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Abstract
Light field imaging is an emerging technology which allows capturing an image
with richer information than just a two-dimensional image. Traditional cameras
capture only light intensity. In contrast, light field cameras, also known as plenop-
tic cameras, are able not only to capture light intensity but also its reaching direc-
tion. This additional information allows for new strategies permitting to come up
with a solution of several classical problems in image processing and computer
vision such us image refocusing, occlusion detection, depth estimation, and 3D
reconstruction. However, this new technology, known as light field imaging, has
even more challenges than the traditional one. Mostly, these challenges are fo-
cused on the difficulty of dealing with the huge quantity of data when a light field
image is captured, the way to compress this data and also how to display these
kinds of images. On this project, develope some methods to show the results
obtained using light field images and discusse the advantages and improvements.

Resum
El camp del light field imaging és molt nou i té la possibilitat de capturar molta
més informació del món real que no la que pot capturar una imatge bidimen-
sional. Les càmeres tradicionals capturen únicament la intensitat de la llum in-
cident. D’altra banda, les light field cameras, també conegudes com a càmeres
plenòptiques, no tan sols poden capturar la intensitat de la llum sinó que també
la direcció de la qual provenen els rajos. Aquesta informació addicional permet
l’estudi de noves estratègies per solucionar problemes del camp del processament
d’imatge o visió de computador tals com a image refocusing, occlusion detection,
depth estimation, i 3D reconstruction. No obstant, aquesta tecnologia, coneguda
com light field imaging, presenta nous problemes respecte a la fotografia tradi-
cional. La gran majoria d’ells centrats en la dificultat de tractar amb la gran
quantitat d’informació que ens proporciones les light field images, aixı́ com els
problemes de compressió o de display. En aquest projecte, desenvolupar alguns
metodes i mostrar els resultats obtinguts utilitzant light field images i comentar els
avantatges i les possibles millores.
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Chapter 1

INTRODUCTION

Emerging developments in the camera industry have provided additional infor-
mation compared to traditional photography able to facilitate classical computer
vision tasks. One of these improvements has been made in the photography field.
Until now, most of the people only knew about traditional photography, which
is only able to capture two-dimensional images containing spatial information.
However, opposed to conventional photography, it appeared plenoptic cameras
which are able to capture additional information of the scene, obtaining not only
spatial information but also angular information referred to the angle light rays
reach a given point. With the emergence of this development, a new field of study
in the image processing and computer vision field called light field imaging has
emerged.
Light field images are taken by plenoptic cameras. Plenoptic cameras, also known
as light field cameras, have an internal mechanism able to capture complete infor-
mation about the scene. This mechanism is composed of a traditional camera lens
(the so-called main lens), a sensor, and an array of micro-lens, which is the nov-
elty. This structure could be seen in Figure 1.1.

Furthermore, the resulting image taken by a plenoptic camera is an array of images
each one having a different perspective of the scene.
Intuitively, it could be like, using the traditional camera, but by taking the image
from different but closer points view. Additionally, plenoptic cameras provide us
the exact position of each view, hard to control by conventional cameras.
An example of some of the images resulting from the output array of images from
a light field camera is shown in Figure 1.2. On this image it is shown some varia-
tions such as the distance between the bottom margin of the photo and the wood,
the distance between the top margin of the photo and the buddha, or also the part
where the dice occludes the wood.
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Figure 1.1: The mechanism of the plenoptic camera. First, it has a sensor, which
is the one that captures the light. Secondly, the main lens that from one incoming
ray creates a ray for each miro-lens of the array, which is the part that makes
plenoptic cameras able to capture the extra information.

Figure 1.2: An example of some images obtained with the plenoptic camera where
there is a small variation on the point of view.

2



Moreover, the additional information captured makes it possible to solve some
challenging tasks in the computer vision and image processing fields such as 3D
reconstruction [Feng et al., 2018], image matting [Cho et al., 2014], segmentation
[Zhu et al., 2017], image refocusing [Fu et al., 2015], depth estimation [Williem
and Kyu Park, 2016], among others.
However, there are still many challenges such as the improvement of the methods
proposed in the literature for the mentioned previous tasks, or other challenges
which remain mainly unsolved such as how to display this kind of images, how to
compress them efficiently, among others. All of these challenges appeared due to
the acquisition of high-dimensional data and the difficulty of managing this huge
quantity of information.

1.1 Motivation

There are many applications of image processing and computer vision very use-
ful in biomedical fields such as depth estimation or 3D reconstruction. However,
in some cases these application have not accurated results due to the lack of in-
formation. Hence, the novel field of light field imaging, which captures more
information from a single scene and allows dealing with problems of image pro-
cessing and computer vision from a different point of view and strategies.

Considering all these aspects, I got attracted by the idea of contributing to the
research of this novel field by studying the improvements on different applications
of image processing and computer vision.

1.2 Project Goals

The main goal of this project is to widen the knowledge about light field imaging
and to go deeper into analyzing some classical problems of image processing and
computer vision field. The objectives are listed below.

1. Understand the information provided by a light field camera and how to use
this information in order to solve some problems of image processing and
computer vision fields.

2. Understand how could be done image refocusing using light field images.

3. Learn how it is possible to do an algorithm of depth estimation robust to
occlusions using light field images.
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4. Obtain an occlusion map using the idea proposed by W.Williem [Williem
and Kyu Park, 2016] focused on the computation of the entropy. On this
occlusion map will be marked those pixels which are occluded in any sub-
apperture image.

5. Obtain a 3D Reconstruction using only one light field image. And to take
some conclusions of how could be improved the 3D Reconstruction if it will
be used more than one light field image.

1.3 Project Structure

In this first Chapter, an introduction about plenoptic cameras has been done, to-
gether with the motivation to carry out this research and its goals. Chapter 2
explains some previous concepts which are important to fully understand the al-
gorithms presented in this work. In Chapter 3, a brief description of related work
in the field is described. Later on, in Chapter 4, an introduction of the dataset used
for all the tasks approached is given. Chapter 5 focuses on some of the applica-
tions that light field imaging has, the methods implemented to tackle with each of
the tasks, as well as, some results obtained for each of the different applications.
Finally, Chapter 6 includes a discussion and the conclusions extracted after all the
developed project.
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Chapter 2

PREVIOUS CONCEPTS

In this chapter, some fundamental concepts that will be needed to understand the
remaining parts of this project will be detailed.

• Plenoptic or Light-field Camera: This camera uses a different mechanism
formed by the traditional camera lens, the sensor, and a micro-lens array as
it is seen in Figure 2.1. The function of the micro-lens array is to allow the
sensor to record additional information about the incoming rays, including
the light coming from different distances.

Figure 2.1: This image represents how the micro-lens array works. The array of
micro-lens is placed between the lens and the sensor. From one incoming ray the
lens create a ray for each micro-lens.

• Light Field Images: Images obtained by a plenoptic camera. These images
contain spatial and angular information. A light field image is mathemat-
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ically defined as L(x, y, u, v) where (x, y) refer to the spatial coordinates
and (u, v) refer to the angular ones.

– Subaperture Images: The subaperture images are images created by
keeping the angular coordinates constant and varying the spatial coor-
dinates. An example of some subaperture images of the same captured
scene is shown in Figure 2.2. In both images there are some parts
where it is noticeable the difference of the points of view.

Figure 2.2: Two subaperture images of a scene captured by a light field camera.

– Angular Patch: Represent an image which has been created in an
opposite way than subaperture images. More precisely, for each an-
gular patch the spatial coordinates are constant while the angular ones
are varying. An example of some angular patches obtained from the
subaperture images is shown in Figure 2.3.

• Entropy: The entropy is a measure of the randomness of a certain distribu-
tion P , and it is defined mathematically as

H = −∑
i

Pilog(Pi) (2.1)

where Pi denotes the probability that the event i happens.

• Photo-Consistency: Photo-Consistency (frequently referred as color con-

stancy or brightness constancy in the case of graylevel images) is the prop-
erty of constancy of color of a same scene point but when seen onto images

6



Figure 2.3: Each of these images are angular patches.

representing the captured scene from different points of view or cameras.
It is a term used in the computer vision and image processing fields to de-
termine if there is similarity between pixels or patches (a patch is a neigh-
borhood or connected group of pixels) from different photos under different
views. In light field imaging, the photo-consistency frequently refers to the
similarity of the pixels of the angular patch.

There are some cases where the photo-consistency might be broken; for in-
stance, when there is an occlusion. In occlusion regions, the color-constancy
does not hold.

• Disparity: Disparity is the distance between points of a conjugate pair
when the two images are superimposed. In other words, the displacement
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between the locations of the two features in the image plane is called the
disparity [Jain et al., 1995]. It could be defined mathematically as:

x2 = x1 + d(x1) (2.2)

where x1 and x2 are the points projected on each image plane. In the case
of light field imaging x1 and x2 are points on different subaperture images
and d(x1) is the disparity for each point in the central subaperture image.
This situation is shown in Figure 2.4.

Figure 2.4: 3D point projected on 2 images plane under different perspective.

Moreover, the disparity is inversely proportional to the depth.

• SIFT: SIFT (Scale Invariant Feature Transform) is a method of feature ex-
traction used in image processing and computer vision fields. This algo-
rithm aims to extract invariant and highly distinctive features. In order to
do it, the descriptors of these features are invariants to image scale and ro-
tation, easing the process of matching it correctly with other images under
such transformations, which are related to the change of point of view from
which an image has been captured. Moreover, this algorithm is invariant to
blur, contrast and illumination changes, noise, occlusions, and invariant to
affine transformation.

• Triangulation: The main goal of triangulation methods is to estimate the
position of a set of points in the 3D space given their projection (2D plane)
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on two or more images under different points of view. The set of points
are correspondences across the various images used. In order to apply the
triangulation method, the correspondences and the Projection matrices of
each camera are needed.

A graphical example of how triangulation method works is shown in Figure
2.5. In this example, it can be seen how the 3D points are generated. It is
created by the intersection of the two rays created by the 2D points from
different cameras (these 2D points need to be correspondences).

Figure 2.5: A graphical example of the triangulation method.

9





Chapter 3

RELATED WORK

Nowadays, many studies are focused on light field imaging since it is a novel
field with a large number of applications such as depth estimation [Williem and
Kyu Park, 2016, Jeon et al., 2015], image matting [Cho et al., 2014], image seg-
mentation [Zhu et al., 2017], and among others. Indeed, the fact that a light field
image contains the same scene seen from different but close points of view and,
moreover, without dismissing cameras position, involves several advantages such
as managing to deal with some problems of image processing and computer vi-
sion, being able to capture images under different perspective without the need of
several cameras, to mention just a few. Furthermore, this field gives the opportu-
nity to understand better the scene through the information obtained by a camera.
Many years ago, the studies were focused on how the function of the plenoptic
camera could be described mathematically [Adelson et al., 1991]. Now, the most
remarkable studies are focused on different applications such as image refocusing
[Fu et al., 2015, Ng, 2005], or occlusion detection, for instance, in order to better
understand the image formation process and artificial vision related problems, and
this understanding be applied in other methods, and also how the different tech-
niques could be improved.

On the other hand, 3D reconstruction is also a field of computer vision intensely
studied in order to be able to recover a 3D scene using several images captured
from different points of view. Some methods to do the 3D reconstruction rely
on triangulation using the algebraic method [Bardsley and Li, ], or Voxel-based
methods [Seitz and Dyer, 1999, Kutulakos and Seitz, 2000], which are calibrated
methods.

Despite applications based on 3D reconstruction using light field images are not
a hot topic, 3D face reconstruction is attracting significant attention [Feng et al.,
2018].
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Chapter 4

DATASET

As mentioned above, light field imaging is very novel. Possibly as consequence of
that, the number of publicly available datasets is limited. In addition, due to lim-
ited resources, having a plenoptic camera to take our own images was unfeasible.
Finally, we choose to work with the same dataset used in [Williem and Kyu Park,
2016], which is called 4D light field benchmark [Wanner et al., 2013]. The main
reason for that is that the 4D light field benchmark is a widely used dataset in
research and this fact make it easier in order to provide a comparison of our work
with the one of others.

4D light field benchmark dataset contains seven light field synthetic images in h5
format. This format is used to store and organize large amounts of data such as
the ones obtained with a plenoptic camera. Moreover, a Matlab function called
hdf5info contained in the Light Field Toolbox v0.4 allows us to extract the infor-
mation present in the h5 file, such as the focal length, size of the image, angular
and spatial resolution, among others. In order to obtain the subaperture images,
we use a function already provided by Matlab called hdf5read.

Below, in Figure 4.1 there is an example of some of the different light field images
and different subaperture images of the chosen dataset.
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Subaperture images

Mona.h5

StillLife.h5

Buddha2.h5

Horses.h5

Figure 4.1: Subaperture images from the 4D light field benchmark dataset, which
is the one used in this project for all the different tasks and applications.
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Chapter 5

LIGHT FIELD IMAGE

APPLICATIONS

In this section, first, the contributions and then, the applications on image refocus-
ing, depth estimation, occlusion detection, and 3D reconstruction that have been
developed in this project are explained. Each application is structured in four sec-
tions. First, a brief introduction and overview of the concrete application; after
that, an overview of existing related work on the topic; then the proposed method
is explained; and, finally, some results will be shown and a brief discussion on the
topic is provided.

The applications of image refocus (detailed in Section 5.2) and depth estima-
tion (explained in Section 5.3) ground on the algorithm proposed by W.Williem
[Williem and Kyu Park, 2016]. An approach to occlusion detection is presented in
Section 5.4. We propose a method that exploits the concept of entropy proposed
by W. Williem in his work on depth estimation [Williem and Kyu Park, 2016].
In particular, as explained in Section 5.4, the method proposed in Williem’s work
includes a management of occlusions that we propose to leverage to explicitly de-
tect regions of occlusions. Finally, Section 5.5 is devoted to obtain an approximate
3D reconstruction. The proposal is based on the calibration method proposed on
[Wang et al., 2018] and also SIFT and triangulation method in order to approxi-
mately recover the 3D scene from the light field images of it.

An important point to mention is that all the applications are done using the images
from 4D light field benchmark dataset mentioned in previous Section 4.
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5.1 Contribution

In order to learn how it is applied different methods such as image refocusing
and depth estimation using light field image we used the method proposed by W.
Williem [Williem and Kyu Park, 2016] and also his code.
Moreover, in order to obtain a method of occlusion detection, we use the idea of
using the entropy proposed by W. Williem [Williem and Kyu Park, 2016] and we
proposed the different thresholds in order to determine if there is an occlusion.
Finally, in order to obtain the 3D reconstruction, the first step is to compute the
extrinsic and intrinsic parameters and then do the triangulation. To obtain the pa-
rameters, we use the code proposed by [Wang et al., 2018]. Furthermore, to do
the triangulation, the code is proposed by us using the knowledge obtained on the
subject of 3D Vision.

The contribution of this paper is summarized as follows:

• Keen observation on the method proposed by W. Williem [Williem and
Kyu Park, 2016] in order to obtain the first and the second application and
detect if any improvement could be done.

• Propose different thresholds in order to obtain an occlusion map.

• Obtain a 3D reconstruction using one light field image by triangulation
method and detect if any improvement could be done in order to compute
the intrinsic and extrinsic parameters.
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5.2 Image Refocus

The term refocusing refers to the fact of focusing a specific part of the image when
the photography is already taken. The refocus could be applied only to all objects
which are at a certain depth, to all the objects at different depths, or to all the
objects at all the depths. This last case would output the so-called all focus image
and is a very challenging problem in traditional photography with conventional
cameras. In fact, this procedure relates to changing the depth of field (DOF).

Although, image refocusing is a problem hard to manage by using only the infor-
mation provided by a conventional camera in traditional photography, refocusing
a light field image is an easier task due to the redundant information that plenop-
tic cameras provide. This additional data is the angular information, which allows
understanding better the scene and as a result, be able to refocus the image. An
example of some image refocusing results are shown in Figure 5.1 where in the
left hand side image is seen that the depth which is on focus is the nearest one,
in the central image the depth on focus is one in the middle and on the right hand
side photo the depth on focus is the farthest one.

Figure 5.1: 3 images which the depth on focus is a different on each image. Image
courtesy [Bando and Nishita, 2007].

This application is widely applied in light field imaging due to the ease to do
refocusing using light field images.

5.2.1 Related Work

In 2008, the first study, [Xiao et al., 2008], of light field image refocusing ap-
peared, where the information of the frequency domain is used. Since that mo-
ment, some studies related to the obtention of accurated refocus algorithms began.
Most of these algorithms are based on the obtention of the distance measurement
[Hahne et al., 2016], having an evaluation method using the frequency or the spa-
tial domain.
In 2014 appeared another algorithm of image rectification and refocusing. How-
ever, this method was computationally less effective than previous methods.
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For this reason, Wenxing Fu et al. [Fu et al., 2015] presented an algorithm using
the information of the space domain and the frequency domain, computed using
the fast Fourier transform.

5.2.2 Method

The method for light field image refocusing proposed in this project grounds on
the method by W. Williem [Williem and Kyu Park, 2016]. This method exploits
the information of the spatial domain and the angular information.
A light field image is used as an input from which the different subaperture and
the angular images are obtained. The algorithm is done following the two steps
presented below in Sections 5.2.2.1 and 5.2.2.2, respectively.

5.2.2.1 First step: Finding correspondences between images

The main goal of this step is to find the correspondences between the central image
and the subaperture images. First, each pixel of the light field image L(x, y, u, v)
is remapped to the so-called sheared light field image, which is an image created in
such a way that, for each angular coordinates (u, v) fixed, we extract the disparity-
compensated information from the subaperture image associated to (u, v), but
having into account a disparity label candidate α. The disparity label candidate
is related with the depth resolution and as similar as the disparity of a determined
object, more focued will be the object. The sheared light field image is done using
the following equation.

Lα(x, y, u, v) = L (x+∇x(u, α), y +∇y(v, α), u, v) (5.1)

where (x, y) are the spatial coordinates and (u, v) the angular ones, ∇x(u, α) =
(u− uc)αk and ∇y(v, α) = (v − vc)αk. In fact, ∇x(u, α) and ∇y(v, α) play
the role of disparity factors, that is, spatial displacements. Doing this step, it
is obtained as many sheared light field image as depth label candidates we have
chosen.
The key of the disparity label candidates is that those objects which are on the
depth correspondent to disparity, α, will appear on focus. The objects at other
depths will not appear on focus and as farther as the α, more blurred are the
objects.
Once the sheared light field images are computed, it could be generated the an-
gular patches by extracting the pixels in the angular images. In other words, the
sheared light field image is composed of angular images as it is seen in Figure 5.2.
On this image, it is shown the different angular patches, which size is 9x9.
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Figure 5.2: It is seen the different angular patches by zooming on the sheared light
field image.

5.2.2.2 Second Step: Create the Refocus Image

The goal of this second step is to obtain the refocus image from the angular im-
ages. This is done by averaging the values in the angular domain of the sheared
light field image, according to the following formula:

Lα(x, y) =
1

N

∑
u,v

Lα(x, y, u, v) (5.2)

If the angular patch belongs to an object which is not in focus (not in the same
depth we are looking at using the sheared light field image), the resulting mean of
the angular patch will not be in focus. However, if the angular patch belongs to
an object on focus, the pixels resultant after doing the mean will be in focus. This
difference is seen in Figures 5.3 and 5.4.
As it is seen in Figure 5.3 those objects which are not on focus are not clear on the
sheared light field image. Having a look on the zoom which is done on the dice,
an object which is not on focus, the edge of the black point is not sharp.
However, Figure 5.4 is a good example which shows that if the object is on focus,
the shape is sharper as it could be seen on the dice. Specifically, the edge of the
dice, as it could be seen in the zoom, is very sharp. It means that on this Figure the
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Figure 5.3: Zoom on one part of the image that is not on focus

chosen depth label candidate corresponds to the depth where is placed the dice.

Figure 5.4: Zoom on one part of the image that is on focus

5.2.3 Results and Discussion

When the subsequent previous steps are completed, we obtain an image which is
refocused. This image has on focus all the objects which are on the chosen depth
label. For instance, two possibles results are shown on the first row in Figure 5.5
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where two images appear. In both of them, it appears a part which is on focus
such as the bottom part of the wall or the tablecloth. It means that the chosen
disparity label candidate α corresponds to the lower disparity (the farthest depth).
In addition, in the left image, the rear part of the floor is also on focus because it
is at the same depth than the wall. Moreover, other possibles results are the ones
which are seen on the second row in Figure 5.5 where the part which is on focus is
the nearest part of the floor, also the closest part of the wood, the dices, the wasp,
and finally the ball because the chosen disparity label candidate corresponds to
the lower depth one (closer to the camera).

In all the images, it could be observed that as farther from the focused depth more
blurred is the image. A good example to observe it is on the case of the floor
where, gradually, is becoming more blurred. It is clearly seen in the right image
of all rows in Figure 5.5, where in the first one the focused part is the tablecloth
and in the second row, the part which is focused is the opposite part which is the
ball and the wasp.

Finally, in order to show the difference and the progress between the lowest dis-
parity and the highest disparity, on the third row in Figure 5.5 it is shown a result
obtained choosing a middle disparity. On these images the parts on focus are the
column, the buddha, the metal and also some berries.
Moreover, on the left image of this third row, what is being observed is that the
wall is more focused than the case of the left image of the first row. This is
strange because is the farthest part of the image and it should be related to the
lowest disparity. This problem could be produced due to an illumination change
that makes the algorithm fail. It is seen in the bottom part of the wall where in
the left image on the first row is less blurred than the left image on the third row.
However, the statue is also on focus, which is correct as it is placed in front of
the wall. Also, the gradual blur we have mentioned above can be observed, for
instance, on the floor on the left image of the third row.
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Buddha StillLife

Figure 5.5: Two examples of the refocus image solution. On the first row the
chosen disparity is the lower one, on the second row the chosen disparity is the
higher one, finally, on the third row the chosen disparity is one in the middle.
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5.3 Depth Estimation

Depth estimation is one of the many problems of computer vision that have cap-
tured a lot of attention over the years. A few years ago, when the plenoptic cam-
eras were not invented nor the stereo cameras, depth estimation was done using
different images (usually a pair) which were taken from different points of view.
However, by using plenoptic cameras is not necessary to take different images
from different point of views because a light field image is an array of images
which show different but closer perspectives of the scene. As previously men-
tioned, the images on this array are called subaperture images.
Depth estimation is an important tool for 3D reconstruction because it provides
the position where the object is placed. An example of a 3D reconstruction algo-
rithm where depth estimation is used is shown in Figure 5.6.

Figure 5.6: First row shows the 3D reconstruction and on the second row a depth
map. Images from [Im et al., 2019]

Light field depth estimation has become one of the most important applications
in the field. The basic idea behind it is that using the subaperture images, the
algorithm is able to estimate the depth where each object is located. Depth based
on light field images is able to be estimated since, the subaperture images capture
the scene from different but close points of views. In other words, the subaperture
images play the role of the images from different points of view in traditional
photography.

5.3.1 Related Work

Due to the importance of light field depth estimation, there is a large number of
algorithms in this field that let us estimate the depth using various light field char-
acteristics in order to compute the data costs.
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The first algorithm did by Wanner and Goldluecke [Wanner and Goldluecke,
2012] took into account knowledge of trigonometry and projective geometry.
They measure the local line orientation in the epipolar plane image. In this case,
the method was not robust due to the dependency on the angular line.

After this method, Tao et al. [Tao et al., 2013] used the information of correspon-
dences and defocus cues to improve the method that had been proposed before. In
particular, this method uses the variance in the angular patch as correspondence
data cost and sharpness as defocus data cost. Moreover, this method was extended
by adding a regularization term and also modifying the correspondence and defo-
cus data measure, which in turn is computed by the sum of absolute differences.

In addition, Jeon et al. proposed a method [Jeon et al., 2015] to estimate the depth
based on the phase shift theorem. In this method, the data costs are computed
using the sum of absolute differences and gradient differences. Despite of the
accuracy obtained using this method, it fails when an occlusion is produced.

Another method was proposed by Chen et al. [Chen et al., 2014]. It is focused
on the bilateral consistency metric on the angular patch in order to obtain the data
cost. Although its robustness to occlusions, this method is sensitive to noise.

In 2015, a method was proposed by Wang et al. [Wang et al., 2015] who make an
assumption related to the invariance of the edge orientation in angular and spatial
patches. In this method, the goal is to find the minimum cost in each patch for
both data costs. They introduced a new regularization term to make the method
robust to occlusions. However, this only lets the appearance of a single occluder
in each angular patch.
Another contribution was made by Lin et al. [Lin et al., 2015] who introduced the
infocus and consistency measure. But there were no many comparisons for each
data costs without global optimization. After that, Kolmogorov and Zabih [Kol-
mogorov and Zabih, 2002] used the visibility constraint to model the occlusion
and afterwards it optimize it by using graph cut. However, this method fails when
an occlusion is produced. Wei and Quan [Wei and Quan, 2005] tried to solve this
problem adding a smoothness term.
Bleyer et al.[Bleyer et al., 2016] proposed another method which is based on the
visibility of a pixel in corresponding images to design the occlusion cost. The
main problem was the difficulty when there is a huge number of views. Vaish et
al. proposed a method [Vaish et al., 2006] where the entropy has already used in
order to obtain the data cost.

In 2016, [Williem and Kyu Park, 2016] introduced a method based on using the
information of the entropy they made the algorithm robust to occlusion without
using any constraint. And at the same time, this method achieves to be less sensi-
tive to noise. Our proposed method grounds on this paper.
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5.3.2 Method

As we have seen in the previous section, there are many algorithms focusing on
estimating the depth. However, these algorithms fail when an occlusion is pro-
duced or there is presence of noise on the image. The method used in this section
is robust to occlusions and less sensitive to noise. First, in order to estimate the
depth, two data cost are computed, the correspondence data costs and adaptive
defocus response. In the correspondence data cost is computed for each angular
patch the pixel color randomness and in the adaptive defocus response is com-
puted to achieve robustness in presence of occlusions.
To compute the data cost for each disparity candidate α an angular patch for each
pixel and a refocus image must be estimated. In order to create the angular patch,
first the correspondences between every pixel on the center image and all the
subaperture images are created. To create every angular patch, each pixel in the
angular images is extracted from the sheared light field Lα(x, y, u, v) based on the
disparity label candidate.

As many problems in computer vision, the depth is estimated by minimizing an
energy. This energy is computed by computing two data costs that measure how
proper the label α of each pixel is. This is defined by the following formula:

E =
∑
p

Eunary(p, α(p)) + λ
∑
p

∑
q∈N(p)

Ebinary(p, q, α(p), α(q)) (5.3)

where p is a pixel of the image, α(p) denotes the disparity label at p and N(p)
is the neighborhood around the pixel p. Moreover, Ebinary(p, q, α(p), α(q)) is the
smoothness restriction that forces the consistency between neighbor pixels, which
is multiplied by λ > 0 which represents a weighting factor [Williem and Kyu Park,
2016]. Ebinary(p, q, α(p), α(q)) is defined by the following formula:

Ebinary(p, q, α(p), α(q)) = ∇I(p, q)min(|α(p)− α(q)|, τ) (5.4)

where ∇I(p, q) is the intensiti difference between the pixel p and the pixel q and
τ is the threshold.
Finally, Eunary(p, α(p)) is the term accounting for how proper the label α is. This
data term is formed by the sum of the correspondence response and the adaptive
refocus response as in Equation 5.5.

Eunary(p, α(p)) = C(p, α(p)) +D(p, α(p)) (5.5)

where C(p, α(p)) corresponds to the correspondence response that is computet us-
ing the Angular Entropy metric and D(p, α(p)) is the adaptive defocus response.
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5.3.2.1 Angular Entropy Response

Mostly, the correspondence data cost is focused on the similarity between pixels
in the angular patch. However, if there is an occlusion, the photo-consistency
is totally broken. This is the reason why many algorithms tried to be robust to
occlusions in order to estimate the depth.
In the paper [Williem and Kyu Park, 2016] this work is grounded on, it is proposed
a novel occlusion-aware correspondence data cost by computing the entropy in
the angular patch, which is referred to as angular entropy metric. The entropy is
computed for each channel (R,G,B) independently and then the average between
the three channels is calculated to obtain the total entropy, using the following
equation:

Cavg(p, α) =
HR(p, α) +HG(p, α) +HB(p, α)

3
(5.6)

The idea behind this metric is the following: if an occlusion is produced, the en-
tropy will be higher due to the fact that randomness increases. The advantage
is that the entropy is computed for each angular patch, which is formed by pix-
els from the different subaperture images and each subaperture image contains
different views. Having it into account, it may well be possible that, in one sub-
aperture image a certain pixel is not occluded and, in another subaperture image
the correspondent pixel is occluded. This will be reflected on the angular patch.
Moreover, if in the angular patch there are no occlusions, the entropy on the in-
correct depths is even higher than the entropy on the correct depth. However, if in
a certain pixel there is an occlusion the entropy between the wrong depth and the
proper depth is still existing but, is not as different as in the other case. It is in that
way, how it is possible to estimate the depth being robust to occlusions.

5.3.2.2 Adaptive Defocus Response

The idea of the adaptive defocus response is to find the minimum response among
the neighborhood regions. In other words, this data cost plays the role of the
similarity constraint, because it is trying to achieve a minimum difference between
one pixel and its neighbor. This data cost is the one that make the algorithm
less robust to noise. The novel part is to make the region, where the response is
computed, smaller in order to avoid the effect of the blurry artifact.
In order to obtain this cost, the refocus image L̄α, given by equation 5.2 in Section
5.2, must be computed. This part is done, as it is explained in the Refocus sec-
tion (Section 5.2), by computing the average of the angular patch. The Adaptive
Defocus Response is computed by following the equation:
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Dc(p, α) =
1

| Nc(p) |
∑

q∈Nc(p)

| Lα(q)− P (q) | (5.7)

where Nc(p) is the subpatch of the pixel p and P is the center image.

Finally, in order to obtain the depth map, it is needed to compute the correct depth.
To do so, the energy is minimized, in other words, choosing the minimum energy
for each pixel.
In addition, in the method of W. Williem he uses the graph cut method in order to
optimize efficiently the energy of the algorithm [Boykov et al., 1999].

5.3.3 Results and Discussion

Once all the process is done, if it is only used the method of the angular entropy
response, the results obtained are the ones shown on the first and the second row
in Figure 5.7. It can be clearly seen some noise on the dices or on the T. This
happens because the adaptive defocus response is not computed, which is the one
that makes the algorithm less sensitive to noise. However, when an occlusion is
produced the algorithm detects it in an accurated way.

However, if the method is done using only the adaptive defocus response, the re-
sults obtained are worse than the result shown on the first and the second row in
Figure 5.7. As it is shown on the third row in Figure 5.7 the result is less accurated
because there are estimated different depths on the same object, when this object
is on the same depth, for instance, on the case of the dice.

Finally, if we use both data costs the result obtained is shown on the last row in
Figure 5.7. As it is seen the result obtained has not a significant difference to the
result obtained using only the angular entropy response. So in terms of efficiency,
it is better to use only the first data cost. In fact, it happens because the entropy
not only is higher when there is an occlusion but also when the angular patch does
not have the correct depth. So, by using only the information of the entropy it
could be estimated the depth being robuts to occlusions. In fact, it is seen on the
image of the first row where the cube occludes the wall and it is well estimated,
or also on the case of the plants.

Notice, in all cases of Buddha image, there is one part of the image where the
algorithm fails. This part is on the column, which is always on the same depth
but the algorithm detects the upper part as it would be in a higher depth. Now
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if we take a look at the image in Figure 5.8, it could be seen that in the column
there is a soft illumination change which could be the responsible of this error.
Another point to comment is in the case of the Mona image where the depth of
the ball is estimated correctly even though it is a spherical volume. And also, the
gradual change of depth on the case of the cube and the letter T , which is also
well estimated.
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Mona AER

Buddha AER

Buddha ADR

Buddha both

Figure 5.7: Two examples of depth maps. On the first and the second rows us-
ing the Angular Entropy Response, on the third row using the Adaptive Defocus
Response and on the last row using both data costs.
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Figure 5.8: Buddha image
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5.4 Occlusion Detection

Occlusion detection is a method used in many problems of image processing and
computer vision field such as video tracking, 3D reconstruction, depth estimation
and among others. For instance, in the case of video tracking, it is important to
detect the occlusions to construct an algorithm able to track objects even in cases
where they are partially occluded. If an occlusion appears during the process
of video tracking, the tracked object is lost, so making the algorithm robust to
occlusions make it easier to find the object when the occluder disappear. An
example of the result obtained after applying a method robust to occlusion could
be seen in Figure 5.9. In this example, the algorithm can detect a person even
being partially occluded.

Figure 5.9: An example of a tracking method robust to occlusions. Image courtesy
[Tang et al., 2014].

Moreover, while performing 3D reconstruction, an occlusion region prevents to
establish the correspondences between those objects which are occluded in one or
more views. An example of the result obtained after applying a 3D reconstruction
algorithm robust to occlusions is shown in Figure 5.10. In this example, it is easily
seen that the mouth and the eyes which are occluded, are reconstructed quite good.
However, there are other cases where performing the 3D reconstruction is hard
to achieve because the occluder is too large or there are many changes and it is
impossible no know how to reconstruct the object. However, in the case shown in
Figure 5.11 it is seen a 3D reconstruction which is not robust to occlusions. It is
seen clearly that the eye is not well reconstructed.
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Figure 5.10: An example of a 3D reconstruction robust to occlusions. Image
courtesy [Tu´̂an Tr`̂an et al., 2018]

Figure 5.11: An example of a 3D reconstruction not robust to occlusions. Image
courtesy [Tu´̂an Tr`̂an et al., 2018]

In the case of light field imaging, as far as we know, there are no previous works
focused on occlusion detection. Nonetheless, some works have been done in depth
estimation being robust to occlusions being the goal to estimate the depth correctly
instead of estimating the occluders. An example of an accurated depth map esti-
mation by [Huguet, 2009] is shown in Figure 5.12. On this depth map, it is seen
that even if the presence of occlusions, the depth is estimated correctly.

5.4.1 Related Work

In the field of light field imaging, there is a particular interest in finding an algo-
rithm able to detect occlusions in the given image. Since many years ago, many
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Figure 5.12: An example of an accurated depth map. Image courtesy [Huguet,
2009].

studies are focused on achieving this goal to be able to create a method of depth
estimation robust to occlusions, most of them fail on specific cases, for instance,
when appears more than one occlusion regions.
W. Williem and In Kyu Park [Williem and Kyu Park, 2016] have achieved the goal
of creating an algorithm for depth estimation robust to occlusions, three years ago
by using the angular entropy metric.

5.4.2 Method

The method for occlusion detection presented on this project uses the entropy
information to check if there is an occlusion. Our method follows some steps:

1. First, the angular patch for each pixel is computed.

2. Second, we compute the histogram associated to each angular patch.

3. Third, the entropy related to each histogram is computed.

4. Finally, we threshold the entropy values to determine if there is an occlu-
sion.

As explained in the refocus section (Section 5.2), a pixel which is not in the correct
depth will not be on focus. As a result, this pixel is blurred in every subaperture
image, so the entropy of this angular patch will be higher that the entropy com-
puted on the angular patch which is on focus.
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Moreover, when there is a pixel occluded in some subaperture image, the entropy
of the angular patch that contains that pixel will be higher. Both cases are shown
in Figure 5.13, where the entropy is high not only when the angular patch is not
on focus but also when there is any pixel of the angular patch which is occluded.

Figure 5.13: Example of the histograms of different angular patches. Image
source: [Williem and Kyu Park, 2016]. In this Figure, each row corresponds to
the same pixel but using different depth. In the left column a non-occluded pixel
is shown and the right column shows an occluded pixel.

Once the entropy is computed, a threshold should be determined in order to decide
if the pixel is occluded or not. This threshold could be fixed or adaptive.
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5.4.2.1 Fixed Threshold

In the case where we have a fixed threshold, the basic idea is to fix a certain value
for the threshold which would determine if the pixel is occluded or not. In order
to determine if there is an occlusion, the condition that the value of the entropy
should accomplish is to be higher than the value of the threshold. If it is not higher,
the pixel will not be occluded.
The idea behind this condition is, as we mentioned above when a pixel is occluded,
the entropy of the angular patch is high due to the change of intensity between the
pixel in one subaperture image and the other subaperture image.

This number is chosen by computing the mean of all the entropies computed.
Specifically, the value of the threshold would be a little bit higher than the value
of the mean of all the entropies. As a result, it will be detected the outliers of the
entropy, which intuitively, should correspond to those pixels occluded.

5.4.2.2 Adaptive Threshold

The adaptive threshold requires some more computations since the idea behind
this kind of threshold is to compute the entropy of the same angular patch, but for
different depths labels candidates, which are not only the estimated one. Then, the
mean of these entropies is computed with Equation 5.8. After that, we compute the
difference between the entropy of the correct depth label and the mean of entropies
as it is shown in Equation 5.9. Finally, the condition accomplished in order to be
an occluded pixel is that the value of the difference between the entropies should
be lower than the value of the threshold. If this condition is not achieved, the pixel
will not be occluded.

Hmean =
Hα1 +Hα2 +Hα3 +Hα4

4
(5.8)

DiffH =| Hmean −Hαgood
| (5.9)

In this case, we use, if exists the information of the depth estimated, the depth
estimated +10, the depth estimated +20, the depth estimated −10 and the depth
estimated −20. It means that it is used the information of 5 different depths. How-
ever, in some cases, the object is placed in a low depth and the depth estimated
−20 does not exist. So, depth estimated −20 would be equal to the lower depth
and, using this logic, the same happens if the estimated depth is a high depth.
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The logic behind this condition is that, as we mentioned above, when a pixel is
occluded the entropies of the angular patch for different depth labels are not re-
ally different. However, if the pixel is not occluded, the entropies are much more
different.

Finally, the pixels that accomplish the condition will be indicated by changing the
value of those pixels to 255 and the other ones will be changed to 0.

5.4.3 Results and Discussion

Using the method explained in the previous section, in Figure 5.14 it is shown the
result obtained after using the Fixed Threshold strategy, where the white pixels
are those pixels that in, at least, one subaperture image are occluded. On the left
hand side image, the threshold is too high, so there are few pixels with this entropy
and not all the pixels occluded are marked as white. On the contrary, on the right
hand side image, the threshold used is too low, so there is a lot of pixels with this
entropy and most of them are not occluded in any subaperture image. Finally, on
the image in the center, it can be seen that the threshold is the best suited for this
application because most of the pixels in white are edges and it will be occluded in
some subaperture image. However, it could be seen that the method of detecting
occlusions using the entropy fails when there is an illumination change.

Figure 5.14: Using 3 different values. From left to right thr = 3.1, thr = 2.1 and
thr = 1.

Moreover, in Figure 5.15 it can be seen the result after applying the method to
obtain the occlusions using the Adaptive Threshold strategy. If this case is com-
pared with the one using a Fixed Threshold, the Adaptive Threshold works worse
because this threshold selects pixels as occluded when they are not.
It could be seen that most of the pixels chosen as pixels occluded are placed in
points where there are illumination changes. Furthermore, as it is seen on the right
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hand side image, there are selected pixels placed on objects with textures, for ex-
ample, the wall. Both problems are caused because when there are abrupt changes
from one pixel to another, for instance, in the case of illumination changes, the en-
tropy will be high. So, when is computed the difference between the entropy on
the correct depth and the entropy on the other depths, the difference would be
small.

Figure 5.15: Using 3 different values. From left to right thr = 0.2, thr = 0.25 and
thr = 0.9.

Finally, if we use both thresholds at the same time the result obtained is the one
reflected in Figure 5.16. Using both thresholds we achieve better results than the
ones obtained using the Fixed Threshold or the Adaptive Threshold. Using both
thresholds the method is more robust to illumination changes, it is seen in the cen-
tral image which is the best result obtained because it is the most accurated one.
In the image on the left, there are few pixels chosen and in the image on the right,
there are many pixels selected and most of them could not be occluded.

Figure 5.16: Using 3 different values. From left to right thrfix = 2.1 thradap = 1.5
, thrfix = 2.3 thradap = 0.5, thrfix = 1.5 thradap = 0.5.

Mostly, the pixels selected as occluded pixels are on the edges of the objects,
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because the subaperture images have different but close points of view, so the
occluded points between the different subaperture images are those placed in the
edges.
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5.5 3D Reconstruction

3D reconstruction refers to the creation of three-dimensional shapes from a set of
images under different points of view. This is a field very explored from a few
years ago until now, especially in computer vision and image processing fields,
and it is mostly solved using projective geometry. The redundant information
provided by light field cameras made research on 3D reconstruction a top subject
on that field. This fact is produced due to the contribution that light field imaging
has on the field of 3D reconstruction, which is considered an advantage because
light field images have more angular information. The angular information pro-
vides more details in order to do the 3D reconstruction so that the results could be
more accurated.

5.5.1 Related Work

The studies realized until now in 3D reconstruction using light field images are
focused on 3D face reconstruction [Feng et al., 2018]. An example of this appli-
cation is shown in Figure 5.17. Also, other studies are focused on the extraction
of the calibration parameters as a pre-processing step before performing the re-
construction [Wang et al., 2018].

Figure 5.17: Example of 3D face Reconstruction using light field images. Image
courtesy of [Feng et al., 2018].

The use of light field images for 3D face reconstruction is really useful due to the
high resolution of the plenoptic cameras, especially the angular resolution, and
also because a 4D light field image captures the intensity at each pixel for each
channel and the direction of light rays. Most of the methods used to reconstruct 3D
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faces use common techniques such as Shape from Shading [Atick et al., 1996], 3D
Morphable Models [Blanz et al., 1999] or CNNs [Jackson et al., 2017]. In Shape
from Shading, the variation of shading is used to reconstruct the face and in the
case of 3D Morphable Models, it is projected the 3D face in a low-dimensional
subspace.

5.5.2 Method

The method used in order to perform 3D reconstruction is divided into two parts.
The first one is the computation of the calibration parameters. In this part, the
calibration parameters are computed using a recent adaptation of Zhang Method
[Wang et al., 2018] to the case of light field images, which is going to be explained
later. On the other hand, the second part is based on making the 3D reconstruction
by using the triangulation method in order to find the point in the 3D space.
In the following subsections, first of all, we are going to explain the theory of
Zhang’s method using conventional images, then it is going to be described the
adaptation in order to be able to working using light field images [Wang et al.,
2018]. And finally, how to achieve the 3D reconstruction using the triangulation
method.

5.5.2.1 Zhang’s Method

Zhang’s Method is a method for camera calibration. The goal is to obtain the
intrinsic and extrinsic parameters of the camera that will allow us to convert a 2D
point into a 3D point. The intrinsic parameters are contained into a matrix K, with
the structure shown in following equation:

K =

⎛
⎜⎝ αx δ u0

0 αy v0
0 0 1

⎞
⎟⎠ (5.10)

where αx = f · mx and αy = f · my are the components of the focal length
in terms of pixels, δ is the skew coefficient and u0 and v0 are the coordinates of
the principal point in terms of pixels. If the focal length has no scale factor, the
principal point would be in the center of the image and the matrix would follow
the following structure

K =

⎛
⎜⎝ fx δ x0

0 fy y0
0 0 1

⎞
⎟⎠ (5.11)
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In order to compute the previously mentioned parameters we will follow the fol-
lowing steps:

1. First, to compute the correspondences between the planar pattern and the
images under different perspectives.

2. Secondly, to build matrix V . This matrix is composed by the homographies
that relates the images.

3. Then, to find ω by doing the SVD of V . This matrix is known as Image of
the Absolute Conic, which is independent of the camera position.

4. Finally, to extract the calibration parameters, K, by Cholesky factorization
of ω.

On the other hand, the extrinsic parameters denote the coordinates system trans-
formation from the 3D world coordinates to the camera coordinates. These extrin-
sic parameters are computed having into account that camera calibration is done
by using a planar pattern. Having into account this fact, the equation used in order
to find R and t is

[Kr1Kr2Kt] ∼ [h1h2h3] (5.12)

From this equation, by isolating we can obtain the equation

r1 =
K−1h1

|| K−1h1 || ; r2 =
K−1h2

|| K−1h2 || ; r3 = r1 × r2; t =
K−1h3

|| K−1h1 || (5.13)

The resulting matrix is composed by a rotation and a translation and has the fol-
lowing structure

M =

(
R T
0 1

)
(5.14)

where R is the rotation, which is a matrix 3x3 and T is the translation, which is a
vector 3x1.

5.5.2.2 Approach based on Light Field Imaging

Focusing on the 3D reconstruction from light field images, the process is really
similar than the previous one, but using a modified algorithm for light field im-
ages, which contain a significant amount of information compared with traditional
images. An important point to take into account, it is the fact that due to the dif-
ficulty of having a plenoptic camera, this application will be done using only one
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light field image formed by 81 subaperture images.
Then, the steps to perform in order to obtain the calibration parameters are the
following ones:

1. First, to compute the correspondences between the planar object and every
subaperture image for each light field image (in our case only one light field
image).

2. Second, to solve the H, which is the homography matrix that relates two
images. On the algorithm this project grounds on is used the Levenberg-
Marquardt algorithm.

3. Third, to calculate ω in order to compute K, which is the matrix of intern
parameters.

In order to compute the camera calibration matrix’s parameters, it is important
to use a light field image which contains a planar surface, for example, a wall,
a painting, or some other planar object. This object or surface could not be oc-
cluded. These conditions are needed to be accomplished because to obtain the
correspondences, is required to mark four points that must be the same on each
subaperture image. As it is indicated in Figure 5.18. These four points would be
four of the correspondences which would be used to obtain the transformations
between the different subaperture images. However, this method of looking for
the correspondences has the problem of being not as accurated as other methods
are because it is very challenging to mark the exact point not only on the 81 sub-
aperture images but also in the different light field images.

Once the camera calibration matrix’s parameters are obtained, the extrinsic pa-
rameters of the camera, that is the rotation and the translation with respect to
world coordinates, can be computed by using the matrix of intern parameters K
and the homography H.
Finally, using the intrinsic and extrinsic parameters, the camera projection matrix,
usually denoted by P , is constructed. It is used to project 3D points of the real
world into the image plane which is in 2D. This projection is done by applying
the formula

x = PX (5.15)

where X are the points in the 3D real world coordinates and x are the points into
the image plane. Notice that both of them (X and x) are represented in homoge-
neous coordinates. The Matrix P is composed by the product of two matrices: the
camera calibration matrix K and the matrix of extrinsic parameters [R|t] as seen
in the following equation:
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Figure 5.18: The 4 corners chose to compute the correspondences

P = K3x3[R3x3|t3x1] =
⎛
⎜⎝ f δ x0

0 f y0
0 0 1

⎞
⎟⎠

⎛
⎜⎝ r11 r12 r13 tx

r21 r22 r23 tx
r31 r32 r33 tx

⎞
⎟⎠ (5.16)

After applying the previous concepts and formulas, the result obtained is the in-
trinsic and the extrinsic parameters. The extrinsic parameters are different for each
image, so it is obtained a matrix P, which will be different for each subaperture
images. By using both kind of parameters, we are able to know the position of the
cameras respect to the image plane and vice versa as it can be seen in Figure 5.19.
If others light field images were used, there will be groups of planes capturing
different points of view, where each group corresponds to a light field image.

The next step is to recompute the correspondences using a well-known method for
feature extraction called SIFT. It is necessary to recompute the correspondences
because the goal is to recover all the scene and, until now, we only have the cor-
respondences of one part of the image shown in Figure 5.20. As a result, it will
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Extrinsic parameters (camera-centered)

Figure 5.19: The different image planes in order to obtain the angular information
of 1 light field image

be reconstructed only this part. However, if we recompute the correspondences of
the whole image it will be possible to reconstruct all the scene. That is the reason
why it is recomputed the correspondences using SIFT.

Figure 5.20: The 121 points which are the correspondences computed in the first
step
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After applying SIFT and finding the correspondences between two subaperture
images is obtained. An example can be seen in Figure 5.21. On this image, it is
seen that the correspondences are homogeneously dispersed, therefore, there are
parts of the image where there are many correspondences and others where are few
correspondences. As a result, on the 3D reconstruction will be less information to
reconstruct the light than the wall or the cube.

Figure 5.21: Some matchings between two subaperture images. As we can see,
there are some mismatchings in the flowers from the background due to the repe-
tition of the flowers.

Once the correspondences are recomputed, it is going to be used the triangulation
method in order to find the 3D point. To do this process, it is needed, at least, two
subaperture images and the correspondents matrices P . Afterwards, we want to
find the point in 3D space which corresponds to the point in 2D space. Mathemat-
ically the goal is to find x = PX and x′ = P ′X , where the 3D point is the same,
x and x′ are the correspondences in both subaperture images and P and P ′ are
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the projection matrices. Both formulas give us the system of equations shown in
Equation 5.17, which is going to be solved.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1(p3X) = p1X
x2(p3X) = p2X
x′
1(p

′
3X) = p′1X

x′
2(p

′
3X) = p′1X

(5.17)

After that, the 3D point correspoding to every correspondence are obtained. And
it is going to be reconstructed the 3D scene.

5.5.3 Results and Discussion

The result obtained by using the proposed method of marking on the different sub-
aperture images the four points and obtaining the correspondences, is the matrix
K, which contains the internal parameters of the camera. In this case, the K has
the structure shown in the following equation:

K �
⎛
⎜⎝ 9× 103 0 383.5

0 8× 103 383.5
0 0 1

⎞
⎟⎠ (5.18)

All the value obtained in matrix K are possible. First of all, the central points are
the correct ones because the size of the subaperture images is 767 × 767. Also
if it is taken into account the fact that the variation of perspective between the
different subaperture images is very small, the focal length should be very high.
The reason is because the method detects each image as it would be taken from
different cameras located very far away from the scene. In brief, if the variation is
small, the focal length should be high, which coincides with our result.

Once we did the triangulation and we plot the 3D reconstruction using four sub-
aperture images, the result obtained is shown in Figure 5.22. In the 3D plot, which
is a profile view, we are able to distinguish some of the objects of the scene, such
as the wood cube or the ball. Moreover, some purple points can be seen, which
are points ont the T object and some green points which come from the plant. An
important point to mention is that the back and profile sides of the wood cube do
not exist. This is because as we have discussed above, subaperture images have
different but close points of view, so there is not any image taken from the perpen-
dicular or more slanted point of view. As a result, the corresponding profile could
not be reconstructed. Also, it can be seen that some points of the wall which are
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behind the cube are not reconstructed and it is because the cube is an occluder.

Figure 5.22: The 3D reconstruction compared with the 2D image.

Furthermore, in Figure 5.23 it is shown some views from the 3D reconstruction
using only two cameras. The image of the first row left is seen from the front sight
and it could be seen the lack of information behind the cube as it is also seen in the
image of the first row right. On the image of the second row left, it is clearly seen
the wall (which is actually a plane in the 3D world) and also it is seen the cube
which is empty due to the lack of perspective. Finally, the volume is seen from
the rear sight, where is seen the wall with those parts where are not information
because in both of the images there is an occluder.

In addition, in Figure 5.24 it is shown some results obtained using four cameras
from different points of view. The first point of view is from the Front-profile in
which it is able to see the lack of information behind the cube. On the second
view, it is seen from Rear-profile and it could be seen the depth where is placed
the cube, the ball (which corresponds to the gray points) and the wall. In addition,
in the 3rd view seen from the rear part, it could be seen the cube, the wall, and
part of the picture. Finally, on the last view(second row right), it is seen the top
part of the cube, which has a different color than the front part.

Once, we have seen different results from different points of view by using two
and four cameras, it is asserted that using only two subaperture images, there are
few points, but depending on the point of view it is easier to see the object. While
using the information from four subaperture images, some volumes are more vis-
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ible because there is more information about this object.

As far as we are concerned, the result obtained could be better if instead of using
the method of marking four points manually, the correspondences would be found
using other methods such as SIFT.
Finally, it is an important point to comment, if we would be able to capture dif-
ferent light field images from the same scene, the 3D reconstruction would have
been even better due to the huge amount of data we have had.
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Front sight Front-profile sight

Profile sight Rear sight

Figure 5.23: Examples from different points of view of the 3D reconstruction
using only two cameras.
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Front-profile sight Rare-profile sight

Rare sight Profile sight

Figure 5.24: Examples from different points of view of the 3D reconstruction
using four cameras.
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

In this last section, an evaluation of the overall project is done. Firstly, the com-
pliance of the objectives defined at the beginning are commented. Secondly, some
conclusions extracted during the development of this project are expressed and
finally, some future work and improvements suggested are disclosed.

6.1 Achievements

The main goal of this project is to widen the knowledge significantly on light field
imaging because is a novel field introduced in one subject of the Bachelor degree.
In order to learn how to deal with the data obtained using a light field camera a
rigorous documentation process was done, in which [Wu et al., 2017, Williem and
Kyu Park, 2016] were essential documents in order to introduce the key concepts.
Moreover, several nice results for different applications have been shown, permit-
ting to come up with solutions to solve some classical problems in image process-
ing and computer vision.
Reviewing the objectives of this project, most of them are successfully achieved.
However, if the database would not have been a restriction, some of these results
would have been even better.

6.2 Applications Conclusions

For each application, some conclusions are extracted.

• Refocusing is easy to apply by using light field images. Also, the method
is really powerful and different applications using refocusing could be done
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such as a mobile APP which applies some filters on the part which is not on
focus.

• Use the information of entropy in order to estimate the depth is a smart op-
tion due to the accuracy of results obtained and the efficiency of the process.

• The method proposed to detect the occlusions could be used in many other
applications such as 3D reconstruction. For example, when an occlusion is
detected, it could be defined to fill the unknown part with the information
of the neighborhood.

• 3D reconstruction using light field images is really powerful due to the result
that could be obtained, since using only one light field image, the result
seems a 3D scene if it is used many light field images the result would be
very realistic.

Only reviewing these conclusions above, it could be assumed that light field imag-
ing in the near future is going to be able to come up with even better solutions in
order solve some classical problems in the field of image processing and computer
vision.

6.3 Future Work and Improvements

Focusing on the application of refocusing, a possible future work would be the
one proposed in the previous section. In other words, to program an APP able to
apply different filters to those part which is not refocused.
In the field of the 3D reconstruction, a possible improvement would be to use SIFT
in order to estimate the parameters of the camera instead of manually marking the
needed four points.
Finally, mixing 3D reconstruction and occlusion detection could be applied for re-
constructing a 3D depth map that in real time would be able to show the occluded
parts.
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Fourier-Grenoble I.

[Im et al., 2019] Im, S., Ha, H., Choe, G., Jeon, H.-G., Joo, K., and Kweon, I. S.
(2019). Accurate 3d reconstruction from small motion clip for rolling shut-
ter cameras. IEEE transactions on pattern analysis and machine intelligence,
41(4):775–787.

[Jackson et al., 2017] Jackson, A. S., Bulat, A., Argyriou, V., and Tzimiropoulos,
G. (2017). Large pose 3d face reconstruction from a single image via direct vol-
umetric cnn regression. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1031–1039.

[Jain et al., 1995] Jain, R., Kasturi, R., and Schunck, B. G. (1995). Machine
vision, volume 5. McGraw-Hill New York.

[Jeon et al., 2015] Jeon, H.-G., Park, J., Choe, G., Park, J., Bok, Y., Tai, Y.-W.,
and So Kweon, I. (2015). Accurate depth map estimation from a lenslet light
field camera. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1547–1555.

[Kolmogorov and Zabih, 2002] Kolmogorov, V. and Zabih, R. (2002). Multi-
camera scene reconstruction via graph cuts. In European conference on com-
puter vision, pages 82–96. Springer.

54



[Kutulakos and Seitz, 2000] Kutulakos, K. N. and Seitz, S. M. (2000). A the-
ory of shape by space carving. International journal of computer vision,
38(3):199–218.

[Lin et al., 2015] Lin, H., Chen, C., Bing Kang, S., and Yu, J. (2015). Depth
recovery from light field using focal stack symmetry. In Proceedings of the
IEEE International Conference on Computer Vision, pages 3451–3459.

[Ng, 2005] Ng, R. (2005). Fourier slice photography. In ACM transactions on
graphics (TOG), volume 24, pages 735–744. ACM.

[Seitz and Dyer, 1999] Seitz, S. M. and Dyer, C. R. (1999). Photorealistic scene
reconstruction by voxel coloring. International Journal of Computer Vision,
35(2):151–173.

[Tang et al., 2014] Tang, S., Andriluka, M., and Schiele, B. (2014). Detection
and tracking of occluded people. International Journal of Computer Vision,
110(1):58–69.

[Tao et al., 2013] Tao, M. W., Hadap, S., Malik, J., and Ramamoorthi, R. (2013).
Depth from combining defocus and correspondence using light-field cameras.
In Proceedings of the IEEE International Conference on Computer Vision,
pages 673–680.

[Tu´̂an Tr`̂an et al., 2018] Tu´̂an Tr`̂an, A., Hassner, T., Masi, I., Paz, E., Nirkin,
Y., and Medioni, G. (2018). Extreme 3d face reconstruction: Seeing through
occlusions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3935–3944.

[Vaish et al., 2006] Vaish, V., Levoy, M., Szeliski, R., Zitnick, C. L., and Kang,
S. B. (2006). Reconstructing occluded surfaces using synthetic apertures:
Stereo, focus and robust measures. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages
2331–2338. IEEE.

[Wang et al., 2015] Wang, T.-C., Efros, A. A., and Ramamoorthi, R. (2015).
Occlusion-aware depth estimation using light-field cameras. In Proceedings
of the IEEE International Conference on Computer Vision, pages 3487–3495.

[Wang et al., 2018] Wang, Y., Qiu, J., Liu, C., He, D., Kang, X., Li, J., and Shi,
L. (2018). Virtual image points based geometrical parametersâ calibration for
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