
Predicting user satisfaction to optimize AP

selection in WLANs using Random Forests

Marc Carrascosa Zamacois

Master thesis

Master in Intelligent Interactive Systems

Escola superior politècnica UPF

2019

Thesis director

Boris Bellalta Jiménez

Acknowledgements

I want to thank my supervisor Boris Bellalta for all the support he has given me.

I would also like to thank everyone in the Wireless Networking Research Group for
all their help, both with the master and the office rodents.

Finally, the biggest thank you to my parents for standing by me all these years.

This work has been partially supported by a Gift from the Cisco University Research
Program (CG#890107, Towards Deterministic Channel Access in High-Density WLANs)
Fund, a corporate advised fund of Silicon Valley Community Foundation.

iii

Abstract

Nowadays, it is common to find WiFi networks that have a central controller con-
nected to all Access Points in the network to both organize them and collect relevant
information from them. This creates huge amounts of data which can open new av-
enues for Machine Learning to be used in wireless networks, as the amount of data
can be impossible to parse by a human. In this work, we propose a Supervised
Learning model based on Random Forests that can parse all this data and allow
us to predict the satisfaction of all users in the network. To study its performance,
we create a simulated environment from which we can extract a data set to train
the model. Afterwards, we use this model to analyze the importance of the met-
rics available and test it in the simulator to confirm its effectiveness. We then use
the same model to create a process in the simulated central controller that can re-
associate users to Access Points that will offer a better service, reaching a higher
network performance and increasing average user satisfaction.

Resum

Avui dia és t́ıpic que una xarxa WiFi tingui una controladora central connectada a
tots els punts d’accés de la xarxa, tant per configurar-los com per recollir informació
rellevant de la seva activitat. Aquests processos creen grans quantitats de dades
que ofereixen noves possibilitats per la utilització de Machine Learning en xarxes
sense fils, ja que la quantitat d’informació generada pot ser impossible de processar
per un humà. En aquest document proposem un model de Supervised Learning
basat en Random Forests que ens permetrà predir la satisfacció de tots els usuaris
en una xarxa. Hem creat una plataforma de simulació de la qual extraiem un
data set amb el qual realitzar l’estudi. Un cop tenim el model, l’utilitzem per a
analitzar les mètriques més importants d’una xarxa i el testem en la simulació per
a confirmar la seva efectivitat. Finalment, utilitzem aquest model per a crear un
procés a la controladora central que reassocïı usuaris a punts d’accés que puguin
oferir un millor servei, obtenint un major rendiment de la xarxa i incrementant la
satisfacció mitjana per usuari.

v

Resumen

Hoy d́ıa es habitual que una red WiFi tenga una controladora central conectada
a todos los puntos de acceso de la red, tanto como para configurarlos como para
recoger información relevante de su actividad. Estos procesos crean grandes canti-
dades de información que ofrecen nuevas posibilidades de utilizar Machine Learning
en redes inalámbricas, ya que la cantidad de información generada puede ser im-
posible de procesar por un humano. En este documento proponemos un modelo de
Supervised Learning basado en Random Forests que nos permitirá predecir el nivel
de satisfacción de todos los usuarios de la red. Hemos creado una plataforma de
simulación de la cual extraemos un data set con el cual realizaremos el estudio. Una
vez tenemos el modelo, lo usamos para analizar las métricas más importantes de
una red y lo testeamos en la simulación para confirmar su efectividad. Finalmente,
utilizamos este modelo para crear un proceso en la controladora central que reasocie
a usuarios a puntos de acceso que puedan ofrecer un mejor servicio, obteniendo un
mayor rendimiento en la red e incrementando la satisfacción media por usuario.

vi

Contents

Acknowledgements iii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Document structure . 3

2 Related Work 5
2.1 Wireless Networks and Machine Learning 5
2.2 The problem of AP selection . 6

3 Simulator 7
3.1 Design principles . 7
3.2 System model . 7

3.2.a Path-loss . 7
3.2.b Airtime model . 8

3.3 Simulation examples . 10

4 Predicting STA satisfaction with Supervised Learning 13
4.1 Introduction . 13
4.2 Building the data set . 13
4.3 Model selection . 16

4.3.a Brief introduction to the classification methods 17
4.3.b Model comparison . 20

4.4 Feature selection . 22
4.5 Creating a more complex scenario . 26
4.6 Validation of the model . 28

5 Integration with the simulator 31
5.1 Introduction . 31
5.2 Controller architecture . 31

5.2.a 802.11k-2008 . 31
5.2.b 802.11v-2011 . 32

vii

5.3 First attempt . 32
5.4 Improving the method . 35
5.5 Clustered environments . 38

6 Conclusions 41

viii

List of Figures

1.1 Example of considered scenario . 2

3.1 Residential scenario . 10
3.2 Channel activity for two APs . 11

4.1 Satisfaction values . 16
4.2 Feature range for similar features . 17
4.3 SVM margin 1 . 18
4.4 Logistic Regression 2 . 18
4.5 Decision Tree for flower classification 3 19
4.6 Information gain 4 . 19
4.7 K-fold cross-validation process 5 . 20
4.8 Results of the cross-validation . 21
4.9 Feature correlation with class . 22
4.10 Feature importance in Random Forest 23
4.11 First levels of two of the Decision Trees in a Random Forest 24
4.12 Feature importances for various tests 25
4.13 Correlation matrix of second data set 26
4.14 Feature importance in second data set 27
4.15 Feature importance for second wave of tests 28
4.16 Accuracy for each time interval used 29

5.1 STA satisfaction with different amounts of simulations used 33
5.2 Satisfaction of unsatisfied STAs by method 34
5.3 Satisfaction of troubled STAs with different methods 36
5.4 Single scenario with 44 STAs and 8 APs 37
5.5 Channel load for all APs, APs with same color share channel 37
5.6 Satisfaction of troubled STAs in clustered environments 38
5.7 Scenario with 8 APs and 28 clustered STAs 39
5.8 Channel load of each AP, APs with same color share channel 40

ix

List of Tables

3.1 Simulation parameters . 8
3.2 Parameters used . 10

4.1 Feature range . 14
4.2 Example of data set . 15
4.3 Tests performed . 25
4.4 Tests performed for second data set 27

5.1 Statistics for unsatisfied STAs . 35
5.2 Statistics for unsatisfied STAs with new method 36

xi

Chapter 1

Introduction

1.1 Motivation

WiFi grows more popular every day, with users wanting Internet access wherever
they go. WiFi connections represented 43% of all traffic in 2017, but this number
is expected to increase to 51%, half of all IP traffic, by 2022 [1]. The amount
of Access Points (APs) will also increase to keep up with this demand, with the
total amount of public WiFi hotspots going from 124 million in 2017 to 549 million
in 2022. The number of connected devices is also constantly increasing, with 2.4
networked devices per person in 2017, and a projected 3.6 in 2022 [2]. Furthermore,
users require higher data rates and higher amounts of traffic than ever before.

All these demands have lead to the densification of networks, meaning that the
number of APs per squared meter has increased. This allows each AP to serve a
lower amount of users, as well as offer them a higher data rate. Current efforts in the
IEEE 802.11 standard are also building towards measures to cope with the higher
demands. The 802.11ac amendment already brought the 256-QAM modulation for
a higher data rate, as well as beamforming and downlink MU-MIMO to increase the
signal power received by end users and allow APs to serve multiple users at once.
The 802.11ax amendment will bring even higher speeds through 1024-QAM, as well
as uplink MU-MIMO to allow multiple users to transmit data at the same time [3].

In this kind of dense deployments, it is common to find multiple overlapping APs,
and any change in the configuration is expected to entail a higher impact than in
sparser networks in which APs can operate in isolation. This sets up new challenges
when configuring the network, as overlapping APs will interfere with each other
unless their channel selection is not properly planned. Interference can also be
avoided by adjusting the power transmission so that the coverage areas of APs are
not overlapping. This higher AP density also creates new opportunities, as user
stations (STAs) are in range of multiple APs, allowing the offloading of STAs from
one AP to another to balance their loads. These decisions can be made by the AP, as
they can disassociate users if their load gets too high, but they are usually relegated
to a central controller that is connected to all APs in the network, thus obtaining a

1

global view of the whole network, allowing it to make more informed decisions.

A simple example can be seen in Figure 1.1, where we see that STA 2 and STA 4
are in range of two APs but decide to associate to AP 2 due to their stronger signal,
thus leading to AP 3 and AP 1 being underutilized. The central controller can see
this disparity in loads and forward a request to STA 2 in order to re-associate to
AP 1. The same can be done for STA 4, which can be re-associated to AP 3, thus
spreading the STAs evenly and reducing the load on AP 2.

Figure 1.1: Example of considered scenario

With all this information being gathered by the controller, the decision making
becomes more complicated, and we believe that machine learning algorithms can
help process all this information and help in making decisions that allow us to
optimize the network. We intend to use Supervised Learning methods specifically to
take advantage of all the logs recovered by the controller and create a user association
mechanism that improves overall network satisfaction.

1.2 Contributions

We aim to improve IEEE 802.11 WLANs by re-associating STAs to APs that will
give them a better service. More specifically we will:

1. Create a simulator tool using C++ that captures the usual behavior of IEEE
802.11 WLANs, especially for multi-AP scenarios. It needs to be capable of
performing large simulations efficiently, as it will be used to create a large data
set to analyze through Machine Learning.

2

2. Study Supervised Learning techniques that can help us to create a model to
predict user satisfaction in the network.

3. Use the aforementioned model to find the best performance metrics that should
be considered when analyzing user satisfaction in a network.

4. Implement the Supervised Learning model and evaluate its performance in a
WLAN through simulation.

5. Create an algorithm that can be used by a network controller to find the
optimal AP-STA association.

1.3 Document structure

This document is organized as follows: in Chapter 2 the state of the art is presented
for both AP selection efforts, as well as machine learning solutions to network con-
figuration. Chapter 3 summarizes the system model of our simulator, as well as the
tools used to develop it. Chapter 4 presents our Supervised Learning model, the
metrics used and its performance in a simulation. In Chapter 5 the AP selection
algorithm is implemented and tested in our simulator. Finally, some conclusions are
discussed in Chapter 6.

3

Chapter 2

Related Work

2.1 Wireless Networks and Machine Learning

Machine Learning is now more popular than ever, and their use is being studied
in many fields. Wireless network optimization is one such application, and there
is plenty of literature for WiFi as well as cellular networks and Wireless Sensor
Networks.

The authors in [4] study the benefits of Machine Learning in 5G wireless networks
and give a short description of most popular types of Learning: Supervised, Unsu-
pervised and Reinforcement Learning, including the Multi-Armed Bandits problem.
A longer and more detailed study on Cognitive Radios can be found in [5], includ-
ing a section on distributed and centralized learning, commenting on the trade-offs
involved with using one or the other.

The authors in [6] use several Multi-Armed Bandits algorithms to optimize the
channel selection and transmission power used by multiple WLANs in the same
area so as to maximize the throughput achieved by each of them. A comparison
of these algorithms is made, showing Thompson Sampling to be very suited to this
decentralized approach, obtaining fairness and avoiding high throughput variability.

In [7], the authors use a Support Vector Machine to predict a user’s dwell time on
a coffee shop using the RSSI, the transmission rate and accelerometer information
from their phone. Then this information is used to give priority to the downloads
of users that are leaving the WiFi range so that the traffic offloaded to 3G can be
minimized.

In [8] a model is proposed using both SVM and regression analysis to predict the
effect of a channel change in an AP using only AP traffic and RSSI. The SVM is
trained to find if the channel change would lead to saturation, and the regression is
used to predict the throughput and delay obtained for the saturated cases.

The work in [9] uses a decision tree to steer STAs to WiFi or 3G networks depending
on their RSSI, speed, location and type of connection to provide the highest Quality
of Service and lowest energy consumption.

5

2.2 The problem of AP selection

If we look specifically at the AP selection problem we can find that it has been
studied extensively. This is due to the way that standard association works in IEEE
802.11 networks. This method has the STAs scan all available channels for available
APs and associate to the one with the highest Received Signal Strength Indicator
(RSSI). This method leads to uneven loads on APs, as the number of users on each
AP depends on the AP location, as well as the user behaviour [10] [11].

Earlier works that did not use Machine Learning used the delay between AP beacon
transmissions to estimate the available throughput of an AP [12] or proposed modi-
fications of probe and beacon fields to inform new users of the AP load so that they
could make an estimation based on their received signal and available data rate [13].

Currently, a lot of the study has moved towards using Machine Learning techniques.
The authors in [14] use decision trees to predict if a user will have a high or low
latency in a particular AP based on their SNR, the channel utilization and the
number of devices connected. A phone app was built to detect nearby APs and
inform the central controller, which then uses this decision tree to tell the user to
re-associate to an AP that will offer a faster connection, obtaining a favorable result
in 93% of re-associations.

The model proposed in [15] uses random forests to predict the time required to
associate to an AP by classifying all available APs sensed by the STA as fast or slow
and then taking the one with the higher RSSI in the fast class. This reduces the
connection failures from 33% to 3.6% and reduces the connection time by a factor
of ten.

The work in [16] uses a decentralized approach in which STAs are equipped with
a neural network that uses the Signal to Noise Ratio (SNR), the number of re-
transmitted frames, the amount of time that the channel is busy and the number
of detected STAs to estimate the throughput obtainable on each available AP and
picking the highest one for association.

Our work in [17] presents a decentralized system for AP selection using Multi-
Armed Bandits and ε-greedy. In it, STAs explore all APs available to them at
regular intervals until satisfaction is found and then the STA sticks to the current
AP unless the network configuration changes and the satisfaction decreases.

6

Chapter 3

Simulator

3.1 Design principles

In this Chapter we will describe the tools used to create the simulator, as well as its
characteristics, assumptions made and parameters required for a simulation.

Our simulator was programmed in C++ using the CompC++ and COST libraries1.
The first one allows us to use classes as components that can be connected to one
another through inports and outports, and the second one is a sequential simulation
engine which is designed to use classes that are aware of the simulation time, letting
us trigger events based on it.

3.2 System model

We create a 3D environment with M APs and N STAs placed randomly following a
uniform distribution. After that, each STA associates to the AP with the strongest
signal available, thus following the standard procedure. STAs follow an ON/OFF
activity model. When they are active, we consider they require a throughput of
w Mbps. ON and OFF periods have a random duration following an exponential
distribution. All APs operate in the 2.4 GHz band using only orthogonal channels
of 20 MHz, meaning that only channels 1, 6 and 11 are available. The channel
allocated to each AP is chosen uniformly at random. Both APs and STAs transmit
at 20 dBm and follow the 802.11n standard in terms of data rate.

3.2.a Path-loss

We use the path-loss model from the 802.11ax task group simulation scenarios [18],
specifically, the residential scenario, as it is the one that considers multiple floor

1 http://www.ita.cs.rpi.edu/

7

http://www.ita.cs.rpi.edu/

environments. It is defined as:

PL(d) = PL0 + 20 log10

(
fc
2.4

)
+ 20 log10(min(di,j, 5))+

+(di,j > 5) · 35 log10

(
di,j
5

)
+ 18.3 · F

(
F+2
F+1
−0.46

)
+ 5 ·

(
di,j
dw

) (3.1)

where PL0 is the path-loss at one meter, di,j is the distance between STA i and AP
j, fc is the central frequency of the band used, dw is the average distance between
walls and F is the average number of floors traversed, calculated as:

F =

∣∣∣∣ZSTA − ZAP

Zceiling

∣∣∣∣ (3.2)

where ZSTA and ZAP are the z coordinates for the STA and AP, and Zceiling is the
height of the ceiling. The values of these parameters are summarized in Table 3.1.

Parameter Value

Area(m) 50×50

PL0(dB) 40.05

Frequency Channels available {1, 6, 11}
Channel bandwidth (MHz) 20

Spatial streams 2

fc (GHz) 2.4

dw(m) 5

Zceiling (m) 3

AP transmission power (dBm) 20

STA transmission power (dBm) 20

Table 3.1: Simulation parameters

3.2.b Airtime model

The airtime required by each STA is the fraction of time required when it is active.
It is calculated after every change in the network, using the required throughput
w of the STA and its transmission rate r, which we obtain through the path-loss
calculation previously described. The parameters used for this section and their
values can be found in Table 3.2.

8

We start with the transmission time for a data frame, which is given by:

T (L, r) = Tdata(L, r) + SIFS + Tack(r) + DIFS + Te (3.3)

where

Tdata(r) = TPHY +

⌈
LSF + LMH + Li + LTB

r

⌉
σ (3.4)

and

Tack(r) = TPHY-legacy +

⌈
LSF + LACK + LTB

r

⌉
σ (3.5)

Then, the airtime required by STA i, including the average back-off period, is given
by:

αi(w,L, r) =
w

L
· (E[ψ]Te + T (L, r)) (3.6)

Next we check the network capacity by adding the airtime of every STA in the
coverage area of the AP that is using the same channel:

αj(w,L, r) = min(1,
∑
∀i∈Uj

αi(w,L, r)) (3.7)

where Uj is the set of STAs in the coverage range of APj, even if not associated to
APj but using the same channel.

Finally, the actual airtime received by the STAs is set as:

βi =
αi(w,L, r)

max(1, αj(w,L, r))
(3.8)

Meaning that if αj(w,L, r) ≤ 1 the STA receives all the airtime needed, and if it is
higher than 1 it receives a proportional fraction.

9

Description Parameter Value
Preamble duration TPHY 40µs

Legacy preamble duration TPHY-Legacy 20µs
OFDM symbol duration σ 4µs
Short InterFrame Space SIFS 10µs
DCF InterFrame Space DIFS 50µs

Average back-off duration E[ψ] 7.5 slots
Empty backoff slot duration Te 20µs

Service Field length LSF 16 bits
MAC header length LMH 240 bits

Tail length LTB 6 bits
ACK length LACK 112 bits
Frame size L 12000 bits

Table 3.2: Parameters used

3.3 Simulation examples

We show the type of scenarios that can be created in Figure 3.1, where we generate
a building with 2 floors and 4 apartments of 20× 20× 3 metres, with 2 APs and 10
STAs per apartment.

Figure 3.1: Residential scenario

Figure 3.2 shows the channel occupation for an entire hour in all APs. APs with
the same color share the channel. It can be seen that AP 5 and AP 7 are in range
of each other, as they have the same load, while AP 6 is far enough not to sense
them, thus having a different load despite being in the same channel. We can also
see that users in AP 2 or 4 will suffer starvation, as their APs are overloaded, while
users in AP 3 or 6 will receive all their requested throughput properly.

10

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 0
0 5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

A
P

 1

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 2

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 3

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 4

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 5

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 6

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 7

C
h
a
n
n
e
l
L
o
a
d
(%

)

Time (min)

Figure 3.2: Channel activity for two APs

11

Chapter 4

Predicting STA satisfaction with
Supervised Learning

4.1 Introduction

In this Chapter we will model the satisfaction of a STA through Supervised Learning.
We will define this satisfaction as the STA receiving all of its requested throughput.
We will use several simulations to obtain a data set and analyze it with multiple
Supervised Learning algorithms, including an analysis of which parameters obtained
by the central controller are more important for the decision making. Finally, we
will implement the model in our simulation to test its efficacy.

4.2 Building the data set

The first thing that needs to be defined is what we want to predict. We want to
know if a STA will be satisfied (satisfaction is defined in equation 3.8 as the fraction
of airtime received by the STA vs. the required one) for the duration of an hour. In
our model, we compute this received airtime for every active period of a STA and
we can then obtain the average satisfaction over a period of time.

Satisfaction can be in the range of [0, 1] and we will consider a STA to be satisfied
if its average satisfaction is 1. With this we define two classes of STA: those that
are satisfied and those that are not, which we define as those that receive less than
100% of their requested airtime at any point in the simulation time.

Next, we define the features that can be extracted from the STAs and their APs
that can help us to create a model that predicts the classes previously mentioned.
The features available to us are:

13

1. RSSI : Received Signal Strength Indicator for the STA - AP link (dBm).

2. NSTA: The number of STAs connected to the associated AP.

3. NAP: The amount of APs in the same channel as the associated AP.

4. NAP-STA: The number of STAs connected to APs that are both in the same
channel as the AP of the STA and in range of it. Calculated at the controller
by adding the information received from all APs in the network.

5. Lavg: The average channel load perceived by the AP.

6. Savg: The average throughput w requested by the STA for each transmission
multiplied by the duration of the time the transmission lasts.

7. αavg: The average airtime requested.

Most of the features have different ranges, which are specified in Table 4.1. Those
of them that have a range of up to ∞ will be limited by our simulation scenarios.
For instance, NSTA will not be higher than the amount N of STAs that we simulate,
and NAP will have a maximum defined by M . RSSI starts at −82 as it is the default
Clear Channel Assessment (CCA) for WiFi, and its maximum is 20 dBm, which
corresponds to the transmission power received if there were no losses for that link
(and because we consider 20 dBm as the transmission power for APs).

Feature Source Range
RSSI STA R ∈ [−82, 20]
NSTA AP N ∈ [1,∞)
Savg STA N ∈ [1,∞)

NAP-STA AP/Controller N ∈ [1,∞)
NAP AP W ∈ (0,∞)
Lavg AP R ∈ (0,∞)
αavg STA R ∈ (0,∞)

Table 4.1: Feature range

The importance of these ranges lies in the fact that they are different, which will
create issues when using Supervised Learning algorithms, as they usually work by
tuning the features of a dot product of the form:

coeff0 · feature0 + coeff1 · feature1 + ...+ coeffN · featureN (4.1)

Thus, if features work in different ranges their value is disproportionate in regards
to the other features, and this can lead to problems during classification.

14

To fix this issue we will standardize the features during training, this means applying:

Standardized samplei =
samplei − µj

σj
(4.2)

where µj is the mean of the entire set of samples of feature j and σj is the standard
deviation of the feature j. This will be applied during the training phase, and then
the µj and σj of the training set are used to standardize the testing data.

Another thing to consider is that the data set needs to be balanced, requiring every
class to have a similar amount of samples. This avoids bias in the model, as a
training set that consists of 90% of samples of one class will lead to a model that
leans towards that class for predictions. For us, this means that whenever we create
a data set we will count the number of samples of each class, use all of the samples
of the class with a smaller number and then draw an equal amount of samples
randomly from the bigger set of samples of the other class.

For the generation of samples we will run 500 simulations that will last one hour each.
Then we will extract all the previously mentioned features for each STA that had
an association. We will also extract the satisfaction and according to the previously
mentioned classification we create two classes, class 0 for unsatisfied STAs and class
1 for satisfied STAs. We show an example of the data set in Figure 4.2, both for the
regular data and its standardized form.1

Regular data set
RSSI NSTA NAP NAP-STA Lavg Savg αavg Class
−50.9565 9 1 12 0.8383 2.8686 0.0554 0
−81.6883 6 1 14 0.9296 3.1814 0.4036 0
−63.0984 3 1 12 0.8355 2.2424 0.0471 0
−79.6619 6 0 6 0.3588 2.5342 0.3373 1
−74.6483 7 0 7 0.3620 2.5436 0.1285 1
−58.5088 6 0 6 0.3588 2.6818 0.0489 1

Standardized data set
0.6557 0.5783 1.2414 1.4921 0.5419 −0.4184 0.7943 0
−1.6731 −0.4673 1.2414 1.8496 1.6162 4.2599 1.3104 0
−0.2644 −1.5129 1.2414 1.4811 −1.6089 −0.5297 0.7943 0
−1.5195 −0.4673 −0.6034 −0.3861 −0.6066 3.3699 −0.7539 1
−1.1396 −0.1188 −0.6034 −0.3735 −0.5745 0.5635 −0.4959 1
0.0834 −0.4673 −0.6034 −0.3861 −0.0996 −0.5057 −0.7539 1

Table 4.2: Example of data set

1The data sets used can be found at: https://github.com/MCarrascosaZ/TFMDataSets

15

https://github.com/MCarrascosaZ/TFMDataSets

4.3 Model selection

Here we will use different methods to test our data set and find an accurate prediction
model. We will be using Python and the scikit learn package 2 for machine learning.

Our first simulation is done for an area of 40x40x3 metres with 3 APs and 20 STAs.
All STAs request 1 to 8 Mbps uniformly, the time a flow is active is an exponentially
distributed random variable with mean 30 seconds, and the time between activity is
also an exponentially distributed random variable but with mean 20 seconds. STAs
only have one flow active at a time. The reason for these particular parameters
can be seen in Figure 4.1, which shows that most STAs are satisfied, and that the
unsatisfied STAs are really close to being satisfied, with some of them having a
satisfaction ratio as high as 99.998%. These should be the more complicated cases
to predict, and with 500 simulations using different seeds we get 4447 STAs with
satisfaction equal to 1 and 4181 unsatisfied STAs (satisfaction less than 1).

Unsatisfied STAs ALL STAs

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
a
ti
s
fa

c
ti
o
n

Figure 4.1: Satisfaction values

We also show some of the feature ranges in Figure 4.2a, as well as their standardized
range in 4.2b to show the effect of our preprocessing.

2https://scikit-learn.org/stable/

16

https://scikit-learn.org/stable/

NAP Lavg Savg αavg

Feature

-2

0

2

4

6

8

10

12

14

16

V
a
lu

e

(a) No preprocessing

NAP Lavg Savg αavg

Feature

-2

0

2

4

6

8

10

12

14

16

S
ta

n
d

a
rd

iz
e

d
 v

a
lu

e

(b) Standardized

Figure 4.2: Feature range for similar features

In the following sections we will test three classification models to both validate the
possibility of proper classification and to find the optimal model for our purposes.
We will use Support Vector Machines (SVM), Logistic Regression and Random
Forests.

4.3.a Brief introduction to the classification methods

Support Vector Machines

Support Vector Machines are linear classifiers that treat data as vectors and try to
find a hyperplane that separates the two classes with the widest possible margin.
The equation of a hyperplane is:

b+
d∑

i=1

wixi = ~w · ~x+ b = 0 (4.3)

with b being the bias, ~w the vector of weights and ~x the vector of input features.
Samples will be classified as one class or another if ~w ·~x+ b < 0 or ~w ·~x+ b > 0. The
SVM then optimizes ~w so as to find the maximum margin between the two classes.
Figure 4.3 shows this idea through a set of data points belonging to different classes
that can be separated by several hyperplanes, but only one of them allows the
maximum margin to avoid misclassifying samples in the future.

17

Figure 4.3: SVM margin 3

Logistic Regression

Logistic Regression, much like SVM, is a linear classifier that separates data in two
classes, in this case with a probabilistic method. It first calculates a weighted score
like a linear regression:

S = ~w · ~x+ b (4.4)

This is then converted to a probability by using a logistic function:

p(x) =
1

1 + e−S
(4.5)

A comparison between Linear and Logistic Regression is shown in Figure 4.4, where
we see that the logistic function has a curved shape that helps to better represent
the probability of the data point being on each class.

Figure 4.4: Logistic Regression 4

3
https://www.kraj3.com.np/2019/06/support-vector-machines-SVM-basic-concepts-and-algorithm.html

4
https://medium.com/datadriveninvestor/logistic-regression-18afd48779ce

18

https://www.kraj3.com.np/2019/06/support-vector-machines-SVM-basic-concepts-and-algorithm.html
https://medium.com/datadriveninvestor/logistic-regression-18afd48779ce

Random Forests and Decision Trees

Decision trees create decision graphs like the one in Figure 4.5. They take the data
and try to split it into classes based on the amount of information that can be gained
by the split. In this way, the higher the position of the split in the tree, the more
information that is obtained by that split.

Figure 4.5: Decision Tree for flower classification 5

A split is considered to have a high information gain if it results in two groups of
samples with uneven distributions for the resulting groups of data. This is shown
in Figure 4.6, where we see that if a split results in the same amount of samples for
each class, then we have indeed gained no information and our ability to classify the
data stays the same as before.

Figure 4.6: Information gain 6

5
https://scikit-learn.org/stable/modules/tree.html

6
https://towardsdatascience.com/a-guide-to-decision-trees-for-machine-learning-and-data-science-fe2607241956

19

https://scikit-learn.org/stable/modules/tree.html
https://towardsdatascience.com/a-guide-to-decision-trees-for-machine-learning-and-data-science-fe2607241956

A common issue of Decision Trees is that they easily overfit. Random Forests are
used to solve this issue by creating X amount of Decision Trees, randomizing the
amount of features available at each split so that the trees are all different, and then
using all of the trees for the classification, selecting the mode (most frequent output)
of the entire forest as the final classification rule.

4.3.b Model comparison

To validate a model it is common to separate the data set in two parts, a training
and a testing set. The first one is used to learn the model and the second one uses
the trained model to predict the output and compare it to the actual value that
should have been predicted, thus obtaining a measure of its accuracy.

Another approach is k-fold cross-validation, a method by which the training set is
divided in K parts (or folds) of equal size. Then, K-1 folds are used for training
and the last one for testing, going iteratively over all folds to obtain an accurate
representation of the model accuracy. This allows us to first obtain several accuracy
scores over the whole training set, which helps avoid bias in situations where a single
testing phase is used. The process of cross-validation is shown in Figure 4.7.

Figure 4.7: K-fold cross-validation process 7

With cross validation we can both test the accuracy of our three chosen models, as
well as see the effect of the data standardization on them. We use a 5-fold cross
validation, meaning that we get 5 accuracy scores for each model. We show the
obtained mean and standard deviation in the scores in Figure 4.8, where we can see

7 https://scikit-learn.org/stable/modules/cross_validation.html

20

https://scikit-learn.org/stable/modules/cross_validation.html

that SVM benefits greatly from standardized data, as its accuracy goes from 80.4%
to 95.7% (a 19% increase), while the logistic regression and random forest perform
very similarly in both cases, with 95.8% accuracy and 97.4% respectively.

SVM Log. Regression Rand. Forest
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u

ra
c
y

Not Standardized

Standardized

Figure 4.8: Results of the cross-validation

The need for standardization in Logistic Regression depends on the regularization
applied, which tries to tune the coefficients to avoid overfitting, and, depending on
the parameters used, it would lead to slightly lower results. The scaled data also
helps the regression to converge faster. Decision Trees look at the entropy to perform
splits in the data, which is done one feature at a time, meaning that the range of a
feature is never a factor when analyzing it, and standardization is not needed.

Overall, the difference between the three models is very small, but Random Forest
seems to be the better one as it outperforms both SVM and Logistic Regression in
both average accuracy as well as having a slighly lower standard deviation of 0.0016
versus the 0.0062 of Logistic Regression and 0.0049 of SVM.

Finally, we fit the entire training set on all three models and test against the testing
set to obtain our final testing score, and the results are very similar to those obtained
through cross-validation, with Random Forest winning with a 97.6% over the 95.4%
of Logistic Regression and 95.6% of SVM. Consequently, in the next sections we will
use Random Forest as it seems to be the one most suited to our problem.

21

4.4 Feature selection

Now that we know that we can predict whether a STA will be satisfied or not, we
want to understand which features are more useful for the process. One way to
look at this is through the correlation between the features and the output. Figure
4.9 shows the correlation matrix of our data set. From it we can already rank the
importance of the features when classifying, as the ones with a high correlation with
the output used will help us classify correctly, while those that have a correlation
close to 0 will not be helpful. Since we are using class 0 and 1 to represent unsatisfied
and satisfied users (instead of the actual satisfaction), the sign of the correlation will
not have any meaning, as it depends purely on our classification scheme (it would
be the opposite if we used class 1 for unsatisfied users). For this reason we will only
look at the absolute correlation values.

RSSI NSTA NAP Lavg Savg αavg NAP-STA Class

RSSI

NSTA

NAP

Lavg

Savg

αavg

NAP-STA

Class

1 -0.12 0.022 -0.18 0.018 -0.63 -0.05 0.16

-0.12 1 -0.043 0.56 0.0078 0.063 0.61 -0.42

0.022 -0.043 1 0.5 -0.0055 0.0015 0.66 -0.35

-0.18 0.56 0.5 1 0.017 0.23 0.81 -0.76

0.018 0.0078 -0.0055 0.017 1 0.023 2.4e-05-0.00058

-0.63 0.063 0.0015 0.23 0.023 1 0.033 -0.22

-0.05 0.61 0.66 0.81 2.4e-05 0.033 1 -0.6

0.16 -0.42 -0.35 -0.76 -0.00058 -0.22 -0.6 1
−0.8

−0.4

0.0

0.4

0.8

Figure 4.9: Feature correlation with class

The most important feature seems to be Lavg, which has a correlation of −0.76 with
the class. This seems logical, as the higher the average load on the AP, the lower
the user satisfaction will be. We can also find a strong correlation in NAP-STA with
−0.6. NSTA and NAP have a similar −0.42 and −0.35, αavg is already pretty low
with −0.22 and the lowest two are RSSI and Savg.

22

We can also see that while most features have some form of correlation between
themselves, Savg has a correlation close to 0 with every other value in the matrix.
This could be due to the variable using the requested traffic load, not the actual
one received. It seems that αavg should be able to replace it completely, as the
airtime requested depends on both the traffic load and the RSSI, containing more
information (we can see that αavg and RSSI have a correlation of −0.63). But what
we can also find is that the correlation between both αavg and RSSI with the class
is actually really similar, which could mean that the RSSI is good enough to replace
those two features.

The highest value in the matrix is between Lavg and NAP-STA. This could mean that
their information is redundant, as they both seem to have similar correlations with
NSTA and NAP.

If we had looked only at the correlation with the output we would assume Lavg and
NAP-STA to be the most important features, but seeing as they are closely related,
we might want to consider NSTA as the second most important feature.

Before we eliminate any features however, we can also check the feature importance
through the Random Forest algorithm. In it, feature importance can be extracted
by looking at which branch level does the feature most often land. By checking
through our 100 trees we can get a good idea of how each feature is ranked. The
average importance of each feature is shown in Figure 4.10 along with its standard
deviation.

Lavg NAP-STA NSTA αavg RSSI NAP Savg
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rta
nc

e

Figure 4.10: Feature importance in Random Forest

We find that the results match the correlation matrix pretty closely, with Lavg being
the dominant feature with a 67.5% of importance, which even with its deviation of
14% would still be ahead of the rest. In this case, while the positions of the ranked
features are similar to the ones seen before, it seems like most of them are quite

23

unimportant compared to Lavg. From the correlation matrix we expected this for
Savg and αavg because of their low correlation to the class, but not for the remaining
features.

Figure 4.11 shows an example of two Decision Trees in our Random Forest, where
we can see that the nodes are different due to the random selection of features, but
that Lavg and NAP-STA appear multiple times in the first levels, while features like
RSSI do not (these trees have an average length of 19 levels).

(a) First Decision Tree in Forest

(b) Second Decision Tree in Forest

Figure 4.11: First levels of two of the Decision Trees in a Random Forest

Let us test these results. We will now train a Random Forest with different combi-
nations of the features according to what we have learned. Our first idea was that
Lavg and NSTA should be the most important features (we eliminate NAP-STA due to
its strong correlation to Lavg). But now we can see that Lavg seems to be strong
enough on its own. It would also be interesting to see how the rest of the features
predict by themselves. Table 4.3 shows the experiments to be performed and their

24

results, with Figure 4.12 showing the feature importance extracted.

Test Features Accuracy
Test 0 All features 97.4%
Test 1 Lavg, NSTA 99.4%
Test 2 Lavg 99.2%
Test 3 All except for Lavg 77.9%
Test 4 All except for Lavg and NAP-STA 74.09%

Table 4.3: Tests performed

RSSI NSTA
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rta
nc

e

(a) Test 1

NAP-STA RSSI αavg Savg NSTA NAP
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rta
nc

e

(b) Test 3

NSTA RSSI αavg Savg NAP
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rta
nc

e

(c) Test 4

Figure 4.12: Feature importances for various tests

In regard to the accuracy, Test 1 and 2 outperformed the initial testing with all
features, meaning that some of our features are actually detrimental to the classi-
fication. Figure 4.12a shows that Lavg is still responsible for most of the decision
making with an importance of 88.9%, while NSTA takes 11.1%. It is remarkable
however that Test 1 manages to perform slightly better than Test 2, so even if the
importance is not evenly distributed, it seems that NSTA can still offer some infor-
mation. Once we remove Lavg we can see that NAP-STA is not capable of replacing
it, with Test 3 achieving 77.9%, and if we remove it we can still obtain a 74.09%
accuracy with all other features in Test 4.

25

4.5 Creating a more complex scenario

One of the reasons for the low importance of several of our features is likely due to
the way we created our data set. We used a fixed number of STAs, APs, and all
STAs behaved the same. It makes sense then that features like the number of STAs
in an AP or the number of APs in the same channel will always be very similar,
thus limiting their use in the decision making. We will now create a data set with
more variability to test if these features can have a higher level of importance.

We perform 500 simulations again, but now we have two types of users, the first
ones will require a throughput in the range of [1, 8] Mbps and have a flow duration
exponentially distributed with a mean of 45 seconds, and the others will require from
[8, 16] Mbps with a flow duration also exponentially distributed of mean 30 seconds.
We also set the number of STAs randomly at the beginning of each simulation,
drawing from a range of [15, 60], with the number of APs also being chosen randomly
from [2, 8].

We will then check again the correlation and feature importance to see how these
features have evolved. In Figure 4.13 we can see that most of the correlation matrix
is fairly similar to before, the only major differences are that NAP shows a lower
correlation than before with the class, Lavg and NAP-STA, and both NSTA and NAP-STA

have increased their correlation with the class and between each other. RSSI has lost
its correlation to αavg, and the highest correlation is still between Lavg and NAP-STA,
with it being now at 0.92. It is curious that now NAP-STA has a stronger correlation
to the class than Lavg.

RSSI NSTA NAP Lavg Savg αavg NAP-STA Class

RSSI

NSTA

NAP

Lavg

Savg

αavg

NAP-STA

Class

1 -0.25 0.045 -0.25 0.0023 -0.42 -0.18 0.22

-0.25 1 -0.082 0.78 0.02 0.17 0.75 -0.64

0.045 -0.082 1 0.31 0.011 0.0064 0.44 -0.27

-0.25 0.78 0.31 1 0.06 0.24 0.92 -0.69

0.0023 0.02 0.011 0.06 1 0.49 0.026 -0.063

-0.42 0.17 0.0064 0.24 0.49 1 0.15 -0.2

-0.18 0.75 0.44 0.92 0.026 0.15 1 -0.72

0.22 -0.64 -0.27 -0.69 -0.063 -0.2 -0.72 1
−0.8

−0.4

0.0

0.4

0.8

Figure 4.13: Correlation matrix of second data set

26

Figure 4.14 shows the new feature importance, where the ranking has remained
almost the same, but Lavg has lost some importance to NAP-STA and NSTA. The
biggest difference is the standard deviation, which is now much higher than before,
showing that the three first features can swap positions in the forest, while the rest
are still not important to the classification.

Lavg NAP-STA NSTA RSSI αavg NAP Savg
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rta
nc

e

Figure 4.14: Feature importance in second data set

Finally we show the accuracy for the same tests we performed before in Table 4.4,
adding a new test where we use the top 3 features, in which we can observe that
the decrease in the importance of Lavg is clear, with test 3 increasing from 77.9%
to 93.9%. We also find that test 0, 1, 2 and 5 have the same performance, which
would mean that using only Lavg and NSTA should be enough now to get the highest
performance. Overall, it seems that increasing the variability of the scenario has
helped the model perform better than before. High variability means that more
information can be extracted from each feature, while in the previous simulation
most scenarios were fairly similar, leading to some features, like NAP having always
the same value.

Test Features Accuracy
Test 0 All features 98.6%
Test 1 Lavg, NSTA 98.7%
Test 2 Lavg 98.7%
Test 3 All except for Lavg 93.9%
Test 4 All except for Lavg and NAP-STA 90.5%
Test 5 Lavg, NSTA and NAP-STA 98.9%

Table 4.4: Tests performed for second data set

27

We also show the feature importance for each test in Figure 4.15. The importance
has shifted in favor of NSTA, as it has gone from an 11.1% to 24.1% in test 1, and
from 22% to 56% in test 4. It is remarkable that in test 4 the standard deviations
are really low compared to the other tests, showing that for that particular group
of features NSTA will always be at the top.

Lavg NSTA
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rta
nc

e

(a) Test 1

NAP-STA NSTA RSSI αavg Savg NAP
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rta
nc

e

(b) Test 3

NSTA RSSI NAP αavg Savg
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rta
nc

e

(c) Test 4

Lavg NAP-STA NSTA
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rta
nc

e

(d) Test 5

Figure 4.15: Feature importance for second wave of tests

4.6 Validation of the model

As a final validation of the prediction model we will use it in our simulator to predict
the satisfaction of the users during the simulation. To do this we create a process in
the central controller that will ask for statistics after a certain amount of time since
the beginning of the simulation. The AP relays the request to the STAs, collects
all information from them, and sends it back to the controller along with its own
statistics. Then, the controller does the prediction at a particular interval and we
store it until the simulation ends. Then we can compare if the prediction matches
the real result.

To use our model we used sklearn porter 8 to obtain a C function out of the python

8https://github.com/nok/sklearn-porter

28

model we created. We can then call it in our simulator by putting all the relevant
features in an array.

We use 500 simulations with new seeds and test two things: the first one is if our
model properly predicts STA satisfaction, and the second one is how much data
needs to be aggregated to make a prediction. We want to be able to predict the long
term satisfaction with as little data as possible, so we will trigger the prediction
mechanism at different intervals to find the optimal one. Figure 4.16 shows the
accuracy obtained with each time interval.

Since our simulations last one hour, the first test we do uses 59 minutes (3540
s), meaning that we collect data for 59 minutes, make the prediction and then
compare it with the data aggregated over the 60 minutes, obtaining an accuracy of
97.68% with the full feature set, and 97.21% with the reduced set of Lavg, NSTA and
NAP-STA, proving that our model can be used in different scenarios, and correctly
predicts the satisfaction for most STAs. Then we keep decreasing the triggering of
the mechanism to test how much data we need. We observe that for 60 seconds we
only get an 84.36%, and 84.29%, while we already go over 90% on both sets with
120 seconds. At 180 seconds we get 93.04% and 93.05%, and after that the gains are
much smaller, as 10 minutes will get us an accuracy of 96.19% and 96.54%, while
half an hour gets us 97.25% and 97.14%. Curiously, the accuracy of the smaller
feature set outperforms the full set for most intervals, but falls behind a little with
the longer intervals of 1800 and 3540 seconds.

In any case, it is clear that both feature sets are pretty much equivalent, and since
we want to use the shortest time interval possible, if we use 5 minutes (300 s) we
can use the reduced set and obtain an accuracy of 95.11%.

60 120 180 240 300 420 600 1800 3540

Data collection trigger (s)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u
ra

c
y

All features
L

avg
, N

STA
, N

AP-STA

Figure 4.16: Accuracy for each time interval used

29

Chapter 5

Integration with the simulator

5.1 Introduction

In this Chapter we will create an algorithm in the simulator that uses the prediction
model to move STAs that are at risk of being unsatisfied to other APs. We will
repeat the same simulations (i.e., use the same scenario and seed) we used during
the validation of the model in the previous Chapter, applying the changes live using
the data collection trigger of 300 seconds.

5.2 Controller architecture

In this Section we will discuss the amendments that will be considered to enable the
functionalities that are implemented in this simulation. We need two things:

1. Environmental information from the STA: We need to know which APs
are in range of the STA and what is their RSSI. This will be provided by the
802.11k-2008 amendment.

2. Re-association triggered by the controller: Re-association parameters
will be decided by the central controller, which needs a way to communicate
this to the STAs. This can be achieved with 802.11v-2011.

5.2.a 802.11k-2008

This amendment was designed at the same time as 802.11r-2008, with both of these
amendments improving user roaming speed. 802.11r allowed APs to share encryp-
tion keys so that a STA transitioning from an AP to another in the same network
could avoid performing the entire authentication process, while 802.11k defined sev-
eral methods for exchanging information between a STA and an AP using action
frames. Both amendments were incorporated into the 802.11 standard in 2012.

31

802.11k is most commonly known for its neighbor report, which allows a STA with
a low signal to send a request to its AP for information on nearby APs that could
be used for roaming. APs then send a response with a list of APs and relevant
information, such as their channel, which then allows the STA to save time by
avoiding a full scan of all channels. A STA that has received a neighbor report will
only scan on channels that are reported to have an AP, greatly shortening the scan
time.

Similar to the neighbor report, this amendment defines a beacon report, which works
the opposite way. An AP sends a request to the STA for information on the APs
that it can sense. The STA then starts a scan (whether passive or active is also
defined by the report), and sends back a response to the AP with a full list of sensed
APs, channels and the received signal strength. This is the functionality that we
will be using to properly inform our AP selection mechanism for each STA.

5.2.b 802.11v-2011

An amendment designed to improve network performance through information shar-
ing between devices, 802.11v defines the Basic Service Set (BSS) transition manage-
ment to improve roaming functionalities. Also using action frames, APs can send
a request if they are overloaded to ask STAs to roam to other APs. STAs can also
perform a request for roaming options to the AP if their signal is too low.

For our purposes, we can use a transition request to send the STA a frame containing
the ID of nearby APs so that the STA will then re-associate to one of the options
in the list. These frames are designed so that the AP list is in order of transition
preference, meaning that the first AP in the list is our preferred option for re-
association. STAs then will scan according to the priority list, and associate to
the first available option. We will use this mechanism so that the controller can
re-associate the STAs to other APs according to our algorithm.

5.3 First attempt

We add a new process to the simulator that is called after the central controller has
made a prediction for all available STAs. We also make the STAs send additional
information to the controller, like the list of APs that they sensed before associating.

Once all predictions are done by the controller, we count how many unsatisfied STAs
we have predicted for every AP, then if there is an AP without negative predictions,
we try to move unsatisfied STAs to it. To avoid overloading the unsaturated APs,
we only allow one re-association to each satisfied AP. This means that the maximum
amount of re-associations per simulation is the number of APs minus 1.

We call on this process once at 300 seconds, and after the re-associations we leave
the network as is until the simulation finishes, so that we can see if the overall
satisfaction has improved with regards to our baseline (which is the same simulation

32

without changes). Figure 5.1a shows the average STA satisfaction with and without
re-associations, where we find that there is very little difference between the two
cases. We do gain some improvement when we re-associate, but overall it looks
almost identical. This is due to two main reasons: the first one is that due to
the randomness of our simulations, some of the seeds we use lead to completely
saturated networks in which the mechanism never triggers due to all APs having
negative predictions (which happens in 30.4% of the seeds, or 5383 STAs out of
17611). The second reason is that our re-association limitation limits the amount
of moves that can be performed, meaning that the network topology is pretty much
the same after the re-associations.

Figure 5.1b shows a subset of the simulation seeds in which re-associations could
be applied to the network (meaning that we eliminate those scenarios that remain
unchanged), and now we find more differences: we can see that the 75th percentile
and the median go down slightly with our method, but the 25th percentile and the
minimum increase a fair amount, meaning that we can avoid the worst cases of
STA satisfaction with this method. Also remarkable is that the prediction accuracy
of our model for these subset of seeds is 93.47% for the baseline and 84.35% with
re-associations, meaning that we have modified the final satisfaction of 1606 STAs.

Controller OFF Controller ON
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a
ti
s
fa

c
ti
o
n

(a) All simulations

Controller OFF Controller ON
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a
ti
s
fa

c
ti
o
n

(b) Subset of simulations

Figure 5.1: STA satisfaction with different amounts of simulations used

We will now analyze the efficacy of different methods of finding a suitable AP for
re-association, these methods are:

• No bad predictions: The method previously used, in which an AP is con-
sidered only if no STA associated to it has a negative prediction.

• Unsaturated APs: APs with a reported Lavg below 1.

• APs alone in the channel: APs that do not have other APs in range that
share their channel.

• APs with less bad predictions: Those APs that have a lower count of
STAs with bad predictions than the source AP of the unsatisfied STA.

33

In Figure 5.2 we show the satisfaction for the unsatisfied STAs (i.e., those with
satisfaction < 1 at simulation end). We can observe that the less effective method
is using APs with less negative predictions, since Figure 5.2d shows that there is
barely any change in the satisfaction of the STAs, aside from the 75th percentile
going down, which is not desirable. The other three methods seem to improve the
satisfaction of all the troubled STAs, but only using APs with no bad predictions
in Figure 5.2a leads to the entire boxplot being raised from its baseline. Using only
APs that do not share channel seems to also be very effective, but its minimum
remains the same.

Controller OFF Controller ON
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a
ti
s
fa

c
ti
o
n

(a) APs with 0 negative predictions

Controller OFF Controller ON
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a
ti
s
fa

c
ti
o
n

(b) Unsaturated APs

Controller OFF Controller ON
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a
ti
s
fa

c
ti
o
n

(c) APs alone in the channel

Controller OFF Controller ON
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a
ti
s
fa

c
ti
o
n

(d) APs with less negative predictions

Figure 5.2: Satisfaction of unsatisfied STAs by method

Table 5.1 shows more detailed statistics, with the number of unsatisfied STAs with
and without the controller, and the satisfaction achieved by the unsatisfied STAs.
All methods increase the number of unsatisfied STAs, but this is not unexpected, as
all the methods try to balance the amount of unsatisfied STAs on the network, so our
re-associations will always have this side-effect. The redeeming factor is the average
satisfaction for these troubled STAs, as we can see that two methods increase their
average satisfaction and throughput. The highest increase is for the APs without
bad predictions, where we see that the satisfaction increases from 76.42% to 79.37%.
Both it and the APs alone in the channel are the only ones that do not decrease
the average overall satisfaction, as they keep it at 81% and 75% respectively. From

34

this we can say that while we do not improve the overall network satisfaction, we do
decrease, however slighlty, the gap between satisfied and unsatisfied STAs, leading
to a fairer network.

Controller OFF Controller ON

Method Unsatisfied STAs Unsatisfied STAs
No bad pred. 9756 10731

Unsaturated AP 12465 13528
APs alone in ch. 12852 13488

APs with less bad pred. 14550 15565

Method Avg. satisfaction Avg. satisfaction
No bad pred. 76.42% 79.37%

Unsaturated AP 74.16% 75.33%
APs alone in ch. 71.34% 72.34%

APs with less bad pred. 70.25% 69.85%

Table 5.1: Statistics for unsatisfied STAs

5.4 Improving the method

In the previous section we only attempted a single re-association round. In this
section we modify our method to trigger periodically every 5 minutes, obtaining the
new information from the modified network, predicting again and attempting more
re-associations. We still maintain the same limit to simultaneous re-associations,
but now since we will repeat the process multiple times, we get to perform many
more re-associations than before.

We want to combine the two methods that offered the most positive results, so first
we use the APs with zero bad predictions as a metric repeated every 5 minutes
over the first half hour, and then leave the rest of the simulation to remain static.
Afterwards we combine the two methods and use only APs that have zero bad
predictions and are alone in their channel. For both methods we also add the
stipulation that the channel of the new AP has to be different to the channel of the
source AP.

Table 5.2 shows the new statistics of unsatisfied STAs for both methods, where we
see that the added periodicity does help in improving their effect with both going
from 75% to more than 80% satisfaction. For the overall satisfaction of the network,
the first method goes from 80.82% to 81.72%, while the second one goes from 80.61%
to 82.17%. It seems that combining the two methods is the best approach, but it is
also true that the second one is more restrictive, happening only in 319 of 500 seeds
(63.8%), while the first method is triggered more frequently, in 370 seeds (74%).

35

Controller OFF Controller ON

Method Unsatisfied STAs Unsatisfied STAs
No bad pred. 10226 12481

No bad pred. + alone in Ch. 8957 10411

Method Avg. satisfaction Avg. satisfaction
No bad pred. 75.83% 81.12%

No bad pred. + alone in Ch. 75.47% 80.59%

Table 5.2: Statistics for unsatisfied STAs with new method

Figure 5.3 shows the boxplots for both methods in comparison to the baseline where
the controller is off (we use the baseline of the first method, as it is the higher of
the two), and with it we can observe that the first method is the better of the two,
as its boxplot reaches higher values. Compared to the baseline without a central
controller, it increases the median from 79.8% to 87.4%, the 25th percentile from
61% to 70%, the minimum from 18.32% to 31.59% and the 75th percentile from
95.05% to 97.18%.

Baseline No BP No BP + Alone
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a

ti
s
fa

c
ti
o

n

Figure 5.3: Satisfaction of troubled STAs with different methods

Finally, we evaluate the performance of our final method with a single scenario in
which we can see how the network is affected. We show the chosen scenario in Figure
5.4, which is a curious case in which the APs closest to each other are on the same
channel. Figure 5.5 shows the activity seen by each AP.

36

3

31

40

24

7

39

12

29

34
7

0

32

35

36

40

8

0

2

40

41 16

1

11

4

18

19

37

28

42

Z
 (

m
)

21

33

30

38

1

6

2

20

252

14

Y (m) X (m)

3

23

20

4

27

20

9

5

3

43

10

10
26

6
17

13

22

30

5

0 0

15

0 1

AP

STA

Figure 5.4: Single scenario with 44 STAs and 8 APs

There are 19 re-associations in the whole simulation: in the first interval at 5 minutes
three STAs move from AP 0 to AP 1, 5 and 6, and a single STA moves from AP
4 to AP 2. We can see how the load at AP 0 diminishes by almost half after this
change, while the others get an increment in their own load. As AP 2, 5 and 6 are in
range of each other, this means that they all get the proportional increase of 3 new
STAs. At 10 minutes AP 2, 5, 6 and 7 move STAs to AP 4, 0, 3 and 1 respectively.
This are very good steerings, as the receiving APs are almost unaffected by the new
STAs, while the source APs get a much needed decrease in their load.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 0

STA in STA out

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 1

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 2

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 3

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 4

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 5

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 6

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 7

C
h
a
n
n
e
l
L
o
a
d
(%

)

Time (min)

Figure 5.5: Channel load for all APs, APs with same color share channel

At 20 minutes three STAs move from AP 6 to AP 0, 3 and 4. With this, AP 6
halves its load, but AP 0 and AP 4 suffer in the next interval, while AP 3 can deal
with the new load. At the 25 minute interval AP 0 and AP 4 both move two STAs

37

to APs 1, 2, 5 and 6. As before, since APs 2, 5 and 6 share the channel, this does
not work well for them, meanwhile AP 1 is still far below saturation.

In the final interval AP 2, 5 and 6 move 4 STAs to AP 0, 3, 4 and 7. AP 0, 4 and
7 share the channel, so these changes are unfavorable, and AP 3 especially suffers
in this situation, which we can only assume is due to a really bad RSSI on the new
STA. On the other hand, AP 2, 5 and 6 have a really low load for the rest of the
simulation.

In general the system acts in the desired way, with the APs with a heavy load moving
STAs to those that have a lighter one. We chose this particular case because it shows
that our system cannot deal with certain situations, in this case the fact that 6 of
the 8 APs are sharing the channel with 2 other APs. As a result we can see the STAs
ping ponging between saturated APs. Every once in a while AP 1 and 3 were chosen
however, which was the optimal solution, and this is the reason why the unsatisfied
STAs achieve higher satisfaction with this method, because the overloaded APs
manage to send some of them to the underloaded APs. The optimal solution to this
problem however, was to change a couple of APs to the unused channel 11.

5.5 Clustered environments

Up until now we have considered scenarios in which the users are placed randomly
following a uniform distribution. In such situations, the strongest RSSI is a good
method of association since it spreads the STAs evenly across all APs. We will now
consider clustered scenarios in which users form groups of 10 STAs around 5 squared
meters. In such situations, STAs tend to overload a single AP and others remain
underused.

Baseline No BP
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a

ti
s
fa

c
ti
o

n

Figure 5.6: Satisfaction of troubled STAs in clustered environments

38

Figure 5.6 shows the satisfaction for troubled STAs, where we can see a similar
behaviour as before, with the entire boxplot raising once we use our algorithm. The
25th percentile raises from 46.6% to 55.2%, the median goes from 68.87% to 78.61%,
and the 75th percentile raises from 91.2% to 94.3%.

The average satisfaction for the troubled STAs goes from 67.43% to 72.8%, a 7.9%
increase. For the entire network, the satisfaction goes from 71.57% to 73.62%, a
2.8% increase.

We also show a single scenario for the clustered distribution. Figure 5.7 shows the
top view of the scenario, where we can see that most users are clustered around AP
0 and AP 4.

0 5 10 15 20 25 30

X (m)

0

5

10

15

20

25

30

35

40

Y
 (

m
)

17

2

15 11

25

20

6

5

24

9

12

27

13

7

18

4

10

3

1

2

6

1

4

22

7

3

5

14

21

1916

26

0
8

23

0

AP

STA

Figure 5.7: Scenario with 8 APs and 28 clustered STAs

Figure 5.8 shows the channel load for the simulation. At 5 minutes AP 0 moves 5
STAs to AP 1, 2, 3, 6 and 7, but we can see it is still saturated due to the high
number of STAs associated to it and AP 4. Then at 10 minutes AP 0 moves 5 more
STAs to AP 1, 2, 3, 6 and 7 again, and we can see these APs can deal with the new
load since they were mostly empty. AP 0 now finally has a more manageable load.
At 15 minutes STA 0 moves 4 more STAs, and AP 3 also moves another. These
STAs are moved to AP 1, 2, 5, 6 and 7. Now that AP 2 is becoming overloaded, it
moves 3 STAs at 20 minutes to APs 0, 1, and 7, and AP 3 also moves one STA to
AP 4. Since AP 2 and 3 share the channel, these 4 moves leave them mostly without
traffic. At 25 minutes AP 0 and 1 move 2 and 3 STAs each to APs 2, 3, 5, 6 and
7. And finally at 30 minutes AP 4 and 6 move three and one STAs respectively to
APs 0, 1 , 3 and 7.

In the final configuration we see that we have managed to take the huge load of AP

39

0 and 4 and spread it among underused APs like AP 1, 2, 5 and 7, which started the
simulation almost without users. We have also seen that in clustered environments
we see more re-associations, with AP 0 moving 14 STAs before any other AP needs
to do so.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 0

STA in STA out

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 1

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 2

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 3

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 4

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 5

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

A
P

 6

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100
A

P
 7

C
h

a
n

n
e

l
L

o
a

d
(%

)

Time (min)

Figure 5.8: Channel load of each AP, APs with same color share channel

40

Chapter 6

Conclusions

In this work we have studied the use of Supervised Machine Learning for wireless
network optimization. We have created a model using Random Forests that can
predict if a STA will be satisfied over the course of an hour with an accuracy of
98.9%, trained in networks with different user profiles and network topologies. We
have used this model to evaluate which are the best features to be used to identify
problems in the network.

We have seen that the commonly used RSSI is not a good measure of the quality
of service that a STA will receive, and that the channel load perceived by the AP,
as well as the number of STAs in the channel are both much more correlated with
the satisfaction of a user. This is due to the channel load implicitly containing a lot
of this information, as it is highly correlated to the number of users in the network,
and of course, if the users need a lot of throughput this will also be reflected in the
channel load.

We then validated the model by introducing it into our simulator, which we have
used to test different intervals to find the shortest one with which to make accurate
predictions. We then used the number of negative predictions as a way to select
candidate APs to which we can steer STAs to improve their service. With this
method we balance the number of unsatisfied STAs to other APs, increasing the
average satisfaction of troubled STAs by 6.9% and bringing an increase to the min-
imum satisfaction of 72.4%. Finally, we showed a scenario with the system in place,
showing that it manages to offload STAs from overused APs to underused ones.

In the future, it would be interesting to extend the use of our predictions to both
improve the current system as well as use it for other mechanisms, such as channel
selection or balancing STAs between frequency bands. The current prediction model
could also be expanded with the addition of more classes, so as to consider different
ranges of user satisfaction, which could then be used for preferential steering of STAs
with worse predictions. Further improvements can be made to our simulator as well,
such as considering APs and STAs with different 802.11 amendments and adding
user mobility.

41

Bibliography

[1] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Up-
date, 2017–2022 White Paper. Technical Report 1486680503328360, February
2019.

[2] Cisco. Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White
Paper. Technical Report 1551296909190103, February 2019.

[3] B. Bellalta. IEEE 802.11ax: High-efficiency WLANS. IEEE Wireless Commu-
nications, 23(1):38–46, February 2016.

[4] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and L. Hanzo. Machine Learning
Paradigms for Next-Generation Wireless Networks. IEEE Wireless Communi-
cations, 24(2):98–105, April 2017.

[5] M. Bkassiny, Y. Li, and S. K. Jayaweera. A Survey on Machine-Learning
Techniques in Cognitive Radios. IEEE Communications Surveys Tutorials,
15(3):1136–1159, Third 2013.

[6] Francesc Wilhelmi, Cristina Cano, Gergely Neu, Boris Bellalta, Anders Jonsson,
and Sergio Barrachina-Muñoz. Collaborative spatial reuse in wireless networks
via selfish multi-armed bandits. Ad Hoc Networks, 88:129–141, 2019.

[7] J. Manweiler, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi. Predicting
length of stay at wifi hotspots. In 2013 Proceedings IEEE INFOCOM, pages
3102–3110, April 2013.

[8] S. Kajita, H. Yamaguchi, T. Higashino, H. Urayama, M. Yamada, and M. Takai.
Throughput and delay estimator for 2.4ghz wifi aps: A machine learning-
based approach. In 2015 8th IFIP Wireless and Mobile Networking Conference
(WMNC), pages 223–226, Oct 2015.

[9] N. Abbas, S. Taleb, H. Hajj, and Z. Dawy. A learning-based approach for
network selection in WLAN/3G heterogeneous network. In 2013 Third Inter-
national Conference on Communications and Information Technology (ICCIT),
pages 309–313, June 2013.

[10] Magdalena Balazinska and Paul Castro. Characterizing Mobility and Network
Usage in a Corporate Wireless Local-area Network. In Proceedings of the 1st In-
ternational Conference on Mobile Systems, Applications and Services, MobiSys
’03, pages 303–316, New York, NY, USA, 2003. ACM.

43

[11] David Kotz and Kobby Essien. Analysis of a Campus-wide Wireless Network.
Wirel. Netw., 11(1-2):115–133, January 2005.

[12] S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D. Towsley. Facilitating
access point selection in ieee 802.11 wireless networks. In Proceedings of the 5th
ACM SIGCOMM Conference on Internet Measurement, IMC ’05, pages 26–26,
Berkeley, CA, USA, 2005. USENIX Association.

[13] H. Gong, K. Nahm, and J. Kim. Distributed fair access point selection for
multi-rate ieee 802.11 wlans. In 2008 5th IEEE Consumer Communications
and Networking Conference, pages 528–532, Jan 2008.

[14] Kaixin Sui, Mengyu Zhou, Dapeng Liu, Minghua Ma, Dan Pei, Youjian Zhao,
Zimu Li, and Thomas Moscibroda. Characterizing and improving wifi latency
in large-scale operational networks. In Proceedings of the 14th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys ’16,
pages 347–360, New York, NY, USA, 2016. ACM.

[15] C. Pei, Z. Wang, Y. Zhao, Z. Wang, Y. Meng, D. Pei, Y. Peng, W. Tang,
and X. Qu. Why it takes so long to connect to a wifi access point. In IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications, pages 1–9,
May 2017.

[16] B. Bojovic, N. Baldo, and P. Dini. A Neural Network based cognitive engine
for IEEE 802.11 WLAN Access Point selection. In 2012 IEEE Consumer Com-
munications and Networking Conference (CCNC), pages 864–868, Jan 2012.

[17] Marc Carrascosa and Boris Bellalta. Decentralized AP selection using
Multi-Armed Bandits: Opportunistic ε-Greedy with Stickiness. CoRR,
abs/1903.00281, 2019.

[18] Task Group AX. Tgax simulation scenarios. Technical report, IEEE P802.11,
2015.

44

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Document structure

	Related Work
	Wireless Networks and Machine Learning
	The problem of AP selection

	Simulator
	Design principles
	System model
	Path-loss
	Airtime model

	Simulation examples

	Predicting STA satisfaction with Supervised Learning
	Introduction
	Building the data set
	Model selection
	Brief introduction to the classification methods
	Model comparison

	Feature selection
	Creating a more complex scenario
	Validation of the model

	Integration with the simulator
	Introduction
	Controller architecture
	802.11k-2008
	802.11v-2011

	First attempt
	Improving the method
	Clustered environments

	Conclusions

