benchmarking results of a selected number
of state-of-the-art CSI systems. Second, to our knowledge,
our benchmark subset is the largest dataset to date for com-
paring the performances of CSI systems. We see this as an
opportunity to scale up CSI research to discover methods
that are more likely to be used in real world scenarios. We

2 http://secondhandsongs.com
3 https://creativecommons.org/licenses/by-nc/3.0/
4 https://musicbrainz.org

Benchmark Cover Analysis
HPCP Essentia [7]
MFCC ""
Key ""
CENS Librosa [21]
Tempogram ""
Beat Onsets Madmom [5]
Tempo ""
CREMA CREMA [18]
Auto-tagger Choi et. al [9]

Table 1. List of features provided in each subsets of Da-
TACOS and the related feature extraction libraries used.

believe that having a large dataset for benchmarking will
have a positive effect on the direction of future research
for this task.

3.1 The Cover Analysis subset

Our first subset is dedicated to a series of analyses to un-
derstand the changes in musical characteristics when a new
version of a song is created. This subset includes 10,000
songs in 5,000 cliques, a pair of cover songs for each
clique. Out of all songs, we were able to match 6,821 songs
with a MBID. The information regarding feature extraction
and results of our analyses can be found in Section 4.

3.2 The Benchmark subset

The second subset of Da-TACOS is designed for bench-
marking purposes. This subset includes total of 15,000
songs: 13,000 songs in 1000 cliques with 13 songs each,
and 2,000 songs that do not belong to any clique, acting
as noise in the data. For this subset 10,027 songs have
MBIDs, and an initial benchmark of a selected set of CSI
systems can be found in Section 5.

4. WHAT IS A COVER?

In this section, we exploit the features to explore the fre-
quency and intensity of a subset of Serrà’s [28] posited
changes between cover versions. The analyses below are
performed on the Cover Analysis subset of Da-TACOS.
While key and tempo are straightforward to compare, we
devise custom distance measures to compare timing, struc-
ture, and semantic aspects, e.g. instrumentation, genre. In
these latter cases, we compare distributions of the corre-
sponding distances between true cover pairs in this subset
to all other non-cover pairs in the subset. To quantify the
extent to which the true cover and non-cover distributions
differ in these cases, we report the 2-sample Kolmogorov-
Smirinov (KS) score, with its associated p-value, which in-
dicates the statistical significance of the difference between
two distributions.

4.1 Results

4.1.1 Key

Using a key estimation algorithm [15], we considered all
pairs with both songs exceeding a confidence of 0.75,
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Figure 1. (Left) Distribution of halfsteps between key es-
timates for cover pairs with a reported key change. (Right)
Distribution of tempo ratios between cover pairs.

which was 4288/5000 pairs. Among these, 69.3%, were
reportedly in a different key. The distribution of said half-
step shifts is shown in Figure 1. Thus, the use of OTI in
many CSI algorithms is justified. One caveat is that the
key estimation algorithms report a single estimate which is
either major or minor. Under this scheme, the key estima-
tion algorithm reported that 17.5% of the pairs shifted from
major to minor. However, upon spot checking, it was clear
that many of these examples either switched keys at differ-
ent times, or they were in modes beyond major and minor.
In the absence of more sophisticated algorithms, expert ear
trained individuals would be needed to determine how of-
ten changes beyond simple transpositions occur.

4.1.2 Tempo

We now examine tempo ratios between cover pairs by
picking out the tempo with the maximum confidence from
a state-of-the-art tempo estimator [6]. The right of Fig-
ure 1 shows the results. There is a slight peak around 2
which is likely due to “octave errors” from pieces which
can be subdivided into 4/4. Beyond that, at the first quar-
tile is a 1.03x change in tempo, in the second quartile is a
1.11x change in tempo, and in the third quartile is a 1.53x
change in tempo. Thus, half of the songs are quite stable,
but in the 50-75% quartile, we have a fair number of songs
with a significant tempo change which can’t easily be ex-
plained by a direct tempo doubling mistake, and which are
likely “real.” Hence, tempo is often a factor which needs
to be controlled for when analyzing cover versions.

4.1.3 Structure

One particularly successful approach to multiscale music
structure analysis uses eigenvectors of the Graph Lapla-
cian, or “spectral clustering” [19]. While one can compare
agreement of this technique to that of human annotators
on the same piece of music [18], this representation does
not immediately extend across versions of songs. We in-
stead use the eigenvalues of the Graph Laplacian, which
we stack up into a Euclidean vector which can be compared
across songs. This has been referred to as “Shape DNA” in
the context of 3D shape analysis of triangle meshes [25].
In our case, we use feature fused SSMs [40] downsam-
pled to a common dimension of 256×256, followed by 30

eigenvalues of a random walk Laplacian.

Figure 2. An example of fused similarity matrices of
“The Wizard” by Uriah Heep (upper left), a cover by Blind
Guardian (lower left), and “Million Pieces” by The Piano
Tribute Players (upper right), which is unrelated. The cor-
responding Shape DNAs are shown in the lower right.

Figure 2 shows an example of Shape DNA between a
pair of covers and a third, unrelated song. Even though
the cover pairs’ similarity matrices do not align perfectly
and contain other variations, their shape DNAs are close,
while they are both different from an unrelated song with
a different structure. Figure 3 shows the distributions of
shape DNA differences between true cover and non-cover
pairs. The KS score between the two distributions is 0.22
(p � 0.001), indicating that while large structural changes
do occur between cover versions (e.g. added/deleted sec-
tions), it is overall more likely for cover songs to share
structure than random pairs of songs.

Figure 3. Distributions of shape DNA differences between
pairs of songs as a means of assessing structural changes.

4.1.4 Timing

We now turn to timing, which we define as local changes
in tempo over time. We first extract N beat onset estima-

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

330



Figure 4. An example of r[t] functions and their associ-
ated persistence diagrams for the song “24 Hours” by Joy
Division and Versus. Both songs speed up in the chorus
and slow down in the verse, so they each contain several
local mins with high persistence which are born during the
verses. They each also contain some low amplitude wob-
bling which shows up as dots near the diagonal.

tion times b[t], t = 1, 2, . . . N using the technique of Krebs
[17], down to a resolution of 10 milliseconds. We then
extract unit-less local tempo estimates by convolving b[t]

with a Gaussian derivative b′[t] = b[t] ∗ (−te−t
2/2), fol-

lowed by a sliding window average of width 20 to smooth
out noise. Finally, we divide b′[t] by its median to obtain
a relative, tempo-normalized local tempo deviation r[t];
r[t] > 1 if a song has sped up locally, and r[t] < 1 if it
has slowed down locally.

The left column of Figure 4 shows r[t] for two dif-
ferent versions of the same song. Note the multi-scale
features of r[t], from small wobbles in tempo to large
changes that persist over a section. To capture all scales
in one distance measure which can tolerate missing beats
and added/deleted sections, we turn to the “lower star fil-
tration,” a watershed method from topological data analy-
sis [11]. This summarizes a time series in a “persistence di-
agram” 5 (PD). This has been used, for instance, on speed
time series of drivers to quantify driving behavior [26].

The right column of Figure 4 shows PDs for the r[t]
functions for an example cover pair, with the birth and
death values of the points with 4 largest “persistence”
(death-birth) marked. To compare PDs between two differ-
ent songs, we use persistence images [1], which transform
a diagram into birth-persistence space and place a Gaus-
sian over each point, whose magnitude is proportional to
the persistence. Figure 5 shows the distributions of Eu-
clidean distances between peristence images for true cover

5 A multiset of points whose x-coordinates correspond to local mins
where pools of water form as water rises from bottom to top (“birth
events”), and and whose y-coordinates correspond to local maxes paired
to these mins where two pools merge together (“death events”)

Figure 5. Distribution of persistence image distances of
lower star filtrations relative tempo functions between pairs
of songs.

Figure 6. Distributions of f-measures for auto tagging for
true cover pairs and non-cover pairs.

pairs and non-cover pairs. Though the distributions are
quite similar, the KS score is 0.095 (p � 0.001), indicating
that though relative timing can be different (as evidenced
by Figure 4 where one song speeds up more in the chorus
relative to the other), the difference is less for covers than
for random pairs.

4.1.5 Semantic Aspects

To analyze semantic aspects of the songs such as mood,
instrumentation and “genre” without explicitly defining
them, we turn to auto tagging techniques of Choi et al. [9]
which use log-mel spectrograms as input to return a set of
tags which qualitatively describe the songs. Since the auto
tagger returns many tags with low confidence, we only take
tags which are in the 90th percentile over all confidences,
which is a confidence value of 0.062. If p is the fraction
of tags in song A contained in the set of tags for song B,
and r is the fraction of tags in song B contained in the tags
for song A, then the f-measure between two songs is de-
fined as 2pr/(p + r), which is 1 if they are in complete
agreement and 0 if they have nothing in common. Figure 6
shows the distribution of f-measures between true cover
and non-cover pairs. While the distributions are overall
quite similar, the f-measures are skewed slightly lower for
non covers. The KS score between the two distributions is
0.118 (p � 0.001), indicating these two distributions are
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different by more than chance; thus, we can conclude that
although less frequent than between two random songs,
stylistic changes occur between cover pairs.

5. BENCHMARKING

As mentioned in Section 3, Da-TACOS contains a bench-
mark subset of 15,000 songs for comparative algorithm
evaluation. In this section, we present the results on seven
different state-of-the-art algorithms on this data. To the
best of our knowledge, this is the first work comparing
these algorithms for CSI on a publicly available, large-
scale dataset with features obtained with open source al-
gorithms.

5.1 Methodology

One of the main limitations of current CSI research is the
lack of a public framework to compare the performance of
different systems. We acknowledge that the audio cover
song identification task in the Music Information Retrieval
Evaluation eXchange (MIREX) 6 addresses this. However,
MIREX data is not publicly available, and it restricts the
evaluation to a limited time window per year. According to
the results from previous MIREX, [32] is still an algorithm
which may be considered in the state-of-the-art CSI sys-
tem. We chose to benchmark six other unsupervised algo-
rithms which more recently presented good results on CSI
for comparison in this competition [8,14,31,35,38,39]. In
their original implementations, these algorithms differ with
the features used, a large scale or small scale design goal,
their ability to combine distance measures or fusing more
than one feature set [8, 38], exploitation of network struc-
ture of songs [8, 38], the application of beat-synchronous
features [14, 38, 39], or a combination of these properties.
In our work, we have the opportunity to control for imple-
mentation details that can greatly impact performance [20]
both by sharing features across all algorithms, and by using
common implementations of some sub-algorithms, includ-
ing OTI, Similarity Network Fusion (SNF) [41] (for [38]
and [8]), and QMax alignment [31].

5.2 Results

The empirical evaluation of CSI algorithms is another
point in which published papers differ greatly. Com-
monly, different authors use different subsets of evalua-
tion measures. For this reason, we used a large number
of evaluation measures assessing the results, namely Mean
Rank (MR), Mean Reciprocal Rank (MRR), Median Rank
(MDR), Mean Average Precision (MAP), and the counting
of correctly identified versions in top 1 and top 10.

In addition to using HPCPs as Chroma features for all
the algorithms, we also use CREMA chord model features
[18], sampled at the same rate, as a drop-in replacement
for Chroma on all algorithms.

Table 2 presents the results obtained by all the algo-
rithms considered in our evaluation, with a simplified ver-

6 https://www.music-ir.org/mirex/wiki

sion of Tralie’s early fusion [38] which uses a weighted
average in the early fusion stage instead of SNF for speed.

MR MRR MDR MAP Top 1 Top 10

FTM2D [14] H 207 0.314 15 0.126 3954 6131
C 155 0.523 1 0.275 7185 9072

Simple [35] H 358 0.362 13 0.165 4916 6361
C 142 0.555 1 0.332 7739 9391

Dmax [8] H 155 0.562 1 0.292 7939 9320
C 134 0.571 1 0.322 7981 9611

LateFusion [8] H 210 0.604 1 0.410 8761 9880
C 177 0.621 1 0.454 8897 10223

Qmax [31] H 119 0.606 1 0.333 8630 9931
C 113 0.611 1 0.365 8625 10212

Qmax* [32] C 104 0.619 1 0.373 8766 10246
SSM [39] M 434 0.273 39 0.096 3540 5139

EarlyFusion [38] H 116 0.680 1 0.426 9843 10861
C 120 0.672 1 0.416 9667 10829

Table 2. Performance statistics of all algorithms. H stands
for HPCP, C for CREMA and M for MFCC.

Overall, we find the CREMA improves results over
HPCP, which suggests an adoption of CREMA for future
research. We are particularly surprised at how well the
large-scale FTM2D algorithm performs with CREMA.

6. CONCLUSION

In this work, we have presented a new public dataset, Da-
TACOS, for analyzing how a number of musical facets
vary among cover songs and benchmarking CSI systems.
Our “what is a cover” analysis takes Serrà’s [28] categories
of modifiable musical characteristics as a basis, and the
results demonstrate large variations between cover pairs
across all of the aspects we examined, which supports
Serrà’s claims on the subject. However, the same analyses
among non-cover pairs show a larger variation than cover
pairs, and this can be interpreted as there are some links
remaining among cover songs.

Moreover, we created a framework that includes open
source implementations of seven state-of-the-art unsuper-
vised CSI algorithms to facilitate the future work in this
line of research. Using this framework, researchers can
easily compare existing algorithms on different datasets,
and we encourage all CSI researchers to incorporate their
algorithms into this framework in order to support Open
Science principles. Our feature extraction and benchmark-
ing frameworks as well as instructions to can be found in
our GitHub repository 7 .

Our future work includes constructing several other
subsets based on various characteristics of songs (e.g. sub-
sets based on genre and release year), as well as training
sets for supervised algorithms, to identify the further needs
of CSI research. We believe that a better understanding of
the relationships among cover songs is valuable both for
musicological aspect of this line of research and for ad-
vancing the state of the art in CSI research.

7 https://github.com/furkanyesiler/acoss
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