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ABSTRACT

We propose a 3D reconstruction algorithm based on silhou-

ettes and color images. It is robust to inconsistent silhouettes,

often common in real applications due to occlusions, er-

rors in the background subtraction, noise or even calibration

errors. The recovery of the shape that best fits the avail-

able data is formulated as a continuous energy minimization

problem. The energy is based on the error between the sil-

houettes and the shape plus a regularization term based on a

photo-consistency measure that places the surface at photo-

consistent locations. The visibility is modeled as a function

of the shape. The proposed photo-consistency measure takes

visibility into account, although the presented variational

framework can use different photo-consistency computations.

Index Terms— 3D reconstruction, multi-view, shape

from silhouette, photo-consistency, visibility.

1. INTRODUCTION

The 3D reconstruction from multiple views is one of the main

problems in computer vision that has many applications, like

human body motion analysis, 3D localization and navigation

or augmented reality. Two different kind of approaches have

been used to solve the problem: shape from silhouettes (SfS)

and shape from multi-view stereo.

SfS methods based on the visual hull [1, 2, 3, 4, 5] usu-

ally provide a fast and simple reconstruction but will produce

incomplete shapes in situations where the silhouettes are not

consistent due to segmentation errors. That is why recently

there has been a growing interest in proposing SfS methods

robust to inconsistent silhouettes [6, 7, 8, 9, 10, 11, 12, 13].

However, an inherent problem of the SfS techniques is that

they can not recover some of the concavities present in the

shape.

On the other hand, multi-view stereo methods use the

photo-consistency of voxels and are able to recover those

concavities. Common photo-consistency measures assume a

Lambertian hypothesis and thus those methods fail to recon-

struct parts of the surface shape affected by specularities, but

also in cases of occlusions and lack of texture [14, 15].
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As shown in previous works [16, 17, 18, 19, 14, 20] the

fusion of consistent silhouettes and stereo information greatly

improves the results compared to using any of these types of

data separately. The mentioned works impose and exact sil-

houette consistency assuming that the silhouettes do not have

errors. This assumption is no longer valid in many applica-

tions where images are taken in a non-controlled environment

[15] and possible source of errors arise: occlusions, errors

in the background subtraction (due to shadows, illumination

changes, similar colors in foreground and background), noise

or even calibration errors. As far as we know the only work

that combines photo-consistency and non-perfect silhouettes

is [21], where the authors consider uncertainties in the sil-

houettes. On the other hand, [16] just omits the constraints

coming from silhouettes with a low confidence.

We propose a 3D reconstruction method that uses color

images and silhouettes. The difference with previous works

is that our method is robust to inconsistent silhouettes since

we do not impose an exact silhouette match. Instead, we min-

imize the reprojection error of the shape with respect to the

silhouettes while at the same time seeking for a smooth sur-

face located at most photo-consistent locations.

2. COMBINING PHOTO-CONSISTENCY AND

INCONSISTENT SILHOUETTES

The data in our problem are the calibrated color images and

the segmented foreground objects in each of the Nc views.

Let us denote the color images by Ii : D ⊂ R
2 → R

3,

i = 1, ..., Nc. On the other hand, the segmented objects

are represented by binary images, Si : D ⊂ R
2 → {0, 1},

i = 1, ..., Nc. Si takes the value one at points which belong

to the segmented foreground objects. We will refer to this

set of points as the silhouette, and to Si as the i-th silhouette

image (i.e. the characteristic function of the silhouette).

Consider a volume Ω ⊂ R
3 and a binary function that

defines the space occupancy, C : Ω → {0, 1}, i.e. the char-
acteristic function of the shape in the 3D space. Our purpose

is to recover C from the available data: the color and the sil-

houette images in the different views while being robust to

possible errors and inconsistencies between the silhouettes.

One of the consolidated approaches for solving the 3D re-

construction problem is to use a weighted area functional; as

proposed in [22], the reconstructed shape is the one with min-



imal surface, where the weight of each surface point is given

by a photo-consistency measure. In this way, boundaries of

the surface at photo-consistent locations are preferred. But

the main problem of this formulation is that the trivial so-

lution is the empty set. There have been different propos-

als to avoid this problem: for example the use of ballooning

terms [20], or constraints based on the visual hull [17, 19, 14].

The reconstruction method proposed in [16] is also based on

a photo-consistency-weighted area functional where the sur-

face is implicitly represented using the characteristic function

of the shape, C. Being ρ(z) the photo-consistency measured

at point z ∈ Ω, the shape is found by minimizing the fol-

lowing functional with respect to C,
∫

Ω
ρ(z)|∇C|dz, and im-

posing exact consistency of C with the silhouettes. The latter

means that for pixels inside the silhouette (pixels where Si is

one) at least one of the 3D points along the visual ray of the

pixel should be occupied by the shape; whereas for pixels out-

side (Si is zero), none of the points on the visual ray should

be occupied.

Our proposal may be interpreted as a robust version of

the work presented in [16] since we consider inconsistent

silhouettes. Thus, instead of finding the shape that exactly

matches the silhouettes we minimize the reprojection error

of the shape with respect to the silhouettes. As in [16], we

also find a shape with minimal surface favoring its location at

photo-consistent 3D points. The present work is an extension

of our previous model [13], where we only consider as data

the inconsistent silhouettes but not the color images.

Let us define the error between the shapeC at point z ∈ Ω
and the silhouette image Si of the i-th view:

Ei(C, Si)(z) := (1− C(z))Si(Piz) + C(z)(1− Si(Piz)),

where Piz ∈ D is the projection of point z ∈ Ω to camera i.

The first term expresses the error produced by an empty loca-

tion (C(z) = 0) and the second one the error of an occupied

location (C(z) = 1). The error Ei(C, Si) simplifies to:

Ei(C, Si)(z) = Si(Piz) + (1− 2Si(Piz))C(z). (1)

In the following, we will denote by empty visual ray a vi-

sual ray which does not intersect with the shape, i.e. a visual

ray where all the points z in it verify that C(z) = 0. Let Ω̃i be

the set of all empty visual rays in Ω, with respect to camera

i. On the other hand, if the visual ray intersects the shape it

is called an occupied visual ray. The idea is then to find the

function C that minimizes, for every camera, the error (1) in

all the visible points, that is, the points belonging to empty

visual rays (i.e. z ∈ Ω̃i) and those located on the visible

surface in the occupied visual rays. Among the different min-

imizers we are interested in those that have minimum photo-

consistency-weighted surface area, thus regularizing the solu-

tion while locating the shape surface at photo-consistent loca-

tions. Taking this into account we can find the shape C as the

one that minimizes the following energy functional:

Nc
∑

i=1

[

∫

Ω̃i

Ei(C, Si)dz +

∫

Ω\Ω̃i

Ei(C, Si)Vidz

]

+

α

∫

Ω

ρ(z, V1, ..., VNc
)|∇C|dz,

(2)

where Vi : Ω → [0, 1] characterizes the visible surface of the
shape in camera i: Vi(z) 6= 0 indicates that point z is visi-

ble from camera i. Both, the visible surface Vi and the set of

empty visual rays Ω̃i depend on the shape C. The mathemat-

ical relationship of these functions and sets is detailed in the

following subsections. The gradient of C, ∇C, is considered

in the distributional sense. The last term of (2) is the weighted

total variation (TV) of C: if C is the characteristic function

of the shape, then the (weighted) TV computes the (weighted)

surface area of the shape. The constant α is the regularization

parameter and balances the error terms (fitness to silhouette

images) and the surface term (surface regularization and fit-

ness to color images).

Note that the photo-consistency measure we use in (2)

depends on the visibility of the points and thus takes occlu-

sion into account. On the other hand, the photo-consistency

used in [16] can be precomputed because it does not depend

on the visibility; they use the photo-consistency proposed in

[19] which includes robustness to occlusions without using

explicitly the visibility. Nevertheless, the energy proposed in

(2) admits any photo-consistency function, even if it does not

depend on the visibility, that is, a function of the type ρ(z).

2.1. Visibility

Following [13] and the original idea of [23], we define the

depth hull as the functionDi which solves the following PDE:

∂ri,zDi = max
(

0, H(1−Di)∂ri,zC
)

, (3)

where H is the Heaviside function, together with the bound-

ary constraint that Di(z) = 0 in points z located at the

boundaries ∂Ω that first intersect the visual rays when we

travel these rays in increasing order of the distances to the

camera. Let us denote these boundaries by Γi (depicted in

blue in Fig. 1). Equation (3), together with the boundary

condition Di|Γi
= 0, ensures that ∂ri,zDi ≥ 0 and that

whenever C is a characteristic function so is Di, and the

non-zero directional derivative of the depth hull, ∂ri,zDi, is

aligned with the non-zero directional derivative of the shape,

∂ri,zC, closer to camera i. The visible surface in the energy

(2) is then localized by Vi = |∂ri,zDi|.

2.2. Empty and occupied visual rays

As shown in the previous subsection, the depth hull Di char-

acterizes the visible surface. Now we will see how it may

identify the empty and occupied rays as well. Two different

types of volume domain boundaries forDi can be considered:



the boundaries where the closest points (withinΩ) to the cam-

era center lie, the set Γi, and those others where the furthest

points are located. Notice that by definition, the value of Di

is always 0 in the closest boundaries, Γi, but changes in the

furthest boundaries: being 0 if the visual ray is empty and 1

if it is occupied. Then, the functional (2) can be written in the

following way:

E(C,D1, ..., DNc
)=

Nc
∑

i=1

[
∫

Ω

Ei(C, Si)(1−Di(Fiz))dz

+

∫

Ω

Ei(C, Si)|∂ri,zDi|dz

]

+ α

∫

Ω

ρ(z, V1, ..., VNc
)|∇C|dz,

(4)

where Fiz is the projection of z to the furthest point inΩ from

the optical center of camera i that belongs to the same visual

ray as z (see Fig. 1). If Di(Fiz) = 0, then the visual ray is

empty, whereasDi(Fiz)=1 indicates an occupied visual ray.

Fig. 1: Example of a 3D domainΩ and a camera i. The boundary Γi

(in blue) is the set of points in the boundary of Ω that first intersect

the visual rays when we travel these rays in increasing order of the

distances to the camera. Point z projects to Piz in the image plane.

Point Fiz is the projection of z to the furthest point in Ω from the

optical center of camera i that belongs to the same visual ray as z.

2.3. Relaxed variational problem

Taking into account both previous characterizations, we pro-

pose to solve the following variational problem:

min
C,Di

E(C,D1, ..., DNc
)

s. t. C : Ω → {0, 1}

Di|Γi
= 0, ∂ri,zDi=max

(

0, H(1−Di)∂ri,zC
)

∀i = 1, ..., Nc.

(5)

Although the functional in (5) is convex in C for fixedDi

the variational problem is not convex, since the space of bi-

nary functions to which C belongs is non-convex. Therefore

we relax the problem by considering that C ∈ [0, 1]. We will

solve the relaxed variational problem numerically and obtain

the solution to the original problem (5) by thresholding the

solution of the relaxed problem, as in [16]. Before defining

the relaxed problem let us remark that the function Di in (3)

is thought for a binary C. By relaxing the range of possible

values for C we could end up with different visible surface

points z, i.e. ∂ri,zDi(z) 6= 0, in the same line of sight. This

situation is avoided by using a thresholded version of C with

a certain threshold, Cth, in (3) (in practice we use th = 0.95).
The relaxed variational problem is then,

min
C,Di

E(C,D1, ..., DNc
)

s. t. C : Ω → [0, 1]

Di|Γi
= 0, ∂ri,zDi=max

(

0, H(1−Di)∂ri,zCth

)

∀i = 1, ..., Nc.

(6)

Similarly as in [16], it can be proved [13] that once we

have the solutionCr to the relaxed problem (6), for a fixedDi,

its thresholded version, Cth, lies within an energetic bound of

the optimal solution, Copt, to the original problem (5).

3. NUMERICAL METHOD

The Euler-Lagrange equation associated to the first variation

of the energyE with respect to function C is a necessary con-

dition for the minimum of the energy,

0 =

Nc
∑

i=1

(1− 2Si(Piz))
[

(1−Di(Fiz)) + |∂ri,zDi|
]

−α div

(

ρ(z, V1, ..., VNc
)
∇C

|∇C|

)

.

(7)

We find C solving equation (7) with a successive over-

relaxation algorithm as in [16]. The constraints in C may

be imposed at each step: values of C outside the interval

[0, 1] are clipped. For finding Di we apply the constraint

on it which is a PDE (3) that can be solved with a one-pass

algorithm, with the Depth hull algorithm proposed in [13]

(and based on [23]). As in [13], Si(Piz) is the average of the
silhouette image i in the set of projected pixels for voxel z,

and we use an upwind scheme for the directional derivative.

Finally, the resolution of the system (7) and the Depth hull

algorithm are iterated until convergence. This is a simple

algorithm which convergences in a few iterations. However,

this procedure only minimizes the energy with respect to C.

Part of the future work is to propose a numerical method that

minimizes the energy with respect to the shape and the depth

hulls.

3.1. Photo-consistency measure

We define the photo-consistency measure as:

ρ(z, V1, ..., VNc
) =

1

Nij

Nc
∑

i=1

∑

j>i

ρij(z)Vi(z)Vj(z), (8)



Fig. 2: Top: Synthetic experiment, four of the color images and their corresponding (inconsistent) silhouette images. The rest of

the four views do have consistent silhouettes. Bottom: Real experiment, two views and their corresponding silhouette images.

where Nij =
∑Nc

i=1

∑

j>i Vi(z)Vj(z) and ρij(z) is the norm
of the difference of the mean projected RGB vectors at cam-

era i and j (normalized by 3 · 128). We use Vi = |∂ri,zDi|
as defined in 2.1. However, if Nij happens to be zero for a

specific voxel we have experimentally tested that it is useful

to use the same expression (8) with ViVj = 1 if the angle

formed by the visual rays of cameras i and j is less than 45◦

and ViVj = 0 otherwise. If againNij = 0, then we set ρ to 1.

Fig. 3: Recovered shapes, using just silhouettes (top-left) and com-

bining color images and silhouettes (top-right and bottom).

4. EXPERIMENTS

The first experiment corresponds to a synthetic data with eight

different views, four of the silhouette images have been cor-

rupted so as to produce inconsistencies between them (see

Fig. 2 top). The 3D reconstruction using the proposed method

is shown in Fig. 3, top-right. As it can be seen, the inconsis-

tent parts are better recovered compared to the reconstruction

just using the silhouettes [13] (Fig. 3 top-left): the hole in the

waist disappears and the indentation in the leg is smoothed. In

both cases we have used a volume of 230×226×332 voxels.
The second experiment uses real data of sixteen views of

a two children taken in a studio.1 The provided silhouettes are

inconsistent due to segmentation errors (Fig. 2 bottom). The

recovered shape, Fig. 3 bottom (275 × 275 × 200 voxels), is

robust to silhouette errors.

5. CONCLUSIONS

In this work we have proposed a way to combine the color im-

ages and the (possible) inconsistent silhouettes so as to find a

compatible 3D reconstruction. The novelty with respect to

previous methods in the literature is the robustness to incon-

sistent (or incomplete) silhouettes which are quite common in

real applications. Previous works suppose consistent silhou-

ettes and usually impose a perfect match of the shape with

the silhouettes. In this case we minimize the reprojection er-

ror of the shape with respect to the silhouettes while at the

same time seeking for a smooth surface located at most photo-

consistent locations.

As a proof of concept we have used a photo-consistency

measure that takes visibility into account. However, the vari-

ational formulation admits different definitions of the photo-

consistency measure. It is part of our future work to test if

there are more convenient photo-consistency measures that

could help to improve the results.

Another aspect that needs further analysis is the numerical

method, as stated in Section 3. Finally we plan to implement

the numerical algorithm in CUDA to speed up computations.

1Data available from http://4drepository.inrialpes.fr/public/datasets
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