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ABSTRACT

The diagnosis of osteoporosis and the preventiofewiur frac-

tures is a major challenge for our society. Howetteg diagnosis
performed in clinical routine from Dual Energy Xyr#bsorpti-

ometry (DXA) images is limited. This paper propose3D recon-
struction method of both the shape and the BoneeMirDensity
(BMD) distribution of the proximal femur from rougly used
DXA images. The reconstruction accuracy that carobiined

from single-view and multi-view DXA devices was essed. This
evaluation, from 20 bone specimens and simulated\ DXages,

highlighted a mean shape accuracy of 1.3mm and B Bbturacy
of 4.4% from a single-view DXA image. A multi-vieeonfigura-

tion with 2 views (frontal-sagittal) appeared agoad compromise
(mean shape accuracy of 0.9mm and BMD accuracy2863 We

are currently using this method fior vivo clinical studies in order
to improve the diagnosis of osteoporosis and thevgmtion of

femur fractures.

Index Terms— 3D reconstruction, Statistical atlas, Dual

Energy X-rays Absorptiometry, Bone Mineral DensiDsteoporo-
sis

1.INTRODUCTION

Femur fracture due to osteoporosis affects abott 8 women
over 50 years old and accounts for significant ridityy disability,
decreased quality of life, mortality and high econo cost for
society [1]. Due to the increasing life expectantye World
Health Organization (WHO) estimated that the nundfeysteopo-
rotic femur fractures in the world will increase 1p40% by 2025
[1]. The diagnosis of osteoporosis and the prewantif the femur
fracture is thus a major challenge for our society.

In clinical routine, osteoporosis diagnosis isfpened using
Dual Energy X-ray Absorptiometry (DXA) [2]. From tw
dimensional (2D) DXA images, the areal Bone Minebansity
(aBMD, the average BMD measured in the DXA image igiven
region) is computed. Following the WHO recommeratati [1],
the aBMD value is then used in clinical routineptovide a diag-
nosis of osteoporosis.

However, the 2D measurement of this "projectedsitighis
not accurate enough for a profound analysis obtree quality. A
more sensitive analysis, taking into account bdtle three-
dimensional (3D) geometry of the femur and the &ritbution of
the BMD is expected to provide a better assessfensteoporo-
sis.

Such an analysis can be obtained by Quantitatvapbited
Tomography (QCT). A calibration phantom used during CT-
scan acquisition, allows the conversion of the Hfiefd Units in
the CT images, to density values, leading to "gtetite" images
of bone density. This 3D analysis leads to an ateysrediction of
the mechanical resistance of the femur bone [3] @mbequently
to a better characterisation of the local boneituahd the frac-
ture risk [4]. However, QCT is associated with imtpat financial
costs and high radiation doses for the patient.s€guently, this
medical imaging device is not used in clinical matfor osteopo-
rosis follow-up [5].

Therefore methods were proposed to perform a 3iysis
from routinely used DXA images.

3D reconstruction methods from single-view DXA édinon-
tal view) have not been investigated much. To ewovidedge, only

Langtonet al. [6] proposed a 3D reconstruction method from a

single DXA image. This method is however limitedtie 3D re-
construction of the shape and, consequently, doeprovide a 3D
analysis of the BMD distribution.

To overcome these limitations, we recently prodoae3D
reconstruction method based on a statistical atlasrporating
both the femoral shape and the 3D BMD distribufiin This atlas
was used to acquire a 3D reconstruction from aeibDXA image.

On the other hand, DXA commercial systems with-ar@
(such as Hologic Discovery QRD series, Hologic |Bedford,
MA, USA) are appearing in the market. Such systeitev the
acquisition of several DXA images with various viamgles. In
this context, research teams proposed 3D recotisinumethods
of the femur bone from two orthogonal DXA image} ¢8 from a
set of four DXA images [9]. These methods, howedernot pro-
vide a subject-specific 3D reconstruction of the BRilistribution.
In addition, the best configuration, in terms of tumber of views
and the view angles that should be used, is stilssue under de-



bate. Consequently, the added-value of multiplevsign compari-
son to a single view has not been established yet.

To shed some light into this issue, we presetligpaper an
extension of our recent developments [7] to ther8&pnstruction
of both femur shape and BMD distribution from smgiew or
multi-view DXA images. Several configurations, frame to four
DXA images and with different view angles, weredstigated to
evaluate the impact on the 3D reconstruction acgura

2.METHOD
2.1. Shape and density statistical model

As described in our recent research work [7], éistteal model,
incorporating both the statistical variations inme of femoral
shape and 3D BMD distribution, was used. This méolé&ws the
principles of Active Appearance Models [10] and vaasomatical-
ly constructed from a dataset of QCT scans of femlihe main
steps involved in the construction of this atlas aummarized
below.

The model requires a database of QCT acquisitibrrox-
imal femurs. First of all, a reference QCT volurmehosen among
all the acquisitions. The femoral shape of thierefice volume
was segmented using ITK-SNAP [11]. This softwarevjgtes a
semi-automated segmentation algorithm, whose resuit even-
tually be refined by the operator. All volumes atgsequently
registered to this reference volume by means aiffine transfor-
mation followed by a multi scale B-spline regisivatwhereby the
displacement of the control points is constrainedytiarantee a
diffeomorphic deformation field [12]. For each voie both the
affine and non-rigid transformations are appliedhite segmented
surface mesh of the reference volume, resulting surface mesh
of the bone for each subject. Generalized Procsustealysis
aligns the surface meshes and statistical modtheoghape is fi-
nally obtained by applying Principal Component Aisié (PCA)
to the vertices of the surface meshes [13].

Subsequently, to capture only the BMD variationsspective
of shape variations, the previously acquired segatiems are used
to deform each volume to the same mean referenapeshsing
Thin Plate Spline interpolation [14]. PCA is thepphed to the
bone density volumes resulting in a BMD distribatimodel of
femur.

To sum up, the statistical model is thus describgd set of
parameters defining the shape and a set of paresteharacteriz-
ing the BMD distribution (Figure 1).

2.2. 3D reconstruction method from DXA images

Our recent work [7] allows us to acquire a 3D restorction

(shape and BMD distribution), using the atlas dbsdr above,
from a single-view DXA image. In this paper, we end this

method to the context of multi-view DXA images. TBB recon-

struction is achieved by searching the parametsrespf the statis-
tical models (together with a translation, rotatard uniform scal-
ing) that maximizes the similarity between the DX#Aages and
the Digitally Reconstructed Radiographs (DRRs) gateel from

the model. Similar to [10], the deformation of thleape model
needs to be applied to the BMD distribution moddide the
shape. This was achieved by applying a Thin Plaglen& trans-
formation defined by the deformation of the shafiee similarity

criterion to be optimized is the average of the malasolute error
obtained between each pair of DXA image and DRIgU(fé 2).

Figure 1: First mode of variation (#2 standard datibnse from
the mean) for the shape (left) and the BMD distidyu(right,
frontal projection)

Figure 2: 3D reconstruction from a pair of frontahd sagittal
DXA images achieved by maximizing the similarityveen the
DRRs generated from the statistical model and tKé Bnages

3.METHOD EVALUATION

A database of 64 specimens of human proximal feifaliréemale,
with a mean age of 80 + 10 years) was collectedafq@revious
study [15] from the institute of Anatomy at the wid Maximi-
lians University Munich (Germany). All these borvesre scanned
using a 16-row MSCT scanner (Sensation 16; Sienvdedical
Solutions, Erlangen, Germany). All the CT-scansenssampled
from a spatial resolution of 0.195*0.195*0.5rio a spatial reso-
lution of 0.5*0.5*0.5mm and calibrated using a phantom to obtain
a QCT analysis. This database was divided intosh diatabase of
44 samples (mean age: 80 * 10 years) for the awmt&n of the
statistical atlas (see section 2.1) and a secotabdse of 20 sam-
ples (mean age: 81 * 10 years) for the evaluaticheo3D recon-
struction method (see section 2.2). Among thesesatfiples, 10
were defined as osteoporotic and 10 as non-ostetipdrased on
the WHO criteria [1] (aBMD measurements had beeriopaed
from frontal DXA images of the specimens, howevkese DXA
images have not been stored).

Since the DXA image acquisitions of these specsnerre
not available, simulated DXA images were generdtedh the
QCT volumes using a ray-casting technique (resmiutiof
0.3*0.3mnf). This technique allowed the generation of reialist
DXA images corresponding to true DXA images [16hisT al-
lowed us to easily investigate five different cgpufiations, in
terms of the number of simulated DXA images andvvangles
(enumerated in Table 1).

For each configuration, the 3D reconstructionsioted from
a single or multi-view simulated DXA images weremnared with
the QCT volumes, which were regarded as the "grdunt". To
evaluate the shape accuracy, each of the 20 QQImed was



semi-automatically segmented using ITK-SNAP [1H ¢@ne for
the reference shape built in section 2.1). The ehaptained from
the 3D reconstruction method were subsequently rsupesed
(Iterative Closest Point method [17]) onto theirrresponding
segmentation and the point-to-surface distances w@mputed. In
order to estimate the accuracy of the BMD distidutthe recon-
structed volume was aligned to the ground truthvBlime using
the transformation resulting from the previous dtare Closest
Point registration and the BMD differences werénested at each
voxel.

3.RESULTS

The mean shape accuracy, in comparison with theutgt truth”

QCT segmentations, was 1.3mm from one view and detw

0.8mm and 0.9mm from 2, 3 or 4 views (Table 1).0Emaps
showing the distribution of the mean shape diffeesnare pro-
vided in Figure 3.

The average BMD distribution accuracy, resultingnf the
voxel by voxel comparison between the reconstrastiand the
"ground truth" QCT volumes was 81mg/iinom one view and

between 53 and 60mg/érfrom 2, 3 or 4 views (Table 1). In com-

parison to the mean range of values in terms ofitlenbserved in

the QCT volumes (1856mg/ém this mean difference represents

errors of 4.4% (one view) and between 2.9 and 3(2%83 or 4
views).

4. DISCUSSION

This study aimed at proposing a 3D reconstructiethiod of both
femur shape and BMD distribution from DXA imagesvéral
studies were performed to recover the femoral stiapa DXA

images [6, 8, 9]. To our knowledge, the methodsgnéed in this
paper is the first one that allows a 3D reconsioacof the BMD

distribution, and evaluates the accuracy of thehotktIn this con-
text, several configurations (single and multi-vi@XA images)
were investigated.

From only one frontal view, the 3D reconstructionsre
found quite accurate for both the shape (mean:etr8mm) and
the BMD distribution (mean error: 4.4%) (Table The compari-
son between the frontal DXA image and the DRR (Feg4, "1
view") highlighted that the projection of the BMDsttibution in
the 3D reconstruction is consistent in comparisothe DXA im-
age.
Regarding the multi-view configurations, the amuditof the
second view (sagittal) resulted in a gain of accyrf@r both the
shape (mean error: 0.9mm) and the BMD distriburaean error:
3.2%) (Table 1 and Figure 3). This shape accuracyniilar to the
one evaluated in [8] (mean shape accuracy of 0.8simg a 3D
reconstruction method from two DXA images; frordal sagittal).
However, this method, limited to the shape recaemsion, required
an operator time of 10 minutes, dedicated to maadjistments of
the model [8]. In comparison, our method is fullyt@mated and
non-supervised. The addition of other views (3 atiev configu-
rations) brings a slight gain in terms of accurdeigure 4 high-
lights the consistency between the projectionshef BMD distri-
bution and the DXA images (configuration "3 view$.2ote that
the two configuration "3 views.1" and "3 views.2&m@ equivalent
in terms of accuracy.

Table 1: Accuracy of the shape and the BMD distidu

Shape accuracy BMD distribution
(mm) accuracy (mg/ci?
Mearf | 95% CP | Mearf 95% CP
1 view 0° 1.2 3.2 |81(4.4%)| 278 (15%)
2 views 0,90 0.c 2.3 60(3.2%) | 195 (10%)
3views10,45,90 0.8 20 55(3.0%) | 17€(9.5%)
3views.2 0,90,-45° 0.8 2.1 56 (3.0%)| 178 (9.5%)
4views0,45,90,-45°| 0.7 2.0 |[53(2.9%) 171 (9.2%)

1 9 related to the range of BMD values observechin ®CT vo-
lumes,2 Mean of the absolute differenck85% Confidence Inter-
val: 2 standard deviation of the signed differences

1 view 2 views 3 (mm)

vy

Figure 3: Distribution of the mean shape differenice
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Xl
LR’
o U N

i

Figure 4: Comparison of the DXA images (top) arel phojection
of the BMD distribution from the 3D reconstructiiPRRs, mid-
dle). Subtraction between the pairs of images @mo}t Represent-
ative examples of the mean BMD distribution accyr@able 1).



By relying on the interesting results that we otgd in thisin
vitro context, this approach is currently evaluatedriorivo clini-
cal applications. Although the evaluation preseritedhis paper
was performed from simulated DXA images, the sitomatech-
nique used has been shown to produce realisticlaiet DXA
images from QCT [16]. Consequently, to apply thistmod to
"true" DXA images is not a major issue. Howeverthwelinical
DXA images of patients, we need to deal with theesimposition
of other bony structures such as the pelvis. Aipiebry evalua-
tion performed from DXA images of patients haveergty con-
firmed that this method provides accurate 3D retansons, even
in thisin vivo clinical context.

5. CONCLUSION

The method proposed in this paper allows the 3dnstruc-
tion of the proximal femur from DXA images with atsfactory
accuracy in terms of shape and BMD distributioronfrione DXA
image, this method is compatible with the currdimical practice,
since most of the clinical sites are equipped witlgle-view DXA
imaging devices. For the multi-view DXA medical ®ms
equipped with a C-arm, that are appearing in dinice configura-
tion "2 views" (frontal and sagittal) yield the bempromise.
This better characterization of the femoral bonemf clinical rou-
tine imaging devices, is expected to provide aebettagnosis of
osteoporosis and, consequently, a better preveofidemur frac-
tures. We are currently investigating the potentiathis method
for suchin vivo clinical applications.
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