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Abstract 
 

Based on archaeological evidence from Kutch-Saurashtra (N Gujarat, NW India), we use Agent-Based 

Modelling (ABM) to explore the persistence of hunter-gatherer (HG) groups in semi-arid environments 

in the mid and late Holocene. Agents interact within a realistic semi-arid environment dominated by 

the monsoon. Precipitation trends are modelled from instrumental records (1871 - 2008) calibrated with 

existing models for the Asian monsoon in the Holocene (c. 12 ka - present). Experiments aim at 

exploring dependencies between population dynamics and climate-driven environmental change (in 

terms of resource availability) for precipitation patterns at the local, regional and continental scales. 

Resources are distributed across a simplified ground-model. Average yearly precipitation (AYP, i.e. 

mean) and variance in yearly precipitation (VYP, i.e. standard deviation) are the main parameters 

affecting resource availability in the simulations. We assess the effects of environmental change on HG 

populations at different time-scales: (1) Patterns of seasonal (inter-annual) resource availability, (2) 

Effects of changes in mean precipitation trends over the long (Pleistocene-Holocene) and the mid 

(Holocene, millennial) periods, and (3) Effects of intra-annual precipitation variability, i.e. changes in 

standard deviation from mean precipitation trends over the short period (annual to decadal). 

Simulations show that: (1) Strong seasonality is coherent with the persistence of HG populations in 

India, independently of the geographical scale of the precipitation models, (2) Changes in AYP over 

the mid period (Holocene) are not sufficient to explain the disappearance of HG populations in Kutch-

Saurashtra (K-S) 4 ka, (3) Precipitation variability (VYP) over the short period (annual to decadal) is 

the main parameter affecting population performance and overall ecosystem dynamics. To date, 

sufficiently refined palaeo-climatic records do not exist for the study area, but higher VYP values 4 ka 

do not exclude the possibility that other factors may have driven the disappearance of HG populations 

in Kutch-Saurashtra. 
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1. Introduction 
 

A recent report of the Intergovernmental Panel on Climate Change defines two of the main processes 

affecting climate change: (a) a shift of the entire distribution of a given parameter towards a different 

mean and (b) a change in the overall variability of a given parameter (i.e. standard deviation) with no 

shift in the mean (IPCC 2012). The same report highlights that such changes in the intensity and 

frequency of extreme weather and climate events have the potential to contribute to the vulnerability of 

any given socio-ecological system (SES). Based on such assessment, we explore the persistence of 

hunter-gatherer (HG) groups in semi-arid environments in the mid and late Holocene in relation to 

climate-driven environmental change, i.e. variation in precipitation in terms of mean and standard 

deviation. Monsoon climate is studied here as a multi-scalar perturbation affecting hunter-gatherer 

(HG) communities in N Gujarat during the Holocene. Simulation is used to explore the boundaries of 

Holocene monsoon variability within which a HG society is likely to thrive. For example, Late 

Pleistocene/Early Holocene Levantine foraging (i.e. HG) groups (Kebaran) reveal a potential for 

sustainability and resilience even under adverse climatic conditions (Rosen and Rivera-Collazo 2012). 

It has been suggested that transitional ecological areas show features of species composition, structure, 

and function representative of the ecosystems they transcend and that indigenous peoples whose living 

territories traverse ecological edges have a correspondingly increased access to important resources and 

therefore have a greater capacity for adaptation (Turner et al. 2003: 439). Social and environmental 

processes are linked by complex feedbacks on different spatial and temporal scales. Social-ecological 

systems (SESs) show different degrees of resilience, i.e. ability to adjust to perturbations without 

collapsing into a qualitatively different state that is controlled by a different set of social or ecological 

processes (Widlok et al. 2012). The agent-based simulation we propose explores the potential for 

persistence of HG communities relative to climate-driven environmental change during the mid and 

late Holocene in N Gujarat, a semi-arid region in NW India.  

 

In our starting model Holocene HG groups in N Gujarat are adapted to marked seasonality (represented 

by the monsoon) in a semi-arid environment (at the margin of the Thar Desert). The main aim of this 

work is to define the minimum climatic (and environmental) conditions that could sustain this type of 

population. We use Agent-Based Modelling (ABM) and simulation to explore how climate variability 

may have affected this SES in terms of persistence, resilience and disappearance (Holling 2001; Folke 

et al. 2002; Folke 2006; Epstein 2008). Agents in our model aim at perpetuating/adapting their SES 

when facing changing environmental conditions (Meadow and Patel 2003). The proposed ABM is 

based on real-world data from the study area. The presence of HG communities during the Holocene is 

inferred from archaeological assemblages dominated by a combination of microlithic stone tools and 

game bones (Balbo et al. 2012). Long-term persistence of HG in the area is supported by radiocarbon 

dates from stratified open-air archaeological contexts. Loteshwar, Bagor, Nagwada and Langhnaj 

provide the chronological framework of reference for the present study, with HG occupation attested c. 

10 to 4 ka (Misra 1973; Allchin et al. 1978; Patel 2009). Given the fragmentary character of 

archaeological and palaeoenvironmental records, agent behaviour is modelled integrating 

anthropological information (e.g. Tanaka and Sugawara 1996; Nagar 2008) and environmental 

conditions are modelled from historical climatic (www.tropmet.res.in with permission from the Indian 

Institute for Tropical Meteorology, Sontakke and Singh 1996; Sontakke et al. 2008; Attri and Tyagi 

2010; Singh and Ranade 2010) and environmental (Kelly 1983) data. 

 

N Gujarat represents a semi-arid marginal environment, between the hyper arid Thar Desert to the N 

and the more fertile area of Saurashtra to the S. This monsoon-dependent region may be defined as an 

ecotone, where contrasting ecological niches are in tension and small near-threshold climatic shifts can 

generate significant environmental changes, greatly affecting resource availability and human 

population (Byrne 1998). Palaeoclimatic models are used to frame simulation of past climatic and 

environmental conditions. Existing models for the Asian monsoon precipitation patterns suggest that 

the currently observed strong seasonality was established in the early phases of the Holocene, c.12 ka 

onwards (Liu et al. 2003). The same models suggest Asian monsoon precipitation has decreased 

monotonically by about 7% through the Holocene, i.e. c. 0.6% every 1000 years over the past 12 ka 

(Liu et al. 2003: 2484). Overall, precipitation anomalies in Asian monsoon were low c. 12-10 ka, rising 

to maximum c. 8 ka and lowering until stabilization c. 5 ka (Liu et al. 2003: 2487). Palaeoclimatic 

records confirm this tendency, although some strengthening in precipitation has been observed at the 

regional scale over the past 1.5 ka (Anderson et al. 2010). Palaeoenvironmental studies suggest that 

increased precipitation in the first phases of the Holocene contributed to the stabilization of dunes in 
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the SW margin of the Thar Desert, with the Thar Desert SW boundary retiring to its present-day 

position c. 7 ka (Saini and Mujtaba 2012 and references therein). 

 

2. Methods and model elements 
 

The following entities are included in the model: climate (precipitation patterns), environment (ground 

model and resources) and agents (hunter-gatherers). A first model was elaborated using natural 

language to ease communication between specialists with different backgrounds. The Overview, 

Design concepts, Details protocol (ODD in Grimm et al. 2010) was used to specify the main 

components of the model in terms of aims and entities (SI1) and to implement a formal ABM. 

 

2.1. Entities 

 

Simulations are run to observe population dynamics relative to changes in resource availability. Agents 

interact within a ground model where resources available in each cell depend on (a) the type of land 

unit it represents, (b) precipitation patterns and (c) agents’ use of available resources (Box 2002). 

 

2.1.1. Ground model 

 

The ground model supporting our simulation environment was derived from a supervised classification 

of Landsat satellite imagery (Balbo et al. 2012). Space is represented as a lattice, a regularly spaced 

grid of cells (raster map). The ground model extends over an area of 1600*1600 cells corresponding to 

a surface of c. 2500 km2 (31.5 m per side cells). This area is considered representative of a broader 

semi-arid portion of N Gujarat for which we dispose of detailed archaeological information (Figure 1). 

Each cell carries topographic information, i.e. position and elevation as calculated from the Digital 

Elevation Model (DEM) derived from satellite imagery (Balbo et al. 2012).  

 

Each cell is assigned to one of the following three land units: 

 

1. Dune is the only unit where agents may settle. 

2. Interdune is the unit representing depressions between dunes. 

3. Water represents seasonal and permanent water points (lakes and rivers). 

 

2.1.2. Climate 

 

Climate is the cornerstone of the environmental model. The climate module determines the quantity of 

rain that precipitates on the ground model. Precipitation is calculated yearly and it is distributed evenly 

on the ground model. Precipitation values, in conjunction with the ground model, are used to calculate 

the amount of biomass available for each cell at each time-step. The precipitation models used in the 

simulations are multi-scalar, relative to the geographical distribution of the data used to build them: 

local, regional and continental. Precipitation patterns at the local (Kutch-Saurashtra, K-S), regional 

(NW India) and continental (whole India, wI) scales for 10 ka (arrival of Holocene HG in N Gujarat) 

and 4 ka (extinction of HG populations in N Gujarat) were modelled following a gamma distribution. 

The gamma distributions were derived from historical precipitation data for the period 1871 - 2008 

(www.tropmet.res.in, Sontakke and Singh 1996; Sontakke et al. 2008; Attri and Tyagi 2010; Singh and 

Ranade 2010) calibrated using Holocene climatic models (Liu et al. 2003) (Figure 2). Two parameters 

were used to define the shape of the gamma distribution: 

 

1. Average yearly precipitation (AYP), i.e. the total amount of rain in any given year.  

2. Variance in yearly precipitation (VYP), i.e. the deviation from the AYP for any year within a 

given time-period. 

 

Obtained values of AYP and VYP were used to adjust gamma distribution curves and feed the 

simulations (Table 1). Both parameters were kept constant within a given simulation run. Consistent 

sets of evenly spaced 50 year-long simulation runs were undertaken to explore the effects of climate 

over the short, mid and long periods to gain insight into the role played by these parameters on 

population dynamics for different precipitation patterns (local, regional and continental climatic 

settings) and temporal scales (millennial to annual). 
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Within any given year, the Indian monsoon generates a strong seasonality (asymmetrical precipitation 

pattern), defining three critical moments in simulation time, each corresponding to a four-month 

season: 

 

 June to September (JJAS) or rainy season (monsoon): high precipitation, high temperature and 

low evapotranspiration). 

 October to January (ONDJ) or post-monsoon: low precipitation, cool temperature and medium 

evapotranspiration. 

 February to May (FMAM) or dry season: low precipitation, high temperature, high 

evapotranspiration. 

 

Note that in the simulation any given year starts with the rainy season (JJAS), when the most 

significant part of yearly precipitation is discharged. At the beginning of the simulated year, the total 

value of the generated yearly precipitation is calculated and added to the system following the gamma 

distribution. No additional precipitation is considered for the remaining eight months of the year 

(ONDJ and FMAM). 

 

2.1.3. Resources (biomass) 

 

Resources in the ground are calculated every year. Resources are allocated as biomass to cells 

depending on yearly precipitation as from the gamma distribution. No resource is carried from one year 

to the following. The spatial density of resources decreases as distance from water increases and 

following a linear trend. In a given year, resource availability increases linearly to maximum through 

the rainy season (JJAS), then decreases linearly until the end of the dry season (FMAM). The temporal 

distribution of resources within a given year results from the combination of the temporal distribution 

of precipitation with the ‘end-of-year minimum residual resources’ parameter (EMR). The EMR is 

defined as a percentage of the overall biomass production for the corresponding year and represents 

seasonal variance in resource availability in the model (SI1). The EMR constitutes a threshold below 

which resources are not allowed to decrease at the end of the year. Variations in EMR have no effect 

on the overall yearly precipitation and on the total amount of biomass produced within a year. As a 

result, the higher the EMR, the lower the seasonal variation in the temporal distribution of precipitation 

and resources. 

 

Overall biomass availability for dunes and interdunes is derived from present-day information on 

savanna biomass production (SI1, Kelly 1983). Yearly primary biomass production is estimated to 

4000 g/m
2
, efficiency to 23%, energy to 18400 KJ/m² and 4395 KCal (Percentage of accessible 

resources calculated according to Kelly 1983: Table 3, p. 284). Efficiency represents the biomass 

actually available to agents and it is calculated as the ratio of profitable versus total biomass (SI1). 

 

2.1.4. Agents 

 

Attributes and behavior of the agents are defined by the following principles. Agents within our HG 

population are conceived as ‘nuclear families’. The composition of each agent was modelled from 

anthropological literature (e.g. Tanaka and Sugawara 1996; Nagar 2008). The agent is the minimum 

decisional unit of our model. However, some aspects are modeled at the individual level and computed 

at the agent level. For example, the probability of death is applied to the individual level but starvation 

rate is computed for the whole agent taking into account individual starvation rates (SI1). Specific 

aspects of agent behaviour were elaborated to represent individual components within each agent. In 

particular, we focused on agents’ abilities to supply their own needs in terms of (a) resource 

consumption needs and (b) capability for resource gathering. Values for (a) and (b) depended on the 

age of the single components within each agent (e.g. metabolic needs and behavioural skills before 

adulthood).  

 

Energetic requirements for agents were modelled based on FAO global reports (FAO/WHO/ONU 

2005). For the purpose of this study, simulations were ran using agents whose behaviour is based on 

wired algorithms as in the classic ABM approach (Epstein 2007). According to the agent planning 

protocol (SI1), each day the agent will update its knowledge about environment and choose an action 

to execute. That is, agents will forage in a given direction within the home range or change the position 

of settlement if environmental conditions within home range are insufficient for covering their caloric 

needs. Realistic population dynamics were obtained without defining such parameter as fertility age 
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limit, maximum age or birth-control measures, by means of mortality rates, thus reducing the overall 

number of parameters in the model. Reproduction rates in our simulations are coherent with those 

observed in reality (Hewlett 1991). 

 

2.2. Simulation tools 

 

The software used to implement the model is the Pandora Library, created by the social simulation 

research group of the Barcelona Supercomputing Centre (Wittek and Rubio-Campillo 2012). This tool 

is designed to implement particularly demanding ABMs and to execute them in high-performance 

computing environments. This library allows the execution of several simulations by modifying initial 

parameters, as well as the distribution of particular executions with high computer costs by using a 

computer cluster. 

 

2.3. Simulation experiments 

 

Each simulation experiment aims at testing the role of one of the three relevant climate parameters 

(EMR, AYP, VYP) on population dynamics. The parameter under exploration varies between 

simulation runs while the other two parameters are kept constant. For each experiment, a separate set of 

simulations is run for each scale-related precipitation model (K-S, NWI, wI), starting with the same 

number of agents (100) and ground model. Consistent sets of 50 year-long simulation runs (18,000 

days) are performed for parametric sweep to test minimum conditions for the widest possible range of 

precipitation variations in terms of mean and standard deviation. Each parameter configuration is 

executed ten times to account for stochasticity and results are averaged for consistency. 

 

Simulation proceeded in three steps (Experiments 1-3): 

 

1. Test the coherence of the model in relation to its components. In other words, variables in the 

model are calibrated to obtain a realistic result in terms of a HG population maintaining near-

constant numbers of members in a semi-arid region dominated by the monsoon 10 ka, i.e. 

when first Holocene HG communities are first attested in the region. 

2. Test the survival threshold of the HG population in terms of its resilience to changes in AYP 

over the mid and long periods. This step is subdivided into two stages:  

a. Test the absolute thresholds for population extinction dependent on 

variability in AYP (i.e. full possible spectrum of change at the 

Pleistocene/Holocene time-scale). 

b. Test whether the progressive reduction in AYP attested through the 

Holocene at the continental level is sufficient to explain the disappearance 

of HG in N Gujarat 4 ka. 

3. Test the survival threshold of the HG population in terms of its resilience to precipitation 

variability over the short period (annual to decadal). In other terms, see whether higher VYP 

attested at the local rather than at the continental level, may be sufficient to explain the 

disappearance of HG in N Gujarat 4 ka. 

 

Each experiment is run using precipitation models related to three different spatial scales (multi-scalar 

approach): (a) local (Kutch-Saurashtra), (b) regional (NW India) and (d) continental (whole India, wI). 

This approach aims at assessing scale-dependent differences in the expression of climate change and 

their impact on HG population dynamics. 

 

2.3.1. Experiment 1 (exploring EMR) 

 

The first experiment is set 10 ka and aims at building a sound realistic model of a population of HG 

living in equilibrium (maintaining a near-constant number) in a semi-arid region dominated by the 

Asian monsoon (Table 2). Several simulations were run using the parameters specified in the ODD 

(SI1). 

 

The underlying hypothesis for this experiment was that diminished seasonal variability (i.e. higher 

EMR) should improve population success by providing a more homogeneous intra-annual distribution 

of resources (i.e. reducing stress due to resource depletion during the dry-hot season). 
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The effects of variations in the ‘end-of-year minimum residual resources’ (EMR) parameter are 

explored in terms of population dynamics. This is done by sets of simulations where AYP and VYP are 

maintained constant and the EMR parameter increases from 0 to 1 by 0.1 increments. This amounts to 

330 simulations (11 values x 10 executions x 3 climatic scenarios). In ecological terms, values of EMR 

near 0 represent strong seasonality (e.g. monsoon), values near 1 represent little seasonal variability 

(e.g. tropical climate) and values near 0.5 represent variability in temperate regions. 

 

2.3.2. Experiment 2 (exploring AYP) 

 

Based on Liu et al. (2003), it is estimated that precipitation has diminished linearly c. 0.6% every 1000 

years over the past 12 ka (representing the Holocene). For the period c. 10-4 ka (i.e. the presumed 

period for the presence of HG population in N Gujarat) this would imply precipitations between c. 

5.5% and 2.2% higher than those observed in the present-day.  

 

The underlying hypothesis for this experiment was that progressive drying would have triggered HG 

population reduction and eventually disappearance 4 ka. 

 

Experiment 2 starts from climatic conditions 4 ka and involves two different time-scales (scenarios) 

(Table 3). The effects of variations in the AYP parameter are explored in terms of population 

dynamics. This is done by sets of simulations where VYP and EMR are maintained constant: 

 

1. In the first scenario (full possible spectrum of change at the Pleistocene-Holocene time-scale) 

we test changes in average yearly precipitation (AYP) over the long period. That is, we 

observe population dynamics under the broadest possible precipitation scenarios. This 

involves pushing the system beyond the variability attested for in Holocene climatic models to 

explore potential yearly average precipitation thresholds for population extinction. Variations 

in AYP from the 4 ka value are explored for climate trends at three different geographical 

scales (Table 3: 2aa, 2ba, 2ca). The sweep is done at intervals of 50 mm between -300 mm 

and +300 mm from AYP 4 ka. This amounts to 390 simulations (13 values x 10 executions x 

3 climatic scenarios). In climatic terms, such variations in AYP go beyond the temporal scope 

of Holocene HG populations, but provide a first coarse approximation into the resilience of 

HG populations to climate change over the long period. 

2. In the second scenario we test changes in AYP over the mid period (Holocene time-scale). 

That is, we observe population dynamics considering the linear decrease in precipitation 

accounted for in existing Holocene global climate models. The underlying hypothesis to be 

tested here was that more humid conditions in the early phases of the Holocene would have 

favoured HG persistence. Variations in AYP during the Holocene (12 ka - present) are 

explored at intervals of c. 1000 years (Table 3: 2ab, 2bb, 2cb). The precipitation interval 

changes depending on the geographic scale (2.5 mm for K-S, 3 mm for NWI, 6 mm for wI) to 

obtain a near-constant sweep of c. 1000 years independent of absolute precipitation values 

observed locally, regionally and continentally. This amounts to 450 simulations (15 values x 

10 executions x 3 climatic scenarios). 

 

2.3.3. Experiment 3 (exploring VYP) 

 

The third experiment aims at testing population performance when confronted with increasing inter-

annual variance in yearly precipitation (VYP). The goal is to explore the effects of the regional 

expression of global precipitation trends on the local HG community. 

 

The underlying hypothesis was that increased VYP should affect population negatively (i.e. decrease 

the population’s capability to foresee resource availability in consequent years). In other words, this 

experiment explores whether higher inter-annual variability recorded at the local/regional scale (as 

compared to the continental/global scale) contributed to the disappearance of the HG population in N 

Gujarat 4 ka. 

 

Experiment 3 is set 4 ka (Table 4). The effects of variations in the VYP parameter are explored in 

terms of population dynamics. This is done by sets of simulations where AYP and EMR are maintained 

constant. For each geographical setting, VYP is allowed to vary between 1 and 300, with intervals of 

20. This amounts to 480 simulations (16 values x 10 executions x 3 climatic scenarios).  
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3. Results 
 

3.1. Experiment 1. Effects of EMR variation on HG population 

 

Given the model parameters contained in the ODD (SI1), four significant population dynamic patterns 

emerge from Experiment 1(Figure 3): 

 

1. When EMR is set to 0 (i.e. resources at the end of the year are allowed to decrease to 0 

due to strong seasonality) human population tends to collapse after few simulation years. 

2. Starting from EMR values set to 0.1, human population becomes viable within the 50 y 

simulation period. 

3. When EMR is set to 1 (i.e. resources are near-constant through the year), human 

population does not reach maximum numbers at the end of the simulation. 

4. Middle EMR values (0.2-0.8) generate the steepest population increases and the largest 

populations at the end of the simulation. 

 

A fifth result of this experiment is that the four findings above are consistent regardless of the climatic 

scenario (K-S, NWI and wI). 

 

3.2. Experiment 2. Effects of variations in AYP on HG populations over the mid and long periods 

 

Based on results from experiment 1, the EMR parameter is set constant to 0.1, as it is assumed to be the 

most representative of monsoon seasonality, also being the lowest EMR value providing viable HG 

populations. Two relevant patterns emerge from Experiment 2: 

 

1. The threshold for HG population viability for different climatic scenarios is observed for the 

following AYP values: 

a. Local (K-S): c. 300 mm/y 

b. Regional (NWI): c. 250 mm/y 

c. Continental (wI): no threshold observed. 

2. Precipitation decrease, as derived from models of Holocene Asian monsoon evolution 

elaborated at the continental level, does not seem to significantly affect population dynamics 

at the local level (Figures 4 and 5). Population dynamics are virtually identical for average 

precipitation 10 ka, 4 ka and in the present-day. 

 

3.3. Experiment 3. Effects of variations in VYP over the short period on HG populations 

 

Based on results from experiment 1, the EMR parameter is kept constant to 0.1. The following 

outcomes in population dynamics are observed for Experiment 3 (Figure 6): 

 

1. The threshold for HG population extinction 4 ka for different climatic scenarios is observed 

for the following VYP values: 

a. Local (K-S): c. 200 mm. 

b. Regional (NWI): c. 260 mm. 

c. Continental (wI): no extinctions. 

2. Population increases steadily for VYP values below c. 200 mm. Best population performance 

is observed for VYP = 1 (i.e. no VYP).  

 

4. Discussion  
 

4.1. Experiment 1. Defining viable HG populations 

 

Independent of the scale of the climatic scenario, when resources are allowed to reach 0 at the end of 

the simulated year, human population tends to decrease and collapse. When simulation outcomes are 

observed in detail for ‘end-of-year minimum residual resources’ (EMR) = 0, we see that population 

tends to maintain initial agent numbers in years with high AYP. However, the recurrence of even few 

years of low AYP within 50-year long simulations seems to have dramatic effects on population 

dynamics, showing an overall tendency to population decrease. 
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A less intuitive result emerges when the whole range of values is explored for the EMR parameter. 

Increase in population is not proportional to increase in EMR. That is, maximum population growth is 

not observed when EMR is set to 1 (i.e. representing tropical climate with little seasonal differences). 

Instead, maximum population growth is observed for EMR values between 0.2 and 0.8 (i.e. temperate 

climate seasonality). Recall that total yearly biomass is constant based on precipitation in the 

corresponding year and that the EMR parameter affects how such biomass becomes available through 

the year. It seems then plausible that a non-extreme seasonal distribution of resources favours 

population performance. Seasonality provides access to a generous amount of resources at least during 

the rainy season, during which population can grow even in years of low overall precipitation, without 

allowing resources to reach 0 at the end of the year, which would cause starvation. 

 

Finally, we observed that differences in population performance for EMR above 0.1 are far smaller 

than differences for EMR between 0 and 0.1. This trend becomes more pronounced as the geographical 

scale of the precipitation model used increases (Figure 3). We consider that EMR = 0.1 is the most 

representative value for a strong seasonal distribution of resources, as observed at the local level in the 

semi-arid environment of Kutch-Saurashtra. A similar, though less strong effect of seasonal 

precipitation on inter-annual resource distribution holds true for NW India and for India as a whole. On 

these bases the EMR parameter was set constant to 0.1 for all following experiments. 

 

4.2. Experiment 2. Effects of AYP variability over the mid period (millennial) on HG populations 

 

Variations in population dynamics are virtually insignificant for changes in AYP 10 ka (earliest 

evidence of Holocene HG populations in N Gujarat), 4 ka (latest evidence of HG populations) and in 

the present-day. This means that, solely based on continentally modelled patterns of Holocene 

precipitation change in Asian monsoon, HG populations should be observed in N Gujarat today. 

Variations in population dynamics are even less significant at the continental and regional scales, 

where absolute AYP values are systematically higher than at the local level (Table 1). 

 

Consistent composite sets of 50 year-long simulations allow us to define the threshold in average 

yearly precipitation (AYP) for HG population persistence at c. 300 mm/y at the local level (K-S). At 

the regional level (NWI) some decrease in population is noted for AYP values c. 250 mm/y. No 

decrease is observed for simulations run based on precipitation data at the continental level (wI). AYP 

values simulated at the local level are not unrealistic. Years of similarly low, and even lower, 

precipitation have been documented in the historical record (i.e. the minimum AYP recorded for K-S in 

the 1871-2008 period was 71.1 mm in 1987). However, their consistent occurrence over more than two 

consecutive years has rarely been observed in Kutch-Saurashtra in the period covered by instrumental 

climate records, namely two times over three consecutive years in the 1871-2008 period (Grey area in 

Figure 2b). To our knowledge, a sufficiently refined palaeoclimatic proxy record indicating such low 

precipitation on consecutive years during the Holocene has not yet been published.  

 

At present, results issued from our simulations can only be compared with broad palaeoclimatic 

reconstructions (e.g. Saini and Mujtaba 2012 and references therein). Significantly, Anderson et al. 

(2010: Figure 4 therein) have detected a sharp decrease in deposition frequencies of the planktic 

foraminifera Globigerina bulloides in the Arabian Sea starting 4 ka. Such decrease is attributed to 

reduced seasonal upwelling in the Arabian Sea and linked to weaker surface winds due to lower 

intensity in the monsoon. Climate events of intense drought have also been detected in speleothems for 

S Asia between 4.2 and 3.5 ka and for E Asia between 4.3 and 4.1 ka (Clift and Plumb 2008: Figure 

6.2, p. 199 and references therein). However, considering the limits in the spatial and temporal 

definition provided by existing climatic records and models, it remains speculative to say whether the 

decrease in AYP detected in published climatic models for the Asian monsoon may have played any 

significant role in the disappearance of the HG mode of life in K-S 4 ka.  

 

4.3. Experiment 3. Effects of VYP variability over the short period on local HG populations 

 

Independent of the scale of the climatic scenario, human population increases as VYP decreases. That 

is, the lower the inter-annual (annual, decadal) variation in precipitation, the better human populations 

perform. This is somewhat expected as lower short-term variance means higher predictability of 

resource patterns and availability from one year to the following. The opposite context (high variance) 

reduces population’s adaptive capabilities, as it requires a constant reconsideration of subsistence 

strategies that are dependent on resource availability and distribution. Decadal patterns of resource 
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availability affect reproductive strategies, i.e. the number of offspring any agents has depending on 

access to resources (SI1). Lower VYP means higher survival rate for newborns.  

 

1. For local-scale precipitation scenarios (K-S), with VYP = c. 200 (i.e. the value recorded from 

historical instrumental records at the local level, K-S), HG population remains near-constant 

through the 50 y simulation time, although some simulation runs leading to population 

decrease appear. A more marked trend towards extinction emerges starting with VYP = c. 

220.  

2. For regional-scale precipitation scenarios (NWI), VYP threshold for the appearance of 

simulation runs leading to population decrease is c. 260. This corresponds to twice the VYP 

value recorded from historical instrumental records at the regional level (1365.17). For VYP = 

1400, population tends to triple within a single simulation run (50 years). 

3. For continental-scale precipitation scenarios (wI), no population decrease is observed within 

the explored VYP range (1 - 300 mm). For VYP = 100 (i.e. the VYP value recorded from 

historical instrumental records at the regional level), population increases four times within 

the 50 year simulation.   

 

Overall, variations in population dynamics are less significant relative to precipitation trends at the 

continental and regional scales, where VYP values are systematically lower than at the local level 

(Table 1). The systematically higher AYP observed at regional and continental scales prevents overall 

yearly precipitation to near 0 using these climatic scenarios even in years where AYP is low and VYP 

is high. In sum, HG extinction for precipitation scenarios at the regional and continental levels cannot 

be related to changes in VYP. In contrast, for local-scale climatic scenarios, VYP is the main parameter 

affecting population performance. 

 

At the local scale, VYP in the present-day is situated near the threshold of extinction for HG 

populations. This implies that if climatic events characterised by slightly higher VYP (+ 4 %) existed 4 

ka, a slight increase in the variance in precipitation over the short period (annual, decadal) could have 

significantly contributed to the extinction of the HG mode of life in K-S. 

 

Available palaeoclimatic records and models do not allow us to verify this hypothesis. The most 

refined existing records provide maximum palaeoclimatic definition at the decadal to centennial time 

scales (Clift and Plumb 2008), based among others on cave speleothems (Fleitmann et al. 2003), 

foraminifera from marine sediment successions (Anderson et al. 2010), pollen records (Lézine et al. 

2007; Singh et al. 2007) and organic matter from lacustrine deposits (Yang et al. 2011). Likewise, due 

to the coarse grain of the underlying databases, the chronological definition of palaeoclimatic models at 

the global and continental levels do not go beyond the millennial timescale (Liu et al. 2003). They tend 

to provide a smoothed perception of inter-annual variation, under-representative of regional 

expressions of the same patterns. This dichotomy between the local and continental scales becomes 

sharper in case of marginal areas, such as K-S, located on the tail of the Indian monsoon trajectory. 

Meteorological instrumental records show higher inter-annual variability in precipitation at the local 

level (Kutch-Saurashtra) than at the regional (NW India) and continental (whole India) levels (Figure 

2). In this sense, slight variations in VYP detected at regional and continental levels are likely to have a 

much stronger significance at the local level. 

 

4.4. Further work 

 

A better definition of the population trends observed in this first set of simulations is planned as a first 

development of the work presented here. This will be done by performing longer continuous 

simulations (100-1000 years) to observe the tail of extinction trajectories emerging near threshold for 

Experiment 3 at the local level (i.e. the effects of VYP variability on HG populations 4ka). Longer 

simulations will also allow us to better understand the effects of decadal to centennial time-scale 

variations not included in the present work. 

 

Hunter-gatherer population performance explored in the present work will be evaluated at later stage 

(not presented here) in terms of settlement patterns. For example, simulations based on the Kalahari 

San foragers showed that increasing aridity in the dry season may lead to (a) fusion (with increased 

cooperation) where water points are few, but to (b) fission (with decreasing interaction) where water 

points are small but numerous (Widlok et al. 2012). Such processes have also been described in terms 

of ‘population viscosity’ (Hatchwell 2009). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

As for agent design, future simulations will involve more sophisticated Model-Based Agents, whose 

actions are planned in relation to knowledge of specific goals and costs. Further work will also involve 

the emergence in the region of different SESs. Archaeological evidence shows agro-pastoral strategies 

gaining weight in the Late Holocene. 

 

5. Conclusions 
 

Computer simulation was used in this work as a tool for the integrated study of human behavioural 

traits (social and archaeological) and environmental change (climate, landscape and resources). The 

combination of such heterogeneous sets of data has been difficult in the past due to inherent differences 

in terms of temporal and geographical scales, granularity (i.e. definition) and continuity (i.e. 

completeness). Computer simulation has been used here as a virtual laboratory to fill such gaps and to 

propose a number of coherent realistic scenarios that help explaining the adaptive performance and 

environmental tolerance of specific SESs. 

 

We have explored thresholds for Holocene HG populations in monsoon-dominated semi-arid 

environments in terms of adaptation to (1) strong seasonality and population dynamics relative to (2) 

precipitation trends over the mid and long periods (AYP parameter, Holocene time scale and greater) 

and to (3) variance in precipitations over the short period (VYP parameter, annual to decadal time 

scales).  

 

1. The long-term persistence of HG populations in India is coherent with the strong seasonality 

characterising the Indian monsoon (EMR parameter = 0.1), independent of the geographic 

scale considered. 

2. Changes in mean precipitation trends for the Asian monsoon over the mid period (Holocene), 

as derived from existing palaeoclimatic models are not sufficient to explain the disappearance 

of the HG mode of life in K-S 4 ka. However, palaeoclimatic reconstructions (Clift and Plumb 

2008; Anderson et al. 2010) suggest dry episodes c. 4 ka (not detected in larger-scale 

palaeoclimatic models) could have contributed to the disappearance of HG in K-S.  

3. At the local level, variance in precipitation over the short period (annual to decadal) is the 

main parameter affecting population performance and overall dynamics in our simulations. A 

sustained period of hypothetical higher VYP values 4 ka could have contributed significantly 

to the disappearance of HG in K-S, but higher VYP values 4 ka do not exclude the possibility 

of other factors affecting HG population performance. 

 

In sum, global and continental models of precipitation for the Asian monsoon may not be 

representative of higher inter-annual variability recorded in regions found at the tail of the Asian 

monsoon trajectory, such as Kutch-Saurashtra. In these transitional areas the effects of higher inter-

annual variance need to be taken into account to explain population dynamics relative to larger-scale 

climate trends.  

 

Computer simulation has provided a valuable insight concerning the kind of data necessary to 

understand the persistence of specific SESs. High-definition palaeoclimatic records are needed to 

verify patterns of HG population extinction emerging from our simulations. Where available at the 

regional scale (e.g. Prasad et al. 2007), palaeoenvironmental records often lack the chronological 

definition needed to evaluate the effects of climate change for annual to decadal time-periods, i.e. those 

affecting people during their lifetime. More broadly, our perception is that refined palaeoclimate 

records at the local and regional scales are needed for a sound evaluation of climate-dependent changes 

in SESs (Madella and Fuller 2006). 
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Tables 
 

Table 1 Calibration of historical meteorological data (0 ka) for the Holocene period based on Liu et al 

2003. K-S (Kutch-Saurashtra, local), NWI (NW India, regional), wI (whole India, continental), AYP = 

average yearly precipitation, VYP = variance in yearly precipitation  
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Table 2 Parameterisations for Experiment 1 (a to c). K-S (Kutch-Saurashtra, local), NWI (NW India, 

regional), wI (whole India, continental), AYP = average yearly precipitation, VYP = variance in yearly 

precipitation, EMR = end-of-year minimum residual resources 

 

Table 3 Parameterisations for Experiment 2 (aa to cb). K-S (Kutch-Saurashtra, local), NWI (NW India, 

regional), wI (whole India, continental), AYP = average yearly precipitation, VYP = variance in yearly 

precipitation, EMR = end-of-year minimum residual resources (0.1 = 10%) 

 

Table 4 Parameterisations for Experiment 3 (a to c). K-S (Kutch-Saurashtra, local), NWI (NW India, 

regional), wI (whole India, continental), AYP = average yearly precipitation, VYP = variance in yearly 

precipitation, EMR = end-of-year minimum residual resources  

 

Figures 
 

Fig. 1 Simulation area and ground model. The simplified ground model includes three land units. 

Green (gray): interdune, Yellow (white): dune, Blue (black): water point 

 

Fig. 2 Precipitations patterns in the study region. (a) The local (Kutch-Saurashtra, K-S), regional (NW 

India, NWI) and continental (whole India, wI) scales (map was modified from the original version 

published at www.tropmet.res.in with permission from the Indian Institute for Tropical Meteorology). 

(b) Historical climatic data. In grey, records of AYP < 300 mm (c) Boxplots of variance in yearly 

precipitation (VYP) for meteorological data at different geographic scales  

 

Fig. 3 Population dynamics relative to ‘end-of-year minimum residual resources’ (EMR) parameter. (a) 

Local (K-S). (b) Regional (NWI). (c) Continental (wI) 

 

Fig. 4 Population dynamics relative to variability in continental climate trends over the long period, i.e. 

average yearly precipitation (AYP). The x-axis is shown as a discontinuous ordered sequence of AYP 

values (as in Table 2) 

 

Fig. 5 Population dynamics relative to variability in continental climate trends over the mid period 

(Holocene), i.e. average yearly precipitation (AYP). (a) Local (K-S). (b) Regional (NWI). (c) 

Continental (wI). ka BP: thousands of years before present  

 

Fig. 6 Population dynamics relative to variability over the short period, i.e. variance in yearly 

precipitation (VYP). (a) Local (K-S). (b) Regional (NWI). (c) Continental (wI). All simulations started 

with 100 agents. Each boxplot represents the human population at year 50 for each parameter 

configuration after ten executions. Vertical dotted lines indicate VYP 4 ka for the respective 

geographical scale. Population increase at VYP 300 is an artefact due to the inherent asymmetry of the 

gamma distribution at low precipitation regimes (i.e. precipitation cannot be less than 0) 
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Table 1. Calibration of historical meteorological data (0 ka) for the Holocene period based on 
palaeoclimatic model by Liu et al (2003). KS (Kutch-Saurastra, local), NWI (NW India, regional), wI 
(whole India, continental), AYP = average yearly precipitation, VYP = variance in yearly precipitation. 

 
Time Precipitation increment rate (%) AYP KS (mm) AYP NWI (mm) AYP wI (mm) 

0 ka 0 468.20 545.73 1088.67 

4 ka 2.33 479.11 558.45 1114.04 

10 ka 5.83 495.50 577.55 1152.14 

12 ka 7 500.98 583.93 1164.88 

VYP  193.47 136.52 101.11 
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Table 2. Parametrizations for Experiment 1 (a to c). KS (Kutch-Saurastra, local), NWI (NW India, 
regional), wI (whole India, continental), AYP = average yearly precipitation, VYP = variance in yearly 
precipitation, EMR = end-of-year minimum residual resources. 

 
Experiment Scale AYP (mm) VYP EMR 

1a KS 495.50 193.47 0-1 (0.1 increments) 

1b NWI 577.55 136.52 0-1 (0.1 increments) 

1c wI 1152.14 101.11 0-1 (0.1 increments) 
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Table 3. Parameterizations for Experiment 2 (aa to cb). KS (Kutch-Saurastra, local), NWI (NW India, 
regional), wI (whole India, continental), AYP = average yearly precipitation, VYP = variance in yearly 
precipitation, EMR = end-of-year minimum residual resources (0.1 = 10%). 

 
Experiment Scale AYP min (mm) AYP 4 ka (mm) AYP max (mm) interval (mm) interval (ka) VYP (mm) 

2aa KS 179.11 479.11 779.11 50.00 c. 20 193.47 

2ab KS 468.20 479.11 500.98 2.73 (2.5) c. 1 193.47 

2ba NWI 258.45 558.45 858.45 50.00 c. 20 136.52 

2bb NWI 545.73 558.45 583.93 3.18 (3) c. 1 136.52 

2ca wI 814.04 1114.04 1414.04 50.00 c. 20 101.18 

2cb wI 1088.67 1114.04 1164.88 6.35 (6) c. 1 101.18 

 

Table 3
Click here to download Table: Table 3.docx 

http://www.editorialmanager.com/jarm/download.aspx?id=11119&guid=adab1838-7925-4570-b4b5-0eee12cba4b3&scheme=1


Table 4. Parameterizations for Experiment 3 (a to c). KS (Kutch-Saurastra, local), NWI (NW India, 
regional), wI (whole India, continental), AYP = average yearly precipitation, VYP = variance in yearly 
precipitation, EMR = end-of-year minimum residual resources. 

 
Experiment Scale AYP (mm) VYP min (mm) VYP max (mm) interval (mm) VYP 

3a KS 479.11 1 300 20 193.47 

3b NWI 558.45 1 300 20 136.52 

3c wI 1114.04 1 300 20 101.11 
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1 Introduction
The agent-based simulation we propose explores the potential for the persistence of hunter-gatherer  
(HG) communities relative to climate-driven environmental change during the Holocene in N Gujarat, a 
semi-arid region in NW India. 

The model description follows the ODD (Overview, Design concepts, Details) protocol for describing 
individual- and agent-based models (Grimm et al. 2006, 2010).

2 Purpose
In  our  starting  hypothesis  HG  groups  are  adapted  to  marked  seasonality  (represented  by  the 
monsoon) in the arid margins of northern Gujarat. We intend to explore HG resilience (Holl ing 1973, 
Carpenter et al. 2001) considering climate variability. 

3 Entities, state variables, scales
The model explores the socio-ecological behaviour of HG populations. Agents interact within a given 
territory.

3.1 Scales

3.1.a Agent Scale

The basic agent is defined as a couple (one woman and one man). This is considered to be the entity  
engaging in all decision-making processes and actions modeled in the simulation.

3.1.b Time Scale

Time Scale for the simulation is one day.  This time step is coherent with the granularity of agents’ 
planning.

3.1.c Space Scale

The spatial resolution of the proposed simulation model is constrained by the resolution of available 
relevant geographic data and the nature of the agent mobility and resource gathering activities being 
modeled.

Hence, it was decided to use 31.5m x 31.5m cells, corresponding to ca. 1000 square meters. This is 
the level of resolution of the most detailed geographical information available for the area. This surface 
fits the type of settlements recognized from archaeological surveys. 

3.2 Environment

The simulation environment is large enough to develop all potential processes defined by the model. It 
extends over an area of 50 Km x 50 Km (2500 Km2). Space is represented as a regularly spaced grid 
of cells (a raster map). Each cell is a square of 31.5 m per side, and the total size of this environment 
translates into a space of 1600 x 1600 cells (50,400 m x 50,400 m).

The ground model includes elevation and land features. Elevation is determined by a Digital Elevation 
Model (DEM), a raster map containing the elevation value for each cell calculated from contemporary 
satellite imagery. Land characteristics are reduced to three elemental features:

• Water: represents rivers and lakes.
• Dune: represents  elevated aeolian deposits.  Home location of the agent will always be in a 

dune cell.
• Interdune:  represents  the  depression  between  dune,  where  most  resources  grow.  The 

different land features do not seasonally change in extension but their productivity (in terms of 
moist content and therefore resources supported) does.

The  cornerstone  of  our  environmental  modeling  is  the  climatic  'engine'.  The  climate  module 
determines  the  quantity  of  rain  that  precipitates  evenly  on  the  landscape  on  every  time  step. 
Precipitation is used in conjunction with the terrain model to calculate the amount of biomass for each 
cell and season. The climate model is based on historical data, as well as Holocene monsoon models. 

3.2.a Climate    
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The focus on resource utilization strategies within a particular environment requires to make explicit 
the potential variations in the landscape. In particular for our case study, the presence of the monsoon 
generates a strong seasonality (asymmetrical precipitation patterns).
Monsoon seasonality determines the presence of three critical “moments”  in simulation time,  each 
spanning 4 months.  Therefore, the seasonal subdivision in three periods will be repeated in a cyclical 
way as follows:

• JJAS (rain season: high precipitation, high temperature, low evapotranspiration)
• ONDJ (post-Monsoon: low precipitation, cool temperature, medium evapotranspiration)
• FMAM (dry season: low precipitation, high temperature, high evapotranspiration)

It is important to note that any given “year” in the model starts with the beginning of the rain season 
(June). In fact, virtually all rain in the region is carried by the monsoon that falls between June and 
September (JJAS). Therefore, it is during the JJAS season that the totality of the generated yearly 
precipitation  value  is  calculated  (following  a  Gamma  distribution).  No  additional  precipitation  is 
considered for the remaining eight months of the year (ONDJ and FMAM).

3.2.b Resources

Each cell has a finite number of resources.  Resource availability for each cell is calculated from the 
following variables:

• Yearly precipitation (rainfall, using a Gamma distribution)
• Type of cell (Water, Interdune, Dune)
• Mean yearly Biomass per cell and type.
• Cell history (e.g. whether part of the resources in the cell were consumed before).

Resources include the total biomass that can be found in a cell (fauna and flora). They are exploited 
by HG agents engaging into  foraging activities. Foraging includes activities such as hunting animals 
and gathering plants,  fruits,  seeds,  etc. Indeed, from a literature review it  is  clear  that  secondary 
biomass production (animals) is directly related to primary biomass quantity. Moreover, as there is no 
interest in our simulation to explore gender-based labour division we decided to consider hunting and 
gathering as a single activity (foraging) without distinguishing between plant or animal utilization. In the 
light  of  this,  it  was decided  to  consider  a  value  for  cell  (dune  vs interdune)  based on published 
information of primary biomass production in desert (dune) and savannah (interdune) biomes (after  
Kelly 1983 – Table 3).

Table. Parameters for resource parametrisation according to Kelly (1983; Table 3, p. 284)

Cell type Yearly primary biomass production Efficiency Energy KCal
 Dune (desert)  700g/m² 13.00%  1820KJ/m²  435KCa

Interdune (savanna) 4000g/m² 23% 18400KJ/m² 4395KCal

Cell area = 1000m²
1 g Primary Biomass = 20KJ
1 kcal = 4.184 KJ

Distance to water
This average value of resources is modified based on the distance of a cell from the closest  
water body. This weight decreases linearly to the distance, and models the heterogeneity of 
biomass generated by a higher presence of flora and fauna near the zones where needed 
water can be collected.

Efficiency
The total primary biomass value does not constitute the entire primary biomass available for 
consumption to animals and humans. This value represents the entire biomass production 
including both edible (fruits, tubers some roots etc.) and non-edible (wood, stems, branches 
etc.) parts of the plants. The ratio of profitable biomass versus whole biomass will  be the  
efficiency  value specified  in  the above  table  that  allow to  calculate  the  energy effectively 
available for humans.
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3.3 Agents

The following attributes have been chosen to account in our model

• Age – A numeric variable that keeps track of how many time steps a given agent has been 
active in the simulation.

• Children -  number of  children per  agent.  Birth and mortality rates are bound to resource 
availability.

• Home location -  the cell where the agent resides and the spatial centre of the activities it 
carries out. Any number of agents can share a given cell.

• Home range -  Maximum distance an agent may travel  in one day.  This attribute restricts  
foraging and social activities from taking place in cells too far from the agent Home location.  
The area enclosed in the circle of radius “Home range” is divided in six equal sectors. Such 
division models the idea of direction of exploration for the agent actions, while simplifying the 
decision-making  process  (an  agent  will  choose  to  forage  in  one  of  the  six  sectors, 
independently of single cells).

• Social range - Maximum distance within which an agent with individuals coming of age will 
seek suitable matches to generate a new agent.

Figure. Home range division for foraging and moving home actions

• Food needs - Value that sets the minimum calories a given individual needs in each time step 
in order to survive. The total amount of food needs for an agent is computed as the sum of the 
food needs of the individuals that form a given agent. The probability of death increases for all  
the individuals that form a given agent when this basic quantity of resources is not foraged 
within a day (due to starvation). Needs are defined by the following table:

• Available forage time - Daily time that an agent can spend on foraging. The total amount of 
foraging  time  for  any  given  agent  is  computed  as  the  sum  of  the  foraging  time  of  the 
individuals  that  compose  it.  Foraging  time  increases  from infancy  to  adult  life,  modelling 
learning processes as defined in the following table.  Foraging learning process is modeled 
using vertical transmission. Individual children within a given agent gradually learn to forage in 
an  efficient  way  from  their  care-givers,  and  for  this  reason  the  available  foraging  time 
contributed by children increases until adulthood.

4 Process overview and scheduling

Tables. Individual caloric requirements (left), Individual foraging time (right) 
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Execution follows two time-scales. On the one hand, three processes (‘yearly precipitation’, ‘biomass 
yearly production’ and ‘population size adjustment’) are executed once every year. On the other hand, 
agents decision-making processes are updated on a daily base. The simulation follows this schedule, 
beginning the first day of the JJAS season:

For each year:

1. Precipitation calculation
2. Biomass yearly production
3. For each day of the year: 

a. Daily biomass availability
b. Agent planning:

i. Knowledge update
ii. Choice of actions

c. Execution of agents actions
4. Population size adjustment

Details for each simulation phase are given hereafter.

4.1 Precipitation calculation

The total amount of rain is calculated as a random number following the Gamma distribution defined in 
section 7 (Input Data)

4.2 Biomass Yearly Production

The biomass that  a  cell  will  produce  in  an entire year  is  calculated  from rainfall  and mean year 
production for its particular type, provided by historical records.

We  consider a linear relation between rain and biomass production. The deviation of rain in a given 
year from the period mean allows interpolating the amount of biomass deviation from the yearly mean 
biomass. That is, if the mean of rain is 100 liters and the climate model produces 80 liters the deviation 
to apply is 20%, and for that year the biomass will be a 80% of the mean yearly production for the 
period.

4.3 Daily processes

4.3.a Biomass availability

Yearly biomass production does not appear immediately in the cell in the first day of JJAS season.  
Resources  increase  gradually,  following  a  cumulative  pattern  that  accounts  for  the  progressive 
accumulation of water through JJAS, until the beginning of ONDJ. From then on, resources decrease 
linearly to the end of the year, when they reach a percentage of the highest peak defined by the ‘end-
of-year  minimum residual  resources’ parameter  (EMR).  Variations  in  EMR does not  affect  overall  
yearly biomass production so that the higher the EMR, the lower the maximum peak of resources at  
the JJAS-ONDJ boundary. 
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Biomass overall production for a given year

Figure. Modelled biomass availability through the year

4.3.b Agent planning

Each day the agent will update its knowledge about environment and choose an action to execute (the 
decision-making process is defined in the Submodels section 8). The list of available actions is:

• Forage -  The  agent  takes  multiple  walks  of  a  bounded  length  computed  from available 
foraging time. Walks are limited to the agent’s Home range. From the visited cells, resource 
reward is retrieved based on biomass of the cells. The agent will halt the walk when reward 
achieves food needs.

• Move home -  The agent moves from its current home location to a new one within Home 
range. The new home settlement is chosen randomly between the dune cells situated in the 
richest sectors (containing the highest amount of resources) within Home range. Afterwards, a 
Forage Action is executed using half the available daily Foraging time of the agent in order to 
include the time spent on movement.

4.4 Adjustment of agent population size

This processes are executed for each agent:

1. Age. Agent aging (increment human objects age).
2. Death. Every individual inside an agent will have a probability of dying. At the end of the year 

every individual within an agent must pass two tests to survive:
• Natural death. Every individual has a 1.5% annual death probability, except during the 

first four years of life, when this probability is 10%.
• Starvation. Depends on the capability of an agent to fulfil its caloric requirements. Every 

day the agent computes the percentage of needed resources that it was unable to collect. 
This 'starvation value' is accumulated through the year. The cumulative starvation value is 
translated into the overall  percentage of full  days of the year in which the agent was 
unable to gather sufficient resources. This percentage is translated at the end of the year  
as the probability for each individual composing the agent to die of starvation.

3. Removal. If all the individuals that form an agent are dead, the agent will be removed from 
simulation.

4. Reproduction. At the end of the year every agent where both adults are still alive will have a 
50% chance of having a new child.

5. Emancipation. An agent with individuals coming of age will seek suitable matches among 
agents within its social range. When two individuals coming of age from different agents join a  
new agent is created.

Realistic  population dynamics were obtained without  defining such parameter  as fertility  age limit, 
maximum age or birth-control measures, by means of mortality rates, thus reducing the overall number 
of parameters in the model.
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In our simulations, for children, the natural death probability is 10% during the first four years of life. In 
other words children have a probability of 65.61% to reach 4 years of age. That is, 34.39% of offspring  
die before age 4. 

For individuals older than 4 years (65.61% of total offspring), the natural death probability is 1.5% per 
year, which means a probability of approx 83.5% for all individuals who have reached age 4, to reach 
the reproductive age (15 years), and of 31% to reach the age of 50 years. That means that 54.78% of 
all offspring (c. one half) reach reproductive age, and 20.34% of all offspring (c. one fifth) reach age 
50.

In addition, a simplified version of the model was run on R to assess reproduction in our simulations,  
i.e. with no fertility age limits but taking into account the effects of mortality rates. The following results 
were obtained:

Experiment 1: average for 1000 simulations with starvation rate 0.5%.
• Mortality mean age for women: 64 yrs (this number does not matter)
• Total number of children being born per agent during the lifetime of the agent: 12
• Number of children alive per agent during the lifetime of the agent: 5
• Child mortality (<15 years): 38%
• Infant mortality (<12 months): 18%

Experiment 2: average for 1000 simulations with starvation rate 1%.
• Mortality mean age for women: 56 yrs (this number does not matter)
• Total number of children being born per agent during the lifetime of the agent: 10
• Number of children alive per agent during the lifetime of the agent: 3.8
• Child mortality (<15 years): 43%
• Infant mortality (<12 months): 21%

Starvation  rates  emerging  from our  simulations  vary  between 0  and 10%,  depending  on  climatic 
settings. As a result, reproduction rate in our simulations is coherent with that observed in reality.

For  comparison  with  available  data  from  preindustrial  societies,  the  following  values  can  be 
extrapolated based on the average of several HG groups published by Hewlett (1991):

• Fertility rate (average number of live births per woman over the age of 45): 5.5
• Child (<15 years) mortality: 43.4%
• Ιnfant mortality (<12 months): 20.3%

5 Design concepts

5.1 Basic principles

The behavior defined in this model is derived from the Optimal Foraging Theory (OFT), developed 
within behavioral ecology. The main principle of OFT is the maximization of long-term energy gain. In 
other words, it is usually assumed that animals attempt to maximize the benefit to cost ratio. Evidence 
exists e.g. among great tits, birds that show relatively successful strategies in terms of OFT. Although it 
is doubtful whether humans attain the optimal rate of energy gain, they do succeed in improving their 
foraging efficiencies, or 'memorising'.

5.2 Emergence

The model explores the emergence of viable HG populations under different climatic conditions.

5.3 Adaptation

At the present moment the model is not interested on the emergence of individual adaptive traits, and 
for this reason adaptive options for the agents are limited to the decision making process. The different 
agents try to respond to the dynamics of environment choosing Home locations and Foraging actions 
depending on their particular situation.

5.4 Objectives

Following the basic principles stated before, the objective for any agent is the survival of its individuals. 
This assumption is clearly from optimizing the system, as the different populations won't be guided by 
the  mission  of  'colonizing'  the  entire  landscape.  Anyway,  this  outcome  will  be  seen  following 
evolutionary mechanisms and positive selection. Well adapted agents will have more possibilities to 
survive, thus creating more children and agents with similar cultural traits.

5.5 Prediction
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An agent does not keep track of previous rainfall values, so it is not able to predict the future state of 
the environment.

5.6 Sensing

An issue seldom addressed in the literature of ABM applications into Social Sciences is the fact that 
agents do not have perfect information on their environment. Home range limits the zone that agent 
know around its home location.

5.7 Interaction

The interaction between agents is currently limited to the fission process that is executed when two 
agents with adult children are inside social range.

5.8 Stochasticity

Stochasticity is used in three different concepts:

• Environment.  Precipitation  is  calculated  as  a  stochastic  process  following  a  Gamma 
distribution.

• Outcomes. Some actions have different outcomes depending on stochastic processes, like 
forage. It encapsulates the complex process of resources collection (i.e. risk, variability, etc.),  
and it is important due to the fact that Actions will be chosen depending on their outcomes and 
risk of failure.

• Life events. Death and reproduction are stochastic processes following realistic distributions.

5.9 Collectives

The agent, atom of the decision-making process, is itself a collective of different related individuals.

5.10 Observation

Population dynamics are the most important concepts to derive from the model. 

6 Initialization
Initial state of the model is divided by entities:

6.1 Climate

Rainfall  yearly precipitation is a stochastic value calculated from input data, as seen in section 7. 
Calculated values depend on the initialization seed used in the random number generation, that is 
stored  as  a  parameter  of  the  model's  configuration.  Next  parameters  can  be  modified  during 
initialization time:

• EMR: End-of-year minimum residual resources
• AYP: Average Yearly Precipitation
• VYP: Variance in yearly precipitation

6.2 Environment

Ground Model and land features are raster maps created from real data (see also section 7). The  
model is able to load any raster map with correct values. This process is done during init time from the  
file specified in the configuration.

6.3 Resources

The conversion functions that create available biomass from landscape and rainfall for each cell use 
parameters specified in the configuration. They are based on published research; nevertheless they 
can be modified in order to explore different worlds.

6.4 Agents

Several parameters can be changed from the configuration. These values are loaded during init time,  
and remain stable during the entire execution. This is the list of parameters used for this model:

• Life-event related:
◦ Adulthood age: 15
◦ Number of agents: 100
◦ Social Range: 300 cells
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• Resource related:
◦ Home Range: 300 cells
◦ Number of sectors: 8
◦ Forage time cost: 30 minutes
◦ Walking Speed: 3 km/hour

7 Input data

7.1 Rainfall

Rainfall (yearly precipitation) is the 'environmental engine' of the model. Data for precipitation rate are 
extracted from historical data (1871 - 2008). The climate engine is defined as a probability distribution, 
from which the total precipitation during a year is derived. The Gamma distribution was the best fit for  
the available rainfall dataset.

Figure. Precipitation Gamma distribution

7.2 Ground Model

This model is derived from LANDSAT and ASTER satellite imagery (combining pre- and post-monsoon 
imagery)  and includes DEM and land features.  Satellite data are transformed using unsupervised 
classification and clustered in the 3 classes (water, interdune and dune). The model is exported as a 
Raster map.

7.3 Behavior

Archaeological  data  are  incomplete  and  limited  in  terms  of  derivable  behavioural  patterns.  HG 
behaviour for the model was derived from published studies of historical and present-day populations 
in similar ecological settings.  There are groups of HG that live near N Gujarat (the Van Vargis, see 
Nagar 2008). However, these communities have a high degree of interaction with and dependency 
from settled agricultural communities for their subsistence strategies. This occurrence constitutes a 
strong bias towards the use of these groups to model our HG agents. Instead, we used as surrogates 
of our HG population, African groups of the San communities.

Among living and historical  HG communities,  the San (especially  the G/wi  and G//ana groups of 
Botswana) represent the best-fitting parallel  in  terms of ecosystem (Tanaka and Sugawara 1996). 
These groups are found on a flat plateau in the central part of the Kalahari desert. The landscape 
morphology is characterised by fossil rivers and traces of sand dunes. Rainfall is concentrated in the 
summer months with c. 400 mm annual average precipitation. The vegetation of the area is dominated 
by plants of the Gramineae family (grasses) and a mixture of shrubs of the same genus/families that  
are found in North Gujarat.   
Description Item Info
G/wi and G//ana groups
Botswana (central Kalahari Desert, Africa) 

Lifestyle Hunter-gatherers

Gamma distribution and historical data
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Band [25..85] members.
Formation and fission dependent on 
drought, disease, overpopulation and 
resource overloading.

Some households have quasi extensions of one or even two elderly 
parents of one or both spouses. Although separate shelters are occupied 
by the two senior generations, food, firewood, and other commodities are 
shared to some extent and the whole unit migrates together between 
campsites, into winter isolation, and between bands.

Family Husband + 1 or more wifes + under 
puberty children (older sons stay in the 
bachelor's hut).

Network Kinship and affinity.
Settlement [1..20] families, mean=10

Guided by the interband intelligence network, the founder leads a party 
of men on an extended hunting trip into country offering the most likely 
prospect of sufficient resources. Later they take their families with them 
and spend a month or more away from the parent band, returning before 
the annual breakup in winter. The following summer, once the wet 
season is established, the pioneers make their first visit and continue to 
spend longer and longer periods in the new territory. The composition of 
the group changes to some extent as some withdraw and elect to remain 
with the parent band or to move to other established bands, and their 
places are taken by others. As the absences of the pioneers in their 
territory grow longer and more frequent, the separate identity of their 
group emerges until, eventually, it is recognized as an autonomous band

Movement Dependent of the band.
A movement group is formed based on 
kinship and friendship.
Done at the end of summer.

Hunting * 2 strategies: day sortie, biltong.
* Pair of hunters.
* Stick to an area fixed the previous night 
with other pairs.
* Everybody helps (information) the 
hunters track the games.
* <5 pairs go hunting the same day.
* Hunt range around the camp = 
[700..800]km².
* Could spend night far from home 
(>20km away otherwise will return).

Gathering 80% of total reward.
[1h walking (if good tsama season)...6h 
walking]
[3.5kg..5kg] per day and individual.

Working 
day

* 4h39' / working day.
* 9h away from camp = 4.5 h working + 
4.5 leisure
* [10:30 .. 16:00] = rest

8 Submodels

8.1 Agent execution cycle

The majority of Agent-Based Models mix knowledge acquisition, decision-making and execution in the 
same phase of an agent's execution. This choice is useful if we deal with agents with simple decision-
making processes where the choice of behaviors is predefined. However, this classical approach to 
ABM has a major drawback, and is the fact that the agent will have scripted strategies, and for this  
reason it won't be able to choose strategies different from the ones defined there.
The model proposed here splits the different phases. During each time step every agent updates its  
knowledge about the environment (possibly including other agents). This action is combined with a set 
of possible actions, in order to choose which plan of actions will be executed. Several factors can be 
used to enrich the process:

• Agent's goals and agent's preferences referred to the choice of particular actions
• The information that  the agent perceives from the environment  and the reliability  of  such 

information.
• The information collected from other Agents, as well as its reliability.
• The feedback the agent receives from engaging into a given activity.

In this particular model the  goal  of every agent is to maintain alive its individuals, and the potential 
actions  are  the  ones  defined  in  the  document.  This  approach  will  allow  to  integrate  Artificial  
Intelligence techniques into the current decision-making process, depending on particular research 
around this first model.

The execution of the agents during each time step is divided in three different phases:
1. Knowledge update
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The agent collects information from the environment, and creates an individual representation of the  
world using its preferences and objectives. Agents will calculate the amount of biomass available in 
each directional sector, as well as potential settlement zones.

2. Action choice
The  agent  decides  which  actions  to  execute  once  knowledge  has  been collected,  based  on  the 
following algorithm:

• Agents checks whether there is any sector inside its home range where resources can be 
obtained. This is calculated based on available foraging time and resources on cells.

• If needed resources can be obtained the agent will choose to Forage in one of the Sectors  
where this is possible.

• If this is not possible, the agent will choose to Move Home. A collection of possible new homes 
is created based on the quantity of resources inside the Home range from this new location.  
The final location is chosen amongst the ones that fulfill resource requirements.

3. Action
Once every agent has defined a plan, all of them are executed sequentially following a randomized 
order.
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