DYRK1A Kinase Positively Regulates Angiogenic Responses in Endothelial Cells

Authors
Esteban J. Rozen, Julia Roewenstrunk, María José Barallobre, ...,
Mariona Graupera, Miguel A. Valverde, Susana de la Luna

Correspondence
susana.luna@crg.eu

In Brief
Dysregulation of DYRK1A kinase expression leads to disease in humans; its overexpression is linked to Down syndrome pathological traits, and its haploinsufficiency causes a clinical syndrome. Rozen et al. show that normal levels of DYRK1A are required for physiological angiogenesis, acting positively on VEGF-dependent NFAT transcription in endothelial cells.

Highlights
- DYRK1A positively regulates VEGF-dependent NFAT transcription in endothelial cells
- DYRK1A silencing reduces intracellular Ca^{2+} influx in response to VEGF
- VEGFR2 accumulation is reduced when DYRK1A is downregulated
- Dyrk1a heterozygous mice show defects in developmental retinal vascularization
DYRK1A Kinase Positively Regulates Angiogenic Responses in Endothelial Cells

Esteban J. Rozen,1,2,10 Julia Roewenstrunk,1,2,10 María José Barallobre,2,3,10 Chiara Di Vona,1,2,10 Carole Jung,4 Ana F. Figueiredo,5 Jeroni Luna,2,6 Cristina Fillat,2,6,7 Maria L. Arbones,2,3 Mariona Graupera,5,8 Miguel A. Valverde,4 and Susana de la Luna1,2,6,11,*

1Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
2Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
3Institut de Biologia Molecular de Barcelona (IBMB), 08028 Barcelona, Spain
4Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
5Vascular Signaling Laboratory, ProCURE and Oncobell Programs, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
6Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
7Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), 08036 Barcelona, Spain
8Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Spain
9Institució Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
10These authors contributed equally
11Lead Contact
*Correspondence: susana.luna@crg.eu
https://doi.org/10.1016/j.celrep.2018.04.008

SUMMARY

Angiogenesis is a highly regulated process essential for organ development and maintenance, and its deregulation contributes to inflammation, cardiac disorders, and cancer. The Ca2+/nuclear factor of activated T cells (NFAT) signaling pathway is central to endothelial cell angiogenic responses, and it is activated by stimuli like vascular endothelial growth factor (VEGF). NFAT phosphorylation by dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) is thought to be an inactivating event. Contrary to expectations, we show that the DYRK family member DYRK1A positively regulates VEGFe-dependent NFAT transcriptional responses in primary endothelial cells. DYRK1A silencing reduces intracellular Ca2+ influx in response to VEGF, which dampens NFAT activation. The effect is exerted at the level of VEGF/2 accumulation leading to impairment in PLCγ1 activation. Notably, Dyrk1a heterozygous mice show defects in developmental retinal vascularization. Our data establish a regulatory circuit, DYRK1A/ Ca2+/NFAT, to fine-tune endothelial cell proliferation and angiogenesis.

INTRODUCTION

Vascular endothelial growth factor (VEGF) is the principal regulator of new blood vessel sprouting, promoting a range of cellular responses in endothelial cells (ECs) that include survival, proliferation, migration, invasion, and/or permeability (reviewed in Herbert and Stainier, 2011). VEGF exerts its effects by activating its cognate tyrosine kinase receptor, VEGFR (encoded by the KDR, FLT1, and FLT4 genes), which thereafter engages multiple intracellular signaling cascades that include the extracellular regulated kinase/mitogen-activated protein kinases (ERK/MAPKs), the phosphoinositide 3-kinase (PI3K)/AKT pathway, or the phospholipase Cγ (PLCγ)/Ca2+ pathway (reviewed in Simons et al., 2016). The PLCγ/Ca2+ pathway is responsible for the opening of the Ca2+ channel receptors in the endoplasmic reticulum (ER) membrane and the subsequent opening of Ca2+ channels in the plasma membrane that leads to an increase in intracellular Ca2+ (reviewed in Soboloff et al., 2012). This event activates the phosphatase calcineurin (CN), which leads to the dephosphorylation of the nuclear factor of activated T cells (NFAT) family of transcription factors and its relocalization to the nucleus, where it regulates the transcription of target genes central to angiogenesis (reviewed in Müller and Rao, 2010). A number of kinases are known to modulate NFAT activity and subcellular localization, producing both positive and inhibitory outcomes. The first group includes the MAPK, JNK, or vaccinia-related kinase 2, while negative regulatory kinases include protein kinase A, glycogen synthase kinase 3 (GSK3), casein kinase 1 (CK1), and members of the dual specificity tyrosine-regulated kinase (DYRK) family (reviewed in Shou et al., 2015). DYRKs are an evolutionarily conserved family of kinases belonging to the CMGC group that participate in signaling pathways that are critical for development and in maintaining cell homeostasis (reviewed in Aranda et al., 2011). There are five members of the mammalian DYRK subfamily (DYRK1A, DYRK1B, DYRK2, DYRK3, and DYRK4) that have distinct expression patterns and, to some extent, different substrate specificity. DYRK1A is the best-studied member of the family due to its link to human pathologies, both when overexpressed as part of the Down syndrome critical region (reviewed in Park and Chung, 2013) or when in haploinsufficiency associated to a complex clinical syndrome (Bronicki et al., 2015). Human DYRK1A and DYRK2 interact with and phosphorylate the regulatory domains of NFAT proteins in vitro, priming further CK1 and...
GSK3 phosphorylation (Arron et al., 2006; Gwack et al., 2006). DYRK1A and DYRK3 have also been proposed to repress NFAT transcriptional activity in different experimental models of overexpression in the context of pathophysiological NFAT activation such as cardiac hypertrophy, osteoclast differentiation, or pancreatic beta cell replication (Bogacheva et al., 2008; Grebe et al., 2011; Lee et al., 2009; Wang et al., 2015).

Here, we set out to characterize whether DYRKs regulate VEGF-induced Ca²⁺/NFAT signaling in ECs, focusing on DYRK1A. In contrast to what was expected, we found that DYRK1A was required for the correct activation of NFAT upon VEGF stimulation. Downregulation of DYRK1A resulted in less EC proliferation and reduced angiogenesis in vitro. In agreement, heterozygous Dyrk1a mice responded poorly in ex vivo angiogenesis assays and showed altered developmental angiogenesis during retinal vasculogenesis. Mechanistically, we show that DYRK1A acts upstream of the increase in intracellular Ca²⁺ induced by VEGF at the level of receptor accumulation.

RESULTS

DYRK1A Is Required for Correct Activation of the Ca²⁺/NFAT Signaling Pathway by VEGF

Phosphorylation of NFAT proteins by DYRK1A and DYRK2 has been shown to be an inactivating event (Arron et al., 2006; Gwack et al., 2006). Given that NFATs are key downstream effectors of VEGF (Figure 1A), we asked whether DYRK1A might affect transcriptional responses to VEGF-A (hereinafter VEGF) in primary ECs. To this end, RNA microarray analysis was performed using VEGF-stimulated human umbilical vein ECs (HUVECs) infected with a lentivirus expressing a control small hairpin RNA (shRNA) or an shRNA targeting DYRK1A (Figures S1 A and S1B). The silencing of DYRK1A did not affect the expression of other DYRKs (Figure S1 C), ruling out possible compensatory effects. In addition, as a validation of the experimental setup, the microarray results from noninfected HUVECs were compared with those from shControl-infected ones, demonstrating a large overlap in the VEGF upregulated genes (Figure S1D) and indicating that lentiviral infection per se did not drastically affect the ability of VEGF to induce its transcriptional program.

We focused on those genes induced 1 hr after VEGF stimulation because they are more likely to represent primary transcriptional targets. To discriminate the NFAT-dependent group of genes, we also analyzed VEGF-stimulated human umbilical vein ECs (HUVECs) infected with a lentivirus expressing a control small hairpin RNA (shRNA) or an shRNA targeting DYRK1A (Figures S1A and S1B). The silencing of DYRK1A did not affect the expression of other DYRKs (Figure S1C), ruling out possible compensatory effects. In addition, as a validation of the experimental setup, the microarray results from noninfected HUVECs were compared with those from shControl-infected ones, demonstrating a large overlap in the VEGF upregulated genes (Figure S1D) and indicating that lentiviral infection per se did not drastically affect the ability of VEGF to induce its transcriptional program.

We focused on those genes induced 1 hr after VEGF stimulation because they are more likely to represent primary transcriptional targets. To discriminate the NFAT-dependent group of genes, we also analyzed VEGF-stimulated cells set arbitrarily as 1 (mean ± SD; n = 3, assayed in triplicate; pairwise comparisons with a two-tailed Mann-Whitney U test; see also Figure S2).
Three groups of genes induced by VEGF were distinguished: genes whose expression did not change significantly in the presence of CsA, genes that were further induced by CsA, and genes whose induction was reduced more than 30% by CsA (Figures 1B–1F; see also Figure S1E). This latter group defines the genes that require NFAT activation for their expression to be induced by VEGF, and it includes already known targets of NFAT such as RCAN1.4 (Minami et al., 2004; Yang et al., 2000) and other genes that are induced by NFATc1 overexpression or that have NFATc1 occupancy at their proximal promoter regions in HUVECs (Suehiro et al., 2014). When we compared the behavior of these three groups of genes in control cells and DYRK1A-silenced cells, significant changes in VEGF-dependent induction were only observed for the group of genes inhibited by CsA, the activation of which was dampened in the absence of DYRK1A (Figures 1D–1F).

DYRK1A Depletion Dampens VEGF-Induced NFAT-Dependent Transcriptional Responses

We reasoned that the weaker induction of NFAT targets in DYRK1A silenced cells could be due to a delayed response rather than to reduced transcription. The temporal pattern of induction was very similar in shDYRK1A cells compared to control cells, but the mRNA levels were reduced at each time point analyzed (Figure 2A; see also Figures S3B and S3C for a parallel assessment of RCAN1 mRNA and protein), ruling out a delay in transcriptional activation. We next assessed NFAT transcriptional activity more directly by analyzing the activity of a luciferase reporter under the control of the RCAN1.4 internal promoter, which is known to depend on NFAT activity (Minami et al., 2004). Whereas reporter activity was induced by VEGF in control cells, little activation was observed in cells silenced for DYRK1A (Figure 2B for shRNA treatment and Figure S3D for siRNA), further confirming that the depletion of endogenous DYRK1A impairs VEGF-dependent NFAT activation.

NFAT activation by VEGF requires the dephosphorylation of the NFAT proteins, which can be traced by the appearance of faster-migrating electrophoretic bands sensitive to CN inhibition (CsA treatment) (Figure 2C). An effect of DYRK1A phosphorylation on NFATc1 stability has been reported (Liu et al., 2017), but DYRK1A depletion did not affect NFAT protein accumulation in this cellular context (Figure S3E). However, a reduction was detected in the NFAT protein isoforms with increased electrophoretic mobility, which likely corresponds to the hypophosphorylated forms (Figure 2C). The result is quite surprising given that DYRK1A has been shown to directly phosphorylate NFATs (Arron et al., 2006; Gwack et al., 2006), and hence, an increase in the hypophosphorylated forms when DYRK1A is reduced would be expected. Changes in NFATs phosphorylation are directly responsible of their nucleocytoplasmic transport, with...
DYRK1A expression. DYRK1A is catalytically active in HUVECs and its subsequent transcriptional activation.

The Effect of DYRK1A on VEGF Responses Depends on Its Catalytic Activity

DYRK1A overexpression appears to inhibit NFAT activation in different physiological contexts (Arron et al., 2006; Grebe et al., 2011; Gwack et al., 2006; Lee et al., 2009). We assessed this effect in our experimental system. In this case, the effect on the activation of NFAT targets was highly variable from experiment to experiment (Figure 3A); only high levels of DYRK1A dampened VEGF-dependent activation of NFAT targets (Figure S4A), while lower levels did alter neither NFAT phosphorylation nor NFAT target expression (Figures S4A and S4B). In addition, unlike endogenous DYRK1A, which was detected mostly in the cytosol of HUVECs, exogenously expressed DYRK1A accumulated almost exclusively in the nucleus (Figure S4C). It is therefore possible that high levels of exogenously expressed nuclear DYRK1A would drive the phosphorylation of endogenous NFAT and subsequent transcriptional inhibition.

DYRK1A re-expression restored the induction levels of the NFAT target RCAN1.4 (Figure 3B), and other NFAT targets were partially rescued (Figure S4D). These results argue against off-target effects and clearly establish a dependence on DYRK1A expression. DYRK1A is catalytically active in HUVECs upon VEGF stimulation (Figures S4E and S4F), and thus, we wondered whether the kinase activity is required for DYRK1A-mediated effects. Unfortunately, we could not get detectable expression of a DYRK1A kinase inactive mutant in HUVECs to evaluate kinase-dependency. As an alternative, prior to VEGF stimulation we exposed HUVECs to harmine, a known inhibitor of DYRK1A kinase activity (Bain et al., 2007; Laguna et al., 2010). Harmine treatment mimicked the effect of DYRK1A down-regulation, as the VEGF-dependent induction of NFAT targets was dampened in harmine-treated cells (Figure 3C), an effect that was enhanced as the pretreatment time increased (Figures S4G and S4H). Moreover, the rescue achieved by DYRK1A re-expression did not occur in the presence of harmine (Figure 3D), confirming that NFAT’s ability to induce RCAN1.4 expression is dependent on DYRK1A kinase activity. Notably, harmine possesses anti-angiogenic activity, as it impedes HUVEC proliferation and tube formation (Dai et al., 2012; Hamsa and Kuttan, 2010), which our results suggest could be due, at least in part, to DYRK1A inhibition. Thus, our data suggest that the kinase activity of DYRK1A is required to modulate VEGF/Ca2+/NFAT signaling in HUVECs.

DYRK1A Modulates a Signaling Step in VEGF Stimulation Upstream of the Release of Ca2+ from Intracellular Stores

In ECs, several pro-angiogenic genes, including RCAN1.4, are also induced by interleukin-1β (IL-1β) signaling (Schweighofer et al., 2009). Based on our results, the induction of RCAN1.4 by IL-1β appears to be independent of NFAT activation, as it is not affected by CsA (Figures S5A–S5C). In addition, no effect was observed on the ability of IL-1β to induce RCAN1.4 in DYRK1A-silenced cells, nor were other common targets of IL-1β and VEGF signaling affected (Figures S5B and S5D). Altogether, these data suggest that the signaling impairment in the activation of pro-angiogenic genes due to DYRK1A downregulation in HUVECs is restricted to the Ca2+/NFAT pathway.
Next, we asked at which level of the VEGF/Ca\(^2+\)/NFAT pathway DYRK1A is acting. Based on the changes in NFAT phosphorylation, we wondered whether DYRK1A was placed upstream or at the level of CN activation. To evaluate this possibility, we interrogated the pathway when pharmacologically activated: the combination of ionomycin (Io), which allows the passage of Ca\(^{2+}\) across membranes, and the protein kinase C agonist phorbol 12-myristate 13-acetate (PMA) induce potent NFAT signaling (Figure S5E). Indeed, HUVECs respond by augmenting RCAN1.4 transcription, and notably, DYRK1A downregulation did not affect this induction (Figures S5G and S5H). Importantly, the fact that the effects of DYRK1A downregulation on NFAT signaling are overridden when Ca\(^{2+}\) entry is reduced in DYRK1A-silenced HUVECs, the entry component following Ca\(^{2+}\) release from intracellular stores (mainly the ER), was clearly impaired (Figures 4A; see also Figures S6A and S6B). The decrease paralleled VEGFR2 amounts, since the ratio pY1175/total was not significantly different (Figure 5D). In particular, phosphorylation of several of the tyrosine residues involved in VEGFR2-dependent signaling cascades were also reduced (Figures 5A and 5B). Concomitant with this reduction, the phosphorylation levels of several of the tyrosine residues involved in VEGFR2-dependent signaling cascades were also reduced (Figures 5A and 5B; see also Figures S6A and S6B). The decrease paralleled VEGFR2 amounts, since the ratio pY1175/total was not significantly different (Figure 5D). In particular, phosphorylated Y1175 in VEGFR2 is the docking site for PLC\(\gamma\). We have previously reported that DYRK1A controls the availability of RTK (EGF receptor) by regulating its half-life (Ferron et al., 2010). Therefore, in a search for the molecular mechanism explaining how DYRK1A might regulate Ca\(^{2+}\)/NFAT signaling, we tested whether VEGF receptor (VEGFR2) accumulation was affected by DYRK1A downregulation. As other RTKs, VEGFR2 undergoes endocytosis and subsequent targeting for either recycling or degradation upon ligand binding (reviewed in Simons et al., 2016). Our results showed that VEGFR2 accumulation in response to VEGF was reduced in cells depleted of DYRK1A (Figures 5A and 5B). Concomitant with this reduction, the phosphorylation levels of several of the tyrosine residues involved in VEGFR2-dependent signaling cascades were also reduced (Figures 5A and 5B; see also Figures S6A and S6B). The decrease paralleled VEGFR2 amounts, since the ratio pY1175/total was not significantly different (Figure 5D). In particular, phosphorylated Y1175 in VEGFR2 is the docking site for PLC\(\gamma\), and it is crucial to initiate PLC\(\gamma\)/Ca\(^{2+}\) signaling. Accordingly, the reduction in VEGFR2-pY1175 resulted in decreased PLC\(\gamma\) activation as measured by reduced Y783 phosphorylation (Figure 5D). Likewise, the activation of downstream signaling pathways was also negatively affected by silencing DYRK1A (Figure 5D).

Notably, no changes in VEGFR2 mRNA were detected in DYRK1A-silenced cells (Figure 5C), indicating that the effect on VEGFR2 accumulation was post-transcriptional. Indeed, degradation of VEGFR2 in cells treated with the protein synthesis inhibitor cycloheximide was enhanced in DYRK1A knockdown.
Figure 5. **DYRK1A’s Effect on Ca²⁺/NFAT Signaling Is Exerted at the Level of VEGFR2 Accumulation**

(A and B) Immunoblot analysis to track the activation of VEGFR2 and downstream effectors. A representative image (A; C refers to normal growing conditions) and the relative quantification of the signals for VEGFR2 and VEGFR2 phosphorylated at Y1175 (B) with respect to the values in shControl cells at t = 0 (total) or t = 10 min (for pY1175) set arbitrarily as 1 (mean ± SD; n = 10; see also Figures S6A and S6B).

(C) VEGFR2 and DYRK1A mRNA levels in HUVECs treated with VEGF. The values in shControl cells at t = 0 were set up as 1 (mean ± SD; n = 2; see also Figure S6C for quantification of cells growing in normal conditions).

(D) Activation of the effectors indicated represented as the ratio of the signals for the phospho-antibodies to the pan-antibodies; the values in shControl cells at t = 10 min were set arbitrarily as 1 (mean ± SD; pVEGFR2/VEGFR2, n = 10; pPLCγ1/PLCγ1, n = 4; pERK/ERK, n = 4; pAKT/AKT, n = 3; 2-way ANOVA with (legend continued on next page)
cells (Figure 5E), suggesting a higher turnover rate in the absence of DYRK1A. This conclusion is further supported by the fact that the reduced accumulation of VEGFR2 upon VEGF treatment is rescued in the presence of the proteasome inhibitor MG132 and, partially, in cells depleted of DYRK1A (Figures 5F and 5G). Cell-surface levels of VEGFR2 were also reduced in shDYRK1A knockdown cells (Figures 5H and 5I), which could be a reflection of the reduction in total VEGFR2. However, VEGF treatment induced depletion of cell-surface VEGFR2 similarly in both conditions (Figures 5H and 5I), indicating that receptor internalization is active in the absence of DYRK1A. To provide further support, we used an “antibody feeding” assay (Gampel et al., 2006). VEGFR2 molecules exposed in the plasma membrane were labeled with a VEGFR2 extracellular-domain-specific antibody; the signals detected in cells fixed directly after labeling period correspond to the retention of VEGFR2 at specific antibody; the signals detected in cells fixed and permeabilized correspond to internalized VEGFR2 in unstimulated conditions (in red in Figure 5J) and located in the endosomal compartment as previously described (Gampel et al., 2006). Antibody-labeled cells were chased for 40 min with VEGF, which induced an increase in VEGFR2 internalized in control cells consistent with ligand-induced receptor internalization (Figures 5J and S6E). In DYRK1A-silenced cells, although VEGFR2 was internalized in both unstimulated cells and upon VEGF treatment, the increase in the amount of VEGFR internalized was not observed (Figure 5J; see also Figure S6E for quantifications), an effect compatible with increased degradation of the internalized receptor.

We conclude that the reduction in VEGFR2 amounts when DYRK1A is silenced could lead to a reduction in PLCγ1 activation, which in turn would be responsible of the defects observed in intracellular Ca2+ mobilization.

DYRK1A Is a Critical Modulator of Angiogenesis

Adequate activation of the Ca2+/NFAT pathway in response to VEGF is required for many steps in the angiogenic process. To test the importance of DYRK1A in this context, we first evaluated the proliferative response of ECs upon DYRK1A downregulation. The increase in cell number provoked by VEGF in shControl samples was not evident in shDYRK1A cells (Figure 6A). In addition, we analyzed HUVEC behavior in Matrigel assays to follow their ability to organize themselves in networks, a model where the CN/NFAT pathway is known to play a critical role (Rafiee et al., 2004). In agreement with the reduced NFAT response, DYRK1A-depleted cells were virtually unable to organize into cord-like structures in vitro, and the effect was largely rescued upon the re-establishment of DYRK1A expression (Figure 6B).

Next, we wanted to assess the impact of DYRK1A activity on angiogenesis in a more physiological manner. Since Dyrk1a loss of function is embryonic lethal in mice (Fotaki et al., 2002), we use heterozygous mice, keeping in mind that Dyrk1a haploinsufficiency is pathological in humans. First, we analyzed how mouse lung ECs (mLECs) obtained from Dyrk1a+/− mice responded to VEGF treatment regarding NFAT-response and found that heterozygous cells were unable to induce Rcan1.4 expression (Figure S7A); in agreement with the data obtained in HUVECs, VEGF2 protein levels were reduced in the Dyrk1a+/− mLEC cultures (Figure S7B). Next, we performed an ex vivo aortic ring angiogenesis assay after checking to confirm that DYRK1A is expressed in aortic tissue and reduced in Dyrk1a+/− mice (Figure 7A) and that it is detected in aortic ECs (Figure S7C). In accordance with the DYRK1A depletion in vitro assays, vessel sprouting was markedly reduced in Dyrk1a+/− aortic rings compared to wild-type (Figure 7B; see also Figure S7D), supporting the need for DYRK1A for a full angiogenic response in this model of neoangiogenesis.

The role of DYRK1A was also examined in postnatal retinal angiogenesis, a process that is driven primarily by VEGF. At postnatal day 6 (P6), when the growing vasculature has not yet reached the periphery of the retina, Dyrk1a heterozygous retinas showed a reduction in the expansion of the vasculature (Figures 7C and 7D). Interestingly, the number of main vessels was significantly reduced in Dyrk1a+/− mice at P6 compared with wild-type littermates (Figures 7E and S7E), with no major differences in NG2 staining. No differences were observed in the number of sprouts or in the branching points when the two genotypes were compared (Figures 7F and 7G). By P11, vascular sprouts have already invaded deep retina layers in wild-type retinas, and the vascular plexus has undergone significant remodeling (Figures 7H and 7I). In contrast, Dyrk1a+/− retinas showed an immature vascular plexus; the sprouting front had not even reached the periphery of the retina (Figure 7H), and the intermediate vascular plexus not even formed (Figure 7I).

The Dyrk1a loss-of-function mouse model is not endothelial specific, and it is known that other cell types, such as retinal
astrocytes, play an important role in the development of the mammalian retinal vasculature (Watanabe and Raff, 1988). DYRK1A is expressed in all neural cell types in the developing retina, including astrocytes (Laguna et al., 2008); therefore, it is possible that the observed phenotype is the result of defects not only in ECs but also in astrocytes. The analysis of the astrocytic network at P5 using PDGFRα as marker showed that whereas the vascular expansion was already affected at this postnatal age (as assessed by measuring IB4 staining), no differences were observed in the expansion of the astrocyte front when Dyrk1a+/−/− retinas were compared to wild-type retinas (Figures S7 F and S7G). Thus, although we cannot rule out that a combination of endothelial and nonendothelial effects could contribute to the phenotypic differences between Dyrk1a+/−/− and Dyrk1a+/+ mice, we think that altogether, the data support a role for DYRK1A in physiological angiogenesis.

DISCUSSION

In the present study, we found that downregulation of DYRK1A kinase and inhibition of its activity severely affect VEGF-dependent signaling in ECs and their homeostasis. The in vitro effects have a relevant correlation in vivo, since we show a strong impact in physiological angiogenesis in a Dyrk1a haploinsufficiency model. Furthermore, we reveal an unexpected role for DYRK1A as a positive regulator of VEGF-dependent NFAT activation in ECs. Indeed, our results indicate that endogenous DYRK1A is required for the appropriate mobilization of Ca2+ from intracellular stores in response to VEGF, given that DYRK1A depletion reduces the Ca2+ spike resulting from ER Ca2+ release without affecting extracellular Ca2+ influx; our data are compatible with this effect being the result of the DYRK1A-dependent control of VEGFR2 accumulation and downstream PLCγ1 activation.

Transcriptional profiling of VEGF-stimulated HUVECs showed that only a particular subset of the genes induced (those repressed by CsA) was sensitive to DYRK1A downregulation. The fact that NFAT proteins showed reduced dephosphorylation and nuclear translocation following VEGF treatment in DYRK1A-depleted cells has allowed us to establish a molecular link between the smaller increase in intracellular Ca2+ and the reduced NFAT-dependent transcriptional activation. This positive role for DYRK1A in NFAT signaling is quite unexpected given its accepted role as an inhibitory NFAT kinase (Arron et al., 2006; Gwack et al., 2006; Kuhn et al., 2009; Lee et al., 2009; Stefos et al., 2013). Several explanations may account for the apparent discrepancy. First, most functional associations reported previously are based on DYRK1A overexpression. Our analysis in different cellular systems indicates that ectopically expressed DYRK1A accumulates in the nucleus (Alvarez et al., 2003), while it is mostly cytosolic in endogenous conditions, as we show here for HUVECs. It is therefore possible that strong overexpression might favor nuclear interactions that do not necessarily take place in physiological conditions. In fact, we only observe the inhibition of VEGF/NFAT targets when DYRK1A is strongly overexpressed, possibly indicating that such inhibition relies on increased NFAT phosphorylation in the nucleus as shown by others (Arron et al., 2006; Gwack et al., 2006). Second, the conditions used for NFAT activation, such as constitutively active CN or TG, override the physiological activation of the pathway and render it independent of the step defined here. Third, the effect of DYRK1A on NFAT activation might depend on the cellular context and/or stimulus. Hence, the functional interaction of DYRK1A with distinct sets of positive and/or negative regulators within the signaling cascades could have distinct biological consequences. This might explain why the DYRK inhibitor harmine potentiates RANKL-induced NFAT activation in RAW264.7 cells (Egusa et al., 2011), whereas we show here that it inhibits NFAT activation by VEGF in HUVECs. Noteworthy, DYRK1A is a highly dosage-sensitive kinase, and although some of the phenotypes associated with DYRK1A deregulation are linear in terms of dosage (Laguna et al., 2008), the same phenotypic output has also been observed with both its overexpression and downregulation in certain paradigms (Chen et al., 2013).

From the mechanistic point of view, our results suggest that DYRK1A’s effect on VEGF signaling is exerted at the level of VEGFR2 accumulation, which affects the levels of the receptor.
Figure 7. Dyrk1a Heterozygous Mice Show Defects in Angiogenic Responses

(A) DYRK1A expression in aortic extracts from wild-type and Dyrk1a^{+/−} mice analyzed by western blot.

(B) Aortic ring assays from Dyrk1a^{−/−} female mice or their wild-type littermates performed in 2% FCS without (basal) or with VEGF, or in complete growth medium (Complete). A representative picture of each condition is shown (scale bar, 0.2 mm; see also Figure S7D).

(C) Visualization of the vasculature by isolectin B4 immunofluorescence (EC membrane) and NG2 staining (pericytes) in retinas from wild-type and Dyrk1a^{−/−} mice at P6.

(D–G) Quantification of several features of the retinal vasculature at P6 in Dyrk1a^{+/+} and Dyrk1a^{−/−} animals; radial expansion (D; n = 5 for each genotype), number of main vessels (E; +/+; n = 5; +/-; n = 4; see also Figure S7E for representative images), number of sprouts (F; n = 5 for each genotype), and branch points (G; n = 5 for each genotype) (mean ± SEM).

(H) Visualization of the vasculature by IB4 and NG2 staining in retinas from wild-type and Dyrk1a^{−/−} mice at P11.

(I) Transversal view of CD31 stained retinas at P6 and P11 obtained by 3D reconstruction of z-projection of confocal images covering the whole thickness of retinal vasculature, showing the formation of the deep an intermediate plexus in wild-type and Dyrk1a^{−/−} mice.
at the cell surface. This results in a reduction in PLCγ1 activation, likely due to the diminished presence of VEGFR2-pY1175 molecules. Reduced PLCγ1 activation would affect

Ca2+ mobilization, which would ultimately be responsible for the impaired NFAT-transcriptional response. Given that the effect of DYRK1A appears not to be an on/off effect, the kinase could participate in a mechanism regulating the amplitude or the duration of Ca2+ signaling and, hence, the activation of specific NFAT targets (Kar and Parekh, 2015; Yissachar et al., 2013). VEGFR2 internalizes efficiently in serum-starved HUVECs independently of ligand and upon VEGF stimulation (Basagüñnis and Christoforidis, 2016). In addition, ligand-independent VEGFR2 ubiquitination has been linked to receptor membrane trafficking and proteolysis (Smith et al., 2017). However, it is not clear whether the constitutive VEGFR2 and the ligand-induced internalization/degradation pathways share mechanisms and effectors. We observed reduction of VEGFR2 in both serum-starved HUVECs and upon VEGF treatment; however, we think that the half-life measurements in VEGF-treated cells allow us to safely propose that DYRK1A protects VEGFR2 from the internalization-associated degradation of the receptor that follows ligand binding. Currently, we cannot precisely define at which of the steps that regulate VEGFR2 accumulation DYRK1A is acting: receptor internalization, intracellular trafficking, targeting to the proteasome/lysosome degradation pathway, or recycling to the membrane. However, the protective role of DYRK1A in VEGFR2 homeostasis is quite comparable to that on EGF receptor in adult neural stem cells or glioblastoma (Ferron et al., 2010; Pozo et al., 2013) and could be an indication of a more general role of DYRK1A on the regulation of RTK’s stability. Finally, we are aware that given the pleiotropic nature of DYRK1A, our data do not rule out other potential mechanisms, related or not to the regulation of NFAT activity, that contribute to the participation of DYRK1A in angiogenesis.

In summary, our results are consistent with DYRK1A being required for angiogenesis. Further in vivo analysis will be necessary to fully elucidate the role of DYRK1A in physiological angiogenesis and whether DYRK1A is important in pathological conditions associated with angiogenesis, such as tumor-associated neoangiogenesis and other angiogenesis-related diseases. Such studies will surely provide valuable information on the potential of using DYRK1A as a target for the therapeutic manipulation of angiogenesis.

EXPERIMENTAL PROCEDURES

Cell Culture and Cell-Based Procedures

HUVECs were obtained from Lonza and maintained in EGM-2 BulletKit complete Medium (Lonza). Cell treatments and extract preparation were done at 80% confluency. For growth curves, cells were plated at 4,000 cells/cm² in triplicate (day 0) and counted every 24 hr for 4 days. Transient DYRK1A downregulation was achieved by small interfering RNA (siRNA) transfection using Lipofectamine 3000. The siRNAs used were a control non-targeting downregulation was achieved by small interfering RNA (siRNA) transfection using Lipofectamine 3000. The siRNAs used were a control non-targeting (D-001810-10) or a human Dyrk1a SMARTpool (L-004805-00) obtained from Dharmacon. Cell treatments were performed in basal EBM-2 medium (Lonza) supplemented with 2% fetal calf serum (FCS) (see Supplemental Experimental Procedures for conditions). See also Supplemental Experimental Procedures for lentivirus stock preparation and infection and conditions for 2D in vitro Matrigel assays. Intracellular Ca2+ was measured as described previously (Jung et al., 2011). Mouse primary ECs were prepared from lungs of Dyrk1a−/− and wild-type littermates as described previously (Serra et al., 2015).

Animals

We used adult female Dyrk1a−/− mice (Fotaki et al., 2002) and their respective wild-type littermates. The animals were maintained on their original genetic background by repeated backcrossing of Dyrk1a−/− males to C57BL/6Jx129S2/SvHsd F1 females (Harlan Laboratories); animals were genotyped by PCR. All experimental procedures were carried out in accordance with European Union guidelines (Directive 2010/63/EU). The protocols were approved by the Ethics Committee of the CSIC and the IDIBELL.

Microarray Analysis and Quantification of mRNA

RNA samples for microarray analysis (three biological repeats of each sample) were prepared from HUVECs according to the experimental conditions indicated in Figure S1. A complete description of microarray processing and analysis is provided in Supplemental Experimental Procedures. For mRNA quantification, qPCR reactions were performed with SYBR green on cDNA prepared from total RNA and specific oligonucleotides (sequences are provided in Table S1). Each sample was assayed in triplicate, and the threshold cycle (Ct) was calculated using the Relative Quantification of the 2nd Derivative Maximum method with Lightcyoler 480 1.2 software (Roche). All results were normalized to GAPDH or ACTB expression for HUVECs and Ppia for mouse samples.

Protein Analysis

A complete description for western blot analysis and in vitro kinase assays is provided in Supplemental Experimental Procedures. Antibody sources are listed in Table S2, Immunofluorescence studies were performed as described previously (Aranda et al., 2008; see also Supplemental Experimental Procedures). Information on visualization and quantification of the retinal vasculature is also included.

Statistics

The statistical package included in GraphPad Prism 6 was used. Normality of sample data was evaluated with a D’Agostino and Pearson omnibus test. If samples passed the normality test, a two-tailed unpaired Student’s t test was used; if not, significant differences were defined in pairwise comparisons using a two-tailed Mann-Whitney U test. For multiple comparisons, a one-way ANOVA with Bonferroni corrections was used. The data in the graphs represent the mean ± SD of independent experiments. A p value < 0.05 was considered significant (*p < 0.05; **p < 0.001; ***p < 0.0001). All experiments were performed independently at least three times.

Data and Software Accessibility

The accession number for the microarray data reported in this paper is GEO: GSE112172.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and two tables and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.04.008.

ACKNOWLEDGMENTS

Microarray analysis was done at the CRG Genomics Facility and analyzed by the CRG Bioinformatics Unit. We thank M. Sefton for linguistic support and A. Raya for technical support. We acknowledge discussions with S. Martínez-Martínez and J.M. Redondo (CNIC, Madrid, Spain). This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO grants BFU2013-44513 and BFU2016-76141-P to S.L., SAF2015-69762-R to M.A.V., SAF2014-59950-P to M.G., BIO2014-57716-C2-R to C.F., and SAF2016-77791-R to M.L.A.), ‘‘La Marató de TV3’’ to S.L., the Instituto de Salud Carlos III (IIS1000014 to C.F. and RD12/0442/0014 to M.A.V.), FEDER Funds to M.A.V., the Secretariat of Universities and Research-Generalitat de
assembly. J. Cell Sci. splicing speckles through a novel targeting signal and induces speckle disas-

Revisted: December 18, 2017
Received: July 24, 2017

The authors declare no competing interests.

DECLARATION OF INTERESTS

J.R., C.D.V., and S.L.; Funding Acquisition and Supervision, M.L.A., C.F.,
AUTHOR CONTRIBUTIONS

Maeztu Programme and the CERCA Programme/Generalitat de Catalunya.
The support of the MINECO Centro de Excelencia Severo Ochoa and Maria de
Maeztu Programme and the CERCA Programme/Generalitat de Catalunya.

REFERENCES

splicing speckles through a novel targeting signal and induces speckle disas-

Sprouty2-mediated inhibition of fibroblast growth factor signaling is modu-

nases: evolutionary relationships, biochemical properties, and functional

increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 447,
595–600.

Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C.J., McLauchlan, H., Kle-

Basagiannis, D., and Christofidou, S. (2016). Constitutive endocytosis of
VEGFR2 protects the receptor against shedding. J. Biol. Chem. 291, 16982–
16903.

Bogacheva, O., Bogachev, O., Menon, M., Dev, A., Houde, E., Valore, E.I.,
dual-specificity kinase attenuates erythropoiesis during anaemia. J. Biol.
Chem. 283, 36665–36675.

Bronicki, L.M., Redin, C., Drunat, S., Piton, A., Lyons, M., Passemand, S., Bau-
further delineate the synrdromic intellectual disability phenotype caused by

cells within a p21-cyclin D1 signaling map to control the decision to enter the

Dai, F., Chen, Y., Song, Y., Huang, L., Zhai, D., Dong, Y., Lai, L., Zhang, T., Li,
D., Pang, X., et al. (2012). A natural small molecule harmane inhibits angiogen-
esis and suppresses tumour growth through activation of p53 in endothelial
cells. PLoS ONE 7, e52162.

Egusa, H., Doi, M., Saeki, M., Fukuyasu, S., Akashi, Y., Yokota, Y., Yatani, H.,
and Kamisaki, Y. (2011). The small molecule harmane regulates Nfatc1 and
Id2 expression in osteoclast progenitor cells. Bone 49, 264–274.

Ferron, S.R., Pozo, N., Laguna, A., Aranda, S., Portan, E., Moreno, M., Fillat, C.,
segregation of kinase DYrk1A during asymmetric neural stem cell division is

Fortki, V., Dierssen, M., Alcántara, S., Martínez, S., Martí, E., Casas, C., Visa,
J., Soriano, E., Estivill, X., and Arbonés, M.L. (2002). DYRK1A haploinsuffi-
cency affects viability and causes developmental delay and abnormal brain

Gampel, A., Møss, L., Jones, M.C., Brunton, V., Norman, J.C., and Mellor, H.
(2006). VEGF regulates the mobilization of VEGFR2/KDR from an intracellular

Grebe, C., Klingebiel, T.M., Grau, S.P., Toischer, K., Didié, M., Jacobshagen,
DYRK1A in cardiomyocytes inhibits acute NFAT activation but does not pre-

Gwack, Y., Sharma, S., Nardone, J., Tanasa, B., Iuga, A., Srikanth, S., Oka-
wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of
NFAT. Nature 441, 646–650.

Hamasa, T.P., and Kuttan, G. (2010). Harmane inhibits tumour specific neo-
Vessel formation by regulating VEGF, MMP, TIMP and pro-inflammatory medi-

behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12,
551–564.

Jung, C., Gené, G.G., Tomás, M., Plata, C., Seilent, J., Pastor, M., Fandos, C.,
SNP in TRPC4 cation channel protects against myocardial infarction. Cardio-

Kuhn, C., Frank, D., Will, R., Jaschinski, C., Frauen, R., Katus, H.A., and Frey,
N. (2009). DYRK1A is a novel negative regulator of cardiomyocyte hypertro-

Laguna, A., Aranda, S., Barallobre, M.J., Barhoum, R., Fernández, E., Fotaki,
The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during

(2009). Negative feedback Inhibition of NFATC1 by DYRK1A regulates bone

NFATc1 phosphorylation by DYRK1A increases its protein stability. PLoS
ONE 12, e0172985.

Minami, T., Horiuchi, K., Miura, M., Abid, M.R., Takabe, W., Noguchi, N.,
Kohro, T., Ge, X., Aburutani, H., Hamakubo, T., et al. (2004). Vascular endothe-
lial growth factor- and thrombin-induced termination factor. Down syndrome
critical region-1, attenuates endothelial cell proliferation and angiogenesis.
J. Biol. Chem. 279, 50537–50554.

Park, J., and Chung, K.C. (2013). New perspectives of DYRK1A role in neuro-
22, 244–248.

Pozo, N., Zanohero, C., Fernández, P., Liñares, J.M., Ayuso, A., Hagiwara, M.,
mez, P. (2013). Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-

Rafiee, P., Heidemann, J., Ogawa, H., Johnson, N.A., Fisher, P.J., Li, M.S.,
Otterson, M.F., Johnson, C.P., and Binion, D.G. (2004). Cyplosporin A differen-
tially inhibits multiple steps in VEGF induced angiogenesis in human microvas-
cular endothelial cells through altered intracellular signaling. Cell Commun.
Signal. 2, 3.

