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ABSTRACT 

Introduction 

Non-small cell lung cancer (NSCLC) patients diagnosed in early stage and 

surgically-treated have five-year mortality rate >20%. The identification of 

biomarkers able to predict progression and death may help to identify patients 

needing closer follow-up. 

Methods 

A retrospective cohort of early-stage surgically-treated NSCLC patients enrolled 

in the International Association for the Study of Lung Cancer (IASLC) Staging 

Project was created, and tissue Microarrays (TMAs) were constructed with 

tumor and non-tumor lung tissue. Pentose phosphate pathway (PPP) proteins 

(transketolase [TKT] and transketolase-like 1 [TKTL1]), inflammatory markers 

(cyclooxygenase-2 [COX-2], tumor necrosis factor alpha [TNF-α], interleukin 1 

beta [IL1β], nuclear factor kappa-light-chain-enhancer of activated B cells 

[NFκB]-p65 and antigen Ki-67), and programmed death-ligand 1 (PDL1) were 

measured by immunohistochemistry. 

Results 

NSCLC patients with adenocarcinoma (ADC) or squamous cell carcinoma 

(SCC) were included in the study (n=199). TKT and TKTL1 were significantly 

higher in ADC than in non-tumor tissue (p <0.001). Higher values were also 

observed in NSCLC for all the inflammatory markers, with figures >30% above 

those of non-tumor tissue (p <0.001). PDL1 analysis showed a higher 

percentage of positivity in ADC than in non-tumor tissue (p<0.001). Multivariate 



Cox proportional hazards modeling confirmed that high IL1β level in tumor 

tissue was independently associated with 3-year mortality in NSCLC [HR= 2.05, 

95% CI (1.1-3.7), p= 0.019], a relationship driven by ADC subtype.  

Conclusion 

This study confirms an increase in metabolic activity and an inflammatory 

response in tumor tissue of early stage NSCLC, and a significant relationship 

between high levels of IL1β in the tumor and poor prognosis in ADC. 

 

HIGHLIGHTS 

- High metabolic and inflammatory activity characterizes early stage NSCLC. 

- Pentose phosphate pathway proteins are overexpressed in adenocarcinoma. 

- PDL1 is identified in >15% of early stage lung adenocarcinomas.  

- High levels of IL-1β in NSCLC tissue are associated with 3-year mortality in 

ADC. 
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1. INTRODUCTION 

Lung cancer (LC) is the leading cause of cancer-related mortality worldwide, 

accounting for 1.69 million out of the total of 8.8 million cancer-related deaths in 

2015 [1]. Non-small cell lung carcinoma (NSCLC) is involved in up to 90% of LC 

cases, with adenocarcinoma (ADC) and squamous cell carcinoma (SCC) being 

the major subtypes [2]. Unfortunately, almost 85% of patients with LC remain 

undiagnosed until the disease is symptomatic and has reached an advanced 

stage [3], resulting in poor prognosis and an overall 5‑year survival rate of less 

than 15% [4,5]. LC patients diagnosed in early stages and treated surgically 

have better prognosis, but their 5-year mortality is still above 20% [6]. 

Therefore, the identification of biomarkers able to predict which patients 

submitted to therapeutic surgery present a higher risk of progression and death 

in the following years may help to improve survival, through the introduction of 

adjuvant therapies and closer follow-up.  

Carcinogenesis evolves through genetic and epigenetic changes which allow 

cells to acquire the specific characteristics of malignancy [7,8], but tumor 

progression also depends on complex interactions between host genetic 

susceptibility and the local environment [9]. The chronic and uncontrolled cell 

proliferation that characterizes carcinogenesis involves not only a deregulated 

control of cell proliferation, but also the adjustments of energy metabolism 

necessary to increase cell growth and division [8].The activity of the pentose 

phosphate pathway (PPP) enables tumor cell proliferation by generating 

pentose phosphates and ribonucleotides which favor the high rate of nucleic 

acid synthesis of cancer cells. This pathway is also a major source of 

nicotinamide adenide dinucleotide phosphate (NADPH), which is required for 



cell survival under stress conditions [10–12]. PPP contains two distinct 

metabolic branches, the oxidative and the non-oxidative branches. Flux through 

the oxidative branch is mainly regulated through enzymes such as glucose-6-

phosphate dehydrogenase (G6PD) and 6-phosphogluconate-dehydrogenase 

(6PGD). The enzyme transketolase (TKT) is one of the main regulators of the 

non-oxidative branch, while transketolase-like 1 (TKTL1) is an isoenzyme of 

TKT which is also thought to participate in the regulation of the PPP [13],  

although its precise role is still a matter of debate. TKTL1 has been shown to be 

upregulated in various cancer tissues, and its overexpression is correlated with 

many relevant cancer-related mechanisms such as invasiveness, therapeutic 

resistance, and poor prognosis [10,14,15].  

The communication between tumor cells and their microenvironment (TME), 

which is composed of different cell subpopulations and an extracellular matrix 

(ECM), is also critical for tumor growth and progression [16,17]. Tumor stroma 

consists of fibroblasts, macrophage-lineage cells and vascular endothelial cells, 

with variable amounts of extracellular matrix, all of which contribute a support 

structure for tumor growth [18]. Inflammatory cells are a key component of the 

microenvironment of carcinomas and influence cancer initiation and promotion 

by secreting cytokines, growth factors and chemokines, which stimulate 

proliferation of epithelia as well as the generation of reactive oxygen species 

that can cause DNA damage [19]. Inflammation is involved in all stages of 

tumorigenesis, from malignant transformation and tumor initiation to the 

invasion and metastasis of established tumors [20]. 

Understanding the metabolic changes of tumor cells and the nature of their 

microenvironment is important for identifying prognostic markers in early stage 



LC, and may allow the development of LC therapies targeting aspects of TME 

which influence the disease’s progression. The aim of the present study was to 

identify molecular biomarkers related to cell metabolism and local inflammation 

in cancer tissue from early stage surgically-treated NSCLC patients that may be 

a potential target for specific therapies, and its relationship to prognosis. 

 

2. METHODS 

2.1 Design and population 

The present study was nested in the International Association for the Study of 

Lung Cancer (IASLC) Staging Project, which has the aim of improving staging 

accuracy in LC. It was performed on the cases included by the Bronchogenic 

Carcinoma Cooperative Group of the Spanish Society of Pneumology and 

Thoracic Surgery (GCCB-II) in the Project between 2009 and 2012. The eighth 

edition of the tumor, node and metastasis (TNM) classification for LC was 

published in 2016 [21,22], and the innovations introduced in this edition were 

based on the data-driven recommendations of the IASLC [23,24]. The Project 

analyzed 77,154 evaluable patients recorded by 35 centers from 16 countries 

around the world [25]. Data entry and analysis were performed by Cancer 

Research and Biostatistics (CRAB), a non-profit organization based in Seattle, 

Washington. The inclusion criterion was a pathologic diagnosis of LC in patients 

without any associated severe renal or hepatic disease that might compromise 

survival in the following three years. The Spanish GCCB-II contributed 2,362 

prospectively registered cases to the IASLC International Database to inform 

the eighth edition of the TNM classification [26]. Eighteen of the hospitals 



participating in the GCCB-II included 1,035 surgically resected LC patients, 

representing 42.8% of the Spanish cohort. In this study, we retrospectively 

analyzed tissue samples from these surgical patients enrolled in the IASLC 

Staging Project and recorded at the participating Spanish hospitals [27]. The 

research protocol was approved by the reference regional research and ethics 

committee for the study (Fundació Parc Taulí reference PI12/02040) and by the 

local research and ethics committees of all participating centers. Written 

informed consent was obtained from all participating patients in accordance with 

the current legal regulations (RD 1716/2011) in Spain.  

 

2.2 Clinical variables 

The baseline clinical variables included in the IASLC database have been 

described elsewhere [25,28]. In brief, baseline clinical information included 

demographic data, smoking status, comorbidities, tumor location, blood 

analyses, results from staging tests, lung function, details on surgical treatment, 

pathological diagnosis and TNM descriptors. Survival was assessed annually, 

and overall mortality three years after surgical treatment was considered the 

main outcome for the present study.  

 

2.3 Sample processing 

Formalin-fixed paraffin embedded tissue samples were obtained from 

participating hospitals and stored in the Centro de Investigación Biomédica en 

Red de Enfermedades Respiratorias (CIBERES) Pulmonary Biobank Platform 



(PBP), part of the Spanish Biobank Network [29]. A pathology panel formed by 

three experts evaluated the samples, confirmed the histology and selected the 

appropriate area to perform Tissue Microarrays (TMAs), identifying an area with 

abundant malignant cells and a second area with preserved lung tissue distant 

from the tumor when possible. TMAs were prepared at the Centro de 

Investigación Médica Aplicada (CIMA) of the Universidad de Navarra. From 

each block, three cylinders of 0.1 cm in diameter from a tumor zone and two 

cylinders from the non-tumor area were obtained. Independent TMAs were 

created for each histological subtype. 

 

2.4 Biological marker analysis 

2.4.1 Cell metabolism 

The pentose phosphate pathway (PPP) proteins transketolase (TKT) and its 

isoform transketolase-like 1(TKTL1) were measured by immunohistochemical 

(IHC) staining with TKT (clone1925-250, isotype IgG1) and TKTL1 (clone 7D10, 

isotype IgG1) antibodies (ABnostics, Germany) in tumor and non-tumor TMAs. 

Details on the experimental procedures are described in the Supplementary 

Material.  

 

2.4.2 Inflammatory response 

Cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin 1 

beta (IL1β), nuclear factor kappa-light-chain-enhancer of activated B cells 

(NFκB)-p65 and antigen Ki-67 were measured by IHC in the tumor and non-



tumor TMAs with the following antibodies: COX-2 (anti-COX-2 antibody, Santa 

Cruz Biotechnology, Dallas, TX, USA), NF-κB (p65) (anti-NF-κB (p65), Santa 

Cruz), ki-67 (anti-ki67 antibody, Millipore Iberica, CA, USA), TNF-α and IL1β 

(Santa Cruz). Details on the experimental procedures are described in the 

Supplementary Material. 

 

2.4.3 Transmembrane proteins 

Programmed death-ligand 1 (PDL1) was measured by IHC with the 

commercially available 22C3 pharmDx Autostainer 48.8 (DAKO Agilent 

Pathology Solutions, Santa Clara, CA) in tumor and non-tumor TMAs. The 

samples were considered positive for PDL1 when the stain was positive in ≥1% 

of the cells independently of the percentage of membrane stained. The results 

were expressed as percentages of positivity in accordance with a predefined 

scale: <1%; 1-5%, 5-50% and >50% [30]. 

 

2.5 Statistical analysis 

Clinical data on the patients participating in the IASLC Staging Project were 

obtained from the CRAB and entered into a database with the results of the 

molecular biomarkers assessed. SPSS software version 15.0 (Chicago, IL, 

USA) and R package (http://www.r-project.org) were used for analyses. 

Categorical variables were expressed as absolute and relative frequencies, 

continuous variables as means and standard deviations (SD), with confidence 

intervals (CI) of the mean when required, and non-normally distributed data as 



medians and interquartile ranges (IQR). Results for PPP variables were 

expressed as OD units, after their normalization with the mean value of non-

tumor tissue. Inflammatory markers and transmembrane proteins were 

expressed as scale units from a semiquantitative score. 

Three-year mortality after resection was considered the main outcome for the 

present study, according to the criteria used by the IASLC for the staging 

classification for its eighth edition. First, over and under-expression of the 

molecular markers assessed in tumor tissue was determined, using the non-

tumor lung tissue as the reference. Second, the relationship between clinical 

characteristics and the main outcome was examined in order to define a clinical 

model for the cohort. And finally, the prognostic capacity of the molecular 

biomarkers was assessed, with adjustment for the statistically significant 

variables predefined in the clinical model.  

Relationships between independent variables, both clinical and molecular, and 

the outcome were evaluated using Student’s t test, one-way ANOVA, Mann-

Whitney U, and Chi-square (χ2) tests, as required. Sensitivity and specificity 

values from ROC curves and the Youden index were used to establish optimal 

cut-off levels for the molecular biomarkers assessed to discriminate between 

patients who did and did not survive after three years. Kaplan-Meier analysis 

was used for survival analysis and multivariate Cox proportional hazards 

regression to evaluate survival after adjusting for covariates. 

Sociodemographic, clinical and molecular variables showing a relationship with 

the outcome in first-step univariate models (p<0.10) were included in survival 

models as covariates. All the tests used were two-sided, and a p value of 0.05 

or less was reported as statistically significant. 



3. RESULTS 

3.1 Patients and material 

Seven of the 18 Spanish hospitals (38.9%) which included surgically-treated 

patients in the eighth edition of IASLC staging project agreed to participate in 

the present study. We collected 253 early stage lung cancer samples from the 

1,035 surgically-treated patients included in the IASLC database in Spain 

(34.4%). The pathology panel identified 233 samples suitable for the 

preparation of TMAs. After integrating complete baseline clinical and 3-year 

follow-up information, 222 samples comprised the final cohort, which included 

patients with NSCLC and other histology subtypes. Patients with final diagnosis 

of NSCLC (ADC and SCC) (n=199) formed the cohort for the present study 

(Table 1). Seventy-nine patients from this cohort died in the three years 

following their therapeutic surgery (39.7%). 

 

3.2 Local metabolic activity and inflammation in tumor and non-tumor tissue 

Local metabolic activity and inflammatory response were measured in both 

tumor and adjacent non-tumor tissue, to identify specific hypermetabolic and 

inflammation patterns morphologically related to malignant tissue. 

Regarding PPP markers, TKT and TKTL1 levels were measured in ADC 

samples (n=89), and their values in tumor tissue were expressed as a ratio 

against the levels in non-tumor tissue. TKT levels were measured in 85 samples 

from tumor and in 55 samples from non-tumor tissue. The mean expression of 

TKT in tumor tissue was twice the value obtained in healthy tissue (mean 2.70 



[SD 0.88] 95%CI 2.5-2.9, p<0.001). TKTL1 levels were also measured in 88 

samples from tumor and in 53 samples from non-tumor tissue, and the mean 

expression of TKTL1 in tumor tissue was also significantly increased (mean 

1.29 [SD 0.29] 95%CI 1.23-1.35, p<0.001). These results confirmed the role of 

TKT and TKTL1 in early stage LC. 

The local inflammatory response was measured in the full population sample of 

NSCLC. Levels of all biomarkers were significantly higher in malignant tissue 

and more than 30% above the non-tumor tissue reference values, a finding that 

confirms the local inflammatory activity in NSCLC tissue (Table 2). 

PDL1 analysis in ADC samples (n=89) showed a significantly higher percentage 

of positivity in tumor samples than in adjacent non-tumor tissue (p<0.001, χ2 

test). PDL1 was found in 11 cases of tumor tissue (1-5%: 1 case; 5-50%: 6 

cases and >50%: 4 cases) and in only 1 case in adjacent non-tumor tissue (5-

50%). These results confirm the differential expression pattern of this oncogenic 

driver in early stage lung ADC. 

 

3.3 Relationship between biological and clinical markers 

Overall, baseline clinical variables were not associated with metabolic and 

inflammatory biomarkers and transmembrane proteins in tumor tissue in the 

cohort. However, higher staging was associated with increased levels of 

inflammatory marker NFκB-p65 in ADC (p= 0.022, ANOVA). 

 

3.4 Association between biological markers and survival 



Regarding baseline clinical characteristics, only pathological staging was 

related to 3-year mortality (Table 3). PPP biomarkers did not show any 

association with 3-year mortality after surgical treatment. Similar results were 

found for inflammatory markers, although a clear trend was found for IL1β, 

which was higher in the tumor tissue of patients who died in the three years 

immediately after tumor resection. Among membrane receptors, PDL1 was not 

related to 3-year mortality (Table 4).  

 

3.5 Survival analysis 

Kaplan-Meier analysis showed that higher stage (p<0.001) and cardiac 

comorbidity (p= 0.033) were significantly associated with mortality (Figure 1 and 

2, Supplementary material). Accordingly, a clinical model for the identification of 

mortality risk factors was created including all variables that showed an 

association with the outcome (p<0.10) in the survival analyses performed. 

Multivariate Cox proportional hazards regression confirmed that these two 

clinical variables showed a statistically significant relationship with the outcome, 

stage [HR= 1.59, 95% CI (1.32-1.91), p<0.001] and cardiac comorbidity [HR= 

1.779, 95% CI (1.14-2.77), p= 0.011].These variables were included in 

subsequent survival analyses assessing the prognostic capacity of the 

molecular biomarkers examined.  

The Youden index was used to establish optimal cutoffs of the molecular 

biomarkers assessed which most accurately identified survivors and non-

survivors after three years. Only patients with IL1β levels above 1356 (arbitrary 

units) showed significantly higher mortality (p= 0.0074) (Figure 1). When we 



analyzed the effect of IL1β levels in ADC and SCC subtypes separately, the 

significant differences were found in ADC subtype (p= 0.0062) and not in SCC 

subtype (p= 0.38) (Figure 2A and 2B). 

The multivariate Cox proportional hazards model, after adjustment for staging 

and cardiac comorbidity, confirmed the prognostic power of high IL1β levels in 

tumor tissue [HR= 2.05, 95% CI (1.1-3.7), p= 0.019]. When we assessed 

NSCLC subtypes individually, this prognosis power was statistically significant 

for ADC [HR= 2.901, 95% CI (1.242-6.776), p= 0.014], but not for SCC [HR= 

1.314 (0.956-1.807), p= 0.461]. 

 

4. DISCUSSION 

The present study confirms the existence of local changes in the tumor and its 

microenvironment in early stage NSCLC, as shown by the high levels of 

molecular biomarkers related to local metabolic activity and inflammation in 

tumor tissue compared to its surrounding lung tissue. Furthermore, this study 

shows the prognostic capacity of IL1β, a biomarker which is not directly related 

to the tumor cells but rather to their microenvironment. Higher levels of IL1β in 

early stage lung cancer patients were associated with lower 3-year-survival, 

after adjusting for the significant clinical variables. The measurement of this 

marker in tissue samples of early stage LC patients may favor the identification 

of those who may benefit from closer follow-up and additional treatments.  

In the present study, the PPP proteins TKT and its isoform TKTL1 showed 

higher levels in tumor tissue than in the surrounding lung tissue of ADC 

subtype. Activation of oncogenic signaling pathways adapts the tumor cell 



metabolism to the dynamic tumor microenvironment (TME), where nutrient and 

oxygen concentrations are spatially and temporally heterogeneous [11]. 

Therefore, tumor cells switch their core metabolism to meet the increased 

requirements of cell growth and division by enhancing key metabolic pathways 

such as glycolysis and PPP [31]. Cancer cells can accelerate PPP activity by 

raising the expression of specific enzymes: TKT appears elevated in pancreatic 

cancer, and TKTL1 is highly expressed in various cancers and has been related 

to tumor invasiveness, therapeutic resistance, and poor prognosis 

[10,14,15,32,33]. TKTL1 expression has also been found to be elevated in 

NSCLC, with ADC being more strongly positive than SCC [34].The capacity to 

degrade glucose under anaerobic conditions is critical to tumor growth, 

especially when the cells are carried away from the basement membrane, thus 

diminishing their oxygen supply. In this situation, TKTL1 overexpression confers 

an advantage for malignant cells, allowing them to grow faster and metastasize 

[35,36]. In fact, TKTL1-suppressed cells display significantly decreased growth 

and proliferation rates [36] and inhibitors of TKT activity or gene expression also 

suppress tumor growth. Dietary studies have also indicated that the inhibition of 

the PPP minimizes tumor growth [13,36,37]. Although it has been reported that 

TKTL1 contributes to total transketolase activity [38], with a similar metabolic 

role to TKT, this protein also seems to participate in other metabolic processes 

such as DNA hypomethylation, fatty acid synthesis, and even the one-substrate 

reaction catalyzing the transformation of xylulose-5-phosphate into 

glyceraldehyde-3-phosphate and acetate [39,40]. To our knowledge, this is the 

first time that different patterns of expression in TKT and TKTL1 in NSCLC 

progression have been shown in the same tissue samples. However, high 



levels of these proteins did not show a relationship with 3-year mortality in the 

present study, a result that does not support the hypothesis of a specific role 

forTKTL1 with a potential effect in cancer development.  

The present study confirms the high inflammatory activity in NSCLC, with levels 

of all the biomarkers measured being significantly higher in malignant tissue 

than in non-tumor tissue. Besides, the results obtained show that high IL1β 

levels are an independent risk factor of poor prognosis in early stage NSCLC, 

confirming that inflammation plays a key role in its progression. IL1β is a 

pleiotropic cytokine that promotes tumor proliferation, angiogenesis and 

metastases [41]. Sustained induction of IL1β enhances the intensity of the 

inflammatory response and creates an inflammatory microenvironment that is 

advantageous for tumor initiation and/or progression [42]. Higher levels of IL1β 

have also been found in other solid tumors such as breast, colon, head and 

neck and melanomas, and patients with IL1β-producing tumors have worse 

prognoses [41]. A study of melanoma cells in vitro found that IL1β and vascular 

endothelial growth factor (VEGF) act in a complementary manner in the 

induction of angiogenesis. In that study, VEGF neutralization resulted in only an 

initial tumor inhibition, which was followed by tumor recurrence; blocking IL1β 

was associated with a decreased tumor growth for extended periods of time, a 

finding that supported a key role for IL1β in tumor progression [43]. An 

association between COX-2 expression with IL1β–induced angiogenesis and 

tumor growth in vitro and in vivo has also been suggested [44]. COX-2 levels 

were higher in tumor tissue than in non-tumor tissue in our study, although we 

did not find any clear association between COX-2 levels and 3-year mortality. 

However, COX-2 and IL1β levels were significantly correlated (data not shown), 



suggesting a degree of synergy between these two biomarkers. Similarly, 

higher levels of TNFα were found in tumor tissue, supporting a role for this 

inflammatory mediator in the development of LC. TNFα is produced 

constitutively by many malignant cells and may directly contribute to oncogenic 

activation, DNA damage and epithelial-to-mesenchymal transition (EMT) [45]. In 

fact, in another study, high levels of expression of TNFα made a major 

contribution to an 11-gene signature of poor prognostic significance in stage I 

lung cancer [46]. 

The advent of targeted therapies has drawn attention to the predictive value of 

new molecular biomarkers, which allow the selection of patients who may 

experience a clinical benefit from adjuvant therapies [47]. Among the immune 

checkpoint proteins, one of the most studied in NSCLC clinical trials is PD-1 

and its two ligands PD-L1 and PD-L2 [48]. PDL1 is present on antigen-

presenting cells (APCs), including tumor cells, and interacts with its receptor 

(PD1) on T cells inhibiting T-cell effector functions [49]. Activation of inhibitory 

T-cell checkpoint interactions has been demonstrated in NSCLC and 

suppresses the anti-tumor immune response [48–50]. We did not find an 

association between PD-L1 and 3-year mortality in our study, but the 

identification of this ligand in more than 10% of the ADC samples opens up the 

possibility of adjuvant immunotherapy in early stage NSCLC patients who show 

an inflammatory response pattern in the tumor microenvironment that puts them 

at risk of progression. 

The present study has some limitations that should be taken into account: 

NSCLC patients were analyzed as a single group, because statistically 

significant differences in the biomarkers measured were not found between 



ADC and SCC (data not shown). However, we cannot rule out the possibility 

that differences in some of the biomarkers assessed would be found between 

these subtypes when assessed in larger cohorts. Besides, this is a retrospective 

cohort analysis which needs to be validated in larger prospective cohorts to 

confirm the potential clinical use of the biomarkers shown to be related to 

prognosis in this study. Future studies should take into account the 

characteristics of the IHC performed in the present study. 

 

5. CONCLUSION 

This study confirms the increased metabolic activity in tumor tissue of early 

stage NSCLC, which is paralleled by a well-defined inflammatory response in its 

microenvironment. Furthermore, local inflammation in tumor tissue was 

associated with poor prognosis, as shown by the relationship between high 

levels of IL1β in the tumor sample and 3-year mortality. These results were 

driven mainly for ADC subtype. Accordingly, this inflammation biomarker may 

contribute to the identification of patients who are at risk of recurrence and may 

be candidates for adjuvant therapies. 
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