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Abstract

In this work, Monte Carlo simulations coded in Python are used to estimate
short-term floating Asian options. Afterwards, variance reduction techniques are
used on the Monte Carlo simulations to reduce their variance and to compare those
estimates to the first and second approximation formulas by Alos and Leén[1]. Fi-
nally, an analysis of the volatility of each technique and the errors of both approxi-

mation formulas is performed.
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1 Introduction

In the first section, financial derivatives will be introduced, by focusing on options.
Standard and exotic options will be distinguished, and a more extensive explanation
of European options and Asian options will be made. Asian options will be explained
in order to follow the reasoning of the paper. European options will be explained for
two reasons. Firstly, these options are the most basic ones, which make them easy to
understand, to calculate and to simulate. Secondly, European options will be the control

variate that will reduce the variance of the simulated floating Asian options.

After explaining the fundamentals of the options, Monte Carlo simulations will be
explained as well as the reason why they are needed in finance. In the following section
it will be explained how the variance of the simulations can be reduced by using two
variance reduction techniques: the control variate method and the antithetic method.
Once explained the theory, it will be explained the code in python in the following

section.

Finally, an analysis and a conclusion of the results will be carried out. It will be
discussed which method of variance reduction is more effective. The two approximation
formulas will be benchmarked against the simulations, and how they perform in each

case will be analyzed in order to see if one is more accurate than the other one.

2 Financial Derivatives. Standard and Exotic Options

A financial derivative is an instrument whose value depends on one or more under-
lying assets, including stocks, bonds, interest rates, currencies, or more complex entities
such as weather conditions. The main financial derivatives are forwards, futures, swaps

and options. Focusing on options, there are call options and put options.

Call options are contracts that give the buyer the right to buy the underlying asset

at a specified strike price until a certain date or at a certain date. The seller has the
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obligation to fulfill the contract. Thus, options normally will be exercised when the
strike price is below the spot price, or market price, of the underlying asset. On the
other hand, put options are contracts that give the buyer the right to sell the underlying

asset.

The most common option styles are American and European options,and they are
known as standard options. The rest of option styles are known as exotic options. The
difference between an European and an American option is the time when they can be
exercised, until a certain date or at a certain date. If the option can only be exercised
on the expiration day (or maturity), it is an European option. If the option can also
be exercised on any trading day before the expiration, it is an American option. The
requisites to be a standard option are the following: to be formed by only one underlying
asset, the starting time is the present and, finally, the price of the underlying at maturity
is the only factor that affects the payoff of the option. Thus, the payoff is always the
difference between the strike price and the underlying asset spot price.The payoff of an

exotic option depends on some function of the price of the underlying asset.

The strong point of exotic options is flexibility. Exotic options can be customized
and created to fulfill different needs. For example, if an investor is only interested in the
difference between two stocks, he or she can invest in spread options, as the underlying
of this option is the difference between the prices of two assets. A binary option only
pays a fixed amount only when triggered by some event, such as a stock reaching some

price level. A chooser option allows an investor to invest in changes in volatility.

Nelken[2] classified exotic options in the following way,

e Path-Dependent. These options depend on the price path of some underlying asset

and not only on the price at a specific date.

e Singular Payoffs. These options do not follow a continuous payoff. Instead, the

payoffs take jumps discontinuously.

e Time-Dependent or Preference. These options have some different preference, or
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dependence, on a certain time.

e Multivariate. These options consist of two or more underlying assets instead of a

single one.

e Leveraged. The payoffs of this options do not follow a linear function of the price

of the underlying.

An Asian option, which is an exotic option, is an option whose payoff, instead of being
determined by the spot price, depends on the average price of the underlying asset over
some present time period. The price does not depend only on the price of the underlying
asset at maturity, but on the average price. Thus, an Asian is a path-depending exotic
option, meaning that its settlement price or its strike is formed by the aggregation of
the underlying asset prices during some present period. Being a path-depending option
implies that the simulations will be harder than non path-depending options as, for
example, European options. For European options, simulations for the last period price
St are sufficient, but for the Asian it is necessary to simulate all the path of the stock,

from Sy to St.

As Ton Vorst explained in Nelken[2], one of the first companies that used Asian
options was the Dutch company Oranje Nassau, in 1985. The company issued bonds
with a repurchase option without using a fixed price, but with an average price of a few
barrels of Brent Blend oil over the last year of the contract. The worry for the oil price
manipulation impulsed the company to use Asian options. Note that manipulating an
average price is harder than manipulating a specific daily price. Besides manipulation
concerns, using Asian options is useful in different scenarios. Some examples are found
when an importing/exporting company is worried about the average exchange rate over
time, or when the market for the underlying asset is highly volatile and it is desirable

to trade this asset with a lower volatility.



Monte Carlo Methods and Variance Reduction Techniques... J.A, Segui

2.1 European Options

As stated before, the European call will only be exercised if the strike price is below

the spot price. Mathematically, an European call option is
¢ =max(St — K, 0) (1)
where c is the price of the call, St is the spot price of the underlying at time 7', and K
is the strike price.
And the European put is

p = mazx(K — Sp,0) (2)

It is assumed the classical Black-Scholes model. So,St follows a log-normal distribu-

tion continuous in time. In particular, this specific geometric brownian motion,

Sirar = Spelr~ 37 AoeVAL (3)

Where € ~ N(0,1) and the lattice or the space between intervals At is equal to T'/N.

Under these assumptions, it can be analytically derived[3] a closed-formula to price

an European option without dividends,

c=e¢"T(SyN(dy) — KN(d-)

)
p=cT(KEN(~d_) ~ SoN(~dy))

n o 4
1. = O 4 ST Y
g = S/E) o m—

ovVT —t 2

where K is the strike price, o is the volatility, N is the distribution function of a

standard normal, Sy is the stock price at t = 0, and T is the time to maturity.
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2.2 Fixed Strike and Floating Strike Asian Options

There are two styles of Asian Options. A fixed strike Asian option is similar to an
European option. However, instead of St, it uses the average price over a certain present

time A(0,T). Mathematically,

Fixed Asian Option Call

¢ =mazx(A(0,T) — K,0) (5)

Fixed Asian Option Put

p =maz(K — A(0,T),0) (6)

A floating strike Asian option uses St like an European one, but instead of having a

fixed strike price K, uses kA(0,T") as the strike price.

Floating Asian Option Call

¢ =max(St — kA(0,7),0) (7)

Floating Asian Option Put

p = maz(kA(0,T) — St),0) (8)

The average price of a stock can be computed in different ways.

Arithmetic Average in a discrete case
1 n—1
A0, T) = — St 9
0= 38 )

Arithmetic Average in a continuous case

A(0,T) = ;/OT Sydt (10)
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Geometric Average in a continuous case
1 /T
1MQTy—prT/ mmma) (11)
0

It is extremely important to note that it cannot be analytically derived a closed-form
expression for the price of an Asian option in all of the cases. One of those cases where
it does not exist a closed-form expression is the arithmetic average cases, which are the
cases covered in this work. The reason why a closed formula can or cannot exist is the
following. As stated before, the underlying asset follows a log-normal distribution. The
product of log-normal distributions is also a log-normal distribution, implying that it is
possible to analytically derive a solution. However, this is not the case for the sum of

log-normal distributions. The closed-form for the geometric case|3],

c=e¢ T (MN(dy) - kN(d_))

)
p=e"" (kN(=d-) = MiN(~dy))

In(MyJk) S (12)
= gyr— TV
In(11/k) S

do=-"U2 2 Ty
SYT—t 2

where,

T
—1
My = “+=So

2
2e(2+7%) 7 g2 L2658 ( 1 e
(r+o02)(2r+02)T2 rT2 \ 2r+o02 r+o2

S = 1/%Zn (%;)

My =

2.3 Approximation Formulas for Floating Strike Asian Options

Alos and Leén[1] found two approximation formulas for floating strike Asian options.
Both approximations will be compared with Monte-Carlo simulations in order to study
the gain in accuracy in the second approximation formula. For simplicity, the interest
rate is assumed to be zero, r = 0. The arithmetic continuous case is used for computing

the average price of the stock. Concretely,
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A(0,T) = ;/OT Sydt (13)

The first approximation formula is

E(BS(0, X, MT, 14
(BS(0, Xo, My \/3)) (14)
Where M = E[A7|F"] = k:(Sy(T —t) + [} Sudu
= kSiF(T,t) + k2 [3 Sudu

and F(T,t) = L=

In this paper t = 0 is used, meaning that options are computed from now to 7'. So,

MT = kS, as F(t,t) =1 and k= fg Sudu =0

This means that is the same as (4) but replacing o with % and K with kS;.

¢ = (SoN(d+) — kS¢N(d-))

p= (kS N(—d-) — SoN(—dy))
_In(So/kSy)

+ = 7%@
_In(So/kSy)

(15)

7

+

d_

T —

w‘%‘q m‘a‘q
o~

The second approximation formula is

E(BS(0, Xo, Mg , Io(k))) (16)

Where [o(k) = 55 — VB (k —1)

Just as in the previous case, is the same equation as (4) but replacing o with % —
YB(k —1) and K with kS;.
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c=(SoN(dy) — kSeN(d-))
p = (kS:N(—d-) — SoN(—d+))

o _ V(1)
d+ _ ln(So/kSt) 4 V3 40 \/ﬁ (17)
%—4—3(/4—1) Tt 2
3 0
o _ V3(p _
s Zzg(So/kSt) e 4(;(k 1)m
%—4—0(/6—1) T—1t

3 The need of Monte Carlo Methods in Finance

Boyle[4] was the first study to use Monte Carlo methods to price an option. Let’s

describe the general Monte Carlo approach.

Let 6 be the parameter to be estimated following some distribution.

0 = E(f(X)) (18)

f(X) is a function with the property that E(g(X)?) — co. Generating n indepen-
dent random observations Xi, X9, X3,...X,, from some probability function p(X), the

estimator of 6 is given by

D>
|
SHE

> gx) (19)

Given the property E(g(X)?) — oo and by the law of large numbers, as n — oo,

13 g(X0) - Blg(X)) (20)
=1

The sample variance is
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n—14
=1

Due to central limit theorem, as n — oo,

6—6
s/\/n

— N(0,1) (22)

A~

6 — 0 is approximately a standard normal variable, with the scale s//n. For a large

n, an estimation of a confidence interval of the 95% for 6,

CI = <é —1.96——,0 +1.96 (23)

S
vn ﬁ)
Hence, 0 and its variance can be approximated. The main inconvenient of using
Monte Carlo methods is its computational cost. To reduce the standard error s//n by
a factor of 0.1, it is necessary to increase n by a factor of 100. Much more computations
are required to increase the accuracy. Indeed, as it will be seen in the next section,

variance reduction techniques can be used to increase the accuracy without having to

increase the sample size n. Instead, s can be reduced.

How the Monte Carlo simulations have been used and coded in python will be ex-
plained in detail in section 4. Briefly, Monte Carlo simulations to price a fixed strike

Asian call work as follows:

1. Generate a vector V of n normal standard random numbers.

2. Simulate n paths of a stock plugin each generated random number in the previous

vector in the equation(3).
3. Compute the arithmetic mean of the n daily prices of the stock.

4. Compute the payoff of a fixed strike Asian call for this simulation. That is,
maz(A(0,T) — K,0). Store this payoff in a vector.

10
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5. Repeat the four previous steps 10,000,000 times. A vector with 10,000,000 payoffs

will be created.

6. Compute the mean and the variance of the vector. This will give the simulated

price of a fixed Asian call an its standard deviation.

It is used n = 252, which are the trading days within in a year. Note that the ap-
proximation formulas use an arithmetic mean in a continuous case, and the Monte Carlo
simulation calculates an arithmetic mean in a discrete case. A computer can represent
a continuous variable only with a finite number of evaluations. The error that arises
using a discrete arithmetic mean to estimate a continuous one is known as discretization
error. One way to minimize this error is to reduce the distance between the points. In
this case, a year is divided in 252 days instead of the number of weeks or months. As for
reducing the variance, the computational cost for reducing the discretization error also
increases. For example, if the stock path consisted of 5 more days, 5 * 10,000,000 extra

computations are needed.

4 Variance Reduction Techniques

As stated above, Monte Carlo simulations are costly, because reducing the variance
by increasing the sample size requires more computations. Instead of increasing n to
increase the accuracy of the simulations, s can be reduced, thus diminishing the standard
deviation s/y/n. Two of the variance reduction techniques used by Hirsa [5] are the

antithetic variates method and the control variate method.

4.1 Antithetic Variates Method

Let 6 be estimated through Y, that is § = E(h(x)) = E(Y). Let Y7 and Y, be two

Yi+Y5
2

samples of Y, so the estimate is 6 = . The variance of the estimate is

11



Monte Carlo Methods and Variance Reduction Techniques... J.A, Segui

Var(Y1) + Var(Ys) + 2Cov(Y1, Ys)

Var() = 1

(24)

If Y; and Ys are i.i.d, Var(d) = V%(Y) And if Cov(Y1,Y2) < 0 the variance is
reduced even more. In the extreme case where p = —1, the variance is reduced to the

maximum that that technique allows.

Recall that in equation(4) the path of the stock was defined as a geometric brownian
motion with random normal shocks. Later, it was briefly described how a Monte Carlo
simulation works. In the second step of that explanation, a previous generated vector
V' of normal standard random numbers was used. In the fourth step the payoff of the
Asian option was calculated thanks to the generated vector V. Instead, two different
vectors, V and —V, can be used to compute that payoff. The payoff of the Asian call is
done by computing one payoff P; using V', another payoff P, using —V, and taking the
mean of the two. Note that P; and P, are Y7 and Y5 described before. Also note that V'
and —V have a correlation of -1. As a result, the variance of the Monte Carlo is reduced

at the maximum that the technique can achieve.

4.2 Control Variate Method

Let § = E(h(X)). Let Y be our estimator. Let Z be correlated with the random

variable and let F(Z) to be known. It can be constructed an unbiased estimator,

A~

0.=Y +c(Z - E(2)) (25)
Thus, the expectation is
E@,)=EY)=0 (26)
And the variance,
Var(.) = Var(0) + Var(Z) 4+ 2cCov(Y, Z) (27)

12
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To minimize the variance, it should be derived the variance over ¢ and find the ¢*

which minimizes the variance.

M =2cVar(Z)+2Cov(Y,Z) =0
Jdc (28)
. Covu(Y,Z)
T T Va(z)
Now, plugging ¢* in (27),
2
Var(0e) = Var(d) + (—CM) Var(Z) +2 (—W) Cov(Y, Z)
~ ov 2 ov 2
— Var() + Cvg(’zz)) - 2CVG(:E’ ZZ)) (29)
~ ov 2
= Var(9) — CVa(:E’ZZ))

Thus, if Cov(Y, Z) # 0, Var(e) < Var(0)

In this work, # will be a floating strike asian call, Y the simulation of the floating
strike asian call, and Z an European call. The price of an Asian call under the second
approximation formula(17) is used as a strike price of the European call. So, both Y the
floating strike asian option and Z an European call have to be simulated. And E(Z)
is known because it exists a closed formula to price an European call. That equation
to price an European call without the need of simulating is equation (4). To find ¢ has
to be computed the covariance between our simulations of the Asian and the European.
Having ¢, a more unbiased accurate estimator for an Asian call can be calculated using

equation (25).

Both methods are going to be used separately and jointly. It is possible to use the
control variate method to a variable that has been computed via antithetic variates. The

three methods will be compared.

13
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5 Python Code

In this section the logic of the code is shown. Nevertheless, the full code can be found

in the appendix.

The first step is to import the libraries needed to do the computations. Some mathe-
matical and statistics libraries have to be imported in order to compute basics operations,
such as square roots, exponential, covariances, means, standard deviations... and to be
able to operate with arrays. They work like a vector in R. The parameters that will not
change are defined: the number of simulations M = 10000000, the standard deviation
s = 0.5, the initial price of the stock Sg = 100 , and the number of periods in each path
of the stock price N = 252.

The function def is used to define a function in python, followed by a name and what
will be the inputs. Inside the function there is the code of what has to be computed,
and what python has to return as a result. The functions have to be defined for the
first approximation formula(15), the second approximation formula(15), an European
call(1), the closed formula for an European call(4) and, the two floating Asian options(7)

to compute the antithetic variate.

Control variate and antithetic methods are used to reduce the variance. Recall
equation(25), the antithetic method has three parameters: a simulated floating Asian
call Y, a simulated European call Z and its expectation E(Z). For the first method,
the control variate, it is necessary to define an European call as in equation(1) to get Z
from the simulations of St, and its closed-form equation(4). Both have an strike price of
the second approximation formula for the floating Asian call, which has been previously
defined. So, for the antithetic variable method two simulated floating Asian calls(7) are

needed.

Three periods are used to evaluate the results, T'= 0.1, T = 0.5 and T = 1. And
for every period five differents k: k =0.9, k=095, k=1, k=1.05and k = 1.1. It is

necessary to create an empty vector for every case for every simulated variable, which

14
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is done with emptyvector = [|. The variables were two floating Asians calls, and an

European call. Fifteen empty vectors have to be created, one for each combination.

Each simulation needs to simulate a stock price path. To do this, a loop inside
another loop is needed. The first loop goes from 1 to M = 10000000 and sets Sy = 0
and creates the two random vector V and —V needed for the antithetic variables. Just
after creating these variables the second loop is triggered, which simulates the two stock
paths following equation(3) needed for the antithetic variables. When the second loop
finishes to simulate the first two stock paths, it will append to the empty vectors the new
values. The last lines of the first loop save the results of each Monte Carlo simulations,
for each k of both the two floating Asian calls and the European call. To save the values
in a vector, the append function is used, which appends a value to the vector as the last
element. So, every time a number is appended, the dimension of the vector grows by
one. The mean of the two vectors of the floating Asian calls creates the vector of the

antithetic results for each k.

The control variate method is used in two cases, the first one with a raw floating
Asian and the second one with the antithetic floating Asian, both controlled with the
Euro call. First, it is computed the raw floating Asian case. ¢ is computed by equation
(28). Having each c for every k case, the estimated is computed using ¢ in equation (25).

This will return the vector of the floating Asian calls controlled for the European call.

After that, is computed ¢ for the second case in which the antithetic floating Asian
call is controlled. Next, ¢ is plugged in equation (25) as before, to get the vector of the

controlled floating Asian calls.

Having all the vectors: including the vectors of the raw Asians, the vectors of the
controlled floating Asians and the vectors of the controlled antithetic Asians, each pa-
rameter can be estimated by using the equation (19). This is, computing the mean of

each vector and its standard deviations.

Now with all the results, the data frame of the results has to be created. The

15
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data frame consists of the first and second approximation formulas for each k, and the
estimations and standard deviations for each k of the four different methods: floating
Asian, controlled floating Asian, antithetic Asian and, controlled antithetic Asian. A
data frame in python is done in the following way: after naming our data frame we

have to name our vectors (the columns of the data frame) and assign the values for each

vector.

The last step is to compute the errors of each estimation with the two approxima-
tion formulas. The errors of both approximation formulas are computed against the

controlled floating Asian, the antithetic floating Asian, and the controlled antithetic

floating Asian.

6 Results

The first three tables show the results for the two approximation formulas, the raw
Monte Carlo simulations, the controlled Monte Carlo simulations, the antithetic Monte

Carlo simulations, and the controlled antithetic Monte Carlo for the floating Asian calls.

Table 1: Comparative of 1st and 2nd order approximations with Monte Carlo simulations

for T=0,1.

T=0,1 1st Order 2st Order MC Control  Antithetic Control antithetic

k=9  10,53297 10,55983 10,54165 10,54636 1054585 10,54598
k=95  6,59506  6,61780  6,59760  6,60143  6,60090 6,60106
k=1  3,64056  3,64056  3,62676  3,62947  3,62909 3,62926
k=1,05 1,75173  1,72752  1,72418  1,72582  1,72548 1,72562
k=1,1  0,73247  0,69956  0,70346  0,70429  0,70411 0,70420

16
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Table 2: Comparative of 1st and 2nd order approximations with Monte Carlo simulations

for T=0,5.
T=0,5 1st Order 2st Order MC Control  Antithetic Control antithetic
k=,9  13,72466  13,82575 13,77002 13,76933  13,76327 13,76319
k=,95 10,67403 10,73142 10,68352 10,68292 10,67732 10,67724
k=1 8,12926 8,12926  8,09733  8,09682 8,09163 8,09156
k=1,05  6,06851 6,00801  5,99651  5,99609 5,99174 5,99167
k=11 4,44562 4,33151  4,34125  4,34091 4,33711 4,33705

Table 3: Comparative of 1st and 2nd order approximations with Monte Carlo simulations

for T=1.
T=1  1st Order 2st Order MC Control  Antithetic Control antithetic
k=9 16,61521  16,76707 16,67147 16,66937  16,67019 16,66979
k=,95 13,86460 13,94662 13,86591 13,86401 13,86512 13,86473
k=1 11,47661 11,47661 11,41905 11,41735 11,41858 11,41822
k=1,05  9,42994 9,34360  9,31463  9,31312 9,31434 9,31400
k=1,1 7,69622 7,52654  7,52893  7,52762 7,52871 7,52840

The Monte Carlo approximation with the lowest standard deviations will be chosen as

the benchmark for the first and second order approximation formulas, as the accuracy

is provided by having a lower volatility.

The sum of standard deviations will be used to choose the best performer in case there

is not a Monte Carlo method with lower standard deviation for all k.

17
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Table 4: Comparative of Monte Carlo simulations standard errors for T=0,1.

T=0,1 Std MC Std MC control Std MC antithetic Std MC control antithetic

k=9 0,00281 0,001253 0,00074 0,000737
k=,95 0,002396 0,001251 0,000958 0,000954
k=1 0,001857 0,00116 0,001034 0,00103
k=1,05 0,001296 0,000956 0,000832 0,000829
k=1,1  0,000816 0,000686 0,000556 0,000554

Sum  0,009175 0,005306 0,00412 0,004104

For T' = 0.1, the antithetic method lowers the standard deviation more than only
using the control variate method for every k. Using both, the antithetic and the control,
the lowest standard deviation is achieved. However, the difference between using both
or using only the antithetic is very low. The method performing the best in terms of
low volatility is the control antithetic, followed by the antithetic, and, in the last place,
the control. For T' = 0.1 the control antithetic will be the benchmark as it is the most

accurate technique in this case.

Table 5: Comparative of Monte Carlo simulations standard errors for T=0,5.

T=0,5 Std MC Std MC control Std MC antithetic Std MC control antithetic

k=9 0,00597 0,002756 0,002945 0,002876
k=,95 0,005379 0,002768 0,00296 0,002895
k=1 0,004765 0,002718 0,002841 0,00278
k=1,05 0,004151 0,002602 0,00261 0,002555
k=1,1  0,00356 0,002429 0,002321 0,002274
Sum  0,023825 0,013273 0,013677 0,01338

For T' = 0.5, using only the control technique is the best option in terms of accuracy

for £ < 1, but not for £ > 1. Since its sum of deviations is the lowest, the control

18
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technique will be the benchmark for 7" = 0.5.

Table 6: Comparative of Monte Carlo simulations standard errors for T=1.

T=1 Std MC  Std MC control Std MC antithetic Std MC control antithetic

k=9  0,008855 0,003961 0,005033 0,004802
k=,95 0,008196 0,00401 0,004896 0,004678
k=1  0,007532 0,004005 0,004674 0,00447
k=1,05 0,006875 0,003948 0,004392 0,004204
k=1,1 0,006235 0,00384 0,004074 0,003904
Sum  0,037693 0,019764 0,023069 0,022058

For T = 1, the best performer in volatility is the control variate method, as in
T = 0.5. However, in this case, the control method is better than the other two for all

k in terms of volatility.

As expected, using variance reduction techniques lowers the standard deviation.
Moreover, using both the antithetic and the control together is always better than only
using the antithetic method, but not always better than using only the control variate
method. This is because of the way how the control antithetic method is created, that

is, by using a control variate to the antithetic variate, and not the other way around.

As stated before, for T = 0.1 the benchmark will be control antithetic technique.
And, for T = 0.5 and T = 1 the benchmark will be the control technique.

The next tables show the relative errors of the approximation formulas compared to
the Monte Carlos. First the case for T" = 0.1 will be shown, followed by the case T' = 0.5,

and to finalize, the case for T' =1
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Table 7: Comparative of 1st order errors (%) with Monte Carlo simulations for T=0,1.

T=0,1 1st Control error 1st Antithetic error 1st Control antithetic error
k=.,9 0,127028 0,122131 0,123398
k=,95 0,096458 0,088425 0,090889
k=1 -0,305608 -0,316139 -0,311566
k=1,05 -1,501266 -1,521312 -1,513446
k=1,1 -4,000935 -4,026628 -4,014033
Squared Sum 18,380117 18,650802 18,523541

Table 8: Comparative of 2nd order errors (%) with Monte Carlo simulations for T=0,1.

2nd Antithetic error

2nd Control antithetic

T=0.1 2nd Control error
k=.,9 -0,127649
k=,95 -0,247972
k=1 -0,305608
k=1,05 -0,098349
k=1,1 0,672139
Squared Sum 0,632624

-0,132558
-0,256033
-0,316139
-0,118117
0,647599
0,616404

-0,131288
-0,25356
-0,311566
-0,11036
0,659629
0,625892

Focusing on the benchmark, i.e. the control antithetic method, for & < 1 the first

order approximation formula performs better. As for k& > 1 the second one performs

better. The squared sum of errors is much lower in the second order formula. So, the

loss that the second formula has for k < 1 is offset for the gain for £ > 1. Note that in

the other methods the same results are obtained.
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Table 9: Comparative of 1st order (%) errors with Monte Carlo simulations for T=0,5.

T=0,5 1st Control error 1st Antithetic error 1st Control antithetic error
k=,9 0,324441 0,280563 0,27997
k=,95 0,083264 0,030771 0,030022
k=1 -0,400622 -0,465008 -0,465945
k=1,05 -1,207722 -1,28132 -1,282483
k=1,1 -2,411998 -2,501712 -2,503141
Squared sum 7,54902 8,196239 8,206867

Table 10: Comparative of 2nd order errors (%) with Monte Carlo simulations for T=0,5.

T=0,5 2nd Control error 2nd Antithetic error 2nd Control antithetic
k=9 -0,409753 -0,453954 -0,454552
k=,95 -0,453952 -0,506728 -0,50748
k=1 -0,400622 -0,465008 -0,465945
k=1,05 -0,198824 -0,271688 -0,272839
k=1,1 0,216577 0,129164 0,127772
Squared sum 0,620905 0,769578 0,772025

For T = 0.5, the results are the same as for 7' = 0.1. For k£ < 1, the first order
approximation formula performs better, whereas for £ > 1 the second one is better. The
squared sum of errors is much lower in the second order formula. Again, the same results

are obtained in all the methods.
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Table 11: Comparative of 1st order errors (%) with Monte Carlo simulations for T=1.

T=1 1st Control error 1st Antithetic error 1st Control antithetic error
k=9 0,324913 0,3298 0,327409
k=,95 -0,004293 0,003721 0,000948
k=1 -0,51903 -0,508157 -0,511364
k=1,05 -1,254317 -1,241146 -1,244835
k=1,1 -2,239728 -2,224874 -2,2291
Squared sum 6,964672 6,857513 6,887192

Table 12: Comparative of 2nd order (%) errors with Monte Carlo simulations for T=1.

T=1 2nd Control error 2nd Antithetic error 2nd Control antithetic error
k=9 -0,586095 -0,581163 -0,583576
k=,95 -0,595843 -0,587781 -0,59057
k=1 -0,51903 -0,508157 -0,511364
k=1,05 -0,327188 -0,314138 -0,317793
k=1,1 0,014312 0,028839 0,024706
Squared sum 1,075185 1,040975 1,05243

For T' = 1, the results are again the same. For k < 1 ,the first order approximation
formula performs better. And, for k£ > 1, the second one performs better. Again, the

second formula is more accurate than the first one.

Note that, for each T, the inflection point is below k& = 1 for the first order formula.
So, the minimum error can be achieved using a k between 0.90 and 1. Whereas for
the second formula, the inflection point is above k = 1. This gives the idea that the
minimum error can be achieved using a k between 1 and 1.1. This is in the line of the
results, where the first approximation formula outperformed the second one for k£ < 1,

and the other way around for k£ > 1.
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7 Conclusions

To sum up the results,

All of the variance reduction techniques decrease the volatility of the simulations.

The volatility of Monte Carlo simulations using control and antithetic techniques

together is always lower than only using the antithetic technique.

For T' = 0.1 the most accurate variance reduction technique is the control antithetic
method. For T'= 0.5 and T' = 1 the most accurate variance reduction technique is

the control method.

In all cases, the first approximation always performs better than the second one
for k < 1. The second approximation always performs better than the first one for

k > 1. For k =1 the errors are always exactly the same in both formulas.

In all cases, the squared sums of errors of the second approximation formula are
much lower than the squared sums of errors of the first one, meaning that the gain
in accuracy of the second formula for k£ > 1 offsets the lose in accuracy for k < 1.
So, it can be concluded that the second order approximation formula is better than

the first one.

It is worth reflecting that, using another option, rather than an European call to

control the floating Asian options, would have been more effective. One next step could

be to use a geometric Asian option. Recall that a closed formula is needed to perform the

control variate method. The closed formula for the geometric Asian option was shown

in equation(12). The handicap of using a geometric Asian option is that a geometric

Asian option is harder to simulate and calculate than an European option. The benefit

of using a geometric Asian option is that its correlation with a floating Asian option is

higher, so the volatility of the simulations would have been reduced even more. As a

result, the estimates of the floating Asian options would have been even more accurate.
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8 Appendix

import numpy as np

import math

from scipy.stats import norm
import matplotlib.pyplot as plt
import pandas as pd

import time

M=10000000
sigma=0.5
s0=100
N=252

def BS1(k,T):
x=np.log(s0)
K=k*s0
xstar=np.log(K)
s=0.5
sigma=s/math.sqrt(3)
dplus=((x—xstar)/(sigmax(math.sqrt(T))))+(sigma/2)*math.sqrt(T)

dminus=((x—xstar)/(sigma*(math.sqrt(T))))—(sigma/2)*math.sqrt(T)

return((np.exp(x))*norm.cdf(dplus) —Ks#norm.cdf(dminus))

def BS2(k,T):
x=np.log(s0)
K=k*s0
xstar=np.log(K)
s=0.5
sigma=(s/math.sqrt(3))— (math.sqrt(3)/40)*(k—1)
dplus=((x—xstar)/(sigmax(math.sqrt(T))))+(sigma/2)*math.sqrt(T)

dminus=((x—xstar)/(sigma*(math.sqrt(T))))—(sigma/2)*math.sqrt(T)

return((np.exp(x))*norm.cdf(dplus) —K+*norm.cdf(dminus))
def euro(k):
european=max(st[—1]—BS2(k,T),0)

return(european)

de

2

BSeuro(k,T):

x=np.log(s0)

xstar=np.log(BS2(k,T))
dplus=((x—xstar)/(sigmax(math.sqrt(T))))+(sigma/2)*math.sqrt(T)

dminus=((x—xstar)/(sigma*(math.sqrt(T))))—(sigma/2)*math.sqrt(T)

return((np.exp(x))*norm.cdf(dplus) —BS2(k,T)*norm.cdf(dminus))

de

2

fasia (k):
fasian=max(st[—1]—k*np.mean(st),0)

return(fasian)

def

-

fasia2 (k):
fasian2=max(st2[—1] —k*np.mean(st2),0)

return(fasian2)

T=.1
d=T/N
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mcfasia_90_01=[];mcfasia_95_01=][];mcfasia_100_01=[];mcfasia_105_01=[];mcfasia_110_01=[;
mcfasia2_90_01=[];mcfasia2_95_01=[];mcfasia2.100_01=[];mcfasia2_105_01=[];mcfasia2_110_01=[];
mceuro_90_01=[];mceuro_95_01=[];mceuro_-100_01=[];mceuro_105_01=[];mceuro_-110_01=(];

for j in range(int(M)):

st=[s0]

a=s0

st2=[s0]

a2=s0

random=np.random.normal(0,1,252)

random2=—random

for i in range(N—1):
a=axmath.exp((— (sigma**2)/2)xd+sigma*random[i]*math.sqrt(d))
st.append(a)
a2=a2+math.exp((— (sigmax*2)/2)*d+sigma*random2[i]*math.sqrt(d))
st2.append(a2)

mcfasia_90-01.append(fasia(0.9));mcfasia_-95_01.append(fasia(0.95));mcfasia_100_01.append(fasia(1));
mcfasia_-105_01.append(fasia(1.05));mcfasia_110_01.append(fasia(1.1))

mcfasia2_90_01.append(fasia2(0.9));mcfasia2_95_01.append(fasia2(0.95));mcfasia2_100-01.append(fasia2(1));
mcfasia2_105_01.append(fasia2(1.05));mcfasia2_110_01.append(fasia2(1.1))

mceuro_90_01.append(euro(.9));mceuro_95_01.append(euro(.95));mceuro-100_01.append(euro(1));
mceuro_105_01.append(euro(1.05));mceuro-110_01.append(euro(1.1))

mcanti_90_01=(np.array(mcfasia_90_01)+4np.array(mcfasia2.90.01))/2
mcanti-95_01=(np.array(mcfasia_95_.01)+np.array(mcfasia2_95.01))/2
mcanti-100-01=(np.array(mcfasia-100-01)+np.array(mcfasia2.100-01))/2
mcanti_105_01=(np.array(mcfasia_105_01)+np.array(mcfasia2_105_01))/2
mcanti_110_01=(np.array(mcfasia_110_01)+np.array(mcfasia2_.110.01))/2

¢-90_01=—np.cov(mcfasia_-90_01,mceuro-90-01)[0,1] /np.var(mceuro-90-01)
c-95_01=—np.cov(mcfasia-95_01,mceuro-95_01)[0,1] /np.var(mceuro_95.01)
¢-100-01=—np.cov(mecfasia-100-01,mceuro-100-01)[0,1] /np.var(mceuro_100-01)
¢-105_01=—np.cov(mcfasia-105_01,mceuro_105.01)[0,1] /np.var(mceuro_105_01)
¢-110_01=—np.cov(mcfasia_110.01,mceuro_110_01)[0,1] /np.var(mceuro_110_01)

fasiacontrol_90_01 =mcfasia_90_-01+c_90_01%(np.array(mceuro_90_.01) —BSeuro(.9,.1))
fasiacontrol_95_01 =mcfasia_-95_014+c_95_01x(np.array(mceuro-95_01)—BSeuro(.95,.1))
fasiacontrol_100_01 =mcfasia_100_01+c_100-01x(np.array(mceuro_100-01) —BSeuro(1,.1))
fasiacontrol_105_01 =mcfasia_105_01+c_105_01x(np.array(mceuro_105_01) —BSeuro(1.05,.1))
fasiacontrol-110_01 =mcfasia_110_01+c_110_01x(np.array(mceuro_110_01) —BSeuro(1.1,.1))

¢2.90_01=—np.cov(mcanti-90_01,mceuro-90-01)[0,1] /np.var(mceuro-90-01)
c2.95_.01=—np.cov(mcanti_95_01,mceuro-95_01)[0,1] /np.var(mceuro-95.01)
¢2.100-01=—np.cov(mcanti-100-01,mceuro-100-01)[0,1] /np.var(mceuro-100-01)
¢2.105_01=—np.cov(mcanti_105_01,mceuro-105-01)[0,1] /np.var(mceuro-105_01)
¢2.110_01=—np.cov(mecanti_-110.01,mceuro-110-01)[0,1] /np.var(mceuro_-110-01)

fasiacontrol2_90_01 =mcanti_90_01+4c2_90_01x(np.array(mceuro_90_01) —BSeuro(.9,.1))
fasiacontrol2_95_01 =mcanti-95_014c2_95_01%(np.array(mceuro-95_01) —BSeuro(.95,.1))
fasiacontrol2_100-01 =mcanti-100-01+¢2_.100_01%(np.array(mceuro-100_01) —BSeuro(1,.1))
fasiacontrol2_105_01 =mcanti_-105_01+c2.105_01%(np.array(mceuro-105_01) —BSeuro(1.05,.1))
fasiacontrol2.110-01 =mcanti-110-01+¢2.110_01%(np.array(mceuro-110_01)—BSeuro(1.1,.1))
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meanfasia_-90_01=np.mean(mcfasia_90_01);meanfasia_95_01=np.mean(mcfasia_95_01)
meanfasia_100_-01=np.mean(mcfasia_100-01);meanfasia_105_01=np.mean(mcfasia_105_01)

meanfasia_110_01=np.mean(mcfasia_110.01)

stdfasia_90_01 =np.std(mcfasia_90_01) /math.sqrt(M);stdfasia_95_01=np.std(mcfasia_95_01) /math.sqrt(M)
stdfasia-100-01 =np.std(mcfasia-100-01) /math.sqrt(M);stdfasia-105_01=np.std(mcfasia-105-01) /math.sqrt(M)
stdfasia_-110_01 =np.std(mcfasia_-110_01) /math.sqrt(M)

meanfasiac-90_01=np.mean(fasiacontrol-90_01);meanfasiac_95_01=np.mean(fasiacontrol_95_01)
meanfasiac_100_-01=np.mean(fasiacontrol_100_01);meanfasiac_105_01=np.mean(fasiacontrol_105_01)

meanfasiac-110-01=np.mean(fasiacontrol-110_01)

stdfasiac_90_01 =np.std(fasiacontrol_90_01) /math.sqrt(M);stdfasiac_95_01=np.std(fasiacontrol_95_01)/math.sqrt(M)
stdfasiac_100-01 =np.std(fasiacontrol_.100_01) /math.sqrt(M);stdfasiac_.105_01=np.std (fasiacontrol_105.01) /math.sqrt (M)
stdfasiac_110_01 =np.std(fasiacontrol_110_01) /math.sqrt(M)

meananti_90_-01=np.mean(mcanti_-90_01);meananti_95_01=np.mean(mcanti_95_01)
meananti-100-01=np.mean(mcanti-100-01);meananti-105_-01=np.mean(mcanti-105-01)

meananti_-110_.01=np.mean(mcanti_110_01)

stdanti_90-01=np.std(mcanti-90_01) /math.sqrt(M);stdanti-95_01=np.std (mcanti-95_01) /math.sqrt(M)
stdanti_100_01=np.std(mcanti_100-01) /math.sqrt(M);stdanti_105_01=np.std(mcanti_105_01) /math.sqrt (M)
stdanti-110-01=np.std(mcanti-110-01) /math.sqrt(M)

meanfasiac2_90_01=np.mean(fasiacontrol2_.90_01);meanfasiac2_95_01=np.mean(fasiacontrol2_95_01)
meanfasiac2-100_-01=np.mean(fasiacontrol2.100_01);meanfasiac2_105_01=np.mean(fasiacontrol2_105.01)

meanfasiac2.110_01=np.mean(fasiacontrol2.110_01)

stdfasiac2-90-01 =np.std(fasiacontrol2.90-01) /math.sqrt(M);stdfasiac2_95_01=np.std(fasiacontrol2.95_01) /math.sqrt(M)
stdfasiac2_100_01=np.std(fasiacontrol2_.100-01) /math.sqrt(M);stdfasiac2_105_01=np.std(fasiacontrol2.105_01) /math.sqrt(M)
stdfasiac2_110_01=np.std(fasiacontrol2_.110_01)/math.sqrt(M)

T=5
d=T/N

mcfasia_90_05=[];mcfasia_95_05=[];mcfasia_100_-05=[];mcfasia_105_05=[];mcfasia_110_05=[];
mcfasia2_90_05=[];mcfasia2_95_05=(];mcfasia2_100_05=[];mcfasia2_105_05={];mcfasia2_110_05=]];
mceuro-90_05=([];mceuro_95_05=[];mceuro-100_05=[];mceuro_105_05=[];mceuro-110_05=(];

for j in range(int(M)):

st=[s0]

a=s0

st2=[s0]

a2=s0

random=np.random.normal(0,1,252)

random2=—random

for i in range(N—1):
a=axmath.exp((—(sigmax*2)/2)*d+sigmaxrandom[i]*xmath.sqrt(d))
st.append(a)
a2=a2smath.exp((—(sigmax%2)/2)*d+sigmaxrandom2[i]*math.sqrt(d))
st2.append(a2)

mcfasia_90-05.append(fasia(0.9)) ;mcfasia_95_05.append(fasia(0.95)) ;mcfasia_100-05.append(fasia(1));
mcfasia_105_05.append(fasia(1.05));mcfasia_110_05.append (fasia(1.1))
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mcfasia2-90-05.append(fasia2(0.9));mcfasia2_.95_05.append(fasia2(0.95));mcfasia2_.100-05.append (fasia2(1));
mcfasia2_105_05.append(fasia2(1.05));mcfasia2_110_05.append(fasia2(1.1))

mceuro_90_05.append(euro(.9));mceuro_95_05.append(euro(.95));mceuro-100-05.append(euro(1));
mceuro-105_05.append(euro(1.05));mceuro-110-05.append(euro(1.1))

mcanti-90-05=(np.array(mcfasia_90-05)+np.array(mcfasia2_90-05))/2
mcanti_95_05=(np.array(mcfasia_95_05)+np.array(mcfasia2_95.05))/2
mcanti_100_05=(np.array (mcfasia_-100_05)+np.array (mcfasia2_.100-05))/2
mcanti_-105_05=(np.array(mcfasia_-105_.05)+np.array(mcfasia2_105.05))/2
mcanti_110_.05=(np.array(mcfasia_110-05)+np.array (mcfasia2_110-05)) /2

¢c-90_05=—np.cov(mcfasia_90_05,mceuro_90-05)[0,1] /np.var(mceuro_90-05)
c_95_05=—np.cov(mcfasia_95_05,mceuro_95_05)[0,1] /np.var(mceuro_95_05)
¢-100-05=—np.cov(mcfasia-100_05,mceuro_100-05)[0,1] /np.var(mceuro_100-05)
c-105_05=—np.cov(mcfasia-105_05,mceuro_105_05)[0,1] /np.var(mceuro_105_05)
¢-110-05=—np.cov(mcfasia-110_05,mceuro-110-05)[0,1] /np.var(mceuro_110-05)

fasiacontrol_90-05 =mcfasia_-90_05+c_90-05*(np.array(mceuro-90_05) —BSeuro(.9,.5))
fasiacontrol_95_05 =mcfasia_95_05+c_95_05x(np.array(mceuro_95_05)—BSeuro(.95,.5))
fasiacontrol_100_05 =mcfasia_100_05+c_100_05x(np.array(mceuro_100_05) —BSeuro(1,.5))
fasiacontrol_105_05 =mcfasia_-105_05+c_105_05x (np.array(mceuro_105.05) —BSeuro(1.05,.5))
fasiacontrol_110_05 =mcfasia_110-054+c-110_05x(np.array(mceuro_110_-05) —BSeuro(1.1,.5))

¢2.90_05=—np.cov(mcanti-90_05,mceuro_90-05)[0,1] /np.var(mceuro_90_05)
¢c2.95_05=—np.cov(mcanti_-95_05,mceuro_95_05)[0,1] /np.var(mceuro_95_05)
¢2.100-05=—np.cov(mcanti_-100-05,mceuro-100-05)[0,1] /np.var(mceuro-100-05)
¢2.105_05=—np.cov(mcanti_-105.05,mceuro_105_05)[0,1] /np.var(mceuro-105_05)
¢2_110-05=—np.cov(mcanti-110-05,mceuro-110-05)[0,1] /np.var(mceuro-110-05)

fasiacontrol2_90_05 =mcanti_90_05+4c2_90_05%(np.array (mceuro_90_05) —BSeuro(.9,.5))
fasiacontrol2_95_05 =mcanti_95_05+4c¢2_95_05*(np.array(mceuro_95_05) —BSeuro(.95,.5))
fasiacontrol2_100-05 =mcanti-100-05+¢c2_100_05%(np.array (mceuro_100_05) —BSeuro(1,.5))
fasiacontrol2_105_05 =mcanti-105_05+¢2_.105_05*(np.array (mceuro-105_05) —BSeuro(1.05,.5))
fasiacontrol2_110-05 =mcanti-110-05+¢c2_-110_05% (np.array(mceuro-110-05) —BSeuro(1.1,.5))

meanfasia_90_05=np.mean(mcfasia_90_05);meanfasia_95_05=np.mean(mcfasia_95_05)
meanfasia_100_05=np.mean(mcfasia_100_05);meanfasia_105_05=np.mean(mcfasia_105_05)

meanfasia_110_-05=np.mean(mcfasia_110-05)

stdfasia-90-05 =np.std (mcfasia-90-05) /math.sqrt(M);stdfasia-95_05=np.std(mcfasia_95_05) /math.sqrt(M)
stdfasia_100-05=np.std(mcfasia_100_05) /math.sqrt(M);stdfasia_105_05=np.std(mcfasia_-105_05) /math.sqrt(M)
stdfasia_110_05=np.std(mcfasia_110_05) /math.sqrt(M)

meanfasiac_90_05=np.mean (fasiacontrol_90_05);meanfasiac_95_05=np.mean(fasiacontrol_95_05)
meanfasiac-100-05=np.mean(fasiacontrol_100-05);meanfasiac-105_-05=np.mean(fasiacontrol-105_05)

meanfasiac_110_-05=np.mean (fasiacontrol_110-05)

stdfasiac_90-05 =np.std(fasiacontrol_90_05) /math.sqrt(M);stdfasiac_95_05=np.std(fasiacontrol_95_05) /math.sqrt(M)
stdfasiac_100-05=np.std(fasiacontrol_100_05) /math.sqrt(M);stdfasiac_105_05=np.std(fasiacontrol_105_05) /math.sqrt (M)
stdfasiac_110-05=np.std(fasiacontrol_110_05) /math.sqrt(M)

meananti-90_-05=np.mean(mcanti-90-05);meananti_-95_05=np.mean(mcanti-95_05)

meananti_-100_-05=np.mean(mcanti_100_05);meananti-105_05=np.mean(mcanti_105_05)
meananti_110_05=np.mean(mcanti_110_05)
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stdanti_-90_05=np.std(mcanti-90-05) /math.sqrt(M);stdanti_95_05=np.std(mcanti_95_05) /math.sqrt(M)
stdanti_100_-05=np.std (mcanti-100-05) /math.sqrt(M);stdanti_105_05=np.std(mcanti_105_05) /math.sqrt(M)
stdanti_110_.05=np.std(mcanti-110.05) /math.sqrt(M)

meanfasiac2-90-05=np.mean(fasiacontrol2_90_05);meanfasiac2_95_05=np.mean(fasiacontrol2_95_05)
meanfasiac2.100_05=np.mean(fasiacontrol2.100_05);meanfasiac2_105_05=np.mean(fasiacontrol2_105.05)
meanfasiac2-110_-05=np.mean(fasiacontrol2.110-05)

stdfasiac2.90_05=np.std(fasiacontrol2_.90_05) /math.sqrt(M);stdfasiac2_95_05=np.std(fasiacontrol2_95_05) /math.sqrt (M)
stdfasiac2_100-05=np.std(fasiacontrol2_100-05) /math.sqrt(M);stdfasiac2_-105_05=np.std (fasiacontrol2.105-05) /math.sqrt(M)
stdfasiac2_110_05=np.std(fasiacontrol2_110_05)/math.sqrt(M)

T=1
d=T/N

mcfasia_90_1=[];mcfasia_95_1=(];mcfasia_100_1=[];mcfasia_105_1=[];mcfasia_-110_1=[];
mcfasia2_90_1=[];mcfasia2_95_1=[];mcfasia2_100_1=[];mcfasia2_105_1=[];mcfasia2_110_-1=[];

mceuro-90_1=[];mceuro_95_1=[];mceuro_-100-1=[];mceuro-105_1=[];mceuro_110_1=[];

for j in range(int(M)):

st=[s0]

a=s0

st2=[s0]

a2=s0

random=np.random.normal(0,1,252)

random2=—random

for i in range(N—1):
a=asmath.exp((— (sigma**2)/2)xd+sigmaxrandom[i]*math.sqrt(d))
st.append(a)
a2=a2+math.exp((—(sigmax*2)/2)*d+sigma*random2[i]*math.sqrt(d))
st2.append(a2)

mcfasia_90_1.append(fasia(0.9));mcfasia_95_1.append(fasia(0.95));mcfasia_-100_1.append(fasia(1));
mcfasia_105_1.append(fasia(1.05));mcfasia_110-1.append(fasia(1.1))

mcfasia2_90_1.append(fasia2(0.9));mcfasia2_95_1.append(fasia2(0.95));mcfasia2_100-1.append(fasia2(1));
mcfasia2_105_1.append(fasia2(1.05));mcfasia2_110_1.append(fasia2(1.1))

mceuro-90_1.append(euro(.9));mceuro-95_1.append(euro(.95));mceuro-100_1.append(euro(1));
mceuro_105_1.append(euro(1.05));mceuro-110_1.append(euro(1.1))

mcanti_90-1=(np.array(mcfasia_90_1)+np.array(mcfasia2_90-1))/2
mcanti_95_1=(np.array(mcfasia_95_1)+np.array(mcfasia2_95_1))/2
mcanti-100_-1=(np.array(mcfasia_-100_1)+np.array(mcfasia2_100-1))/2
mcanti_105_1=(np.array(mcfasia_105_1)4np.array(mcfasia2.105.1)) /2
mcanti-110_-1=(np.array(mcfasia-110_1)+np.array(mcfasia2_110-1))/2

¢-90-1=—np.cov(mcfasia-90-1,mceuro-90-1)[0,1] /np.var(mceuro-90_1)
c-95_1=—np.cov(mcfasia_95_1,mceuro_95_1)[0,1] /np.var(mceuro_95_1)
¢-100_-1=—np.cov(mcfasia_-100_1,mceuro-100-1)[0,1] /np.var(mceuro_100_1)
c-105_1=—np.cov(mcfasia_105_1,mceuro_105-1)[0,1] /np.var(mceuro-105_1)
c-110_-1=—np.cov(mcfasia_-110_1,mceuro-110-1)[0,1] /np.var(mceuro_110_1)

fasiacontrol_90_1 =mcfasia_90_14+c_90_1*(np.array(mceuro_90_1) —BSeuro(.9,1))

fasiacontrol_95_1 =mcfasia_95_1+4c_95_1x(np.array(mceuro_95_1) —BSeuro(.95,1))
fasiacontrol_100_1 =mcfasia_100-14-c_100_1x(np.array(mceuro-100_-1) —BSeuro(1,1))
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fasiacontrol_105_1 =mcfasia_105_1+c_105_1%(np.array(mceuro-105_1) —BSeuro(1.05,1))
fasiacontrol_110_1 =mcfasia_110_14c_110_1*(np.array(mceuro_110_1) —BSeuro(1.1,1))

¢2.90_1=—np.cov(mcanti_-90_1,mceuro_90-1)[0,1] /np.var(mceuro-90_1)
¢2_95_1=—np.cov(mcanti_95_1,mceuro-95_1)[0,1] /np.var(mceuro_95_1)
¢2.100-1=—np.cov(mcanti_100_1,mceuro-100-1)[0,1] /np.var(mceuro-100_1)
¢2_105_1=—np.cov(mcanti-105_-1,mceuro-105-1)[0,1] /np.var(mceuro-105_1)
¢c2_110_.1=—np.cov(mcanti_110_1,mceuro-110_1)[0,1] /np.var(mceuro_-110_1)

fasiacontrol2_90_1 =mcanti_-90_14c2_90_1*(np.array(mceuro_90_1) —BSeuro(.9,1))
fasiacontrol2_95_1 =mcanti_95_1+c2_95_1%(np.array(mceuro_95_1) —BSeuro(.95,1))
fasiacontrol2_100-1 =mcanti-100-14-c2-100_-1%(np.array(mceuro-100-1) —BSeuro(1,1))
fasiacontrol2_105_1 =mcanti_105_14c2_105_1*(np.array(mceuro_105_1) —BSeuro(1.05,1))
fasiacontrol2_110_1 =mcanti_-110_14c¢2_110_1%(np.array(mceuro_110_1) —BSeuro(1.1,1))

meanfasia_90_1=np.mean(mcfasia_90_1);meanfasia_95_l=np.mean(mcfasia_95_1)
meanfasia-100_-1=np.mean(mcfasia-100-1);meanfasia_105_1=np.mean(mcfasia_105_1)

meanfasia_110_1=np.mean(mcfasia_110_1)

stdfasia_90_1 =np.std(mcfasia_90_1) /math.sqrt(M);stdfasia_95_1=np.std(mcfasia_95_1) /math.sqrt(M)
stdfasia_100_1 =np.std(mcfasia_100_1) /math.sqrt(M);stdfasia_105_1=np.std(mcfasia_105_1) /math.sqrt(M)
stdfasia-110_1 =np.std(mcfasia_-110_1) /math.sqrt(M)

meanfasiac-90_1=np.mean(fasiacontrol_90-1);meanfasiac_95_1=np.mean (fasiacontrol_95_1)
meanfasiac_100-1=np.mean(fasiacontrol_100-1);meanfasiac_105_1=np.mean(fasiacontrol_105_1)

meanfasiac_110_1=np.mean(fasiacontrol_110_1)

stdfasiac_90-1 =np.std(fasiacontrol_90-1) /math.sqrt(M);stdfasiac_95_1=np.std (fasiacontrol_95_1) /math.sqrt(M)
stdfasiac_100_1 =np.std(fasiacontrol-100-1) /math.sqrt(M);stdfasiac-105_1=np.std (fasiacontrol-105_1) /math.sqrt(M)
stdfasiac_110_1 =np.std(fasiacontrol_110_1) /math.sqrt(M)

meananti_90_1=np.mean(mcanti_90_1);meananti_95_1=np.mean(mcanti_95_1)
meananti_100_1=np.mean(mcanti_100_-1);meananti_-105_1=np.mean(mcanti_105_1)

meananti-110_-1=np.mean(mcanti_110_-1)

stdanti-90-1=np.std(mcanti-90_-1) /math.sqrt(M);stdanti-95_1=np.std(mcanti-95_1) /math.sqrt(M)
stdanti-100_-1=np.std(mcanti_100-1) /math.sqrt(M);stdanti_105_1=np.std (mcanti_105_1) /math.sqrt(M)
stdanti_110_1=np.std(mcanti_-110_1) /math.sqrt(M)

meanfasiac2_90_1=np.mean(fasiacontrol2_90_1);meanfasiac2_95_l=np.mean(fasiacontrol2_95_1)
meanfasiac2-100_1=np.mean(fasiacontrol2_100-1);meanfasiac2_105_1=np.mean(fasiacontrol2_-105_1)

meanfasiac2_.110_1=np.mean(fasiacontrol2_110_1)

stdfasiac2_90_1 =np.std(fasiacontrol2_90_1) /math.sqrt(M);stdfasiac2_95_1=np.std (fasiacontrol2_95_1) /math.sqrt(M)
stdfasiac2.100-1 =np.std(fasiacontrol2_.100_1) /math.sqrt(M);stdfasiac2_105_1=np.std(fasiacontrol2_105_1) /math.sqrt (M)
stdfasiac2_110-1=np.std(fasiacontrol2_110-1) /math.sqrt(M)

datal = { ’1st Order’:[BS1(.9,.1),BS1(.95,.1),BS1(1,.1),BS1(1.05,.1),BS1(1.1,.1) ],
"2st Order’:[BS2(.90,.1),BS2(.95,.1),BS2(1,.1),BS2(1.05,.1),BS2(1.1,.1) |,
”MC floating asian”:[meanfasia_90_01,meanfasia_95_01,meanfasia_100_01,meanfasia_105_01,meanfasia_110_01],
7?Std floating asian” :[ stdfasia-90-01 , stdfasia_95_01, stdfasia-100-01 , stdfasia_-105_01 , stdfasia_110-01 ],
”MC floating asian
control” :[ meanfasiac-90-01,meanfasiac_95.01,meanfasiac-100-01,meanfasiac-105_01,meanfasiac-110-01],
7Std floating asian control” :[ stdfasiac_90_01, stdfasiac_95_01 , stdfasiac_100-01 , stdfasiac_105_01 , stdfasiac_110_01 ],
?MC floating asian antitetic” :[meananti_90_01,meananti_95_01,meananti_100_01,meananti_105_01,meananti_110_01],

7?Std floating asian antitetic” :[ stdanti-90_01,stdanti_95_.01,stdanti-100-01,stdanti-105_01,stdanti_110-01 ],
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"MC floating asian control antitetic” :[ meanfasiac2.90_01,meanfasiac2_95_01,meanfasiac2.100-01,
meanfasiac2.105_01,meanfasiac2_110-01],
?Std floating asian control antitetic” :[ stdfasiac2.90-01, stdfasiac2.95_01 ,stdfasiac2_100-01,stdfasiac2_105.01,
stdfasiac2.110-01 ],

?Error 1st (%) control”:[100%(1—BS1(.9,.1)/meanfasiac_90_01),
100%(1—BS1(.95,.1) /meanfasiac-95_01),
100%(1—BS1(1,.1) /meanfasiac_100-01),
100%(1—BS1(1.05,.1) /meanfasiac_105_01),
100%(1—BS1(1.1,.1) /meanfasiac_110-01)],

?Error 2st (%) control”:[100%(1—BS2(.9,.1) /meanfasiac_90_01),
100%(1—BS2(.95,.1) /meanfasiac-95_01),
100%(1—BS2(1,.1) /meanfasiac_100-01),
100%(1—BS2(1.05,.1) /meanfasiac_105_01),
100%(1—BS2(1.1,.1) /meanfasiac_110-01)],

?Error 1st (%) anti”:[100%(1—BS1(.9,.1)/meananti_90.01),
100%(1—BS1(.95,.1)/meananti_95.01),
100%(1—BS1(1,.1) /meananti_100_01),
100%(1—BS1(1.05,.1)/meananti-10501),
100%(1—BS1(1.1,.1) /meananti_-110_01)],

?Error 2st (%) anti”:[100%(1—BS2(.9,.1)/meananti_90.01),
100%(1—BS2(.95,.1) /meananti_-95_01),
100%(1—BS2(1,.1)/meananti_100-01),
100%(1—BS2(1.05,.1) /meananti-105_01),
100%(1—BS2(1.1,.1) /meananti-110-01)],

?Error 1st (%) control anti”:[100%(1—BS1(.9,.1) /meanfasiac2.90_01),
100%(1—BS1(.95,.1) /meanfasiac2_95_01),
100%(1—BS1(1,.1) /meanfasiac2.100_01),
100%(1—BS1(1.05,.1) /meanfasiac2-105_01),
100%(1—BS1(1.1,.1) /meanfasiac2_110-01)],

?Error 2st (%) control anti”:[100%(1—BS2(.9,.1)/meanfasiac2-90_01),
100%(1—BS2(.95,.1) /meanfasiac2_95_01),
100%(1—BS2(1,.1) /meanfasiac2.100_01),
100%(1—BS2(1.05,.1) /meanfasiac2-105_01),
100%(1—BS2(1.1,.1) /meanfasiac2_110-01)],

dfl = pd.DataFrame(datal,
index=k=.9", "k=.95", "k=1", ’k=1.05",'k=1.1"],
columns=(["1st Order”,’2st Order’,” MC floating asian”,” MC floating asian control”,
"MC floating asian antitetic”,”MC floating asian control antitetic”,
7”Std floating asian”, ”Std floating asian control”,”Std floating asian antitetic”,
”Std floating asian control antitetic”,
?Error 1st (%) control”,”Error 1st (%) anti”,” Error 1st (%) control anti”,
?Error 2st (%) control”,”Error 2st (%) anti”,” Error 2st (%) control anti”])
17,dfl,sep="\n")
print (sep="\n")

print (" T=

data2 = { ’1st Order’:[BS1(.9,.5),BS1(.95,.5),BS1(1,.5),BS1(1.05,.5),BS1(1.1,.5) ],
"2st Order’:[BS2(.90,.5) ,BS2(.95,.5),BS2(1,.5),BS2(1.05,.5),BS2(1.1,.5) ],
?MC floating asian”:[meanfasia_90_.05,meanfasia_95_05,meanfasia_100-05,meanfasia_105_05,meanfasia_-110_-05],
7Std floating asian” :[ stdfasia_90-05 , stdfasia_95_05 , stdfasia_100-05 , stdfasia_105_05 , stdfasia_110-05 ],
”MC floating asian
control” :[ meanfasiac_90-05,meanfasiac_95_05,meanfasiac-100-05,meanfasiac-105.05,meanfasiac_110-05],
”?Std floating asian control” :[ stdfasiac-90_05 , stdfasiac_95_05 , stdfasiac_100_05 , stdfasiac_105_05 , stdfasiac_110_05 |,

?MC floating asian antitetic” :[ meananti_90_05,meananti_95_05,meananti_-100-05,meananti-105_05,meananti_110-05],
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7Std floating asian antitetic” :[ stdanti_90.05,stdanti_95_05,stdanti_100-05,stdanti_-105_.05,stdanti_110_05],
”MC floating asian control antitetic” :[ meanfasiac2_90_05,meanfasiac2_95_05,meanfasiac2_100_05,
meanfasiac2_105_05,meanfasiac2_110-05],
”?Std floating asian control antitetic” :[ stdfasiac2.90_05, stdfasiac2-95_05 ,stdfasiac2_100-05 ,stdfasiac2_105.05,
stdfasiac2.110-05 ],

?Error 1st (%) control”:[100%(1—BS1(.9,.5)/meanfasiac-90-05),
100%(1—BS1(.95,.5) /meanfasiac_95_05),
100%(1—BS1(1,.5)/meanfasiac-100-05),
100%(1—BS1(1.05,.5) /meanfasiac_105-05),
100%(1—BS1(1.1,.5) /meanfasiac-110.05)],

?Error 2st (%) control”:[100%(1—BS2(.9,.5)/meanfasiac-90-05),
100%(1—BS2(.95,.5) /meanfasiac_95_05),
100%(1—BS2(1,.5)/meanfasiac_100-05),
100%(1—BS2(1.05,.5) /meanfasiac_105_05),
100%(1—BS2(1.1,.5) /meanfasiac_110-05)],

?Error 1st (%) anti”:[100%(1—BS1(.9,.5) /meananti_90-05),
100%(1—BS1(.95,.5)/meananti_95_.05),
100%(1—BS1(1,.5) /meananti-100-05),
100%(1—BS1(1.05,.5) /meananti_105_05),
100%(1—BS1(1.1,.5) /meananti_110-05)],

?Error 2st (%) anti”:[100%(1—BS2(.9,.5) /meananti_90.05),
100%(1—BS2(.95,.5) /meananti_95_05),
100%(1—BS2(1,.5)/meananti-100-05),
100%(1—BS2(1.05,.5)/meananti_105_05),
100%(1—BS2(1.1,.5) /meananti_110_05)],

?Error 1st (%) control anti”:[100%(1—BS1(.9,.5)/meanfasiac2-90-05),
100%(1—BS1(.95,.5) /meanfasiac2_95.05),
100%(1—BS1(1,.5) /meanfasiac2-100-05),
100%(1—BS1(1.05,.5) /meanfasiac2.105_05),
100%(1—BS1(1.1,.5) /meanfasiac2_110_05)],

?Error 2st (%) control anti”:[100%(1—BS2(.9,.5)/meanfasiac2-90-05),
100%(1—-BS2(.95,.5) /meanfasiac2.95.05),
100%(1—BS2(1,.5) /meanfasiac2-100-05),
100%(1—BS2(1.05,.5) /meanfasiac2-105_05),
100%(1—BS2(1.1,.5) /meanfasiac2_110-05)],

df2 = pd.DataFrame(dataZ2,
index=["k=.9, 'k=.95", 'k=1", "k=1.05","k=1.1"],
columns=["1st Order”,’2st Order’,” MC floating asian”,”MC floating asian control”,
"MC floating asian antitetic”,”MC floating asian control antitetic”,
”Std floating asian”, ”Std floating asian control”,”Std floating asian antitetic”,
”Std floating asian control antitetic”,
?Error 1st (%) control”,”Error 1st (%) anti”,”Error 1st (%) control anti”,
?Error 2st (%) control”,”Error 2st (%) anti”,” Error 2st (%) control anti”])
print (" T=.57,df2,sep="\n")

)

print (sep=

data3 = { '1st Order’:[BS1(.9,1),BS1(.95,1),BS1(1,1),BS1(1.05,1),BS1(1.1,1)],
"2st Order’:[BS2(.90,1),BS2(.95,1),BS2(1,1),BS2(1.05,1),BS2(1.1,1)],
"MC floating asian”:[meanfasia_90_1,meanfasia_95_1,meanfasia_100_-1,meanfasia_105_1,meanfasia_110_1],
?Std floating asian” :[ stdfasia_90-1 , stdfasia_95_1 , stdfasia_100-1 , stdfasia_-105_1 , stdfasia_110-1 |,
"MC floating asian control” :[ meanfasiac-90_1,meanfasiac_95_1,meanfasiac_100_1,meanfasiac_-105_1,meanfasiac_110_1],
7Std floating asian control” :[ stdfasiac_90_1 , stdfasiac_95_1 , stdfasiac_100_1 , stdfasiac_105_1 , stdfasiac_110-1 |,

?MC floating asian antitetic” :[meananti_90_1,meananti_95_1,meananti_100_1,meananti_-105_1,meananti_110_1],
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7Std floating asian antitetic” :[ stdanti_90_1,stdanti_95_1 ,stdanti_-100_1,stdanti_105_1,stdanti_110_1 ],
”MC floating asian control antitetic” :[ meanfasiac2_90_1,meanfasiac2_95_1,meanfasiac2_100_1,
meanfasiac2.105_1,meanfasiac2_110_1],
?Std floating asian control antitetic” :[ stdfasiac2_.90_1, stdfasiac2_95_1, stdfasiac2-100_1 , stdfasiac2_105_1,
stdfasiac2.110-1],

?Error 1st (%) control”:[100%(1—BS1(.9,1)/meanfasiac-90-1),
100%(1—BS1(.95,1) /meanfasiac_95_1),
100%(1—BS1(1,1)/meanfasiac_100_1),
100%(1—BS1(1.05,1) /meanfasiac-105-1),
100%(1—BS1(1.1,1) /meanfasiac-110-1)],

?Error 2st (%) control”:[100%(1—BS2(.9,1)/meanfasiac-90-1),
100%(1—BS2(.95,1) /meanfasiac_95_1),
100%(1—BS2(1,1)/meanfasiac_100_1),
100%(1—BS2(1.05,1) /meanfasiac-105-1),
100%(1—BS2(1.1,1) /meanfasiac_110_1)],

?Error 1st (%) anti”:[100%(1—BS1(.9,1)/meananti-90_1),
100%(1—BS1(.95,1) /meananti_95_1),
100%(1—BS1(1,1)/meananti-100-1),
100%(1—BS1(1.05,1) /meananti_105_1),
100%(1—BS1(1.1,1) /meananti_110_1)],

?Error 2st (%) anti”:[100%(1—BS2(.9,1)/meananti_-90_1),
100%(1—BS2(.95,1) /meananti_95_1),
100%(1—BS2(1,1) /meananti_100_1),
100%(1—BS2(1.05,1) /meananti_105_1),
100%(1—BS2(1.1,1) /meananti_110_1)],

?Error 1st (%) control anti”:[100%(1—BS1(.9,1)/meanfasiac2-90-1),
100%(1—BS1(.95,1) /meanfasiac2_95_1),
100%(1—BS1(1,1)/meanfasiac2-100-1),
100%(1—BS1(1.05,1) /meanfasiac2_105_1),
100%(1—BS1(1.1,1) /meanfasiac2_110_1)],

?Error 2st (%) control anti”:[100%(1—BS2(.9,1)/meanfasiac2.90_1),
100%(1—BS2(.95,1) /meanfasiac2_95_1),
100%(1—BS2(1,1)/meanfasiac2-100-1),
100%(1—BS2(1.05,1) /meanfasiac2.105_1),
100%(1—BS2(1.1,1) /meanfasiac2-110_-1)],

df3 = pd.DataFrame(data3,
index=['k=.9", ’k=.95", k=17, ’k=1.05",’k=1.1"],
columns= ["1st Order”,’2st Order’,” MC floating asian”,” MC floating asian control”,
"MC floating asian antitetic”,”MC floating asian control antitetic”,
”Std floating asian”, ”Std floating asian control”,”Std floating asian antitetic”,
”Std floating asian control antitetic”,
?Error 1st (%) control”,”Error 1st (%) anti”,”Error 1st (%) control anti”,
?Error 2st (%) control”,”Error 2st (%) anti”,” Error 2st (%) control anti”])
print (" T=1",df3,sep="\n")

print (sep="\n")
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