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Collective excitability in a mesoscopic neuronal model of epileptic activity
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The brain can be understood as a collection of interacting neuronal oscillators, but the extent to
which its sustained activity is due to coupling among brain areas is still unclear. Here we study
the joint dynamics of two cortical columns described by Jansen-Rit neural mass models, and show
that coupling between the columns gives rise to stochastic initiations of sustained collective activity,
which can be interpreted as epileptic events. For large enough coupling strengths, termination of
these events results mainly from the emergence of synchronization between the columns, and thus
is controlled by coupling instead of noise. Stochastic triggering and noise-independent durations
are characteristic of excitable dynamics, and thus we interpret our results in terms of collective
excitability.
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I. INTRODUCTION

Coupling provides a pervasive mechanism to organize
populations of dynamical elements, via for instance syn-
chronization and clustering [1–3]. While in many cases
coupling merely coordinates dynamical regimes that are
already present in the isolated elements, in others it un-
derlies the emergence of novel behaviors that would not
exist in the absence of interaction between the elements
[4, 5]. In the brain, examples of such emergent behav-
ior exist at the microscopic scale of networks of neurons,
in the form of, for instance, collective oscillations aris-
ing from a balance between excitation and inhibition
[6, 7] and recurrent up/down dynamics [8]. Much less
is known, however, about the emergent behavior of the
brain at the mesoscopic level of coupled brain areas.

Mesoscopic brain models often discretize spatially ex-
tended neuronal tissue and introduce a coupling strength
that refers to the magnitude of interaction between nodes
(typically neural mass models describing cortical columns
[9]) forming a discretised mesh or network. In practical
terms, this quantity is most often a multiplier of the out-
put activity of an upstream node, before this output is
fed to a downstream node. It is not clear, however, how
to derive this coupling strength experimentally. For this
reason, in computational models the coupling strength is
often used as a scan parameter [10]. Such variations of
the coupling strength, with other parameters of an ex-
citatory network kept constant, entail changes of the ef-
fective input received by the downstream nodes. In such
conditions it becomes unclear to what extent the changes
of dynamical properties of the system emerge from inter-
node interactions and to what extent they simply follow
from the intra-node dynamics driven by an increased ef-
fective net input.

For example, Huang et al. [11] find, in a system of two
interconnected neural mass modules, that an increase of
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coupling strength leads to vanishing of equilibria. Never-
theless, they also show that a similar effect occurs in case
of a single module, i.e. in the absence of inter-module
coupling, where an increase of a constant input leads to
Hopf and saddle-node-on-invariant circle (SNIC) bifurca-
tions [12] that result in the disappearance of the associ-
ated stable fixed points. This SNIC bifurcation and the
associated limit cycle are often used in theoretical studies
of epilepsy [13]. For example, Goodfellow et al. [14] study
the generation of epileptic events in a system of coupled
cortical columns described by the Jansen-Rit model, en-
riched with additional inhibitory processes and operating
in an excitable regime. They observe that the net input
to individual nodes, dependent on coupling and/or con-
nectivity, is one of the factors contributing to occurrence
of epileptic-like activity. Also in the context of epilepsy,
Goodfellow et al. [15] study the spreading of transient
epileptic-like excitations on a lattice of interconnected
Jansen-Rit modules, examining the role of coupling and
observing that mixing of two oscillatory modes gives rise
to transient excitations. The authors do not, however,
quantify how coupling affects the durations of these ex-
citations, nor do they consider noise, which is ubiquitous
in the nervous system [16].

Here we focus on the temporal properties of such tran-
sient excitations in a system of two coupled Jansen-Rit
modules subject to white noise. These transients arise
due to a non-trivial feature of the Jansen-Rit model,
namely the coexistence of two limit cycles, one of which
displays quasiharmonic oscillations of frequency ∼ 10 Hz,
resembling the alpha brain activity, and the second of
which displays spiky epileptic-like behavior (see for in-
stance Fig. 2 in [17]). The interplay between these
two dynamics is physiologically relevant: in the epileptic
brain the spreading of seizures may be gradual, therefore
both types of oscillatory modes may coexist and interact.

We study the dynamical properties of these excitation
episodes by systematically varying the coupling strength
between two reciprocally connected Jansen-Rit modules.
In order to initiate excitations we subject the two mod-
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ules to Gaussian white noise. Importantly, we use com-
pensated inputs when varying the coupling strength act-
ing upon each module. This prevents simple crossings
through the bifurcation due to the increased net input
caused by the increase of coupling between the mod-
ules. In that way, regardless of the value of the cou-
pling strength, the steady state (the stable node) of the
system is always located equally far from the excitabil-
ity threshold (the SNIC bifurcation), which allows us
to focus on effects arising solely from the coupling be-
tween the modules. As we show below, this coupling
together with stochasticity gives rises to sustained col-
lective activity that exhibits features characteristic of
an excitable behavior, and therefore we term it collec-
tive excitability. In particular, our results show a non-
monotonic trend of the initiation rate of the excitation
episodes as a function of the coupling strength. We also
observe coupling-mediated synchronous terminations of
these episodes, which bear resemblance to clinically ob-
served epileptic activity [18].

II. COUPLED NEURAL MASS MODEL

We use a system of two coupled Jansen-Rit neural
mass models [19, 20] driven by independent realizations
of white noise. A scheme of inter- and intra-columns con-
nectivity of this system is presented in Fig. 1. This figure
shows that each of the cortical columns comprises three
neuronal populations, consisting respectively of pyrami-
dal neurons, excitatory interneurons, and inhibitory in-
terneurons (see figure caption for details).

Constant
Input p

Reciprocal
symmetric 
coupling 

regulated by
the parameter

K

White 
noise 

Constant
Input p

White 
noise

√ 2 D ξ I
√ 2 D ξ II

Column I Column II

FIG. 1. A system of two reciprocally coupled Jansen-Rit cor-
tical columns. Each column consists of three neuronal pop-
ulations: pyramidal neurons (green triangles), excitatory in-
terneurons (blue hexagons) and inhibitory interneurons (red
circles). Red (blue) connectors indicate inhibitory (excita-
tory) connections. Each column is driven by three external
signals acting upon the population of pyramidal neurons: 1)
output from the interconnected column, 2) white noise, and
3) a constant signal. The two latter components stand for
background activity of brain areas that are not modeled di-
rectly.

The dynamics of these populations are governed by
two transformations. The first transformation is linear
and converts presynaptic spiking activity sin to postsy-
naptic membrane potential y(t) (PSP), via the following

convolution:

y(t) =

∫ ∞
0

h(t′)sin(t− t′)dt′, (1)

where sin(t) is the time-dependent average firing rate of
spike trains incoming to a population, y(t) is the result-
ing PSP, and the h(t) kernel describes the PSP response
at the soma resulting from an impulse activation at the
synapse. This kernel is zero for t < 0, and otherwise it
is given by the following expression for excitatory and
inhibitory connections:

he(t) = Aate−at, (2)

hi(t) = Bbte−bt, (3)

where A and B are the maximum excitatory and in-
hibitory PSPs, respectively, and a and b are reciprocals of
the time constants of these responses. These constants
follow from lumped contributions of all dilatory effects
that include synaptic kinetics, dendritic signal propaga-
tion and leak currents. Eq. (1) can be expressed, using
Eq. (2), by the following differential form:

d2y(t)

dt2
+ 2a

dy(t)

dt
+ a2y(t) = Aa · sin(t), (4)

Similarly, by using Eq. (3) one can find a correspond-
ing differential representation of the inhibitory popula-
tion dynamics.

The second transformation is nonlinear and converts
the net membrane potential y(t) to efferent firing rate
sout. It is given by the following sigmoid function:

Sigm(y) =
2e0

1 + er(ν0−y)
, (5)

where y is the instantaneous net PSP (in general, time
dependent). sout(y), which is proportional to Sigm(y), is
the resulting average firing rate of the spike train outgo-
ing from the population. The response is defined by the
maximum firing rate 2e0, the PSP ν0 for which a half
maximal firing rate is reached, and the steepness (and
thus nonlinearity) r of this transformation.

In case of the system presented in Fig. 1, the transfor-
mations described above lead to a set of six second-order
ordinary differential equations, which can be written in
the following compact form:(

d

dt
+ a

)2

yi0(t) = Aa Sigm[yi1(t)− yi2(t)], (6)(
d

dt
+ a

)2

yi1(t) = Aa{p+K Sigm[yj1(t)− yj2(t)] +

+C2 Sigm[C1y
i
0(t)] +

√
2Dξi(t)},(7)(

d

dt
+ b

)2

yi2(t) = Bb{C4 Sigm[C3y
i
0(t)]} (8)

where the tuple of indexes (i, j) takes values
{(I,II),(II,I)}, with ’I’ and ’II’ denoting the two
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Jansen-Rit modules (see Fig. 1). For each module,
y0(t) is proportional to the excitatory PSPs induced
on the two interneuron populations, y1(t) is the exci-
tatory PSP induced on the population of pyramidal
neurons, and y2(t) is the inhibitory PSP on that same
population. As a consequence of these definitions,
y1(t) − y2(t) is the net membrane potential on the
population of pyramidal neurons, which is assumed to
be approximately proportional to the EEG measured
close to the cortical column. ξI,II(t) are random vari-
ables representing two independent Gaussian white
noise realizations, each characterized by zero mean and
correlation 〈ξi(t)ξi(t′)〉 = δ(t − t′). The parameter D
represents the intensity of both noise terms.

Following the existing literature [20] we use the fol-
lowing parameter values: e0 = 2.5 s−1, v0 = 6 mV,
r = 0.56 mV−1, A = 3.25 mV, B = 22 mV, a = 100 s−1,
b = 50 s−1, C1 = 135, C2 = 108, C3 = C4 = 33.75. For
these parameters, the value of p chosen here (see below)
and in the absence of coupling, a single neural mass op-
erates in either an excitable regime in which noise can
produce isolated spikes, or in an oscillatory regime at a
frequency of around 10 Hz, which can be identified as an
alpha regime.

We integrated the system numerically using the
stochastic Heun scheme [21]. For each setting of D and
K values we performed 10 simulations of duration 3600 s
(one additional second was used to buffer the sliding win-
dow), furnished with different realizations of the stochas-
tic processes, frozen for different parameters settings. For
each value of K we chose p in such a way that the system
operates, in the absence of noise, at a distance ∆p = 1 s−1

below the excitability threshold, given by the SNIC bi-
furcation. Details on the localization of the bifurcation
point are given in the Appendices.

III. TRANSIENT COLLECTIVE EXCITATIONS

The typical dynamics of the system of two coupled
neural mass oscillators described above is shown in Fig. 2
for moderate coupling strength, where the thin black and
blue lines represent the output signals of the two columns
(yi1 − yi2, i ∈ {I, II}). The time series shows periods of
sustained activity (marked by a grey background), inter-
spersed by regions in which the two columns are quies-
cent or exhibit at most single spikes (white background).
The transient episodes do not occur due to slow changes
of a system parameter that would lead to hovering over
the bifurcation [22, 23], but are instead caused, as we
will see below, by stochastically-initiated complex inter-
actions between the two oscillatory modes.

The regions of sustained activity and quiescence can
be identified by calculating running averages of the two
signals within a sliding window of length W (thick black
and blue lines). Spans of time in which at least one of
these averages is above the threshold T are considered
excitation periods. For the values of W and T chosen
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FIG. 2. Typical dynamics of the two columns, in terms of
the net PSP signal y1(t) − y2(t), marked by thin black and
blue lines. Running averages of these signals obtained with
a sliding window of length 0.5 s are shown by thick black
and blue lines. The threshold T is shown as a dashed line,
and periods classified as prolonged activity are represented by
the grey background. Here coupling strength is K = 10, the
intensity of white noise is D = 0.5 s−1, and p is adjusted to
K according to the methodology introduced in text. The rest
of the parameters are given in the text.

(W = 0.5 s and T = 5 mV), the result of the classi-
fication agrees with eye inspection. Pure epileptic-like
single spikes are not considered excitation episodes, be-
cause we are interested in activity that can be transiently
self-sustained and can therefore lead to longer excitation
periods. To emphasize this exclusion of single spikes, we
use the term “prolonged excitation transients” to refer
to this regime. Note that the synchronous spiking occur-
ring around t = 49 s is not considered prolonged activity,
whereas the short episode appearing between t = 43 s
and t = 44 s is considered as such.

IV. INFLUENCE OF COUPLING IN
TRANSIENT DYNAMICS

We next examine the role of coupling in the prolonged
excitation transients described above. To that end, we
vary the coupling strength K while modifying the input
p such that the system of two coupled modules operates
at a fixed distance (∆p = 1 s−1) from the excitability
threshold. Figure 3 shows examples of time courses ob-
tained for three different values of coupling K, and in
the presence of noise of intensity D = 0.5 s−1. The data
shows that the durations of both the prolonged excita-
tion transients and the quiescent periods depend strongly
on the coupling strength between the columns. In par-
ticular, for small coupling (panel A, K = 5) the system
does not change the state as frequently as for larger cou-
pling strengths (panels B and C, K = 10 and 15, respec-
tively). In contrast, for intermediate values of K (panel
B, K = 10) the system switches to the excited state most
readily. Next, we studied these effects by systematically
varying K and performing long simulations that allowed
us to compute the initiation and termination rates of the
prolonged excitation transients with high statistical ac-
curacy.
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A

B

C

FIG. 3. Typical time courses obtained for three different
values of the coupling strength. 100 seconds of activity of the
model are shown for K = 5 (A), K = 10 (B) and K = 15 (C).
Periods classified as prolonged activity are represented by a
gray background. In all cases the noise intensity D was set to
0.5 s−1, and the system was operating ∆p = 1 s−1 below the
excitability threshold set by the SNIC bifurcation.

The initiation rate is defined as the total number of
prolonged excitation transients divided by the total du-
ration of the quiescent state (noise-driven fluctuations
around the steady state). In turn, the termination rate
is defined as the total number of terminations of the
sustained events divided by their total duration. These
quantities are not computed for each realization of the
noise separately, but rather within each set of parame-
ters once for all realizations considered together. This
procedure minimizes effects related to the finite time of
the simulation, and at the same time involves various
realizations of stochastic processes.

Figure 4 shows how the initiation and termination
rates of the prolonged excitation transients depend on
the coupling strength K. The results are presented for
three different intensities of the noise: D = 0.25 s−1,
0.5 s−1 and 1 s−1 (blue, red and green, respectively).
This figure demonstrates that for low values of K, both
the initiation and termination rates are relatively low,
indicating rare transitions between quiescent and excited
states. K = 0 corresponds to the case of two separated
modules, and shows that in that case transitions between
the states are rare, occurring only for sufficiently high
noise intensities (green). For low noise intensity (blue)
and low coupling K the effect is virtually absent, while
it emerges for increasing K. The fact that coupling be-
tween the modules is required for excitations to occur
indicates that this behavior is a collective phenomenon.

The increase of K leads to a moderate increase of ter-
mination rates and a rise of initiation rates, which reach a
maximum for intermediate K (K = 8 for D = 0.25 s−1,
K = 9 for D = 0.5 s−1 and K = 10 for D = 1 s−1).
For larger K values the initiation rates decay, whereas
termination rates increase more rapidly. For large cou-
pling the termination rate is basically independent of the
noise intensity, showing that in that regime it is coupling,
not noise, that plays a major role in the termination
of activity. In other words, when K is high, the pro-
longed excitation transient regime is hardly susceptible
to noise. The concurrence of a noise-dependent initia-
tion and noise-independent termination is a typical be-
havior of an excitable system [24]. In this system, large
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FIG. 4. Dependence of the initiation and termination rates
on coupling strength and noise intensity. Initiation (‘init’,
circles) and termination (‘term’, crosses) rates for discrete
values of the coupling strength K are shown for three different
intensities of the driving noise: D = 0.25 s−1 (blue), D =
0.5 s−1 (red), D = 1 s−1 (green). Dashed and dotted lines
are plotted to guide the eye. For the lowest noise intensity
(D = 0.25 s−1) and two lowest coupling values (K = 1, 2)
the initiation rate was too low to gather sufficient number
of episodes to measure termination rate. Therefore the two
lowest points of termination rate for lowest noise intensity are
considered outliers and are not plotted.

enough coupling induces excitable behavior at the level
of two columns, which thus constitutes a collective ex-
citable effect. For smaller couplings (K < 15 in Fig. 4),
the termination rate depends on noise intensity, which
is illustrated by the separation of dotted lines in Fig. 4,
and resembles other types of excitatory dynamics, such
as the one observed in the calcium-mediated activity of
cardiac myocytes [25].

The trend of the initiation rate presented in Fig. 4 may
also be explained as follows. Low K values hamper re-
cruitment between the columns: when one column spikes
due to the stochastic perturbation, it is less likely to ex-
cite the other one, as long as K remains low. For larger
K values, in contrast, a spike in one column entails a sig-
nificant perturbation applied to the other column, and
allows it to also leave the quiescent state. In the limit
of very large coupling the two columns may display the
same behavior – they synchronously spike and simultane-
ously (and quickly) fall to the refractory period followed
by the quiescent state (see again the isolated spike around
t = 49 s in Fig. 2). This does not correspond to an ini-
tiation since the activity is not sustained. Intermediate
K values, in contrast, allow for the mixing of oscillatory
modes; although the recruited column leaves the quies-
cent state, the columns do not fully synchronize and as
a result at least one of them sustains activity by moving
to the attractor of alpha oscillations, which lacks refrac-
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tory period. These oscillations yield an increased output
that is fed to the other column, which can again go active
after leaving the refractory period, and a prolonged ex-
citatory activity may develop. This effect explains why
the initiation rate peaks for an intermediate coupling in
Fig. 4. The location of the peak in Fig. 4 varies for dif-
ferent noise intensities D, which can be explained by the
fact that larger noise requires higher coupling strength
for complete synchronization.

V. SYNCHRONOUS TERMINATION OF THE
TRANSIENT EXCITATIONS

Why is the termination rate independent of noise for
large enough coupling strength? Figure 5 shows the ac-
tivity of the system around the termination of prolonged
excitation transients for different coupling values. The
figure shows that for low coupling (K = 5, panel A),
the events terminate when one of the two columns falls
stochastically back to the quiescent state, and thus ter-
mination is unsynchronised between the two columns.
Therefore, in that regime termination is mainly domi-
nated by noise. In contrast, for higher K it occurs rather
due to synchronization effects: Fig. 5B shows that for
high coupling (K = 15) the synchrony between the two
columns gradually develops, until a simultaneous drop
of activity terminates the excitation period. Although
this gradual development of synchrony does not have to
be present in every excitation transient, the synchronous
termination is prevalent for higher coupling.

The influence of K on the synchronous termination is
shown in Figs. 5C-E, where the black line represents the
average over both columns and all excitation transients
for increasing coupling levels. The grey lines shown in
these panels are 100 typical time courses of individual
columns. They converge most strongly to the averaged
time course (black line) after the termination (t = 1 s)
in the case of the largest coupling level (Fig. 5E). Also in
that case, the kink corresponding to the refractory period
of the terminating spike is most strongly pronounced (dip
in the black line after t = 1 s). Stronger coupling pro-
motes this synchronous termination, consistent with the
faster buildup of synchronization patterns for K = 15
(black line in Fig. 5E) than for K = 5 (black line in
Fig. 5C), as well as with the growth of the termination
rate with K presented in Fig. 4.

VI. DISCUSSION

Here we have introduced the concept of collective ex-
citability in a mesoscopic brain model, where prolonged
excitation transients arise due to interactions between
two connected modules, and terminate via synchroniza-
tion buildup. Our results could be applied to neurody-
namical pathologies such as epilepsy, which is primar-
ily characterized by excessive synchrony, with synchro-
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FIG. 5. Terminations patterns of prolonged excitation tran-
sients. Panels A and B show typical time courses of two cor-
tical columns (black and blue lines) for K = 5 and K = 15,
respectively. Periods of prolonged excitation transients are
marked in grey. Panels C, D, E show averaged time courses
from both columns (think black lines) and from all prolonged
excitation transients for K = 5, 10, 15, and obtained from av-
eraging 2.5 · 103 , 11 · 103 and 18 · 103 individual time courses,
respectively. The thin grey lines in the three panels repre-
sent are 100 typical time courses. In all five panels, the point
of excitation termination (identified by our classification algo-
rithm) has been shifted to the middle of the plot (corresponds
to t = 1 s). The results were obtained for D = 0.5 s−1.

nization increasing during the development of seizures
[26, 27]. Consistently with our findings, it has been pro-
posed that epileptic seizures imply synchronization, and
synchronization leads to seizure termination [28]. Ter-
mination of seizures has been shown to exhibit signa-
tures of a catastrophic transition [29] and occurs due to
simultaneous entry into the refractory period, which has
been hypothesized to be the scenario underlying a syn-
chronous termination of seizures [18]. Both the “catas-
trophic transition” and the refractoriness are featured
by our model. Our results are also consistent with the
observation that the locally simultaneous termination of
seizures correlates with the coherent spike-and-wave ac-
tivity [30]. Moreover, our findings suggest that a common
driving delivered to interconnected cortical columns (e.g.
by brain stimulation) may lead to the full synchroniza-
tion and thus seizure termination. This links our work
to dynamical studies of stimulus driven epileptic seizure
abatement [31].

Given the large levels of synchronization that charac-
terize the phenomenon, theoretical studies of epilepsy
often involve a collapse of the spatial extension of the
neuronal tissue, reducing the model of the brain from a
network to a single node (a single cortical column in our
case) [32, 33]. Our study deals with a dynamical regime
in which this collapse cannot be performed, since the
prolonged transient excitation episodes discussed here
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require the interaction between (at least) two distinct
columns to sustain the dynamics, through the mutual
activation of the two columns operating in distinct dy-
namical modes. It is also worth mentioning that it is
necessary to break the symmetry of the compound sys-
tem in order for transient excitations to arise. Here, sym-
metry breaking is provided by the independence of two
realizations of the stochastic processes affecting the two
modules that form the system.

Our mixed oscillatory modes form complex transients,
which occasionally may consist of solely healthy activity
(alpha oscillations, see Fig. 2 around 45 s). These peri-
ods, however, are preceded and followed by activity con-
taining also epileptic-like spiking. Such intermittent be-
havior is consistent with experimental observations con-
cerning epilepsy [34]. The recruitment to alpha activity
in a column by an epileptic-like spike incoming from the
other column might be facilitated by the fact that the
columns are operating in a bistable regime, where alpha
oscillations are one of the possible attractors of the sys-
tem.

Our findings also have implications for generic studies
of synchronization and collective self-organization. First,
we have demonstrated a system which does not require
slow changes to its parameters values in order to ex-
hibit activity of durations greatly exceeding temporal
timescales of these parameters. Second, each one of our
coupled elements may be considered a low-pass filter act-
ing upon uncorrelated white noise, effectively rendering
it temporally correlated before it is fed to the other col-
umn. This is consistent with previous work [17] showing
that temporal correlations of the driving stochastic input
facilitate excitations in this model. It would be interest-
ing to study if other coupled stochastic systems exhibit
this connection between collective dynamics and tempo-
ral processing.

Appendix A: Bifurcation analysis

In order to localize the excitability threshold of the sys-
tem governed by Eqs. (6)-(8), we performed a bifurcation
analysis [35] of the deterministic part of this system. We
focused our attention on the location of the SNIC bi-
furcation, which bounds from below, in the absence of
coupling, a regime of bistability between the two limit
cycles [12, 36]. Figure 6 shows this SNIC bifurcation for
three values of the coupling strength K along with the
associated stable (continuous line) and unstable (dashed
line) branches.

As mentioned in the main text, in the numerical sim-
ulations we choose p in such a way that for each value
of K the system operates a fixed distance ∆p = 1 s−1

below the excitability threshold (the SNIC bifurcation).
For example, for K=0, the SNIC bifurcation occurs at
psnic = 113.58 s−1, therefore we choose the constant part
p of the input to be equal to p = 112.58 s−1, whereas for
K = 10, psnic = 107.3 s−1, thus we set p to 106.3 s−1.
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FIG. 6. Bifurcation structure of the model around the SNIC
bifurcation for the system of two coupled Jansen-Rit modules.
The three panels A, B, and C demonstrate invariant sets for
the coupling strength K equal 0, 10, and 20, respectively.
Continuous (dashed) lines mean stable (unstable) equilibria.
The red dot marks location of the SNIC bifurcation.

Since the location of this SNIC bifurcation marks the
onset of epileptic activity, it is of high importance in the-
oretical studies on epilepsy [13]. Figures 6A-C demon-
strate that for growing K, psnic decreases. Next we in-
troduce a method of tracking this location in a system of
coupled modules.

Appendix B: Saddle-node bifurcation tracking

We now introduce a simple method of tracking a loss
of stability due to a saddle-node (SN) bifurcation in a
compound system. We also validate this method with
a codimension-2 bifurcation analysis on the K − psnic

plane performed with XPPAUT [35]. Such a loss of sta-
bility might be of special importance, e.g. when the
SNIC bifurcation leads to a “catastrophic” onset of an
epileptic-like limit cycle. This is a case of the Jansen-Rit
model discussed in this paper. The “perturbation conver-
gence” method presented in what follows was developed
and tested on that model.

The solid line in Fig. 6A shows a stable solution
(a node) for the uncoupled system of two Jansen-Rit
columns exposed to an external constant driving p. This
system is described by the deterministic part of Eqs. (6)-
(8) withK = 0, and has the properties of a single column.
When coupling between the two columns increases, how-
ever, the SNIC bifurcation moves to the left (compare the
locations of the red dot in panels A-C in Fig. 6). If p is
kept constant within the stable branch (continuous line
in Fig. 6A), the distance between the working point of the
system and the SNIC decreases as the coupling strength
increases, and the output of the system (read from the Y
axis of Fig. 6) increases. This output, however, entails a
further increase of the input fed to the interconnected col-
umn, which again provokes an increase of its output, and
a similar influence is exerted by the second column upon
the first. This transient process continues updating the
effective input received by the columns peff . Existence
of the steady state (understood as the stable node below
the SNIC bifurcation) requires that peff is finite, thus up-
dates to peff must decrease in time. In order to express
this condition formally, let us define a coupling function
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FIG. 7. Panel A: coupling function characterizing the inter-
action between two columns. Panel B: location of the saddle-
node bifurcation in the system of two connected Jansen-Rit
modules computed with XPPAUT (red line) and with the
perturbation convergence method. The approximated linear
dependency is marked by the dotted line.

fc(peff), which multiplied by K converts the input peff

delivered to column i into this column’s output.

fc(peff) = Sigm[y∗1(peff)− y∗2(peff)], (B1)

where y∗1,2(peff) denotes the value of the y1,2 state vari-
ables in the steady state corresponding to peff and to the
stable branch associated with the SN bifurcation. Due to
the symmetry of the system, the introduced dependen-
cies are valid for both columns. We therefore dropped
for simplicity the index i from the superscript of the y
state variables. Furthermore, since the described method
does not require that the tracked bifurcation is a global
SNIC, but in general it can be a saddle-node as well,
we from now on will refer to this bifurcation with the
‘SN’ abbreviation. For analytical implicit expressions for
y∗1(2)(peff) see e.g. [11, 37]. The fc(peff) function is shown

in Fig. 7A. By means of this function, we can express peff

in the steady state as a sum of the external constant driv-
ing p and the coupling term:

peff = p+Kfc(peff) (B2)

A necessary condition for stability of the steady state of
two coupled modules can be then written as:

K
dfc(x)

dx

∣∣∣∣
x=peff

≤ 1 (B3)

If this condition is not fulfilled, a perturbation ∆p > 0
of the external driving entails an increase of the coupling
term exceeding ∆p, which for monotonically increasing
fc leads to divergence of peff . Thus, for monotonically
increasing and differentiable fc and for K > 0, we expect
the disappearance of the stable solution (SN bifurcation)
at pSN

eff such that:

dfc(x)

dx

∣∣∣∣
x=pSNeff

=
1

K
(B4)

from where Eq. (B2) allows to find the corresponding
external driving pSN (X coordinate of the bifurcation
points, marked with red dots in Fig. 6). Therefore, it is
enough to know the coupling function fc and its deriva-
tive in order to quickly find the location of the SN bifur-
cation for an arbitrary K. Figure 7B shows the location
of the SN bifurcation of two coupled Jansen-Rit modules
for increasing coupling, computed with the perturbation
convergence method (black dots), along with the result
of the codimension-2 analysis performed with XPPAUT
(red line). In order to emphasize a slight deviation from
the linear dependency, we plot it in a form approximat-
ing Eq. (B2): pSN = −Kfc(pSN

single) + pSN
single (dotted line),

where pSN
single ∼ pSN

eff is where the SN bifurcation occurs for
a single Jansen-Rit module. Finally, let us note that by
substituting K in Eqs. (B2), (B4) by K(N − 1) we find
the location of the loss of stability for a fully bidirec-
tionally coupled network of N Jansen-Rit modules. Note
that this method would not apply to instabilities arising
from foci, because in that case, when relaxing to the fo-
cus, the system transiently exceeds the steady state value
and therefore we can not apply the simple reasoning of
the one-sided peff convergence.
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