
A Role-based Infrastructure for the Management of
Dynamic Communities

Alberto Schaeffer-Filho, Emil Lupu, Morris Sloman, Sye-Loong Keoh
Department of Computing, Imperial College London

180 Queen’s Gate, SW7 2AZ, London, England
{aschaeff, e.c.lupu, m.sloman, slk}@doc.ic.ac.uk

Jorge Lobo, Seraphin Calo
IBM T. J. Watson Research Center

19 Skyline Drive, Hawthorne, NY, 10532
{jlobo, scalo}@us.ibm.com

Abstract—This paper addresses the problem of specifying and
establishing secure collaborations between autonomous entities
that need to interact and depend on each other in order to
accomplish their goals. We call such collaborations mission-
oriented dynamic communities. We propose an abstract model
for policy-based collaboration that relies on a set of task-oriented
roles. Nodes are discovered dynamically and assigned to one or
more roles, and then start enforcing the policies associated with
these roles according to the description of the community. In
this paper we describe a basic set of management roles that
are needed to provide management and security functions for
dynamic communities. Policies are used to specify management
protocols as these can be easily modified to reflect different
adaptive strategies. We focus on collaboration between nodes
in the context of mobile ad-hoc networks. Our implementation
is based on a surveillance scenario using unmanned autonomous
vehicles (UAVs). However our approach to dynamic communities
could be applied to emergency services at a disaster site, search
and rescue applications or many military scenarios.

I. INTRODUCTION

This paper addresses the problem of specifying and estab-
lishing a secure collaboration between autonomous entities
that depend on each other and need to interact in order to
accomplish their goals. We call such collaborations mission-
oriented dynamic communities. Dynamic communities of au-
tonomous entities, such as unmanned autonomous vehicles
or robots in general, can be used to perform tasks that are
dangerous or even impossible for humans. Dynamic com-
munities are applicable to rescue operations after floods or
earthquakes where teams of agents coming from different
organizations are assembled for a mission; for reconnaissance
of areas where hazardous chemicals or explosives may be
present; or military missions involving teams of vehicles and
foot-soldiers. In these examples, the collaboration between a
set of autonomous entities is crucial to accomplish the intended
goals. Our objective is to create a trusted community for secure
collaboration between initially untrusted nodes without manu-
ally pre-configuring all nodes which are potential members
of the community or providing a shared information base.
Instead, a community must autonomously evolve and manage
itself without human intervention. The main challenge is to
devise a flexible infrastructure for community specification and
management that can cater for such various requirements of
many different applications.

Our approach is based on previous work on doctrines [1]
but we now cater for both management and application roles.
A role specifies how a node assigned to that role interacts
with other roles, as well as what services or resources that
it offers can be accessed by other roles. The role to which
a node is assigned will depend on the node’s capabilities in
terms of resources it can offer, its credentials or the current
mission context. The community thus specifies a dynamic
collection of roles to which nodes are assigned either initially
or dynamically when discovered or as the mission context
changes. Roles define two classes of policies, obligations and
authorizations [2], which specify how the roles interact with
each other in the scope of the community. The community
may also define a set of constraints that indicate separation
of duty and cardinality constrains on the number of role
instances that make a community viable. Our communities
provide a more distributed and extensible set of management
and security roles to meet management requirements compared
to doctrines which concentrated these functions into a single
coordinator. We also propose a methodology using policies
to define flexible protocols for role interactions based on
finite state machines which can be easily adapted to specific
application requirements.

The implementation of the communities is based on the
work on Self-Managed Cells (SMCs) developed at Imperial
College [3], which provides a policy service, event bus and a
service for discovering new potential members of the SMC.
The policy approach is itself based on previous work from
Imperial College [4], [5].

We use a scenario of a reconnaissance community of
unmanned autonomous vehicles (UAVs), from a UK/US coali-
tion, which form a mobile ad-hoc network. Typical examples
of UAVs in this community are video surveillance and infor-
mation aggregation vehicles that need to collaborate in order
to achieve their goals [6], [7]. We indicate the working of
the security and management of the community in terms of
relevant roles. The approach is flexible in that new roles can be
easily defined for different management functions, depending
on the risk context or the security requirements associated
with each mission-oriented community and the management
procedures can be adapted by changing the policies which
define the management protocols.

The paper is structured as follows: Section II focus on the



static specification of communities and the abstract model
used to represent a collaboration between roles. Section III
describes our security requirements, and how protocols for
management and security of communities can be specified
using a combination of policies representing different steps
in such protocols. Section IV describes our prototype, and
Section V briefly outlines some future work. Sections VI and
VII present related work and concluding remarks.

II. COMMUNITY DESCRIPTION

A community specification describes a set of task-oriented
roles that need to collaborate in order to achieve the com-
munity goals. The specification contains a number of policies
that must be enforced by different entities, according to their
roles in the community. Nodes are assigned to specific roles
in order to perform specific tasks in the community, based
on the node’s credentials and capabilities. The community
specification also defines a set of constraints relating to
role assignments. Policies are of two types: obligation and
authorization policies.

Obligation policies are terms of the form:

on <event> do
if <conditions> then

<target> <action>;

These event-condition-action rules specify what actions must
be performed in response to events of interest, provided the
conditions for the rules are satisfied. The event is a term of the
form e(a1,...,an), where e is the name of the event and a1,...,an
are the names of its attributes. The condition is a boolean
expression that may check local properties of the nodes (e.g.
location, time, etc.) and the attributes of the event. The target
is the name of a role where the action will be executed and so
the target must support an implementation of the action. The
action is a term of the form a(a1,...,am), where a is the name of
the action and a1,...,am are the names of its attributes.1 There
is an implicit role name called the subject associated with
an obligation which actually enforces the obligation policy,
and the action is invoked on a target role. Note the target role
may be the same as the subject i.e. a role may perform actions
on itself. Obligation policies cater for self-adaptation, because
they can encode a reactive behavior in response to events of
interest.

Authorization policies are terms of the form:

auth[+/-] <subject> -> if <condition> then
<target> <action>;

These policies are access control rules that specify what ac-
tions a subject is allowed (positive authorization) or forbidden
(negative authorization) to invoke on a target. The subject

1To simplify notation an obligation policy can have a list of target-action
pairs, all evaluated when the event is true and the condition holds.

and the target are role names. The action and the condition
are defined like in obligations. Authorization policy decisions
could be made by one or more specific roles in the community,
but our current implementation is based on the target making
authorization decisions and enforcing the policy as we assume
target nodes wish to protect the resources they provide to the
community.

Let R be a set of roles, A a set of authorization policies
and O a set of obligation policies. For any role r in R, r
is defined in (O,A) as the collection of obligation policies
in O and authorization policies in A such that the subject in
the obligation policies is r and the target in the authorization
policies is also r. Note that there is no fundamental difference
between management or application roles in the community.

We currently support only two types of constraints: car-
dinality and separation of duty constraints. Cardinality con-
straints (CC) are defined as a relation between a role and a
minimum and a maximum number of instances that the role
can have in the community. Separation of duty constraints
(SC) are defined by a relation which specifies a conflict if a
node is assigned to more than one role in the set at the same
time.2 Hence:

CC ⊆ R × N × N

Where N denotes the set of natural numbers, and for any tuple
(r, n,m) ∈ CC, n ≤ m, and r cannot appear in more than one
tuple in CC.

SC ⊆ ℘(R)

Where ℘(R) denotes the power set of R. A set s in SC
indicates that no node in the community can be assigned all
the roles in s simultaneously.

The set of constraints C of a community is defined by
the union of its cardinality constraints and separation of duty
constraints, CC ∪ SC.

Finally, a community description i is defined by the set of
roles R, the sets of policies O and A, and the set of constraints
C:

Communityi = (R,O,A, C)

The abstract model representing a community is illustrated
in Figure 1. Although there is some limited similarity with
the RBAC model [8], our roles are not just limited to defining
authorizations in terms of privileges, but cater for obligation
policies and we do not support inheritance of privileges
between role instance hierarchies.

The schema of a community specification is illustrated in
Figure 2. A community specification is meant to be loaded
and instantiated in a node that will be responsible for the
community coordination and that will be performing the
coordinator role. Coordinator is a special management role
that must be present in any community specification, and
it will be described in more detail in the next section. In
addition to the community specification the schema also has a

2Our current implementation limits the separation of duty constraints to
sets of cardinality 2.



Fig. 1. Abstract community description.

few directives needed by the implementation. It specifies the
address of the node that will play the role of coordinator and
will bootstrap the community, and the set of trusted public-
keys that will be used in the authentication of new members
that wish to join the community (which will be described later,
in Section III-A).

community <community_name> (<address>, <public_keys>) {
constraints {

cardinality := (<role_name>, min:<x>, max:<y>)
(<role_name>, min:<x>, max:<y>)
(<role_name>, min:<x>, max:<y>)
(<role_name>, min:<x>, max:<y>)

separation := (<role_name_1>, <role_name_2>)
(<role_name_1>, <role_name_2>)
(<role_name_1>, <role_name_2>)

}
role <role_name_1> {

obligation {
<list_of_obligation_policies>

}
accessControl {

<list_of_authorization_policies>
}

}
.
.
.
role <role_name_n> {

obligation {
<list_of_obligation_policies>

}
accessControl {

<list_of_authorization_policies>
}

}
initialization {

<initial_variable_assignments>
<initial_role_assignments>

}
}

Fig. 2. Community specification schema.

The schema also has an initialization block, which performs
initial variable and role assignments that are meant to be
executed upon community instantiation. As an example, the
node whose address was passed as one of the community in-
stantiation arguments may be assigned to a specific set of roles
upon community instantiation. However, initial assignments
may change as the community evolves and new members are
discovered. This block is interpreted and used only by the
coordinator.

The community will dynamically evolve and grow as other
nodes are automatically discovered and assigned to one or
more roles specified in the community, provided the con-
straints are satisfied. Whenever a node is assigned to a role,
the set of policies associated with that role is dynamically
loaded into the node. By interpreting the policies associated
with their respective roles, nodes will perform the tasks that
are meant to accomplish the community goals.

III. SECURE COMMUNITY MANAGEMENT

Based on the community specification model presented in
the last section, we describe here how a community is instan-
tiated and how it evolves during runtime when new members
join the community. In a community there can be nodes
performing management roles that are independent of the
application and other roles that are application dependent. In
this section we will focus only on an application independent
basic set of management roles and their interactions which
could easily be extended with new roles and/or new policies
relating to their interactions.

A. Security requirements and management roles

We consider a set of basic security mechanisms that we
regard as essential for the construction of secure dynamic com-
munities. These are authentication, membership management
and access control. In addition, there is a set of management
procedures required for the coordination of dynamic com-
munities. We claim that these are the essential mechanisms
because they will ensure that all members are authenticated
before joining the community, that the community keeps track
of all participants and the roles they are playing, that access
control restrictions apply to all resources and services offered
by nodes performing roles, and that the vital management
procedures for community maintenance are performed. We
describe in this section how the basic security and management
requirements for dynamic communities are fulfilled by the
collaboration between a set of management roles.

As mentioned before, the coordinator is a special role that
must be part of any community specification. It performs
the overall management of the community, such as tasks
related to the community bootstrapping and assignment of new
members to roles, as well as the validation of the community
constraints. Based on the list of current members participating
in the community and the set of cardinality constraints, the
coordinator will check whether the minimum requirements
for the community are met (similarly, the coordinator will
check separation of duty constraints upon role assignment).
Additionally, if the coordinator detects that the constraints in
the community are not being met, it may try to reassign roles in
order to keep the community running. If this is not possible the
coordinator may decide to dissolve the community. Initially,
the node performing the coordinator role may be also assigned
to several other management roles. However, the coordinator
may delegate one or more of these roles as the community
evolves and new members join.



A second management role is the authenticator. Authenti-
cation is required in order to validate the identity of nodes
that wish to join the community. A typical and fairly simple
approach for authentication is based on the use of public-
key certificates. The public-keys of the certification authorities
(CAs) that are relevant to the community must be pre-loaded
in the community specification. We assume that only a node
that possesses a valid certificate signed by one of such CAs
is able to join a community (other restrictions may apply as
we will see later, but having a valid certificate is the mini-
mal requirement). The public-keys loaded in the community
specification will avoid access to a centralized certification
authority as there may not be access to a network infrastructure
for this. The initial simple authentication implementation does
not cater for key revocations. We may integrate non-PKI based
authentication in future work.

The membership manager role is responsible for keeping
track of the current members in the community. Because
our application area, and pervasive environments in general,
often involves mobile and highly dynamic resources, the list
of members must be constantly updated. New nodes may
join the community or current members may leave at any
time. The membership manager notifies other members in the
community about changes in the members list, which also
specifies the roles each member is performing.

Finally, access control is our last basic security requirement.
Our current implementation distributes the access control
enforcement amongst all (target) roles to allow them to protect
their resources and permit access to specific subject roles (see
Section II). However, if an entity is not able to enforce its own
access control policies, it may outsource these to a specific role
in the community or to its own trusted agent.

The community is not limited to these management roles;
new roles can be specified to perform additional security or
management procedures as required. Other security mecha-
nisms that might be worth investigating are: threshold cryp-
tography, which could be used in conjunction with multiple
authenticators to prevent a compromised authenticator from
accepting rogue members into the community; access control
based on location information, which could use information
regarding the location of a member as conditions within
policies; intrusion detection, which could be used to monitor
attack attempts, log the information and generate alerts; and
finally, encrypted communication, which could be used among
the members of the community if necessary, depending on the
risk context or other specific characteristics of a mission. More
on security on ad-hoc networks can be found in [9].

B. A methodology for modeling community management

The interaction between the roles in the community is
defined in terms of the obligation policies each (subject) role
enforces, according to the community specification. These
policies specify actions that must be performed in response to
events, and such actions can be seen as steps in the protocol
that defines the interaction between roles. We can model the
interaction between roles in a community by defining a finite

state machine, where arrows represent the generation of events
and states are actions that represent steps of the protocol.
We only focus on modeling interactions between management
roles, but the same approach can be used for application-
specific interactions.

For example, the finite state machine in Figure 3 illustrates
an interaction protocol in a community that supports the
three management roles described previously: coordinator,
authenticator and membership manager. The protocol specifies
that after the community specification is loaded into the
coordinator, the community broadcasts its presence and waits
for node replies. A reply will trigger the authentication step;
if the node is successfully authenticated, a list of potential
roles for assignment must be selected; after that, constraints
must be checked; the node is then assigned to the roles that
satisfy both the set of maximum cardinality and the set of
separation of duty constraints, provided the node possesses
the required capabilities for a specific role (the assignment
policies will be described in detail in the next section); at
this point, if the minimum cardinality constraints specified
by the community are satisfied, the community changes to
the state “established”, otherwise it remains in the state
“broadcasting/waiting”, where it waits for more nodes to
reply. The sequence of policies that represents these steps in
the protocol is presented in Figure 4.

The protocol illustrated in Figure 3 has other steps, but our
intended contribution is not in terms of defining a specific
management protocol, but to illustrate the methodology for
modeling community interactions and show how this protocol
can be changed by modifying policies. Each step in the
protocol represents an action (or set of actions) performed by a
policy triggered by the event that corresponds to the incoming
arrow. If a step also generates the event required to trigger the
policy which specifies the next step, we can “chain” the steps
of the protocol. Typically when an event triggers a policy it
contains parameters that can be used in the condition or in the
action of the policy. When the events used to trigger the next
step are generated by policies, they must also specify such
parameters. To simplify the presentation, the parameters are
omitted in the events generated by the policies in Figure 4.

The chaining of policies provides a flexible approach that
allows the modification of the protocol by simply changing
policies. For example, after selecting a set of potential roles
for assignment, we can completely skip the validation of max-
imum cardinality and separation of duty constraints by using
the selected potential roles event to trigger the assignment of
the node to the role instead of triggering the validation of max-
imum cardinality and separation of duty constraints policies.
Similarly, we could add a new type of constraint validation
before going to the assigning step – this would require a new
policy specifying the validation action to be performed, the
triggering event would come from the “selecting potential
roles” state and this step would generate an additional event
that would be used as input of the “assigning” state. This
policy would be similar to the policies illustrated above that
perform the validation of maximum cardinality constraints or



Fig. 3. Modeling community management.

on load_specification(specification) do
/role/Coordinator broadcastAndWaitForReplies();

on node_reply(node, credentials) do
/role/Authenticator authenticate(node, credentials);
/role/Coordinator notify(valid_credentials);

on valid_credentials(node, capabilities) do
/role/Coordinator selectPotentialRoles(node);
/role/Coordinator notify(selected_potential_roles);

on selected_potential_roles(roles)
/role/Coordinator validateSeparationConstraints(roles);
/role/Coordinator notify(roles_separation);

on selected_potential_roles(roles)
/role/Coordinator validateMaximumConstraints(roles);
/role/Coordinator notify(roles_maximum);

on roles_separation(rs) + roles_maximum(rm)
if hasCapabilities(node, <cap>) and

isRoleValid(<role_name>, rs + rm) then
/role/<role_name> assign(node);
/role/Coordinator notify(node_assigned);

on node_assigned()
/role/Coordinator validateMinimumConstraints();
/role/Coordinator notify(constraints_satisfied);

on constraints_satisfied()
/role/* establishCommunity();

Fig. 4. Policies for community management protocol transitions.

the validation of separation of duty constraints.

We are therefore specifying the community management in
terms of policies that perform steps in the protocol; the policies
generate new events that trigger other policies that perform
other steps; in turn, these policies also generate new events and
so on. This is similar to the approach used in PDL [10], where
internal events are used to link the execution of policies. There
however, only local events were considered, while here events
can be sent to remote nodes performing a given role. The
flexibility of our approach is even clearer when we consider the
addition of entirely new management roles to the community,

with a whole new set of management policies. These can be
used then to enhance the protocol, by adding new management
steps.

The duality between the finite state machine and the policy
representation would facilitate automatic generation of the set
of policies from the corresponding FSM. However, this is
future work.

Based on the set of management roles outlined above, the
next sections give examples of how the community could
evolve during runtime, and how new members join and leave
the community.

C. Authentication and role assignment

Initially, the node assigned to the coordinator role is respon-
sible for broadcasting messages advertising the community to
nearby nodes. This task, as everything else, is specified in
terms of a policy. An event, such as a clock tick every 30 or
60 seconds, is used to trigger the broadcasting action. Addi-
tionally, the broadcast could be sent over a special channel
frequency decided and controlled by policies. The advertise-
ment message contains a reply address, which corresponds
to the address of the node performing the authenticator role
(which can be the same node performing the coordinator role,
or some other node). When a nearby node replies to the ad-
vertisement, its reply message typically contains a description
of the capabilities of the remote entity and its credentials. The
authenticator needs to validate the credentials of any node
before it is allowed to join the community.

The credentials of a node are validated using the public-
keys of the relevant certification authorities (CAs) for a
given community. For example, in our reconnaissance scenario
involving US and UK troops, typical relevant CAs would be
US DoD and UK MoD. These public-keys were previously
loaded into the community specification.

If the discovered node is successfully authenticated, an event
is sent to the coordinator. This event may trigger one or more



assignment policies. Assignment policies are one of the types
of obligation policies enforced by the coordinator role. The
roles to which a new member can be assigned are application-
specific roles (surveyor, aggregator, etc), management roles or
both. The coordinator may also delegate management tasks to
other nodes, assigning these nodes to the respective roles.

An assignment policy defines the assignment of a node to
a role as a function of the capabilities the node possesses and
the requirements of the role. A typical assignment policy is
shown below. It assigns the discovered node to a surveyor role
provided that the node possesses the required capabilities for
performing that role (in this case, the node must provide the
video capability).

on valid_credentials(node, credentials, capabilities) do
if hasCapabilities(capabilities, [video]) then

/role/Surveyor assign(node);

Note that this policy is simpler than the assignment policy
illustrate in Figure 4 (sixth policy). Here, we are assuming that
the assignment is triggered just after the authentication step,
while in Figure 4 the assignment is triggered by a correlation
of events after the two steps for validation of constraints are
completed. The event that triggers the policy may change
according to the management protocol and the steps used.
However, the assignment action must be conditional on the
node possessing the capabilities required by the role.

After a node is assigned to a role the relevant obligation
and authorization policies it must enforce are downloaded to
it.

D. Membership management

For membership management we have implemented a pol-
icy that causes members of the community to periodically
notify the membership manager that they are still present.
This is required due to the high mobility of entities in ad-
hoc networks and in pervasive environments in general. The
community must be able to deal with nodes which move out of
communication range, run out of battery or disconnect. In the
situation that a member does not renew its membership within
a given time period, the entity is not considered a member
anymore and the membership manager informs the other
members that a node has left. This also causes the constraints
of the community to be reevaluated by the coordinator – the
departure of a member may for example violate the minimum
cardinality constraints, which would require the community to
be dissolved.

IV. IMPLEMENTATION

The work on dynamic communities relies on the infras-
tructure provided by self-managed cells (SMC) to represent
autonomous entities and the Ponder2 policy framework for the
specification of policies [3]. An SMC consists of hardware and
software components which form an autonomous administra-
tive domain. Components include resources (such as sensors
and cameras), devices (such as PDAs, Gumstix and mobile

phones) as well as software services and components within
those devices.

An SMC comprises a dynamic set of management services
that are integrated through a common publish/subscribe event
bus. Of particular importance is the SMC policy service, which
is based on the Ponder23 policy framework. Ponder2 supports
both obligation and authorization policies. Policies can be
added, removed, enabled and disabled to change the behavior
of an SMC without interrupting its functioning. Ponder2 pro-
vides an object management system where managed objects
(MOs) are kept in a domain structure similar to a hierarchical
namespace. Policies specify obligations or authorizations in
terms of managed objects, which can be internal SMC re-
sources, adapters for external services or policies themselves.
In addition, a discovery service is used to detect new devices
which are capable of interacting with the SMC, such as other
SMCs in the vicinity.

The SMC event bus, the policy and the discovery services
support the basic functionality of a community and enable
policy actions to be performed in response to context changes.
We assume the nodes assigned to roles within a community
are SMCs.

Although Ponder2 comes with a set of built-in basic man-
aged objects used to represent common concepts (Event MO,
Domain MO, ObligationPolicy MO, etc), a set of additional
managed objects were required in order to support the concepts
described in this paper. For example, a Community MO and
a Role MO were created to represent the community specifi-
cation schema described in Section II. The community object
defines the roles that are part of the community and the policies
associated to each role. An instance of a Community MO is
kept in the domain structure of the node that will be playing
the coordinator role. When new members are assigned to roles,
the members will receive part of the policies contained in the
community specification, according to the roles they will be
playing. The self-managed cells, Ponder2 and the framework
described in this paper were implemented in Java.

In order to support a minimum set of management and
security requirements, most of the functionality required by
the coordinator, the authenticator and the membership manager
roles was implemented. Therefore we could test our system
using real policies which specify actions using these manage-
ment roles. For example, the authentication of new members
performed by the authenticator role was implemented using
X.509 digital certificates using the java.security package. The
coordinator already implements the management procedures
required to perform the community broadcast, assignment of
new members to one or more roles, and to load the respective
Ponder2 obligation and authorization policies onto the remote
node.

The dynamic validation of constraints and reassignment of
roles if the constraints are not satisfied still remain to be
implemented. Additionally, the representation of policies in
terms of the finite state machine as illustrated in Section III-B

3http://www.ponder2.net



requires the ability of event correlation, in the sense that we
have states (policies) that must be triggered by a combination
of two or more events (such as the assigning step, in Figure 3,
which is triggered by multiple events generated in the valida-
tion of constraints). The basic event service in the SMC does
not support event correlation, but an event correlator can be
implemented as a role which receives simple events, performs
event correlation and generates new events representing the
correlation of other events. This has been implemented in
previous test systems but not yet integrated into the Ponder2
system.

V. FUTURE WORK: CROSS-COMMUNITY INTERACTIONS

The ability to cater for communities that interact with
other communities will be required to extend the dynamic
community approach to larger scale scenarios. We could have
for example federation representing peer relationships between
communities, where one rescue team could provide data (such
as surveillance data, maps, etc.) or services and resources
that it possesses to another rescue team. This is illustrated
in Figure 5.

Fig. 5. Peer federation of communities.

Alternatively, we could think of composition of communi-
ties, where a rescue team could have a medical team as one
of its components, that would be a community itself. This is
illustrated in Figure 6. In this case, the rescue team could
have the ability to bootstrap or dissolve the medical team
community (in fact, the sub-community may be part of the
specification of the outer community). In both peer federations
and compositions, the interactions between communities could
be facilitated by a node performing the role of gateway in each
community.

Composition would allow a sub-community to be a member
of an outer community. Composition would also allow inner
and outer communities to share information, however typically
an inner community would be encapsulated in the outer
community and the outer would have a tighter control over the
inner community compared to the control that peer federated
communities have over each other. The outer community
would not be concerned with the details of the management
in the inner community. This architecture of hierarchical
communities allows the management to scale-up to larger
environment, with self-managed, encapsulated communities,
but future work still has to investigate the abstractions required
to support cross-community interactions.

Fig. 6. Composition of communities.

VI. RELATED WORK

There are a number of frameworks for realizing pervasive
spaces [11], [12]. In general, these frameworks tend to focus
on spaces of relatively fixed size such as a room or a house.
In addition, whilst much of the literature focuses on the archi-
tecture of pervasive spaces and their supporting services, less
attention is paid to the interactions and collaboration between
such spaces. In contrast, our work not only supports commu-
nities to discover new members and evolve internally, but they
are also expected to support cross-community interactions. In
cross-community interactions not only a single entity but an
entire community can become a member of the community. By
encapsulating the management of communities and hiding its
complexity, we can support large-scale applications providing
collaborations between entire communities.

The industrial work on autonomic computing, led primarily
by IBM [13] but also addressed by Motorola [14] and HP [15],
usually tends to focus on network management of large
clusters and web servers. Self-managed cells are suitable for
more dynamic and mobile pervasive settings, for example
in communities of ad-hoc unmanned autonomous vehicles.
The control-loop performed by self-managed cells is much
simpler than the control-loop used by those projects, as it does
not depend on planning techniques or ontologies in order to
support self-management.

Research on policies has been active for several years,
especially regarding policies for network and systems man-
agement. Some examples include PCIM [16], PDL [17] and
PMAC [18]. Although they use similar event-condition-action
rules for encoding adaptation actions, these approaches are
targeted for management of large-scale and networked systems
only, and do not scale-down for managing small devices.

Mobile UNITY [19] provides a notation system for express-
ing the coordination among mobile unities of computation. It
focuses on the formalization of coordination schemas, and not
on the management of communities.

Finally, the management of dynamic communities will be
enhanced as we include more mechanisms beyond the basic
set of security and management procedures we already have.
Threshold cryptography [9] for preventing a compromised
authenticator from accepting rogue members and intrusion
detection [20] for monitoring potential risks and attacks to the



community are among the additional mechanisms mentioned
in Section III-A, but their inclusion in our dynamic commu-
nities still requires further investigation. Our focus however
is not on developing such mechanisms but instead on the
management infrastructure they require.

VII. CONCLUDING REMARKS

This paper presented an approach for specification of policy-
based dynamic communities of autonomous entities that need
to collaborate in order to accomplish their goals. We have
used self-managed cells as the implementation platform for the
autonomous entities that constitute our dynamic communities.
Based on the resources and devices an SMC possesses, it
may be assigned to different roles in the community and thus
dynamically receive the policies that define the role.

More important though is our focus on management and
security of dynamic communities. We specified a basic set of
management roles that provide the minimum management and
security functionality for dynamic communities. Based on the
combination of policies provided by such roles, we can specify
a different range of management protocols. By extending the
set of management and security roles, one can enhance the
community management protocol in a flexible manner. The
protocol is represented by the chaining of policies provided by
the management roles, and it can be illustrated by a finite state
machine. Just by rewriting the policies, one can dynamically
include or remove steps to or from the protocol. This cater for
an extensible infrastructure for management and security of
dynamic communities, where new management procedures or
even entire roles can be added, according to the management
and security requirements of each community.

ACKNOWLEDGMENTS

Research was sponsored by the U.S. Army Research Labo-
ratory and the U.K. Ministry of Defence and was accomplished
under Agreement Number W911NF-06-3-0001. The views
and conclusions contained in this document are those of the
author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry
of Defence or the U.K. Government. The U.S. and U.K. Gov-
ernments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
heron. The authors also wish to thank Eskindir Asmare for
his ideas on defining the reconnaissance scenario used in this
paper.

REFERENCES

[1] S. L. Keoh, E. Lupu, and M. Sloman, “Peace: A policy-based estab-
lishment of ad-hoc communities,” in ACSAC ’04: Proceedings of the
20th Annual Computer Security Applications Conference (ACSAC’04).
Washington, DC, USA: IEEE Computer Society, 2004, pp. 386–395.

[2] M. Sloman and E. Lupu, “Security and management policy specifica-
tion,” IEEE Network, vol. 16, no. 2, pp. 10–19, Mar.-Apr. 2002.

[3] E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes,
K. Twidle, S.-L. Keoh, and A. Schaeffer-Filho, “AMUSE: autonomic
management of ubiquitous systems for e-health,” J. Concurrency and
Computation: Practice and Experience, John Wiley, no. Special Issue:
Selected Papers from the 2005 U.K. e-Science All Hands Meeting
(AHM2005), May 2007.

[4] N. Damianou et al., “The Ponder policy specification language,” in
Proc. IEEE Workshop on Policies for Distributed Systems and Networks.
Bristol, U.K.: IEEE-CS, Jan 2001, pp. 18–39.

[5] M. Sloman, “Policy driven management for distributed systems,” Journal
of Network and Systems Management, vol. 4, no. 2, pp. 333–360, 1994.

[6] E. Asmare, N. Dulay, H. Kim, E. Lupu, and M. Sloman, “A manage-
ment architecture and mission specification for unmanned autonomous
vehicles,” in 1st SEAS DTC Technical Conference, Edinburgh, Scotland,
2006.

[7] E. Asmare, N. Dulay, E. Lupu, M. Sloman, S. Calo, and J. Lobo, “Secure
dynamic community establishment in coalitions,” in MILCOM, Orlando,
FL, 2007.

[8] R. Sandhu, “Rationale for the rbac96 family of access control models,”
in RBAC ’95: Proceedings of the first ACM Workshop on Role-based
access control. New York, NY, USA: ACM Press, 1996, p. 9.

[9] L. Zhou and Z. Haas, “Securing ad hoc networks,” Cornell University,
Ithaca, NY, USA, Tech. Rep., 1999.

[10] R. Bhatia, J. Lobo, and M. Kohli, “Policy evaluation for network
management,” in INFOCOM. Tel-Aviv, Israel: IEEE CS-Press, March
2000, pp. 1107–1116.

[11] M. Roman et al., “A middleware infrastructure for active spaces,” IEEE
Pervasive Computing, vol. 1, no. 4, pp. 74–83, Oct.-Dec. 2002.

[12] D. Garlan, D. P. Siewiorek, A. Smailagic, and P. Steenkiste, “Project
Aura: toward distraction-free pervasive computing,” IEEE Pervasive
Computing, vol. 1, no. 2, pp. 22–31, Apr.-Jun. 2002.

[13] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

[14] J. Strassner, N. Agoulmine, and E. Lehtihet, “Focale a novel autonomic
networking architecture,” in Latin American Autonomic Computing
Symposium, Campo Grande, MS, Brazil, July 2006.

[15] HP, “Hp utility data center: Enabling enhanced datacenter agility,”
http://www.hp.com/large/globalsolutions/ae/pdfs/udc enabling.pdf, May
2003.

[16] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Pol-
icy core information model, version 1 specification. request for
comments 3060, network working group,” 2001, available at:
http://www.ietf.org/rfc/rfc3060.txt.

[17] J. Lobo, R. Bhatia, and S. Naqvi, “A policy description language,” in
Proceedings of the 16th National Conference on Artificial Intelligence,
Orlando, FL, July 1999, pp. 291 – 298.

[18] D. Agrawal, S. Calo, J. Giles, K.-W. Lee, and D. Verma, “Policy
management for networked systems and applications,” in Proceedings
of the 9th IFIP IEEE International Symposium on Integrated Network
Management. Nice, France: IEEE CS-Press, May 2005, pp. 455 – 468.

[19] G.-C. Roman and J. Payton, “Mobile unity schemas for agent coordi-
nation,” pp. 126–150, March 2003.

[20] T. F. Lunt, “A survey of intrusion detection techniques,” Computers and
Security, vol. 12, no. 4, pp. 405–418, 1993.

View publication statsView publication stats

https://www.researchgate.net/publication/221632320

