Cross-national patterns of substance use disorder treatment and associations with mental disorder comorbidity in the WHO World Mental Health Surveys

Running head: Comorbidity and receipt of SUD treatment

Word count: 3499

Corresponding author: Meredith Harris

Meredith.Harris@qcmhr.uq.edu.au

School of Public Health, The University of Queensland &
Queensland Centre for Mental Health Research, The Park Centre for Mental Health Australia

Queensland, Australia

Disclosure/Conflicts of Interest: In the past 3 years, L.D. has received investigator-initiated untied educational grants for studies of opioid medications in Australia from Indivior, Mundipharma and Seqirus. R.C.K. received support for his epidemiological studies from Sanofi Aventis; was a consultant for Johnson & Johnson Wellness and Prevention, Sage Pharmaceuticals, Shire, Takeda; and served on an advisory board for the Johnson & Johnson Services Inc. Lake Nona Life Project. R.C.K. is a co-owner of DataStat, Inc., a market research firm that carries out healthcare research. The views expressed in this report are those of the authors and should not be construed to represent the views or policies of the WHO, other sponsoring organisations, agencies, or governments, and do not necessarily represent the views, official policy, or position of the US. Department of Health and Human Services or any of its affiliated institutions or agencies. M.D.G.’s role on this study is through his involvement as a Science Officer on U01-MH60220. He had no involvement in the other cited grants. All other authors have nothing to disclose.
Meredith G. Harris, MPH, PhD, School of Public Health, The University of Queensland, Herston, QLD 4006, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, QLD 4072, Australia; Chrianna Bharat, BSc (Hons.) National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia; Meyer D. Glantz, PhD, Department of Epidemiology, Services, and Prevention Research (DESPR), National Institute on Drug Abuse (NIDA), National Institute of Health (NIH), Bethesda, Maryland, USA; Nancy A. Sampson, BA, Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA; Ali Al-Hamzawi, MBCh.B,MD,FICMS College of Medicine, Al-Qadisiya University, Diwaniya governorate, Iraq; Jordi Alonso, MD, PhD, Health Services Research Unit, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain; Pompeu Fabra University (UPF), Barcelona, Spain; Ronny Bruffaerts, PhD, Universitair Psychiatrisch Centrum - Katholieke Universiteit Leuven (UPC-KUL), Campus Gasthuisberg, Leuven, Belgium; José Miguel Caldas de Almeida, MD, PhD, Lisbon Institute of Global Mental Health and Chronic Diseases Research Center (CEDOC), NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal; Alfredo H. Cia, MD Anxiety Disorders Center, Buenos Aires, Argentina; Giovanni De Girolamo, MD, Unit of Epidemiological and Evaluation Psychiatry, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)-St. John of God Clinical Research Centre, Brescia, Italy; Silvia Florescu, MD, PhD, National School of Public Health, Management and Development, Bucharest, Romania; Oye Gureje, MD,PhD, FRCPsych, Department of Psychiatry, University College Hospital, Ibadan, Nigeria; Josep Maria Haro, MD, PhD, Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Sant Boi de Llobregat, Barcelona, Spain; Hristo Hinkov, MD, PhD, National Center of Public Health and Analyses, Sofia, Bulgaria; Elie G. Karam, MD Department of Psychiatry and Clinical
Psychology, Faculty of Medicine, Balamand University, Beirut, Lebanon; Department of Psychiatry and Clinical Psychology, St George Hospital University Medical Center, Beirut, Lebanon; Institute for Development Research Advocacy and Applied Care (IDRAAC), Beirut, Lebanon; Georges Karam, MD, Department of Psychiatry and Clinical Psychology, St George Hospital University Medical Center, Balamand University, Faculty of Medicine, Beirut, Lebanon; Institute for Development, Research, Advocacy and Applied Care (IDRAAC), Beirut, Lebanon; Sing Lee, MB, BS Department of Psychiatry, Chinese University of Hong Kong, Tai Po, Hong Kong; Jean-Pierre Lepine, MD, Hôpital Lariboisière- Fernand Widal, Assistance Publique Hôpitaux de Paris; Universités Paris Descartes-Paris Diderot;INSERM UMR-S 1144, Paris, France; Daphna Levinson, PhD, Mental Health Services, Ministry of Health, Jerusalem, Israel; Victor Makanjuola, MD, FWACP, Department of Psychiatry, College of Medicine, University of Ibadan; University College Hospital, Ibadan, Nigeria; John McGrath, MD, PhD, Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Queensland, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, Queensland, Australia; National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark; Zeina Mneimneh, PhD, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA; Fernando Navarro-Mateu, MD, PhD, UDIF-SM, Subdirección General de Planificación, Innovación y Cronicidad, Servicio Murciano de Salud. IMIB-Arrixaca. CIBERESP-Murcia, Murcia, Spain; Marina Piazza, ScD, MPH, Universidad Cayetano Heredia, Lima, Peru; José Posada-Villa, MD, Colegio Mayor de Cundinamarcu University, Faculty of Social Sciences, Bogota, Colombia; Charlene Rapsey, PhD, PGDipClinPsych, University of Otago, Dunedin School of Medicine, Department of Psychological Medicine; Hisateru Tachimori, PhD, National Institute of Mental Health, National Center for Neurology and Psychiatry, Kodaira, Tokyo, Japan;
Margreet Ten Have, PhD, Trimbos-Instituut, Netherlands Institute of Mental Health and Addiction, Utrecht, Netherlands; Yolanda Torres, MPH, Dra.HC Center for Excellence on Research in Mental Health, CES University, Medellin, Colombia; Maria Carmen Viana, MD, PhD, Department of Social Medicine, Postgraduate Program in Public Health, Federal University of Espírito Santo, Vitoria, Brazil; Somnath Chatterji, MD, Department of Information, Evidence and Research, World Health Organization, Geneva, Switzerland; Alan M. Zaslavsky, PhD, Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA; Ronald C. Kessler, PhD, Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA; Louisa Degenhardt, PhD, National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia;

* The WHO World Mental Health Survey collaborators are Sergio Aguilar-Gaxiola, MD, PhD, Ali Al-Hamzawi, MD, Mohammed Salih Al-Kaisy, MD, Jordi Alonso, MD, PhD, Laura Helena Andrade, MD, PhD, Corina Benjet, PhD, Guilherme Borges, ScD, Evelyn J. Bromet, PhD, Ronny Bruffaerts, PhD, Brendan Bunting, PhD, Jose Miguel Caldas de Almeida, MD, PhD, Graça Cardoso, MD, PhD, Somnath Chatterji, MD, Alfredo H. Cia, MD, Louisa Degenhardt, PhD, Koen Demyttenaere, MD, PhD, John Fayyad, MD, Silvia Florescu, MD, PhD, Giovanni de Girolamo, MD, Oye Gureje, MD, DSc, FRCPsych, Josep Maria Haro, MD, PhD, Hristo Hinkov, MD, PhD, Chi-yi Hu, MD, PhD, Peter de Jonge, PhD, Aimee Nasser Karam, PhD, Elie G. Karam, MD, Norito Kawakami, MD, DMSc, Ronald C. Kessler, PhD, Andrzej Kiejna, MD, PhD, Viviane Kovess-Masfety, MD, PhD, Sing Lee, MB, BS, Jean-Pierre Lepine, MD, Daphna Levinson, PhD, John McGrath, MD, PhD, Maria Elena Medina-Mora, PhD, Zeina Mneimneh, PhD, Jacek Moskalewicz, PhD, Fernando Navarro-Mateu, MD, PhD, Beth-Ellen Pennell, MA, Marina Piazza, MPH, ScD, Jose Posada-Villa, MD, Kate M. Scott, PhD, Tim Slade, PhD, Juan Carlos Stagnaro, MD, PhD, Dan J. Stein, FRCPC, PhD, Margreet ten Have, PhD, Yolanda Torres, MPH, Dra.HC, Maria Carmen Viana, MD, PhD, Harvey Whiteford, MBBS, PhD, David R. Williams, MPH, PhD, Bogdan Wojtyniak, ScD.
Abstract

Aims:

To examine cross-national patterns of 12-month substance use disorder (SUD) treatment and minimally adequate treatment (MAT), and associations with mental disorder comorbidity.

Design:

Cross-sectional, representative household surveys.

Setting:

Twenty-seven surveys from 25 countries of the WHO World Mental Health Survey Initiative.

Participants:

2,446 people with past-year DSM-IV SUD diagnoses (alcohol or illicit drug abuse and dependence).

Measurements:

Outcomes were: SUD treatment, defined as having either received professional treatment or attended a self-help group for substance-related problems in the past 12 months, and; MAT, defined as having either 4+ SUD treatment visits to a healthcare professional, 6+ visits to a non-healthcare professional, or being in ongoing treatment at time of interview. Covariates were mental disorder comorbidity and several socio-economic characteristics. Pooled estimates reflect country sample sizes rather than population sizes.

Findings:

Of respondents with past-year SUD, 11.0% (standard error [SE] 0.8) received past 12-month SUD treatment. SUD treatment was more common among people with comorbid mental disorders than with pure SUDs (18.1%, SE 1.6 vs 6.8%, SE 0.7), as was MAT (84.0%, SE 2.5 vs 68.3%, SE 3.8) and treatment by healthcare professionals (88.9%, SE 1.9 vs 78.8%, SE 3.0) among treated SUD cases. Adjusting for socio-demographic characteristics, mental disorder comorbidity doubled the odds of SUD treatment (odds ratio [OR] 2.34, 95% confidence
interval [CI] 1.71-3.20), MAT among SUD cases (OR 2.75, 95% CI 1.90-3.97) and MAT among treated cases (OR 2.48, 95% CI 1.23-5.02). Patterns were similar within country income groups, although the proportions receiving SUD treatment and MAT were higher in high than low/middle income countries.

Conclusions:

Few people with past-year substance use disorder (SUDs) received adequate 12-month SUD treatment, even when comorbid with a mental disorder. This was largely due to the low proportion of people receiving any SUD treatment, as the proportion of patients whose treatment was at least minimally adequate was high.

Key words: substance use disorders; comorbidity; mental disorders; treatment; minimally adequate treatment; World Mental Health Surveys
Introduction

Substance use disorders (SUDs), including alcohol and illicit drug abuse and dependence, are conservatively estimated to affect 2.6% of the world’s population each year [1]. SUDs were the eighth leading cause of risk-attributable disability-adjusted life-years globally in 2016 and the fourth-to-fifth leading cause in socio-economically developed regions [2]. Despite the availability of effective interventions for SUD, few people with these disorders receive treatment and even fewer receive minimally adequate treatment (MAT), that is, an amount that could reasonably be expected to provide the opportunity to begin potentially effective intervention [1, 3-6].

Among people with past-year SUDs, having a comorbid mental disorder increases the likelihood of receiving treatment [7-10]. Estimates suggest that more than 40% of people with past-year SUDs have a comorbid mental disorder, most commonly a mood or anxiety disorder [11, 12]. SUD cases with comorbid mental disorders have a more severe and disabling course of illness, poorer social and clinical outcomes if under-treated, and more complications with treatment than those with pure SUDs [13]. Treatment guidelines recommend that when SUDs and mental disorders co-occur, each disorder should be treated in its own right [14]. Countries vary in their funding and organisation of SUD services. High income countries are more likely to have dedicated funding for specialised SUD services and to administer these separately from mental health services [13]. For these reasons, an understanding is needed of the extent to which people with past-year SUDs received ‘SUD treatment’ (i.e., for the purpose of treating an SUD), and how this differs according to comorbidity status and across countries.

Most population estimates of SUD treatment have come from the US, showing that only 8-15% of people with past-year SUDs received SUD treatment in the preceding 12 months [7, 8]. SUD treatment tended to be more common for SUD cases with comorbid mental disorders (10.5%-42.0% [15-17]) than those with pure SUDs (6.7%-10% [17, 18]). People with past-year SUDs also had 1.3 to 3.4 times greater probability of receiving mental health treatment than SUD treatment, even if they did not have a comorbid mental disorder [7, 15-18]. This may occur for several reasons. For example, people with pure SUDs may have sought mental health treatment because they perceived their substance use problem as a
mental health problem; people with SUDs and comorbid mental disorders may perceive the latter as the most troubling. People with SUDs, regardless of comorbidity, may regard mental health services as more adequate, acceptable or available [5, 7, 17, 18]. Co-occurring SUDs and mental disorders influence each other [13]; however, the extent to which treatment for a comorbid mental disorder will also be effective in alleviating the SUD is not known and would probably vary greatly depending on the etiology, severity, and type of the comorbid disorder.

Reducing the burden of SUDs requires improvements in the coverage and quality of SUD treatment. In clinical samples, high quality SUD treatment (as indicated by process-based measures of treatment intensity, therapeutic content, and continuity) has been associated with better outcomes for people with SUDs [19-21]. In an analysis of population data from 26 countries in The World Health Organization’s (WHO) World Mental Health Survey (WMHS) initiative [1], information about type and number of healthcare visits was used to estimate MAT among people with past-year SUDs who had received treatment for emotional or substance use problems in the previous 12 months. Only 7.1% of people with past-year SUDs received MAT, ranging from 1.0% in low/lower-middle income countries to 10.3% in high income countries [1]. However, corresponding estimates among those who received SUD treatment specifically, and associations with mental disorder comorbidity, are lacking.

We examined cross-national patterns of SUD treatment among people with pure and comorbid past-year SUDs. Specific aims were to: (1) estimate the proportions receiving SUD treatment and MAT, by comorbidity status and country income level; (2) examine the sectors in which people received SUD treatment and MAT, namely from healthcare professionals and non-healthcare professionals; and (3) examine potential associations of mental disorder comorbidity with SUD treatment and MAT.
Methods

Sample

Data came from 27 surveys in 25 countries participating in the WMHS (Table 1). Five were classified as low and lower-middle income (Colombia, Iraq, Nigeria, People’s Republic of China [PRC], and Peru), six as upper-middle income (Brazil, Bulgaria, Colombia, Lebanon, Mexico, and Romania), and 16 as high income (Argentina, Australia, Belgium, France, Germany, Israel, Italy, Japan, The Netherlands, New Zealand, Northern Ireland, Poland, Portugal, Spain, Spain-Murcia, and The United States). Each survey’s interviewing sample size was determined by its’ available resources and data collection budget, however, all utilised a probability sample design for the selection of a representative sample of their target population, with the majority using multi-stage, clustered area probability designs. The weighted average response rate across all countries was 68.5% (Table 1).

SUDs were assessed with the WHO Composite International Diagnostic Interview (CIDI) Version 3.0, a validated fully-structured interview designed to generate lifetime and 12-month diagnoses of mental disorders according to DSM-IV and ICD-10 criteria. The interview was developed in English and standardised protocols were used to adapt the CIDI for use in each participating country [22, 23].

All respondents completed Part I of the CIDI, which contained a diagnostic assessment of core mental disorders. Respondents identified with a disorder during the Part I assessment and a probability sample of other Part I respondents were administered Part II, which assessed disorders of secondary interest and correlates. Analyses in the current study are restricted to respondents with a past-year SUD (DSM-IV diagnoses of alcohol or illicit drug abuse or dependence).

All surveys were administered face-to-face by trained lay-interviewers. Interviewer training and quality control procedures were standardised across surveys [24]. Informed consent was obtained according to protocols endorsed by local institutional review boards.

Table 1 about here

Definitions of SUD treatment and minimally adequate SUD treatment
Among participants with a SUD, SUD treatment was defined as having either received treatment from a healthcare professional or attended a self-help group for substance related problems at any time in the past year. Treatment was classified as having come from a healthcare professional if a specialty mental health professional (psychiatrist, psychologist, other mental health professional in any setting, social worker or counsellor in a mental health specialty treatment setting, or a mental health hotline) or general professional (primary care doctor, other medical doctor or other health care professional in a medical setting) had been consulted. If only non-medical professionals (social worker or counsellor in a non-medical setting, religious or spiritual advisor, or healer) or self-help groups had been consulted, treatment was classified as non-healthcare.

Among persons that received any SUD treatment, minimally adequate treatment (MAT) was defined as having either at least four treatment visits to a healthcare professional, at least six visits to a non-healthcare professional or self-help group, or being in continuing treatment at the time of interview. These thresholds represent the minimum number of visits reasonably expected to provide opportunity to instigate the necessary steps at the beginning of any SUD or mental disorder intervention including patient’s report of symptoms, diagnosis, formulation of treatment plan, presentation of diagnosis and plan to the patient, patient acceptance of the plan, for intervention to be started and for the patient to experience and make at least some commitment to the intervention [6].

Comorbid mental disorders

To investigate the association of a comorbid mental disorder with receipt of SUD treatment, participants with a past-year diagnosis of major depressive disorder, generalised anxiety disorder, bipolar disorders, panic disorder, social disorder, specific disorder and agoraphobia were identified. Standardised diagnostic hierarchy rules among these disorders were applied, where appropriate.

Statistical methods

All analyses were based on weighted data to make samples representative of the target population’s socio-demographic characteristics. Individual-level weights were used to adjust for differences in probability of selection, and to match the socio-demographics of the
sample to those of the population. To adjust for differential sampling into Part II, Part II respondents were weighted by the inverse of their probability of selection into Part II, equalizing prevalence estimates in the weighted Part II sample and Part I sample. Standard errors were estimated using Taylor Series linearization taking into account weighting, clustering and stratification. Prevalence estimates were produced in PROC SURVEYFREQ, and logistic regression analyses in PROC SURVEYLOGISTIC, both implemented in SAS Version 9.0.

Surveys are combined for purposes of pooled estimates based on sample sizes rather than sizes of the populations of the countries surveyed. Pooled prevalence estimates therefore represent the weighted mean across our surveys, where weights are based on survey sample size. Furthermore, all regression models included dummy control variables for survey so that coefficients for other predictors could be interpreted as pooled within-survey coefficients. This approach, which implicitly assumed within-survey slopes were constant across surveys, was implemented because the degree of survey-level variability attributable to the parameter of main interest was found to be modest, and allowing (in a random-slope model) for inter-country variation in that slope had little effect on the mean slope estimate and its standard error.

To test for differences between SUD only and SUD and at least one comorbid mental disorder, and high and low/middle income countries, in relation to the key variables of interest related to the aims of the paper, chi-square tests were applied. Logistic regression analyses were conducted to predict 12-month SUD treatment and MAT among all persons with a past-year SUD, and MAT among the subset of past-year SUD cases with any 12-month SUD treatment. To investigate the associations of comorbid mental disorders with SUD treatment, we defined a single indicator variable capturing the presence of any past-year depression, bipolar, panic, generalised anxiety, social, specific, or agoraphobia disorder. Due to low counts within select disorders, modelling of individual mental disorder indicators was not feasible.

Other covariates included sex, age at interview (<25, 25-34, 35-44 and 45+), personal income defined in within-country quartiles (low, low-average, high-average and high), marriage status (never married, married/cohabitating, separated/widowed/divorced),
education level defined within-country (low, low-average, high-average and high) [25] and country income level (high and low/low-middle/upper-middle [or ‘low/middle’ – levels combined due to low statistical power] from Table 1) of the survey country or region. We conducted analyses with all countries pooled, and subgroup analyses by country income level, however, there was not enough statistical power to make separate estimates for each country.

We conducted sensitivity analyses among a subset of surveys that captured information regarding physical health comorbidities in a consistent manner (1,986 respondents with past-year SUD). The physical comorbidities included past-year presence of any: back or neck problems, headaches, chronic pain, allergies, diabetes, ulcer(s), HIV/infection, epilepsy or seizures, and cancer. We also included lifetime presence of heart disease, hypertension, asthma, and chronic lung disease, as these conditions are typically chronic and require ongoing management or treatment. We modelled the number of past-year physical comorbidities as: exactly one, exactly two, and three or more.

Parameter coefficients and standard errors are reported as odds ratios and 95% confidence intervals (CIs) with statistical significance evaluated using .05-level two-sided tests.
Results

Across all countries, 2446 (2.6%) people in the WMHS met criteria for a past-year SUD, with prevalence higher in high (3.0%) than in low/middle income countries (1.9%). Overall, around one in three people with a past-year SUD also had at least one other mental disorder in the same timeframe, with higher comorbidity among those in high than in low/middle income countries (Table 2).

SUD treatment

One in nine past-year SUD cases received SUD treatment in the past 12 months. Among past-year SUD cases, SUD treatment was twice as common in high compared to low/middle income countries, and among those with a comorbid mental disorder compared to those with a diagnosis of SUD only. This pattern was consistent in high income and low/middle income countries.

Minimally adequate treatment (MAT)

Among those who received SUD treatment, more than three-quarters met MAT thresholds (Table 2). MAT was more common in high than in low/middle income countries, and among people with a comorbid disorder compared to those with a SUD only.

SUD treatment professionals

Most people with 12-month SUD treatment were treated by at least one healthcare professional. The use of healthcare professionals for treatment was more common among people with a comorbid disorder than among those with an SUD only across all countries and in high income surveys. Among people who received SUD treatment from a healthcare professional, most received MAT. MAT was more common in high income countries than low/middle income countries, and was more common among those with a comorbid disorder than among those with an SUD only in low/middle income countries, but not in high income countries.

The use of non-healthcare professionals as the sole source of SUD treatment was uncommon. Levels of MAT from a non-healthcare professional were higher among people
with a comorbid disorder compared to those with a SUD only in both the pooled and high income surveys.

Although there was no difference between country income groups in the proportion of SUD cases obtaining treatment from a healthcare professional, MAT provision was more common for those treated by healthcare professionals in high than low/middle income countries. Appendix Table A1 presents bivariate comorbid mental disorder odds ratios for all outcomes shown in Table 2.

Table 2 about here

Comorbid mental disorder and SUD treatment

Results from logistic regression analyses investigating the association of comorbid disorder with receipt of any SUD treatment and MAT are presented in Table 3 and Figure 1. Adjusting for all socio-demographics, the presence of a comorbid disorder more than doubled the odds of receiving SUD treatment, MAT among SUD cases and MAT among treated cases. Consistent results were observed within country-level income groups.

In sensitivity analyses, after adjusting for number of past-year physical comorbidities, people with past-year comorbid mental disorder still had higher odds of SUD treatment (OR 1.75 [95%CI: 1.27-2.40]), and MAT (OR 2.13 [95%CI: 1.47-3.09]) [details available upon request].

Additional models investigated potential differences in correlates of SUD treatment by type of professional. These, along with the full model results from analyses shown in Table 3, are shown in Appendix Tables A2-A10. These show that the patterns observed in the main analyses were all similar for those receiving SUD treatment from a healthcare professional specifically and, despite small numbers, were generally similar for those receiving non-healthcare treatment only.

Table 3 about here
Discussion

We are aware of no previous comparative cross-national data on SUD treatment. We found SUD treatment among past-year SUD cases to be low across all countries studied (11.0%). Most treated cases received MAT but, because of the low coverage, only 8.5% of all SUD cases received adequate SUD treatment. MAT was more common among SUD cases with comorbid mental disorders, compared to cases with pure SUDs, due to the higher proportions receiving any SUD treatment and receiving MAT once treatment had started. These patterns were similar within country income groups, even though SUD treatment and MAT were twice as common among SUD cases from high income countries compared to low/middle income countries.

Limitations

There were important limitations. First, our MAT criteria would ideally have included receipt of potentially beneficial pharmacological treatments for SUDs (e.g., naltrexone for alcohol dependence [26] and opioid substitution therapy for opioid dependence [25]). However, medication use (types, timing, duration and adherence) was not covered in sufficient detail in the WMHS. The criteria did count visits to healthcare professionals who are able to prescribe and monitor medications.

Second, due to low counts the individual impact of specific combinations of SUDs and mental disorders on receipt of SUD treatment could not be investigated. The coefficient representing the impact of any comorbid mental disorder represents the mean effect of any and all disorders. Patterns of treatment may vary according to different combinations of diagnoses [27] or other latent structures [6, 28]. This is an avenue for future work.

Third, we assumed that respondents could reliably identify that they had received treatment for substance related problems. Studies have found acceptable levels of agreement between self-reported use of substance use services and administrative records or other independent sources among people with substance use problems or disorders [29-33], with better agreement for aggregate measures than for detailed measures [32, 33], and poorer agreement among high-volume service users [29, 30].
Fourth, to our knowledge, the predictive validity of the MAT criteria used in this study has not been established.

Fifth, the comparatively lower disability associated with substance abuse compared to dependence may in part explain the low treatment proportions, however, there was not enough statistical power to conduct separate analyses for abuse and dependence.

Sixth, there may be between-country variations in willingness to report use of various substances, due to legal frameworks, cultural norms and other factors.

Seventh, the number of reported visits used in evaluating MAT may potentially include visits made for mental health problems other than SUDs, so the proportion receiving MAT may be even lower than reported here.

Finally, our sensitivity analyses included many, but not all, physical conditions (e.g., stroke, liver problems) that are prevalent among people with SUDs or may affect SUD treatment [34, 35]. General limitations of the WMHS are discussed in detail elsewhere [1, 36].

Implications

Few past-year SUD cases received 12-month SUD treatment. Our estimates of 12-month SUD treatment in high income countries were broadly similar to independent US estimates for people with any SUD (12.5% vs 8-15% [7, 8]), comorbid SUD and mental disorder (19.9% vs 10.5-42.0% [15-17]) and SUD only (4.8% vs 6.7%-10% [17, 18]). Equivalent comparisons for low/middle income countries were not possible. Reasons for low SUD treatment proportions are many and varied [37-44]. Systemic factors (e.g., low policy priority, scarcity of services and appropriately trained professionals, lack of community-based care options, out-of-pocket payment models), and community factors (e.g., stigmatising community attitudes) are especially relevant in low/middle income countries [45-47].

Only 8.5% of past-year SUD cases received MAT, lower than has been reported for depression [36] but similar to anxiety disorders [48] (noting that the MAT criteria in those studies [36, 48] took account of medication use which the current study could not). This was largely due to the low proportion receiving any SUD treatment, as the proportion of treated SUD cases who received MAT was high. A US study showed that people with SUDs had more
treatment visits (median 6.6) than people with mental disorders (2.4 to 6.0, depending on disorder) [4]. Together, these findings could suggest that people with SUDs who do commence treatment are committed to obtaining a positive outcome and therefore persist with it.

In the pooled professional samples, lower proportions of SUD treatment and MAT among pure SUD cases could indicate that this group are at greater risk of under-treatment. However, SUD cases with comorbid mental disorders have worse clinical presentation and outcomes [13], and are more likely to report unmet treatment needs [42, 49]. Moreover, longitudinal studies show that people with SUDs who do not access treatment have, on average, less severe disorders and more favourable outcomes than treatment users, suggesting that many people appropriately self-select for treatment [50, 51]. Further examination of the relationship between clinical characteristics of SUDs (e.g., comorbidity, severity, persistence and disability) and recent and lifetime treatment patterns may help identify those who should be the focus of policy and service responses to reduce the treatment gap for SUDs.

SUD treatment and MAT proportions in high income countries were double those in low/middle income countries, consistent with other evidence of SUD intervention coverage [52]. Moreover, in low/middle income countries, the proportion receiving MAT was lower for those with pure, compared to comorbid, SUDs. The WHO Mental Health Gap Action Programme (mhGAP) Intervention Guide [53, 54] has identified evidence based interventions for SUDs that could feasibly be scaled up in high and low/middle income countries. These include: self-monitoring of high-risk behaviours for substance abuse; guideline-concordant pharmacological and psychological management of alcohol use disorders; and methadone maintenance therapy for opioid dependence and buprenorphine as opioid substitution therapy [55]. In low/middle income countries specifically, there is good evidence that contextually-appropriate regulatory and legal controls can reduce alcohol use and associated harms [56]. Preventive and treatment interventions – e.g., integrating awareness-raising of alcohol and drug misuse into the workplace and collaborative community-based care – are supported by good evidence from high income countries but require more robust evidence from low/middle income settings [55, 56]. Scaling up will require significant investment to increase system capacity, especially in
countries with under-developed SUD treatment services and without substance use policies [39, 47]. Improving workforce availability and training are critical to improving detection and quality of care of SUDs [38]; in contexts where specialist skills are scarce, task sharing and transitioning clinical specialists from direct service provision to supervisory roles may help to build capacity [55].

Conclusions

Improving treatment coverage and adequacy for SUDs is a global health priority [57]. We found that few people with past-year SUDs received MAT, even when comorbid with a mental disorder. Scaling up of evidence-based interventions, informed by more robust evidence of population need and intervention efficacy in low/middle income settings, could help address these treatment gaps.
Funding Acknowledgements

The World Health Organization World Mental Health (WMH) Survey Initiative is supported by the United States National Institute of Mental Health (NIMH; R01 MH070884), the John D. and Catherine T. MacArthur Foundation, the Pfizer Foundation, the United States Public Health Service (R13-MH066849, R01-MH069864, and R01 DA016558), the Fogarty International Center (FIRCA R03-TW006481), the Pan American Health Organization, Eli Lilly and Company, Ortho-McNeil Pharmaceutical Inc., GlaxoSmithKline, and Bristol-Myers Squibb. This work was supported by an Australian National Health and Medical Research Council (NHMRC) project grant (no. 1081984). L.D. is supported by an NHMRC Senior Principal Research Fellowship (no. 1135991). J.M. is supported by NHMRC Project grants (APP 1007677, APP 1099709) and a John Cade Fellowship (APP1056929). J.M. was supported by a Niels Bohr Professorship from the Danish National Research Foundation. We thank the staff of the WMH Data Collection and Data Analysis Coordination Centres for assistance with instrumentation, fieldwork, and consultation on data analysis. None of the funders had any role in the design, analysis, interpretation of results, or preparation of this paper. The views and opinions expressed in this report are those of the authors and should not be construed to represent the views of the World Health Organization, other sponsoring organizations, agencies, or governments.

The 2007 Australian National Survey of Mental Health and Wellbeing is funded by the Australian Government Department of Health and Ageing. The Argentina survey -- Estudio Argentino de Epidemiología en Salud Mental (EASM) -- was supported by a grant from the Argentinian Ministry of Health (Ministerio de Salud de la Nación). The São Paulo Megacity Mental Health Survey is supported by the State of São Paulo Research Foundation (FAPESP) Thematic Project Grant 03/00204-3. The Bulgarian Epidemiological Study of common mental disorders EPIBUL is supported by the Ministry of Health and the National Center for Public Health Protection. The Chinese World Mental Health Survey Initiative is supported by the Pfizer Foundation. The Colombian National Study of Mental Health (NSMH) is supported by the Ministry of Social Protection. The Mental Health Study Medellín – Colombia was carried out and supported jointly by the Center for Excellence on Research in Mental Health (CES University) and the Secretary of Health of Medellín. The ESEMeD project is funded by the European Commission (Contracts QLG5-1999-01042; SANCO 2004123, and EAHC 20081308), (the Piedmont Region (Italy)), Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Spain (FIS 00/0028), Ministerio de Ciencia y Tecnología, Spain (SAF 2000-158-CE), Departament de Salut, Generalitat de Catalunya, Spain, DIUE de la Generalitat de Catalunya (2017 SGR 452; 2014 SGR 748), Instituto de Salud Carlos III (CIBER CB06/02/0046, RETICS RD06/0011 REM-TAP), and other local agencies and by an unrestricted educational grant from GlaxoSmithKline. Implementation of the Iraq Mental Health Survey (IMHS) and data entry were carried out by the staff of the Iraqi MOH and MOP with direct support from the Iraqi IMHS team with funding from both the Japanese and European Funds through United Nations Development Group Iraq Trust Fund (UNDG ITF). The Israel National Health Survey
is funded by the Ministry of Health with support from the Israel National Institute for Health Policy and Health Services Research and the National Insurance Institute of Israel. The World Mental Health Japan (WMHJ) Survey is supported by the Grant for Research on Psychiatric and Neurological Diseases and Mental Health (H13-SHOGAI-023, H14-TOKUBETSU-026, H16-KOKORO-013, H25-SEISHIN-IPPAN-006) from the Japan Ministry of Health, Labour and Welfare. The Lebanese Evaluation of the Burden of Ailments and Needs Of the Nation (L.E.B.A.N.O.N.) is supported by the Lebanese Ministry of Public Health, the WHO (Lebanon), National Institute of Health / Fogarty International Center (R03 TW006481-01), anonymous private donations to IDRAAC, Lebanon, and unrestricted grants from, Algorithm, AstraZeneca, Benta, Bella Pharma, Eli Lilly, Glaxo Smith Kline, Lundbeck, Novartis, OmniPharma, Pfizer, Phenicia, Servier, UPO. The Mexican National Comorbidity Survey (MNCS) is supported by The National Institute of Psychiatry Ramon de la Fuente (INPRFMDIES 4280) and by the National Council on Science and Technology (CONACyT-G30544- H), with supplemental support from the Pan American Health Organization (PAHO). Te Rau Hinengaro: The New Zealand Mental Health Survey (NZMHS) is supported by the New Zealand Ministry of Health, Alcohol Advisory Council, and the Health Research Council. The Nigerian Survey of Mental Health and Wellbeing (NSMHW) is supported by the WHO (Geneva), the WHO (Nigeria), and the Federal Ministry of Health, Abuja, Nigeria. The Northern Ireland Study of Mental Health was funded by the Health & Social Care Research & Development Division of the Public Health Agency. The Peruvian World Mental Health Study was funded by the National Institute of Health of the Ministry of Health of Peru. The Polish project Epidemiology of Mental Health and Access to Care – EZOP Project (PL 0256) was supported by Iceland, Liechtenstein and Norway through funding from the EEA Financial Mechanism and the Norwegian Financial Mechanism. EZOP project was co-financed by the Polish Ministry of Health. The Portuguese Mental Health Study was carried out by the Department of Mental Health, Faculty of Medical Sciences, NOVA University of Lisbon, with collaboration of the Portuguese Catholic University, and was funded by Champalimaud Foundation, Gulbenkian Foundation, Foundation for Science and Technology (FCT) and Ministry of Health. The Romania WMH study projects "Policies in Mental Health Area" and "National Study regarding Mental Health and Services Use" were carried out by National School of Public Health & Health Services Management (former National Institute for Research & Development in Health), with technical support of Metro Media Transilvania, the National Institute of Statistics-National Centre for Training in Statistics, SC, Cheyenne Services SRL, Statistics Netherlands and were funded by Ministry of Public Health (former Ministry of Health) with supplemental support of Eli Lilly Romania SRL. The Psychiatric Enquiry to General Population in Southeast Spain – Murcia (PEGASUS-Murcia) Project has been financed by the Regional Health Authorities of Murcia (Servicio Murciano de Salud and Consejería de Sanidad y Política Social) and Fundación para la Formación e Investigación Sanitarias (FFIS) of Murcia. The US National Comorbidity Survey Replication (NCS-R) is supported by the National Institute of Mental Health (NIMH; U01-MH60220) with supplemental support from the National Institute of Drug Abuse (NIDA), the Substance
Abuse and Mental Health Services Administration (SAMHSA), the Robert Wood Johnson Foundation (RWJF; Grant 044708), and the John W. Alden Trust.

A complete list of all within-country and cross-national WMH publications can be found at http://www.hcp.med.harvard.edu/wmh/.
References

38. Klimas J. Training in addiction medicine should be standardised and scaled up. BMJ. 2015; 351: h4027.
55. Shidhaye R., Lund C., Chisholm D. Closing the treatment gap for mental, neurological and substance use disorders by strengthening existing health care platforms: strategies for

Table 1. Survey characteristics

<table>
<thead>
<tr>
<th>Country</th>
<th>Sample characteristics</th>
<th>Field dates</th>
<th>Age range</th>
<th>Sample size</th>
<th>Response rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low and lower-middle income countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>All urban areas of the country (about 73% of the total national population)</td>
<td>2003</td>
<td>18-65</td>
<td>4,426</td>
<td>87.7%</td>
</tr>
<tr>
<td>Iraq</td>
<td>Nationally representative</td>
<td>2006-7</td>
<td>18-96</td>
<td>4,332</td>
<td>95.2%</td>
</tr>
<tr>
<td>Nigeria</td>
<td>21 of the 36 states in the country (about 57% of the national population)</td>
<td>2002-4</td>
<td>18-100</td>
<td>6,752</td>
<td>79.3%</td>
</tr>
<tr>
<td>China</td>
<td>Beijing and Shanghai metropolitan areas</td>
<td>2001-3</td>
<td>18-70</td>
<td>5,201</td>
<td>74.7%</td>
</tr>
<tr>
<td>Peru</td>
<td>Five urban areas of the country (approximately 38% of the total national population).</td>
<td>2004-5</td>
<td>18-65</td>
<td>3,930</td>
<td>90.2%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24,641</td>
<td>12,285</td>
<td>83.7%</td>
<td></td>
</tr>
<tr>
<td>Upper-middle income countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>São Paulo metropolitan area</td>
<td>2005-8</td>
<td>18-93</td>
<td>5,037</td>
<td>81.3%</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Nationally representative</td>
<td>2002-6</td>
<td>18-98</td>
<td>5,318</td>
<td>72.0%</td>
</tr>
<tr>
<td>Colombia (Medellin)</td>
<td>Medellin metropolitan area</td>
<td>2011-12</td>
<td>19-65</td>
<td>3,261</td>
<td>97.2%</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Nationally representative</td>
<td>2002-3</td>
<td>18-94</td>
<td>2,857</td>
<td>70.0%</td>
</tr>
<tr>
<td>Mexico</td>
<td>All urban areas of the country (about 75% of the total national population)</td>
<td>2001-2</td>
<td>18-65</td>
<td>5,782</td>
<td>76.6%</td>
</tr>
<tr>
<td>Romania</td>
<td>Nationally representative</td>
<td>2005-6</td>
<td>18-96</td>
<td>2,357</td>
<td>70.9%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24,612</td>
<td>12,598</td>
<td>77.2%</td>
<td></td>
</tr>
<tr>
<td>High income countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>Eight largest urban areas of the country- approximately 50% of the total national population.</td>
<td>2015</td>
<td>18-98</td>
<td>3,927</td>
<td>77.3%</td>
</tr>
<tr>
<td>Australia</td>
<td>Nationally representative</td>
<td>2007</td>
<td>18-85</td>
<td>8,463</td>
<td>60.0%</td>
</tr>
<tr>
<td>Belgium</td>
<td>Nationally representative</td>
<td>2001-2</td>
<td>18-95</td>
<td>2,419</td>
<td>50.6%</td>
</tr>
<tr>
<td>France</td>
<td>Nationally representative</td>
<td>2001-2</td>
<td>18-97</td>
<td>2,894</td>
<td>45.9%</td>
</tr>
<tr>
<td>Germany</td>
<td>Nationally representative</td>
<td>2002-3</td>
<td>19-95</td>
<td>3,555</td>
<td>57.8%</td>
</tr>
<tr>
<td>Israel</td>
<td>Nationally representative</td>
<td>2003-4</td>
<td>21-98</td>
<td>4,859</td>
<td>72.6%</td>
</tr>
<tr>
<td>Italy</td>
<td>Nationally representative</td>
<td>2001-2</td>
<td>18-100</td>
<td>4,712</td>
<td>71.3%</td>
</tr>
<tr>
<td>Japan</td>
<td>Eleven metropolitan areas</td>
<td>2002-6</td>
<td>20-98</td>
<td>4,129</td>
<td>55.1%</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Nationally representative</td>
<td>2002-3</td>
<td>18-95</td>
<td>2,372</td>
<td>56.4%</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Nationally representative</td>
<td>2004-5</td>
<td>18-98</td>
<td>12,790</td>
<td>73.3%</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>Nationally representative</td>
<td>2005-8</td>
<td>18-97</td>
<td>4,340</td>
<td>68.4%</td>
</tr>
<tr>
<td>Poland</td>
<td>Nationally representative</td>
<td>2010-11</td>
<td>18-65</td>
<td>10,081</td>
<td>50.4%</td>
</tr>
<tr>
<td>Portugal</td>
<td>Nationally representative</td>
<td>2008-9</td>
<td>18-81</td>
<td>3,849</td>
<td>57.3%</td>
</tr>
<tr>
<td>Spain</td>
<td>Nationally representative</td>
<td>2001-2</td>
<td>18-98</td>
<td>5,473</td>
<td>78.6%</td>
</tr>
<tr>
<td>Spain-Murcia</td>
<td>Murcia region</td>
<td>2010-12</td>
<td>18-96</td>
<td>2,621</td>
<td>67.4%</td>
</tr>
<tr>
<td>United States</td>
<td>Nationally representative</td>
<td>2001-3</td>
<td>18-99</td>
<td>9,282</td>
<td>70.9%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>85,766</td>
<td>48,425</td>
<td>63.1%</td>
<td></td>
</tr>
<tr>
<td>Overall sample</td>
<td></td>
<td>135,019</td>
<td>73,308</td>
<td>68.5%</td>
<td></td>
</tr>
</tbody>
</table>

* The World Bank (2012) Data. Accessed May 12, 2012 at: http://data.worldbank.org/country. Some of the WMH countries have moved into new income categories, since the surveys were conducted. The income groupings above reflect the status of each country at the time of data collection.
The response rate is calculated as the ratio of the number of households in which an interview was completed to the number of households originally sampled, excluding from the denominator households known not to be eligible either because of being vacant at the time of initial contact or because the residents were unable to speak the designated languages of the survey.
Table 2. Any substance use disorder treatment and minimally adequate treatment among all respondents with past-year substance use disorder, by country income group and comorbidity with mental disorders

<table>
<thead>
<tr>
<th>Type of professional</th>
<th>Treatment from healthcare among treated cases</th>
<th>MAT(^3) from healthcare among treated cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12-month treatment</td>
<td>MAT(^3) within healthcare</td>
</tr>
<tr>
<td></td>
<td>% (SE)</td>
<td>% (SE)</td>
</tr>
<tr>
<td>All Countries</td>
<td>2,446</td>
<td>11.0 (0.8)</td>
</tr>
<tr>
<td>SUD only</td>
<td>1,395</td>
<td>63.1 (1.2)</td>
</tr>
<tr>
<td>SUD and at least one comorbid mental disorder(^1)</td>
<td>1,051</td>
<td>36.9 (1.2)</td>
</tr>
<tr>
<td>X(^1), between SUD only and SUD and at least one comorbid mental disorder(^2) [p-value]</td>
<td>68.3* (0.0001)</td>
<td>13.1* (0.0003)</td>
</tr>
<tr>
<td>Low/Middle income countries</td>
<td>636</td>
<td>6.3 (0.9)</td>
</tr>
<tr>
<td>SUD only</td>
<td>983</td>
<td>68.8 (1.9)</td>
</tr>
<tr>
<td>SUD and at least one comorbid mental disorder(^1)</td>
<td>827</td>
<td>31.2 (1.9)</td>
</tr>
<tr>
<td>X(^1), between SUD only and SUD and at least one comorbid mental disorder(^2) [p-value]</td>
<td>11.4* (0.0007)</td>
<td>217.4* (0.0001)</td>
</tr>
<tr>
<td>High income countries</td>
<td>1,810</td>
<td>12.5 (1.0)</td>
</tr>
<tr>
<td>SUD only</td>
<td>983</td>
<td>61.3 (1.4)</td>
</tr>
<tr>
<td>SUD and at least one comorbid mental disorder(^1)</td>
<td>827</td>
<td>38.7 (1.4)</td>
</tr>
<tr>
<td>X(^1), between SUD only and SUD and at least one comorbid mental disorder(^2) [p-value]</td>
<td>53.2* (0.0001)</td>
<td>8.4* (0.0037)</td>
</tr>
<tr>
<td>X(^1), between Low/Middle and High income countries(^3) [p-value]</td>
<td>9.6* (0.0020)</td>
<td>18.9* (0.0001)</td>
</tr>
</tbody>
</table>

SUD - substance use disorder; SE - standard error; MAT – minimally adequate treatment

\(^1\) Estimates are excluded as the denominator of the cell contained less than 30 cases.

\(^2\) Estimates are based on weighted Part II data and restricted to those aged 18+ at time of interview.

\(^3\) N = The total unweighted number of respondents.

\(^\dagger\) Includes: depression (with hierarchy); generalised anxiety disorder (with hierarchy), (broad) bipolar disorder (includes bipolar I, bipolar II and bipolar subthreshold), panic disorder, social phobia, specific phobia and agoraphobia (without panic) disorder. If any disorder was not assessed in a particular survey, the diagnosis for all respondents was set to ‘no’ for that disorder.

\(^\ddagger\) SUD treatment was defined as having either received professional treatment or attended a self-help group for substance related problems in the past year.

\(^\S\) Psychiatrist, general medical or any mental healthcare, with/without non-healthcare provider.

\(^\n\) Human services, self-help groups or complementary alternative medicine.

\(^\S\d\) Design-adjusted chi-square test of homogeneity to determine if there is variation in estimates across groups (p-value), with * indicating significant at the 5% level.
Table 3. Logistic regression results investigating association between having a comorbid mental disorder and receiving "any" and "minimally adequate" 12-month substance use disorder treatment

<table>
<thead>
<tr>
<th>Response</th>
<th>Among those with...</th>
<th>Comorbid mental disorder(^1) (Ref: No)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bivariate (95% CI)</td>
</tr>
<tr>
<td>All Countries</td>
<td></td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>Any 12-month SUD treatment(^2)</td>
<td>Past-year SUD(^3)</td>
<td>2.72* (2.01-3.67)</td>
</tr>
<tr>
<td>Minimally adequate treatment(^3)</td>
<td>Any 12-month SUD treatment</td>
<td>2.92* (1.54-5.53)</td>
</tr>
<tr>
<td>Minimally adequate treatment(^4)</td>
<td>Past-year SUD(^3)</td>
<td>3.34* (2.35-4.74)</td>
</tr>
<tr>
<td>Low/Middle income countries</td>
<td></td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>Any 12-month SUD treatment(^2)</td>
<td>Past-year SUD(^3)</td>
<td>2.40* (1.36-4.21)</td>
</tr>
<tr>
<td>Minimally adequate treatment(^3)</td>
<td>Any 12-month SUD treatment</td>
<td>2.82* (1.48-5.39)</td>
</tr>
<tr>
<td>Minimally adequate treatment(^4)</td>
<td>Past-year SUD(^3)</td>
<td>3.29* (2.21-4.91)</td>
</tr>
<tr>
<td>High income countries</td>
<td></td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>Any 12-month SUD treatment(^2)</td>
<td>Past-year SUD(^3)</td>
<td>2.71* (1.91-3.84)</td>
</tr>
<tr>
<td>Minimally adequate treatment(^3)</td>
<td>Any 12-month SUD treatment</td>
<td>3.14* (1.48-6.67)</td>
</tr>
<tr>
<td>Minimally adequate treatment(^4)</td>
<td>Past-year SUD(^3)</td>
<td>3.29* (2.21-4.91)</td>
</tr>
</tbody>
</table>

SUD - substance use disorder; OR - odds ratio; CI - confidence interval

*/** Significant at the 5% significance level.

All logistic regression analyses are based on weighted Part II data and include survey dummy variables.

\(^1\) Includes: depression (with hierarchy); generalised anxiety disorder (with hierarchy), (broad) bipolar disorder (bipolar I, bipolar II and bipolar subthreshold), panic disorder, social phobia, specific phobia and agoraphobia (without panic) disorder.

\(^2\) Any SUD treatment was defined as having either received professional treatment or attended a self-help group for substance related problems in the past year.

\(^3\) Minimally adequate treatment is defined as having received SUD-specific professional treatment in the past 12 months AND (having received 4+ medical doctor visits OR 6+ visits to a non-medical doctor OR still in treatment at the time of interview).

\(^4\) Multivariable models adjust for age (<25 years, 25-34 years, 35-44 years, and 45+ years), gender, income level (survey-specific levels defined as low, low-average, high-average, and high), marriage status (never married, married/cohabitating, and separated/widowed/divorced), and education level (survey-specific levels defined as low, low-average, high-average, and high). In the models including all countries, country income level (low/middle, and high) was also included.

\(^5\) Analyses excluded as the denominator contained less than 50 cases.
Figure 1. Forest plot with 95% confidence intervals for odds ratios of comorbid mental disorder (reference=no) associated with receipt of any treatment among all substance use disorders (SUDs), minimally adequate treatment (MAT) among treated SUDs and MAT among all SUDs, for all countries combined (blue), and by low/middle income (red) and high income (green) countries (reference line at 1); note – there were not enough cases to analyse MAT among treated SUDs in low/middle income countries only so no estimate is provided.