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Abstract

Echocardiography is the leading imaging modality for cardiac disorders in
clinical practice. During an echocardiographic exam, geometry and blood flow
are quantified in order to assess cardiac function. In clinical practice, these image-
based measurements are currently performed manually. An automated approach
is needed if more advanced analysis is desired.

In this article, we propose a new hybrid framework for the construction of a
disease-specific atlas to improve Doppler aortic outflow velocity profile segmen-
tation. The proposed method is based on combining realistic computational sim-
ulations of the cardiovascular system for common cardiac conditions (using Cir-
cAdapt) with a validated image-based atlas construction method. The coupling
is realized via model-based generation of echocardiographic images of virtual
populations with a statistically approved parameter variation. We created virtual
populations of 100 healthy individuals and 100 patients with aortic stenosis, syn-
thesized their aortic Doppler velocity images and constructed the corresponding
atlases. We validated atlases’ performances by comparing their segmentation of
real clinical images with the manually segmented ground truth. The experimental
results show that the segmentation accuracy obtained using the proposed atlases is
comparable to the accuracy obtained using classical clinical image-based atlases.
Moreover, this framework eliminates the time-consuming acquisition of a suffi-
cient number of representative images in clinical practice, offering a substantial
time efficiency and flexibility in creating a disease specific atlas and ensuring an
observer-independent automated segmentation. The proposed approach can easily
be extended towards the creation of atlases for segmenting any Doppler trace in
the cardiovascular circulation in a specific disease.

Keywords: Echocardiography, velocity profile, aortic valve, CircAdapt, virtual
population, atlas, image segmentation, image registration
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1. Introduction

Clinical imaging of cardiovascular structure and function often results in im-
ages that need further analysis for an accurate diagnosis. This analysis can depend
on the underlying disease process. For example, in aortic stenosis, the orifice of
the aortic valve is narrowed, causing partial obstruction of the blood flow from
the heart into the aorta and onward to the rest of the body. If left untreated, it
can lead to heart failure. Doppler echocardiography of the blood flow through the
valve is the standard procedure for evaluating suspected valvular heart disease in
a patient. Specifically, in continuous-wave (CW) Doppler mode, all velocity val-
ues along a scanline are detected simultaneously, forming a velocity spectrum in
time. Since the fastest blood flow is expected within the valve, diagnostic infor-
mation is encoded in the spectral envelope. Diagnosis is based on valuation of the
maximum blood flow velocities (amplitude of the envelope) and the transaortic
pressure gradient (area under the curve). (Baumgartner et al. (2009)). Additional
computational analysis of transaortic outflow profile attributes may infer latent,
but discriminative information about the valvular condition and its influence on
the left ventricular function (Čikeš et al. (2009)). The extraction of the spectral
trace envelope for a detailed analysis represents an image segmentation problem.

While manual evaluation of the spectral amplitude is common in clinical prac-
tice, it is characterized by high inter- and intra-observer variability of both the
velocity value (Otto (2013)) and the severity of heart valve disease (Kupfahl et
al. (2004)). A precise manual delineation would enable a more detailed analy-
sis of the aortic outflow during specific phases of a cardiac cycle. However, it
is time-consuming and thus only performed roughly in order to improve patient
throughput in echocardiographic laboratories. Automated segmentation is a so-
lution that can overcome these disadvantages - it is faster, accurate, consistent
and reproducible, thus facilitating and supporting clinical image interpretation
and immediate patient evaluation. Also, it allows for a computational analysis
of the blood flow profile features, which is especially useful for resolving possible
ambiguities in diagnosing conditions with similar clinical pictures.

Contemporary image segmentation approaches are often based on the use of
representative atlases created from real-world images and their labellings (Kalinić
(2008)). However, for segmentation of images with disease-specific alterations
captured at hand, their performance is highly dependent on the quantity and the
representativeness of the acquired images and the preciseness of the performed
labellings. In other words, it relies on availability and variability of patients and
time costly manual delineation of all acquired images. To overcome this, we
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offer an alternative where the images can be computationally simulated for the
condition of interest.

In this article, we describe the novel approach towards atlas construction for
automated atlas-based segmentation of aortic outflow Doppler profiles, in order
to support evidence-based diagnosis of cardiac diseases with high accuracy. In-
stead of working with acquired patient images, we propose to create the data set
independently by using a computational model capturing the relevant pathophys-
iological changes. In this study we use the CircAdapt model (Arts et al. (2005);
Lumens et al. (2009)), validated for different cardiovascular conditions, to sim-
ulate rich populations of healthy individuals and patients with (different degrees
of) aortic stenosis. Inter-individual diversity is achieved by varying the model
parameters over an expected range of values for each population. The model sim-
ulation results can be transformed into virtual echocardiographic images using a
modality-specific imaging simulator (Palau-Caballero et al. (2013)), which fur-
ther serve as input for anatomical atlas construction. The more specific an atlas is
to the structure that is being segmented, the registration algorithm will converge
faster to a more accurate solution. Even though a Doppler valve velocity profile
appears to be a simple structure, for different valves, different valve conditions
and different conditions severities, these profiles can have quite different shapes.
This is the reason for introducing disease-specific atlases into the process of au-
tomatic image segmentation. This coupled computational modelling and velocity
profile atlas construction is validated for atlas-based segmentation in a specific
clinical population. The pipeline of the coupling is visualized in Fig.1, together
with all steps conducted in the experiment.

Since the proposed method unites different research areas, a brief overview of
each of them is given below.

Atlas-based segmentation of medical images

In the past five decades, the automatic analysis of anatomical structures in
medical images has become a valuable tool for clinical practice. Amongst a va-
riety of existing approaches (Pham et al. (2000); Ma et al. (2010)), atlas-based
segmentation has proven to be an efficient method, with the benefit of introducing
a priori knowledge into the process of segmentation. An anatomical atlas pro-
vides the ”default” anatomical structure within the observed population, with a
label for each of the structures. By propagating its segmentation and labels to a
new image, the same structures in the new image can be identified.

The majority of atlases for segmentation have been derived from a set of repre-
sentative clinical images. Simple techniques for atlas construction employ random
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Figure 1: Flowchart of the performed experiment. Following the upper branch of the flowchart
corresponds to the proposed method of the aortic Doppler segmentation using an computational
model-based atlas, whereas the rest of the steps represent the typical approach with a clinical-based
atlas. The two methods are compared in the validation step.

selection within the image data set (Yishan and Chung (2011)) or taking the aver-
age intensity (mean or median), usually coupled with the average-shape (Gruslys
et al. (2011); Madden (2007)). More complex methods utilize probabilistic calcu-
lus (Gubern-Mérida et al. (2011); Kuklisova-Murgasova et al. (2011)), or a multi-
atlas approach merging several atlas propagations into the resulting image (Wang
et al. (2013)). The use of imaging modality simulators has been proposed to create
large sets of images that can capture the appearance of clinical images for a par-
ticular modality, given knowledge on the content shape variation (Tobon-Gomez
et al. (2008, 2012)). In this paper, we extend this idea towards Doppler images
and simulating both the content appearance in these images (using information
on the imaging modality) as well as the content shape (using knowledge about
physiological processes in cardiovascular system).

Segmentation of aortic Doppler velocity profiles

Even though quantification of blood flow velocity profiles is a frequent task in
clinical practice, there has not been extensive research dealing with the problem of
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its automation. While the segmentation of velocity profiles reported by Bermejo
et al. (2000) is manual, they emphasize the need for automatic assessment for
improved diagnosis or clinical research purposes. Automatic segmentations of
similar Doppler traces in heart valves (other than aortic), based on a series of
simple image processing operations, were described by Tschirren et al. (2001)
and Greenspan et al. (2005). Gaillard et al. (2010) describe the aortic and mitral
Doppler wave segmentation using a more advanced active contour method, ini-
tialized with a shape of the centers of divergence of the gradient vector flow field,
reporting sensitivity of the method to the image contrast. Motivated by the clini-
cians’ need for not only fast and automatic delineation but also for automatic ex-
traction of condition-descriptive mathematically-derived features from the aortic
valve velocity profile shape, Kalinić et al. (2009a,b, 2012) applied and developed
several methods for atlas-based segmentation of Doppler velocity images. Some
of those are adapted and incorporated here as a part of our novel hybrid method.

Computational modelling of the cardiovascular system

The human cardiovascular system is a closed multiphysics system that can
be described with mathematical equations. Several approaches have resulted in a
large number of available lumped- and distributed-parameter computational mod-
els (NSR Physiome (2000); Shi et al. (2011)), and the two coupled (Liang et
al. (2009)). Lumped-parameter or 0-D models simplify the anatomy by assum-
ing a uniform distribution of fundamental variables within the compartments, but
they also simplify the calculus and allow for larger (or even closed-loop) circu-
lation systems to be modelled. Regardless of their simplification, these models
are accurate enough to capture various properties of cardiovascular physiology.
They have been used as an educational tool for understanding cardiovascular
(patho)physiology and as a research tool in examining the effectiveness of ther-
apy (pacemakers, valve replacements, pharmaceutical products etc.) (De Lazzari
et al. (2000); Cavalcanti et al. (2004); Di Molfetta et al. (2010); Khalafvand et
al. (2012); McCormick et al. (2014)). Coupling these models with clinical mea-
surements represents the state-of-the-art in biomedical engineering, with a great
perspective of integrating them into clinical practice.

Often, the parameters of the computational cardiac models (such as radiuses,
lengths, walls thicknesses etc.), are set for an average healthy individual or even
deduced from in-vitro experiments on different species. Since each person is char-
acterized with their own set of parameter values (also depending on their health
state), such generalization has inherent limitations and might not be representative
for a population.
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The model we used in our study is a MATLAB implementation (Matlab (2015))
of CircAdapt, by T. Arts (Arts et al. (2005)) and J. Lumens (Lumens et al. (2009)).
It is a lumped-parameter computer model that enables beat-to-beat simulation of
the heart and circulatory dynamics. In most pathologies, a single physiological
defect invokes a series of adaptive mechanisms in the rest of the system, in order
to compensate for the reduced functionality of the defective part. In computer sim-
ulations, it means that the variation of a single or a small set of parameters should
gradually (via an iterative adaptation algorithm) lead to a physiologically plausi-
ble and steady condition of interest. Following this idea, several pathologies were
successfully simulated and studied previously with this model: pulmonary arte-
rial hypertension (Lumens and Delhaas (2012)), left bundle branch block (Kui-
jpers et al. (2014), Leenders et al. (2012)), mitral valve regurgitation (Kuijpers et
al. (2012)), and chronic thromboembolic pulmonary hypertension (Lumens et al.
(2010)).

2. Materials and methods

The study complies with the Declaration of Helsinki and was approved by the
University Hospital Wuerzburg review committee and the Ethics Committee of
the Zagreb University Hospital Centre. Informed consent was obtained from all
patients.

2.1. Clinically obtained aortic outflow Doppler images

In this study, we used images of the aortic outflow profiles recorded in CW
Doppler mode with a state-of-the-art clinical echocardiographic scanner (Vivid 7,
GE Healthcare). Using an apical 5-chamber view, the scanner records the real-
time blood velocity through the aortic valve during several heart cycles and stores
the data digitally in ”raw” Dicom format. Further analysis of the images can be
performed with an EchoPAC workstation (GE Healthcare) and relevant informa-
tion can be exported for further analysis (Kalinić et al. (2012)).

The clinically acquired images were separated in two groups: healthy volun-
teers and a group of cardiac patients. The latter one covers two conditions that
share some similar patho-physiological signs with regards to alterations of the
aortic outflow velocity pattern: aortic stenosis (AS) and coronary artery disease
(CAD). More precisely, the temporal evolution of the aortic Doppler flow in both
conditions shifts from early peaking during the ejection towards later peaking, so

7



that the overall trace reshapes from triangular towards a much more rounded pro-
file with a later maximal velocity. Considering this, both types of patients were
acquired in order to capture the shape changes and increase the test set size.

A preprocessing step is done to separate and align heart cycles in all images.
The zero-velocity line and maximal-velocity line were determined from a horizon-
tal pixel projection, whereas the beginning and end of the ejection period were
marked manually by an expert cardiologist. All images were cropped with respect
to these four boundaries. For reduction of speckle noise, which characterizes the
echocardiographic imaging, images were filtered with median filters 3⇥ 3 and
bh/100c⇥bw/100c, where h and w stand for height and width of the image. To
complete virtual prealignment of images, all images were then scaled to dimen-
sions of 100⇥ 100 pixels. Obtained images are used for validation of the pro-
posed atlas approach and its comparison with a clinical-based atlas construction
approach.

An example of the aortic outflow image that can be seen on the echocardio-
graphic device during the examination is given in Fig.2(a). Examples of velocity
spectra per ejection period, extracted from different echocardiographic sequences,
are given in Fig.2 (b) and (c).

(a) (b) (c)

Figure 2: (a) An example of a CW Doppler recording of the aortic outflow shown on the echocar-
diographic scanner screen for a person with a healthy aortic valve. (b) Examples of cropped
outflow images of healthy individuals. (c) Examples of cropped outflow images of patients with
AS and CAD. Images were cropped with respect to the determined ejection periods.

2.2. Virtual images obtained with CircAdapt

CircAdapt model is based on a set of differential equations describing known
physiological and hemodynamical principles in state-variables (flows, pressures,
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sarcomere lengths and contractilities) with respect to time. The equations are
solved numerically with a MATLAB ODE solver.

The model was designed as a network assembled of four types of modules
based on their anatomical equivalence to: cardiac chambers (left and right atria
and ventricles), heart valves (mitral, aortic, tricuspid and pulmonary), large blood
vessels (aortic and pulmonary arteries and pulmonary and systemic veins) and
resistances (pulmonary and systemic peripheral vasculature). Its important ad-
vantage over other models is the incorporation of compensatory responses, which
adapt the geometry and properties of the defined circulatory system to the induced
mechanical load. Adaptation ensures that all cardiovascular system variables re-
main within biologically plausible ranges (Arts et al. (2005)).

A specific condition can be simulated with CircAdapt by setting the param-
eters of cardiac performance typical for that condition and iterating the simula-
tions during adaptation until steady state is reached. This results in a single so-
called virtual patient. To obtain a whole population of virtual patients, simulations
should be repeated with a range of other typical values for the selected condition.

The virtual population of healthy individuals was simulated by varying the
following parameters: stroke volume [mL/beat], heart rate [beats/min] and mean

arterial pressure [mmHg]. The range of values for each of them was obtained
by applying a normal distribution G(µ,s2), with mean value µ and standard de-
viation s chosen so that the parameters cover the values typical for a healthy
population1 (non-athletic and athletic individuals at rest) (Headley (2002); La
Gerche et al. (2010)). All of the other model parameters were left unchanged.

The virtual population with aortic stenosis was derived from the healthy pop-
ulation (keeping their heart rate, stroke volume and mean arterial pressure values)
by additionally changing the area of the aortic valve [cm2]. The aortic valve area
was also described with a Gaussian distribution, covering values of the valve areas
for mild, moderate and severe aortic stenosis. Other parameters that change with
aortic stenosis (such as chamber sizes, walls thicknesses, ventricular pressures,
etc.) were left to adapt for each individual by CircAdapt. The mean value and the
standard deviation of each parameter’s distributions are listed in Table 1.

For each subject, the temporal evolution of the spatially averaged flow through
the aortic valve (qave(t)) was taken from the last cardiac cycle, which represents
the steady state. The beginning and the end of the ejection are not explicitly regis-

1Normal distribution is conventionally accepted in medical clinical trials. The s of the normal
distribution for each parameter is chosen so that reported normal values are in the ±3s interval.
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Table 1: Parameter distributions for virtual populations

Population
Physiological

Unit
Distribution

parameter parameters (µ ±s )

VP-H & VP-AS HR beats/min 65 ± 15/3
VP-H & VP-AS SV mL/beat 70 ± 20/3
VP-H & VP-AS MAP mmHg 100 ± 7/3

VP-AS AVA cm2 1 ± 1/3
Legend: VP-H = healthy virtual population, VP-AS = virtual population suffering from
aortic stenosis. HR = heart rate, SV = stroke volume, MAP = mean arterial pressure,
AVA = aortic valve area.

tered by the model, so they were identified as time instances when the centerline
blood flow through the aortic valve reaches 1% of the same subject’s peak flow.
Conversions from flow to velocity and from the average to the maximal value are
needed for obtaining realistic values that can be recorded with CW Doppler. The
average velocity vave(t) of the blood through the orifice can be calculated from the
mean flow as:

vave(t) =
qave(t)

A
, t 2 [0,Te jec] (1)

where A denotes the cross-section area of the orifice (ie. the aortic valve area)
and Te jec denotes the end of the ejection interval. Considering the geometry of an
open aortic valve, spatial average refers to the arithmetic average of blood flow
velocities through an ideal circular orifice, which is in polar coordinates given by:

vave(t) =
1

R2p

Z 2p

q=0

Z
R

r=0
v(t,r)rdrdq (2)

R stands for the radius of the orifice and r is the distance from the center of the
orifice to the wall that encloses it.

For a turbulent flow of a fluid through a circular orifice, the fluid dynamics
power law equation is applied to approximate the relationship between the jet
velocities distributed across the orifice and the maximum velocity (Coulson and
Richardson (1999)):

v(t,r) = vmax(t)
⇣

1� r

R

⌘ 1
n

, r 2 [0,R] (3)

where n in the exponent is a function of the Reynolds number (Re). The typical
Reynolds number for blood flow in the body ranges from 1 in small vessels to
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approximately 4000 in the aorta. For Re < 105, the Prandtl’s one seventh power

law (n = 7) is applied to Eq. 3. Plugging the expression for v(t,r) from Eq. 3
with n = 7 into Eq. 2 leads to the following ratio of the average and the maximal
(centerline) velocity:

vmax(t) =
vave(t)

0.817
(4)

After the maximal velocities are extracted, the complete range of velocities -
lower than and equal to the centerline velocity value - corresponds to the velocity
spectrum as captured by CW Doppler. The formed spectral trace is transformed
into a binary image and the reduced quality is simulated by adding white noise.
All images were then scaled to same dimensions of 100⇥100 pixels, as performed
with clinical acquisitions.

2.3. Image registration and atlas construction

The purpose of an atlas image is to unify a common knowledge about the
shape and appearance of an object of interest and - via image registration and
segmentation - use it to deduce knowledge for images of similar content. In our
case, the object is the aortic outflow profile, obtained from either an echocardio-
graphic scanner or from the computer model. In either case, to construct an atlas,
images have to be transformed to a common space. This is achieved via nonrigid
registration of prealigned images, as follows.

To set the nomenclature, we will denote an image as I(t,v), where the hori-
zontal axis t of the image corresponds to time and the vertical axis v corresponds
to blood flow velocity. If the transform function T (t,v) = Tjk(t,v) describes the
ideal transformation of pixel coordinates in image I j(t,v) to pixel coordinates in
another image Ik(t,v), this can be denoted as: Ik(t,v) = I j(Tjk(t,v)). Here, j and
k denote indices of images in the set.

The objective of the registration process is to find the transform function
T (t,v) which maximizes the similarity S between the j

th and the k
th image if coor-

dinates of the j
th image undergo transformation T (t,v) and the k

th image remains
intact:

Topt(t,v) = arg max
T (t,v)

S(I j(T (t,v)), Ik(t,v)) (5)

To simplify the notation, we will further use S jk to stand for S(I j(T (t,v)), Ik(t,v)).
Alignment of ejection periods in all images allows us to parametrize the image

domain with M equidistant time points, scaling the t-axis to [0,1] via:

tm =
m�1
M�1

, 8m = 1, ...,M (6)
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virtually dividing the image into M�1 vertical stripes. This allows us to parametrize
the transformation vector and initialize it as f (tm) = 1, 8m 2 [1,M]. The values
between these points are linearly interpolated into f (t), meaning that the trans-
form function is in fact piecewise linear. Alignment of images also means that the
overall image deformation function warps the v-axis only, effectively applying as
velocity scaling: I(T (t,v)) = I(t, f (t)v).

Parametrization of the transform function allows us to solve the Eq. 5 by using
the gradient ascent optimization algorithm:

fi+1(tm) fi(tm)+h—S jk( fi(tm)) (7)

Here, subscript i stands for the iteration of the optimization process, —S jk de-
scribes the increase (or decrease) in similarity of the two images with respect to
the change in value of the transformation function parameter and h is the conver-
gence rate. The algorithm iteratively updates the transform vector until conver-
gence. The Pearson correlation coefficient is used as an image similarity measure:

S jk =
cov(I j(T (t,v)), Ik(t,v))

s(I j(T (t,v)))s(Ik(t,v))
, (8)

where cov(·) is the covariance of two images being compared and s(·) denotes
their respective standard deviations. A visualization of the described parametrized
non-rigid geometric transformation along the v-axis is given in Fig. 3.

(a) (b)

Figure 3: A visualization of the transformation vector overlaid on an image being registered to a
target image: (a) initial values (before deformation), (b) final values (after deformation).

For constructing an atlas, we chose one of the average shape and intensity
methods, which aims to preserve a greater amount of details introduced by patient
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variability (Kalinić et al. (2009a)). In short, an image that is least distant from all
other images in the training set is assigned to be the root image, i.e. the image
to which all the other images are mapped on. Then, an average intensity atlas is
created by averaging all images mapped to the root image. With this particular
order of operations, the average shape precedes the average intensity.

The distance between images I j = I j(t,v) and Ik = Ik(t,v) is defined as the total
amount of deformation needed for image I j to match image Ik. We first applied the
logarithm to all deformations obtained for the same segment m during the iterative
transformation optimization process. The logarithm assures that stretching and
squeezing along the v-axis by the same factor returns zero deformation. We then
applied absolute value to the obtained deformation vector since we do not care
if the deformation applies in either one or the other direction. Distance between
images I j and Ik is then:

d jk =
M

Â
m=1

�����

R

Â
i=1

log( f jk(t[m], i))

����� (9)

where M is the length of the deformation parameters vector, R is the number of
iterations and f jk(t[m], i) denotes the transformation vector in iteration i. Distance
is calculated for all possible pairs of images in the set.

The image with the least distance from all the others images in the training set
is assigned to be the root image Ir, with r denoting its index in the image set:

r = argmin
k

d jk (10)

Due to the computing limitations (convergence criteria for the optimization
process, working with discrete coordinates, interpolation error etc.), transforma-
tion of images into the root image is not ideal. It therefore makes sense to average
the transformed images into one image that represents all of them simultaneously
- the atlas:

A(t,v) =
1
K

K

Â
j=1

I j

�
Tjr (t,v)

�
(11)

Here, r is the index of the root image, with a segmentation contour selected as the
most representative, and K denotes the number of instances in the training set. In
the same manner, an average delineation of the atlas is obtained by averaging the
delineations of the images from the training set, after they are deformed using the
corresponding transformation function. We can conclude that the atlas constructed
in this way minimizes bias with respect to the transformation function.
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2.4. Validation

2.4.1. Validation of velocities

From the aortic outflow velocity, clinicians evaluate the valve condition by
calculating the mean and maximal transaortic gradient (Otto (2013)):

Dpmax ⇡ 4v
2
peak

(12)

Dpmean ⇡ 4
R

v
2
dt

Te jec

(13)

Unlike the maximal pressure gradient, which is directly proportional to the max-
imal velocity, the mean pressure gradient takes into account all velocities present
during the ejection time Te jec. Since the expected values given with equations (12)
and (13) are known for each AS grade (from healthy to severe), they were used
for the initial validation of aortic outflow signals obtained with CircAdapt.

2.4.2. Segmentation validation

For assessing the segmentation accuracy we used three validation measures
that compare the segmentation determined by the proposed method with the ground
truth segmentation (manually performed by an expert). Segmentation of the ve-
locity region with respect to the background is a binary problem and allows us to
treat the region of interest as a set and use operations and notation from the set
theory. To do this, we will denote the velocity region obtained with the proposed
atlas-based segmentation with Ia and the ground-truth velocity region with Ib.

The percentage error measures the vertical distance between the contours (ie.
the mean absolute distance, MAE) relative with respect to the image height h.
This corresponds to the size of the non-overlapping area in the segmented images
relative with respect to the image size:

err =
MAE

h
=

|Ia Ib|
h⇥w

(14)

Here,  denotes the disjunctive union of the sets, | · | denotes the cardinal number
of the set and w denotes the image width.

To avoid the dependence on the image size, we further adopted two measures
that consider the segmentation of the region of interest regardless of the size of
the background (Taha and Hanbury (2015)). The Dice similarity index (DSI) is a
measure of proportion of the overlapping area in two segmented images:

DSI =
|Ia

T
Ib|

(|Ia|+ |Ib|)/2
(15)
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For velocity regions of different shapes but similar sizes (|Ia|⇡ |Ib|), the denomi-
nator underestimates the non-overlapping region and thus overestimates the simi-
larity. The Jaccard similarity index (JSI), which compares the size of the overlap
of the sets with the size of their union, is believed to offer a more reliable measure
for evaluating image segmentation:

JSI =
|Ia

T
Ib|

|Ia[ Ib|
(16)

Successful segmentation aims for a full overlap of the atlas-based and the man-
ually segmented velocity region (DSI=1 and JSI=1), ie. for a zero-displacement
between their contours (err=0).

To determine if there was a statistical significance in error caused by the origin
of images used for atlas construction (synthetic vs. classical), we performed two-
tailed t-tests on the corresponding pairs of segmentation scenarios for each valve
condition. Tests compared all three error measures, considering P-value > 0.05
an indicator of a statistically significant difference in an error and therefore in the
design of the matched scenarios.

3. Experimental results

Two virtual populations of patients were created using CircAdapt: 100 healthy
individuals and 100 patients with aortic stenosis. The probabilistic distributions
of HR, SV, MAP and AVA values characterizing these populations are shown
in Figure 4. The velocity contours obtained with CircAdapt for both simulated
populations are shown in Figure 5. As expected, the computed Doppler traces be-
longing to the healthy population are triangular, asymmetrical and early-peaking
with lower velocity values, while those belonging to the AS population are more
rounded, symmetrical and late-peaking, with higher velocity values proportional
to the severity of the disease. The adequacy of the obtained population, according
to the expected severity, has been verified with the mentioned diagnostic values.
The results are listed in Table 2.

The signals corresponding to aortic outflow blood velocities were then trans-
formed, as described above, into images with CW Doppler properties. 100 images
from virtual patients with a healthy aortic valve (VP-H) and 100 images from vir-
tual patients with a stenotic valve (VP-AS) form the two sets of images for the
proposed atlas construction approach. The clinical sets consisted of 26 images
from healthy volunteers (RP-H) and 114 images from diseased patients (RP-D),
respectively.
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Figure 4: Histograms of obtained parameters values (red bars) fitted with normal distributions
defined with parameters in Table 1 (black line).
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Figure 5: Set of all centerline velocity contours for each of 100 individuals in the: a) healthy
virtual population, b) virtual population with aortic stenosis.

Table 2: Validation of computationally obtained signals

Healthy Aortic stenosis

mild moderate severe

Number of patients 100 7 35 58
E O E O E O E O

Area [cm
2] >2 5 >1.5 1.728 1-1.5 1.224 <1 0.717

Jet velocity [m/s] 1-2 1.092 2.6-2.9 2.925 3-4 3.692 >4 5.345
Mean gradient [mmHg] NA 2.482 <20 19.941 20-50 33.225 >50 76.518
Peak gradient [mmHg] NA 4.799 <40 34.711 40-80 54.930 >80 116.812
Legend: O = obtained mean value, E = expected value range from Baumgartner et al. (2009).

16



For building the atlases, we employed the method that minimizes bias with
respect to the transformation function for image-to-atlas registration and applies
reduced-resolution strategy for improving the robustness of the registration. Treat-
ing each of the image sets as a training set resulted in four atlases shown in Fig.
6. The first two were built using the healthy populations data sets and the last two
were created using the data sets of populations with obstructed flow.

Each of the atlases was tested for segmentation of clinical images of healthy
volunteers and patients with diagnosed heart condition. Examples of segmenta-
tion contours obtained using the proposed atlas against the corresponding ground
truth are given in Fig. 7. Percentage error, Dice index and Jaccard index values
are given in Table 3 for images of healthy Doppler flow traces and Table 4 for
images of obstructed flow traces, describing every possible scenario with regard
to combinations of four training and two test sets.

Since we propose simulating condition-specific atlases for segmenting equiva-
lent realistic images, we target scenarios (1) and (7) as the applications of interest
that contrast the traditional scenarios (2) and (8), respectively. The results show
that when segmenting the images of the normal blood flow, the standard approach
of using clinical images of a healthy population for atlas construction (2) gives
slightly better segmentations than the atlas based on virtual population (1). Sim-
ilarly, when segmenting the images of the obstructed flow, the standard approach
based on the usage of clinical AS+CAD images for the atlas construction (8) gives
slightly better segmentations than the atlas constructed with AS virtual population
images (7). Application of atlas created from healthy clinical images for segment-
ing images that originate from real patients with obstructed aortic flow and vice
versa (6 and 4 respectively) provide much inferior results. On the contrary, atlases

(a) (b) (c) (d)

Figure 6: The atlases built using the datasets of aortic Doppler flow in: a) simulated healthy pop-
ulation, b) real healthy volunteers, c) simulated population with aortic stenosis, d) real population
of patients with aortic stenosis and coronary artery disease. All images are in pixels.

17



(a) (b)

Figure 7: Examples of Doppler velocity profile images for (a) a healthy valve and (b) a stenotic
valve, delineated using the atlas based on VP-AS population (white) vs. its ground truth segmen-
tation (red). Non-zero velocity values at the beginning and the end of the ejection period belong
to the background flow (flow present between two ejections intervals, visible in Fig. 2), and are
not a part of the ejection outflow.

Table 3: Validation for segmenting Doppler traces belonging to healthy individuals

Scenario
Training Test

Err (%) DSI JSI
set set

1 VP-H RP-H 4.989 ± 1.715⇤ 0.955 ± 0.023⇤ 0.904 ± 0.042⇤
2 RP-H RP-H 4.315 ± 1.539 0.965 ± 0.015 0.933 ± 0.062
3 VP-AS RP-H 3.942 ± 1.817⇤⇤ 0.965 ± 0.022⇤⇤ 0.933 ± 0.061⇤⇤
4 RP-D RP-H 17.445 ± 5.220 0.819 ± 0.034 0.461 ± 0.275

Legend: VP-H = healthy virtual population, VP-AS = virtual population suffering from aortic stenosis, RP-
H = real healthy population, RP-D = real population of cardiac patients, Err = percentage error, DSI = Dice
similarity index, JSI = Jaccard similarity index. Results are presented as mean value ± standard deviation.
Superscripts ⇤ and ⇤⇤ denote experiments with P-value > 0.05 and < 0.001, respectively, for each proposed
VP scenario as compared to its corresponding reference RP scenario.

Table 4: Validation for segmenting Doppler traces belonging to patients

Scenario
Training Test

Err (%) DSI JSI
set set

5 VP-H RP-D 5.642 ± 0.238⇤⇤ 0.948 ± 0.018⇤⇤ 0.898 ± 0.188⇤⇤
6 RP-H RP-D 16.23 ± 3.166 0.905 ± 0.013 0.786 ± 0.213
7 VP-AS RP-D 4.327 ± 1.219⇤ 0.963 ± 0.015⇤ 0.929 ± 0.019⇤
8 RP-D RP-D 4.256 ± 1.988 0.964 ± 0.011 0.923 ± 0.021
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based on simulated datasets (1, 3, 5 and 7), even in cases which theoretically have
the largest difference between the training and the test sets (3 and 5), always pro-
vide a reasonable performance. The reasoning behind these results is discussed in
the following section.

4. Discussion

In this paper, we propose a more efficient approach for atlas construction by
introducing virtual patient data sets - simulated with a computational model of the
circulation - to support atlas-based segmentation of (Doppler) medical images.
The method was validated on two sets of collected clinical images and compared
with the standard methods of atlas construction, resulting in an overall good per-
formance of our proposed approach.

For segmenting images that represent a population with a same valve condi-
tion as the atlas (scenarios 1 vs. 2 for healthy and 7 vs. 8 for obstructed flow),
we obtained a slightly better result when we used an atlas constructed with clin-
ical images. This was expected since the classical approach in this case features
the overlap of the data used for atlas construction and the segmentation, whereas
the segmentation of the proposed approach is completely unbiased to testing data.
However, the difference between the mean segmentation errors obtained with the
classical and the new approach has shown to be practically negligible. T-tests for
all error measures yielded P-values larger than the significance level (0.05), thus
accepting the hypothesis that there is no significant difference in the atlas perfor-
mance caused by the image origin for the described scenarios. This confirms our
initial idea for constructing disease-specific atlases with simulated outflow profile
images, which greatly simplifies the process as compared to a clinical setting.

When the clinical images used to create an atlas do not represent the same
disease process as the images that are being segmented, the atlases based on sim-
ulated images in fact outperformed the atlases based on the clinical images (sce-
narios 3 vs. 4 and 5 vs. 6). The apparent difference in error for these scenarios is
complemented with low P-values (< 0.001), favouring the proposed approach for
cross-content image segmentation. Moreover, the overall underperformance of the
atlas created using a classical approach in the scenario 4 is a result of combining
an insufficiently large training data set with the cross-content image segmentation.
Since smaller sets can capture only a limited amount of realistic variability, this
demonstrates the importance of the size of the data set used to create an atlas.

Comparison with our previous work (Baličević et al. (2013)), where we tested
the concept on a healthy population, shows that the average intensity atlas out-
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performs in segmentation when the images in the training set do not differ signif-
icantly. This corresponds to the atlas created with images of healthy virtual in-
dividuals (scenario 1). Since the segmentation contours show smaller variability
in maximal velocity values and shapes, as can be seen in Fig.5, we thus obtained
better results (4.18% for Err and 0.958 for DSI). In cases with greater variability
between images, the same approach would result in an atlas with less details and
a more fuzzy boundary (Kalinić et al. (2009a)), leading us to the presented more
complex approach for atlas construction. This explains the superior performance
of the atlas created from virtual patients suffering from aortic stenosis (scenario 3
and 7).

Finally, we can conclude that the presented atlases formed from computation-
ally simulated datasets resulted in highly accurate segmentations of all types of
clinical aortic outflow images. However, for obtaining the best possible segmen-
tation of images corresponding to different severities of the disease, it is better
to use not only the same type of images, but also an atlas construction method
appropriate for the image content. Statistical tests showed that the origin of these
images (whether it is clinical or simulated) does not change the accuracy of the
segmentation significantly, suggesting that the concept proposed for segmenting
aortic valve velocity profile images can serve as a qualified alternative to state-
of-the-art approaches. As such, it can be used to pursue automatizing of profile
segmentation for more complex Doppler shapes, ie. for mitral and tricuspid valves
or pulmonary veins.

5. Conclusions

In this paper, we presented a novel approach for constructing an anatomical
(both shape and appearance) atlas based on computationally simulated images for
segmenting aortic valve Doppler images. The general idea consists of integrating
an existing atlas construction methods with a computer model capable of realistic
simulations of the human circulation.

Apart from apparent contributions such as consistency and gain in speed over
the manual approach, there are several reasons for introducing the computational
simulations in the process. Since the clinical imaging, as well as the following
research, is related to a specific condition, collecting the images is dependent
on the number of available patients. Next, for creating the anatomical atlas, the
diversity of the same condition within the patient population is relevant. With a
small number of patients, the chance of covering all possible cases is reduced,
resulting in a non-representative data set with characteristics that do not follow

20



an expected normal distribution. Introducing the computational model allows for
producing larger image data sets, with a statistically grounded control over the
parameter distributions in the set.

In order to capture the expected variability for a certain disease, it is cru-
cial that the computational model can simulate the given disease accurately. The
model that we used for generating the artificial profiles is CircAdapt, previously
validated for simulating the hemodynamics and vascular structures mechanics for
different heart conditions. Despite its great potential and capabilities, the clinical
translation from CircAdapt is not straightforward given that it results in a selected
set of one-dimensional signals, while the common clinical acquisition of flow in-
formation results in 2D images. Fluid dynamics of the blood flow combined with
image processing methods allows us to link the model to the atlas construction
method and form a hybrid framework for a fast, accurate, consistent and repro-
ducible segmentation of clinically acquired aortic blood outflow images.

While this paper is a proof of concept for what indeed is a relatively simple,
yet common and significant task in clinical practice, the possibilities of the pro-
posed concept are numerous. With the described comprehensive explanation, we
set the grounds for extending the application towards the automated segmenta-
tion of other Doppler signals where getting manual segmentation has proven to be
a problematic and demanding task and would benefit from the presented approach.
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istration and atlas-based segmentation of cardiac outflow velocity profiles. In:
Comput Methods Programs Biomed, 106(3), 188–200.

Khalafvand, S.S., Ng E.Y.K., Zhong, L., Hung, T.K., 2012. Fluid-dynamics mod-
elling of the human left ventricle with dynamic mesh for normal and myocar-
dial infarction: Preliminary study. In: Computers in Biology and Medicine, Vol.
42(8), 863870.

Kuijpers, N.H.L., Dassen, W., van Dam, P.M., van Dam, E.M., Hermeling, E.,
Lumens, J., Arts, T., Delhaas, T., 2012. CircAdapt: a User-Friendly Learning
Environment for (Patho) physiology of Heart and Circulation. In: Computing
in Cardiology (CinC), 39, 969–972.

23



Kuijpers, N.H., Hermeling, E., Lumens, J. et al., 2014. Mechano-electrical cou-
pling as framework for understanding functional remodeling during LBBB and
CRT. In: Am J Physiol Heart Circ Physiol 306, H1644-H1659.

Kuklisova-Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S.J., Doria, V.,
Seraga, A., Gousias, I.S., Boardman, J.P., Rutherfordb, M.A., Edwards, A.D.,
Hajnal, J.V., Rueckert, D., 2011. A dynamic 4D probabilistic atlas of the devel-
oping brain. NeuroImage 54 (4), 27502763.

Kupfahl, C., Honold, M., Meinhardt, G., Vogelsberg, G., Wagner, A., Mahrholdt,
H., Sechtem, U., 2004. Evaluation of aortic stenosis by cardiovascular magnetic
resonance imaging: Comparison with established routine clinical techniques.
Heart 90, 893–901.

La Gerche, A., MacIsaac, A.I., Burns, A.T., Mooney, D.J., Inder, W.J., Voigt,
J.U., Heidbchel, H., Prior, D.L., 2010. Pulmonary transit of agitated contrast
is associated with enhanced pulmonary vascular reserve and right ventricular
function during exercise. In: J Appl Physiol 109(5): 1307–17.

Leenders, G.E., Lumens, J., Cramer, M.J., De Boeck, B.W., Doevendans, P.A.,
Delhaas, T., Prinzen, F.W., 2012. Septal deformation patterns delineate mechan-
ical dyssynchrony and regional differences in contractility: analysis of patient
data using a computer model. In: Circ Heart Fail 5: 87-96.

Liang, F., Takagi, S., Himeno, R., Liu, H., 2009. Multi-scale modeling of the
human cardiovascular system with applications to aortic valvular and arterial
stenoses. In: Med Biol Eng Comput 47(7): 743–755.

Lumens, J., Delhaas, T., Kirn, B., Arts, T., 2008. Modeling ventricular interac-
tion: a multiscale approach from sarcomere mechanics to cardiovascular system
hemodynamics. In: Pac Symp Biocomput, 378–89.

Lumens, J., Delhaas, T., Kirn, B., Arts, T., 2009. Three-wall segment (TriSeg)
model describing mechanics and hemodynamics of ventricular interaction. In:
Ann Biomed Eng 37(11), 2234–2255.

Lumens, J., Delhaas, T., 2012. Cardiovascular modeling in pulmonary arterial
hypertension: focus on mechanisms and treatment of right heart failure using
the CircAdapt model. In: Am J Cardiol 110, 39S–48S.

24



Lumens, J., Blanchard, D.G., Arts, T., Mahmud, E., Delhaas, T., 2010. Left ven-
tricular underfilling and not septal bulging dominates abnormal left ventricular
filling hemodynamics in chronic thromboembolic pulmonary hypertension. In:
Am J Physiol Heart Circ Physiol, 299(4), H1083-91.

Ma, Z., Tavares, J.M., Jorge, R.N., Mascarenhas, T., 2010. A Review of Algo-
rithms for Medical Image Segmentation and their Applications to the Female
Pelvic Cavity. In: Comput Methods Biomech Biomed Engin, 13(2), 235–46.

Madden, M.J., 2007. Segmentation of images with low-contrast edges (Thesis No.
1451721). M.S.E.E., West Virginia University, 115 pages.

Margulescu, A.-D., Cinteza, M., and Vinereanu, D., 2006. Reproducibility in
echocardiography: Clinical significance, assessment, and comparison with
other imaging methods. Maedica, 1, 29–34.

MATLAB and Statistics Toolbox Release 2010b, The MathWorks, Inc., Natick,
Massachusetts, United States.

McCormick, M., Nordsletten, D., Lamata, P., Smith, N.P., 2014. Computational
analysis of the importance of flow synchrony for cardiac ventricular assist de-
vices. In: Computers in Biololgy and Medicine 49, 83–94.

NSR Physiome Project, NSR Physiome Models. Last modified: 2012.
http://www.physiome.org/Models. Accessed: June 2012.

Otto, C., 2013. Textbook of Clinical Echocardiography. (5th ed.). Philadelphia,
PA: Elsevier/Saunders.

Palau-Caballero, G., Tobon-Gomez, C., Baličević, V., Butakoff, C., Lončarić, S.,
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