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ABSTRACT

If-then rules are one of the most expressive and intuitive
knowledge representations and their application to rep-
resent musical knowledge raises particularly interesting
questions. In this paper, we describe an approach to learn-
ing expressive performance rules from monophonic record-
ings of Jazz standards by a skilled saxophonist. We have
first developed a melodic transcription system which ex-
tracts a set of acoustic features from the recordings pro-
ducing a melodic representation of the expressive perfor-
mance played by the musician. We apply machine learn-
ing techniques, namely inductive logic programming, to
this representation in order to induce first order logic rules
of expressive music performance.

1. INTRODUCTION

Expressive performance is an important issue in music
which has been studied from different perspectives (e.g.
[10]). The main approaches to empirically study expres-
sive performance have been based on statistical analysis
(e.g. [28]), mathematical modelling (e.g. [32]), and analysis-
by-synthesis (e.g. [8]). In all these approaches, it is a
person who is responsible for devising a theory or math-
ematical model which captures different aspects of musi-
cal expressive performance. The theory or model is later
tested on real performance data in order to determine its
accuracy.

In this paper we describe an approach to investigate
musical expressive performance based on inductive ma-
chine learning. Instead of manually modelling expressive
performance and testing the model on real musical data,
we let a computer use machine learning techniques [19] to
automatically discover regularities and performance prin-
ciples from real performance data: monophonic record-
ings of Jazz standards. In particular, we apply inductive
logic programming to obtain first order logic rules.

The rest of the paper is organized as follows: Section
2 describes how symbolic features are extracted from the
monophonic recordings. Section 3 describes how we ap-
ply machine learning techniques to some of the extracted
symbolic features in order to induce rules of expressive
music performance. Some induced rules are presented.

Section 4 reports on related work, and finally Section 5
presents some conclusions and indicates some areas of fu-
ture research.

2. MELODIC DESCRIPTION

In this section, we summarize how we extract a symbolic
description from the monophonic recordings of perfor-
mances of Jazz standards. We need this symbolic repre-
sentation in order to apply machine learning techniques,
in particular inductive logic programming techniques, to
the data. In this paper, we are interested in modeling
note-level transformations such as onset deviations, dura-
tion transformations, energy variations, and melody alter-
ations. Thus, descriptors providing note-level information
are of particular interest.

2.1. Algorithms for feature extraction

Figure 1 represents the steps that are performed to obtain
a melodic description from audio. First of all, we perform
a spectral analysis of a portion of sound, called analysis
frame, whose size is a parameter of the algorithm. This
spectral analysis lies in multiplying the audio frame with
an appropriate analysis window and performing a Discrete
Fourier Transform (DFT) to obtain its spectrum. In this
case, we use a frame width of 46 ms, an overlap factor of
50%, and a Keiser-Bessel 25dB window. Then, we per-
form a note segmentation using low-level descriptor val-
ues. Once the note boundaries are known, the note de-
scriptors are computed from the low-level and the funda-
mental frequency values.

2.2. Low-level descriptors computation

The main low-level descriptors used to characterize ex-
pressive performance are instantaneous energy and funda-
mental frequency.

2.2.1. Energy computation

The energy descriptor is computed on the spectral domain,
using the values of the amplitude spectrum at each analy-
sis frame. In addition, energy is computed in different
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Figure 1. Block diagram of the melody descriptor

frequency bands as defined in [15], and these values are
used by the algorithm for note segmentation.

2.2.2. Fundamental frequency estimation

For the estimation of the instantaneous fundamental fre-
quency we use a harmonic matching model derived from
the Two-Way Mismatch procedure (TWM) [17]. For each
fundamental frequency candidate, mismatches between the
harmonics generated and the measured partials frequen-
cies are averaged over a fixed subset of the available par-
tials. A weighting scheme is used to make the procedure
robust to the presence of noise or absence of certain par-
tials in the spectral data. The solution presented in [17]
employs two mismatch error calculations The first one is
based on the frequency difference between each partial in
the measured sequence and its nearest neighbor in the pre-
dicted sequence. The second is based on the mismatch
between each harmonic in the predicted sequence and its
nearest partial neighbor in the measured sequence. This
two-way mismatch helps to avoid octave errors by apply-
ing a penalty for partials that are present in the measured
data but are not predicted, and also for partials whose pres-
ence is predicted but which do not actually appear in the
measured sequence. The TWM mismatch procedure has
also the benefit that the effect of any spurious components
or partial missing from the measurement can be counter-
acted by the presence of uncorrupted partials in the same
frame.

Figure 2 shows the block diagram for the fundamental
frequency estimator following a harmonic-matching ap-
proach.

First, we perform a spectral analysis of all the win-
dowed frames, as explained above. Secondly, the promi-
nent spectral peaks of the spectrum are detected from the
spectrum magnitude. These spectral peaks of the spec-
trum are defined as the local maxima of the spectrum which
magnitude is greater than a threshold. The spectral peaks
are compared to a harmonic series and a two-way mis-
match (TWM) error is computed for each fundamental
frequency candidates. The candidate with the minimum
error is chosen to be the fundamental frequency estimate.

After a first test of this implementation, some improve-
ments to the original algorithm where implemented to deal
with some errors of the algorithm:

• Peak selection: a peak selection routine has been
added in order to eliminate spectral peaks corre-
sponding to noise. The peak selection is done ac-
cording to a masking threshold around each of the
maximum magnitude peaks. The form of the mask-
ing threshold depends on the peak amplitude, and
uses three different slopes depending on the frequency
distance to the peak frequency.

• Context awareness: we take into account previous
values of the fundamental frequency estimation and
instrument dependencies to obtain a more adapted
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Figure 2. Flow diagram of the TWM algorithm

result.

• Noise gate: a noise gate based on some low-level
signal descriptor is applied to detect silences, so that
the estimation is only performed in non-silent seg-
ments of the sound.

2.3. Note segmentation

Note segmentation is performed using a set of frame de-
scriptors, which are energy computation in different fre-
quency bands and fundamental frequency. Energy on-
sets are first detected following a band-wise algorithm that
uses some psycho-acoustical knowledge [15]. In a second
step, fundamental frequency transitions are also detected.
Finally, both results are merged to find the note boundaries
(onset and offset information).

2.4. Note descriptor computation

We compute note descriptors using the note boundaries
and the low-level descriptors values. The low-level de-
scriptors associated to a note segment are computed by
averaging the frame values within this note segment. Pitch
histograms have been used to compute the pitch note and
the fundamental frequency that represents each note seg-
ment, as found in [18]. This is done to avoid taking into
account mistaken frames in the fundamental frequency
mean computation.

First, frequency values are converted into cents, by the
following formula:

c = 1200 ·
log ( f

fref
)

log2
(1)

where fref = 8.176. Then, we define histograms with
bins of 100 cents and hop size of 5 cents and we compute
the maximum of the histogram to identify the note pitch.
Finally, we compute the frequency mean for all the points
that belong to the histogram. The MIDI pitch is computed
by quantization of this fundamental frequency mean over
the frames within the note limits.

2.5. Implementation

All the algorithms for melodic description have been im-
plemented within the CLAM framework 1. They have
been integrated within a tool for melodic description, Melo-
dia. Figure 3 presents a screenshot of the melodic descrip-
tion tool.

3. LEARNING EXPRESSIVE PERFORMANCE
RULES IN JAZZ

In this section, we describe our inductive approach for
learning expressive performance rules from performances
of Jazz standards by a skilled saxophone player. Our aim
is to find rules which predict, for a significant number of
cases, how a particular note in a particular context should
be played (e.g. longer than its nominal duration) or how

1http://www.iua.upf.es/mtg/clam



Figure 3. Tool for melody description

a melody should be altered by inserting or deleting notes.
We are aware of the fact that not all the expressive trans-
formations performed by a musician can be predicted at
a local note level. Musicians perform music consider-
ing a number of abstract structures (e.g. musical phrases)
which makes of expressive performance a multi-level phe-
nomenon. In this context, our aim is to obtain an inte-
grated model of expressive performance which combines
note-level rules with structure-level rules. As a first step
in this direction, we have based our musical analysis on
the implication/realization model, proposed by Narmour
[21, 22].

3.1. Musical analysis

The Implication/Realization model is a theory of percep-
tion and cognition of melodies. The theory states that a
melodic musical line continuously causes listeners to gen-
erate expectations of how the melody should continue.
The nature of these expectations in an individual are mo-
tivated by two types of sources: innate and learned. Ac-
cording to Narmour, on the one hand we are all born with
innate information which suggests to us how a particular
melody should continue. On the other hand, learned fac-
tors are due to exposure to music throughout our lives and
familiarity with musical styles and particular melodies.
According to Narmour, any two consecutively perceived
notes constitute a melodic interval, and if this interval is
not conceived as complete, it is an implicative interval,
i.e. an interval that implies a subsequent interval with cer-
tain characteristics. That is to say, some notes are more
likely than others to follow the implicative interval. Two

main principles recognized by Narmour concern registral
direction and intervallic difference. The principle of regis-
tral direction states that small intervals imply an inter-
val in the same registral direction (a small upward inter-
val implies another upward interval and analogously for
downward intervals), and large intervals imply a change
in registral direction (a large upward interval implies a
downward interval and analogously for downward inter-
vals). The principle of intervallic difference states that a
small (five semitones or less) interval implies a similarly-
sized interval (plus or minus 2 semitones), and a large in-
terval (seven semitones or more) implies a smaller inter-
val. Based on these two principles, melodic patterns or
groups can be identified that either satisfy or violate the
implication as predicted by the principles. Such patterns
are called structures and are labeled to denote character-
istics in terms of registral direction and intervallic differ-
ence. Figure 5 shows prototypical Narmour structures. A
note in a melody often belongs to more than one struc-
ture. Thus, a description of a melody as a sequence of
Narmour structures consists of a list of overlapping struc-
tures. Grachten [12] developed a parser for melodies that
automatically generates an implication/realization analy-
sis. Figure 6 shows the analysis for a fragment of Body
and Soul.

3.2. Training data

The training data used in our experimental investigations
are monophonic recordings of four Jazz standards (Body



Figure 4. Basic Narmour I/R melodic units

Figure 5. Narmour structure parsing of the first phrase of Body And Soul

and Soul, Once I Loved, Like Someone in Love and Up
Jumped Spring) performed by a professional musician at
11 different tempos around the nominal tempo. For each
piece, the nominal tempo was determined by the musi-
cian as the most natural and comfortable tempo to inter-
pret the piece. Also for each piece, the musician identified
the fastest and slowest tempos at which a piece could be
reasonably interpreted. Interpretations were recorded at
regular intervals around the nominal tempo (5 faster and 5
slower) within the fastest-slowest tempo limits. The data
set is composed of 4360 performed notes. Each note in
the training data is annotated with its corresponding class
and a number of attributes representing both properties of
the note itself and some aspects of the context in which
the note appears. Information about the note include note
duration and the note metrical position within a bar, while
information about its melodic context include information
on neighboring notes as well as the Narmour group(s) to
which the note belongs.

3.3. Learning task

In this paper, we are concerned with note-level expres-
sive transformations, in particular transformations of note
duration, onset and energy, as well as melody alterations.
The set of the attributes we consider for each note includes
the note’s nominal duration, the duration of previous and
following notes, the extension of the pitch intervals be-
tween the note and the previous and following notes, the
Narmour groups the note belongs to, and the tempo at
which the note is played.

The performance classes that interest us are lengthen,
shorten and same for duration transformation, advance,
delay, and same for onset deviation, soft, loud and same
for energy, and consolidation, ornamentation and none for
note alteration. A note is considered to belong to class
lengthen, if its performed duration is 20% longer (or more)
that its nominal duration, e.g. its duration according to the
score. Class shorten is defined analogously. A note is
considered to be in class advance if its performed onset is

5% of a bar earlier (or more) than its nominal onset. Class
delay is defined analogously. A note is considered to be
in class loud if it is played louder than its predecessor and
louder then the average level of the piece. Class soft is
defined analogously. We decided to set these boundaries
after experimenting with different ratios. The main idea
was to guarantee that a note classified, for instance, as
lengthen was purposely lengthened by the performer and
not the result of a performance inexactitude.

We also consider transformations consisting of alter-
ations to the melody (as specified in the score) by intro-
ducing or suppressing notes. These transformations play
a fundamental role in Jazz expressive interpretations and,
in contrast to classical music, are not considered as in-
terpretation errors. We have categorized these transfor-
mations as consolidations, fragmentations and ornamen-
tations. A consolidation represents the agglomeration of
multiple score notes into a single performed note, a frag-
mentation represents the performance of a single score
note as multiple notes, and an ornamentation represents
the insertion of one or several short notes to anticipate an-
other performed note. However, in our data set the num-
ber of fragmentation examples is insufficient to be able
to obtain reliable general rules. Hence, we restrict the
classes we consider to consolidation and ornamentation
(and none to denote the fact there is no alteration at all).

3.4. Learning algorithm

Using the training data we are interested in inducing rules
of expressive performance. Typical examples of if-then
rules used in machine learning are classification rules and
association rules. Classification rules are a popular ap-
proach to classification learning in which the antecedent
of a rule is generally a conjunction of tests (e.g. dur =
eight ∧ pitch = 65) and the consequent is the predicted
class (e.g. performed = lengthen) or classes (possi-
bly with a probability associated to each class). Asso-
ciation rules [4] are similar to classification rules except
that they can predict any attribute or combinations of at-



tributes, not just the class. It is often assumed implicitly
that the conditions in (classification and association) rules
involve testing an attribute value against a constant. Such
rules are called propositional because they have the same
expressive power as propositional logic. In many cases,
propositional rules are sufficiently expressive to describe
a concept accurately. However, there are cases, as it is
ours, where more expressive rules would provide a more
intuitive concept description. These are cases where the
knowledge to be learned is best expressed by allowing
variables in attributes (e.g. duration(X, lengthen)) and
thus in rules (e.g. if succ(X,Y) then duration(Y,lengthen)).
One important special case involving learning sets of rules
containing variables is called inductive logic programming
[29, 23]. A type of rules in inductive logic programming,
called Horn clauses, are of particular interest because rules
in this form can be interpreted and directly executed as a
program in the logic programming language Prolog [5].
Thus, an algorithm capable of learning such rule sets may
be viewed as an algorithm for automatically inferring Pro-
log programs from examples. A variety of algorithms that
directly learn Horn clauses have been proposed. In this pa-
per we apply a standard inductive logic programming se-
quential covering algorithm that incrementally constructs
a theory as a set of first-order rules (Horn clauses) by
learning new rules one at a time, removing the positive
examples covered by the latest rule before attempting to
learn the next rule. Before describing the algorithm in
more detail, let us introduce some terminology from for-
mal logic.

Logic expressions are composed of constants (e.g. 5,
peter), variables (e.g. X, Y), predicate symbols (e.g. p,
duration), and function symbols (e.g. sum). The differ-
ence between predicates and functions is that predicates
take on values of true or false, whereas functions may take
on any constant as their value. Following Prolog syntax,
we will use lowercase for predicates, functions and con-
stants, and uppercase for variables. A term is any constant,
any variable, or any function applied to any term (e.g. 5,
X, f(peter)). A literal is any predicate (called positive lit-
eral)or its negation (called negative literal) applied to any
term. A Horn clause is a logic formula of the form:

H ← (L1 ∧ · · · ∧ Ln) (2)

where H, L1, . . . , Ln are positive literals. (2) is equiv-
alent to ifL1,∧ · · · ∧ Ln, thenH . The Horn clause pre-
condition L1,∧ · · · ∧ Ln is called the clause body and the
literal H is called the clause head.

The sequential covering algorithm we applied in the
research reported in this paper is specified as follows:

SeqCovAlgo(Target_predicate, Predicates, Examples)
Pos = Examples for which the Target_predicate is true
Neg = Examples for which the Target_predicate is false
Learned_rules = {}
While Pos do

NewRule = rule that predicts Target_predicate
with no precondition

NewRuleNeg = Neg
While NewRuleNeg do

Candidate_literals = Candidate new literals
for NewRule, based on Predicates

Best_literal = argmax Gain(L,NewRule) where
L is in Candidate_literals

add Best_literal to the preconditions of NewRule
NewRuleNeg = Examples in NewRuleNeg which

satisfy NewRule preconditions
Learned_rules = Learned_rules + NewRule
Pos = Pos - {members of Pos covered by NewRule}

Return Learned_rules

The outer loop learns new rules one at a time, remov-
ing the positive examples covered by the latest rule be-
fore attempting to learn the next rule. The inner loop
performs a general-to-specific search through the space
of possible rules in search of a rule with high accuracy.
At each iteration, the outer loop adds a new rule to its
disjunctive hypothesis, Learned rules. The effect of each
new rule is to generalize the current disjunctive hypothesis
(i.e. increasing the number of instances it classifies as pos-
itive) by adding a new disjunct. At this level, the search
is a specific-to-general search starting with the most spe-
cific hypothesis (i.e. the empty disjunction) and terminat-
ing when the hypothesis is sufficiently general to cover
all training examples. The inner loop performs a finer-
grained search to determine the exact definition of each
new rule. At this level, the search is a general-to-specific
search beginning with the most general rule, i.e. the rule
with empty body, then adding literals one at a time to spe-
cialize the rule until it avoids all negative examples.

A critical decision in the algorithm is how to select the
best literal (Best literal) from the set of candidate literals
(Candidate literals). The evaluation function to estimate
the utility of adding a new literal is based on the numbers
of positive and negative bindings covered before and after
adding the new literal.

Gain(L, R) = p(log2(p1/p1+n1)−log2(p0/p0+n0))

where p0 and n0 are the number of positive and negative
bindings of rule R, respectively, and p1 and n1 are the
number of positive and negative bindings of the rule R ′

resulting by adding literal L to R, respectively. p is the
number of positive bindings of rule R that are still covered
after adding L to R.

Note that the algorithm considers two-class classifica-
tion problems whereas our classification task involves three
classes, e.g. in the case of duration the classes are shorten,
lengthen and same. We have reduced our problem to a
two-class classification problem by taking the examples
of one class as positive examples and the examples of the
other two classes as negative examples.

We have applied the learning algorithm with the fol-
lowing target predicates: duration/3, onset/3,
energy/3, and alteration/3 (where /n at the end



of the predicate name referes to the predicate arity, i.e.
the number of arguments the predicate takes). Each tar-
get predicate corresponds to a particular type of transfor-
mation: duration/3 refers to duration transformation,
onset/3 to onset deviation, energy/3 to energy trans-
formation, and alteration/3 refers to note alteration.

For each target predicate we use as example set the
complete training data specialized for the particular type
of transformation, e.g. for duration/3 we used the
complete data set information on duration transformation
(i.e. the performed duration transformation for each note
in the data set). The arguments are the musical piece, the
note in the piece and performed transformation.

We use (background) predicates to specify both note
musical context and background information. The pred-
icates we consider include context/6, narmour/2,
succ/2 and member/3. Predicate context/8 spec-
ifies the local context of a note. Its arguments are: note
identifier, note’s nominal duration, duration of previous
and following notes, extension of the pitch intervals be-
tween the note and the previous and following notes, and
tempo at which the note is played. Predicate narmour/2
specifies the Narmour groups to which the note belongs.
Its arguments are the note identifier and a list of Narmour
groups. Predicate succ(X,Y) means Y is the successor
of Y, and Predicate member(X,L) means X is a mem-
ber of list L. Note that succ(X,Y) also mean X is the
predecessor of Y. The succ(X,Y) predicate allows the
specification of arbitrary-size note-context by chaining a
number of successive notes:

succ(X1, X2), succ(X2, X3), . . . , succ(Xn−1, Xn)

where Xi (1 ≤ i ≤ n) is the note of interest.

Inductive logic programming has proved to be an ex-
tremely well suited technique for learning expressive per-
formance rules. This is mainly due to three reasons: Firstly,
inductive logic programming allows the induction of first
order logic rules. First order logic rules are substantially
more expressive than the traditional propositional rules
used in most rule learning algorithms (e.g. the widely
used C4.5 algorithm [24]). Secondly, Inductive logic pro-
gramming allows considering an arbitrary-size note con-
text without explicitly defining extra attributes. Finally,
the possibility of introducing background knowledge into
the learning task provides great advantages in learning
musical concepts.

One way to see the expressive power of the rules ob-
tained by applying inductive logic programming is to con-
sider the programming language Prolog [5]. In Prolog,
programs are sets of first order logic rules like the induced
expressive performance rules we describe in the next sec-
tion. In fact, the induced rules form a valid Prolog pro-
gram. Thus, an algorithm capable of learning such rule
sets may be viewed as an algorithm for automatically in-
ferring Prolog programs from examples.

3.5. Induced rules

The induced rules are of different types. Some focus on
features of the note itself and depend on the performance
tempo while others focus on the Narmour analysis and are
independent of the performance tempo. Rules referring to
the local context of a note, i.e. rules classifying a note
solely in terms of the timing, pitch and metrical strength
of the note and its neighbors, as well as compound rules
that refer to both the local context and the Narmour struc-
ture were discovered. In order to exemplify the discovered
rules we present some of them below.

STRETCH RULES

S-1: [Pos cover = 12 Neg cover = 1]
duration(A, C,lengthen) :-

succ(C,D),
context(A,B,D,4,-1,-1,0,-1,1,nominal).

“Lengthen a note at an offbeat position if its successor is
a quarter between two shorter notes, the former one being
at the same pitch, the next one being lower, at a nominal
tempo”

S-2: [Pos cover = 21 Neg cover = 1]
duration(A, C, shorten) :-

succ(C, D), succ(D, E),
narmour(A, E, [nargroup(p, 1)|F]),
narmour(A, C, [nargroup(p, 2)|F]).

“Shorten a note n if it belongs to a P Narmour group in
second position and if note n+2 belongs to a P Narmour
group in first position”

S-3: [Pos cover = 41 Neg cover = 1]
duration(A, C, same) :-

succ(C, D), succ(D, E),
narmour(A, E, [nargroup(vr, 3)|F]),
member(nargroup(p, 1), F).

“Do not stretch a note n if note n+2 belongs to both VR
Narmour group in third position and P Narmour group in
first position ”

ONSET DEVIATION RULES

O-1: [Pos cover = 41 Neg cover = 2]
onset(A, C, same) :-

succ(C, D),
narmour(A, D, [nargroup(vr, 3)|E]),
member(nargroup(d, 1), E).

“Play a note at the right time if its successor belongs to a
VR Narmour group in third position and to a D Narmour
group in first position”

O-2: [Pos cover = 10 Neg cover = 1]
onset(A, C, delay) :-

succ(D, C),
narmour(A, D, [nargroup(id, 3)|E]),
member(nargroup(ip, 2), E).



“Play a note n with delay if its predecessor belongs to a
ID Narmour group in third position and to a IP Narmour
group in second position”

O-3: [Pos cover = 17 Neg cover = 1]
onset(A, C, advance) :-

succ(C,D), succ(D,E),
narmour(A,E,[nargroup(ip,1)|F]),
narmour(A,D,[nargroup(p,3)|F]).

“Play a note n in advance if n+1 belongs to a P Narmour
group in third position and if n+2 belongs to an IP Nar-
mour group in first position”

O-4: [Pos cover = 3 Neg cover = 0]
onset(A, C, advance) :-

context(A,C,6,0,0,1,1,0,slow),
narmour(A, C, [nargroup(p, 3)|D]).

“In slow interpretations, play a triplet in advance if it is
between two higher triplets, if it is neither in a beat posi-
tion nor an offbeat position, and if it belongs to a P Nar-
mour group in third position”

ENERGY RULES

E-1: [Pos cover = 26 Neg cover = 0]
energy(A, C, loud) :-

succ(D, C),
narmour(A, D, [nargroup(d, 2)|E]),
narmour(A, C, [nargroup(id, 1)|E]).

“Play loudly a note if it belongs to an ID Narmour group
in first position and if its predecessor belongs to a D Nar-
mour group in second position”

The following two rules go together. The examples
covered by the second one are exactly the successors of
the ones covered by the first one.

E-2a: [Pos cover = 34 Neg cover = 1]
energy(A, C, soft) :-

succ(C, D),
narmour(A, D, [nargroup(p, 4)|E]),
context(A, C, [nargroup(p, 3)|E]).

E-2b: [Pos cover = 34 Neg cover = 1]
energy(A, C, soft) :-

succ(D, C),
narmour(A, D, [nargroup(p, 3)|E]),
narmour(A, C, [nargroup(p, 4)|E]).

“Play softly two successive notes if they belong to a P
Narmour group respectively in third and fourth position”

E-3: [Pos cover = 19 Neg cover = 0]
energy(A, C, loud) :-

succ(D, C),
context(A,D,8,0,0,-1,1,2,nominal).

“At nominal tempo, play loudly an eight between two eights
if it is on second or forth bar beat and if the 3 notes form
a regular ascending scale”

E-4a: [Pos cover = 30 Neg cover = 2]
energy(A, C, same) :-

narmour(A, C, [nargroup(ip, 1)|D]).
E-4b: [Pos cover = 34 Neg cover = 2]
energy(A, C, same) :-

succ(D, C),
narmour(A, D, [nargroup(ip, 1)|E]).

“Play two notes at a normal level if the first one belongs
to an IP Narmour group in first position”

ALTERATION RULES

A-1: [Pos cover = 232 Neg cover = 0]
alteration(A, C, none) :-

narmour(A, C, [nargroup(p, 2)|D]).
“Do not perform alteration of a note if it belongs to a P
Narmour group in second position”

A-2: [Pos cover = 8 Neg cover = 0]
alteration(A, C, ornamentation) :-

succ(C, D),
narmour(A, D, [nargroup(d, 2)|E]),
member(nargroup(ip, 1), E),
narmour(A, C, [nargroup(vr, 3)|F]).

“Ornamentate a note if it belongs to a VR Narmour group
in third position and if its successor belongs to D Narmour
group in second position and to IP Narmour group in first
position”

A-3: [Pos cover = 14 Neg cover = 1]
alteration(A, C, consolidation) :-

succ(C, D),
narmour(A, D, [nargroup(D, 2)|E]),
narmour(A, C, [nargroup(D, 2)|E]).

“Consolidate a note n with note n+1 if note n belongs
to a D Narmour group in second position and note n+1
belongs to an D Narmour group in second position”

3.6. Rule interpretation

Some of the induced rules seem to capture intuitive perfor-
mance principles while others seem to be of less musical
interest or even counter-intuitive or surprising. An exam-
ple of the former rules is Rule E-1 which states that a note
(marked with a dot in Figure 6) is to be played louder if
it appears in the musical context in Figure 6 (Narmour
groups D and ID are shown in Figure 4):

4
4

D ID

Figure 6. Musical context of note described by Rule E-1



This is, a note is to be played louder if the two pre-
ceding notes have the same pitch and its intervals with the
next two notes are X and Y , respectively, where X is a
small interval (i.e. less or equal than five semitones) and
X > Y . Figure 7 shows two instances of this situation.

Figure 7. Two instances of the context of note described
by Rule E-1

The idea of stressing the last note (e.g. by playing it
louder) of a unison interval sequence seems to be intuitive
specially if the note is in a strong metrical position. In
our training data, the 26 positive examples covered by the
rule satisfy that the stressed note appears in a strong met-
rical position. We plan to extend our training data with
examples in which the note appears in different metrical
positions in order to induce rules which take into account
the note metrical strength.

Figure 8 shows the musical context of the note cap-
tured by the rules S-2, S-3, O-1, O-2, O-3, E-2a, A-1, A-2
and A-3, in which the note was performed shorter, same
duration, same onset, delayed, advanced, softer, not orna-
mented, ornamented, and consolidated, respectively.

4. RELATED WORK

Previous research in learning sets of rules in a musical
context has included a broad spectrum of music domains.
The most related work to the research presented in this pa-
per is the work by Widmer [33, 34]. Widmer has focused
on the task of discovering general rules of expressive clas-
sical piano performance from real performance data via
inductive machine learning. The performance data used
for the study are MIDI recordings of 13 piano sonatas by
W.A. Mozart performed by a skilled pianist. In addition
to these data, the music score was also coded. The re-
sulting substantial data consists of information about the
nominal note onsets, duration, metrical information and
annotations. When trained on the data an inductive rule
learning algorithm discovered a small set of 17 quite sim-
ple classification rules that predict a large number of the
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Figure 8. Musical context of a note (marked with a dot)
described by Rules S-2, S-3, O-1, O-2, O-3, E-2a, A-1,
A-2 and A-3, respectively from top to bottom



note-level choices of the pianist [35]. In the recordings
the tempo of a performed piece is not constant (as it is
in our case). In fact, of special interest to them are the
tempo variations throughout a musical piece. Our work,
although similar in objectives, attack a different problem.
The work by Widmer focus on classical piano data where
(1) the tempo of the performed pieces is not constant and
(2) there are no alterations to the melody (in classical pi-
ano these alterations are considered performance errors).
Thus, while Widmer’s work focus on global tempo trans-
formations, we are interested in note-level tempo trans-
formations (i.e. note onset and duration). Also, we in-
duce rules about melody alterations (e.g. ornamentations)
which are absent in Widmer’s work.

Tobudic et al. [31] describe a relational instance-based
approach to the problem of learning to apply expressive
tempo and dynamics variations to a piece of classical pi-
ano music, at different levels of the phrase hierarchy. The
different phrases of a piece and the relations among them
are represented in first-order logic. The description of
the musical scores through predicates provides the back-
ground knowledge. The training examples are encoded
by another predicate whose arguments encode informa-
tion about the way the phrase was played by the musi-
cian. Their learning algorithm recognizes similar phrases
from the training set and applies their expressive patterns
to a new piece. Our work differs from Tobudic’s work in
the same way as it differs from that of Widmer since both
study classical piano expressive performance.

Lopez de Mantaras et al. [16] report on a performance
system capable of generating expressive solo performances
in jazz within a case-based reasoning system. Their sys-
tem focuses on note onset, duration and energy. However,
their system is incapable of explaining the predictions it
makes and does not take into account melody alterations.

Other inductive logic programming approaches to rule
learning in music and musical analysis include [7], [1],
[20] and [13]. In [7], Dovey analyzes piano performances
of Rachmaniloff pieces using inductive logic programming
and extracts rules underlying them. In [1], Van Baelen
extended Dovey’s work and attempted to discover reg-
ularities that could be used to generate MIDI informa-
tion derived from the musical analysis of the piece. In
[20], Morales reports research on learning counterpoint
rules using inductive logic programming. The goal of the
reported system is to obtain standard counterpoint rules
from examples of counterpoint music pieces and basic
musical knowledge from traditional music. In [13], Igarashi
et al. describe the analysis of respiration during musi-
cal performance by inductive logic programming. Using
a respiration sensor, respiration during cello performance
was measured and rules were extracted from the data to-
gether with musical/performance knowledge such as har-
monic progression and bowing direction.

There are a number of approaches which address ex-
pressive performance without resourcing to machine learn-
ing techniques. One of the first attempts to provide a com-
puter system with musical expressiveness is that of John-

son [14]. Johnson developed a rule-based expert system
to determine expressive tempo and articulation for Bach’s
fugues from the Well-Tempered Clavier. The rules were
obtained from two expert performers. In contrast, in our
approach we apply machine learning techniques in order
to automatically induce rules from examples.

A long-term effort in expressive performance model-
ing is the work of the KTH group [2, 8, 9]. Their Di-
rector Musices system incorporates rules for tempo, dy-
namic and articulation transformations. The rules are ob-
tained from both theoretical musical knowledge, and ex-
perimentally from training using an analysis-by-synthesis
approach. The rules are divided into differentiation rules
which enhance the differences between scale tones, group-
ing rules which specify what tones belong together, and
ensemble rules which synchronize the voices in an ensem-
ble. Here again, the difference is that we apply machine
learning techniques to our data.

Canazza et al. [3] developed a system to analyze the
relationship between the musician’s expressive intentions
and her performance. The analysis reveals two expressive
dimensions, one related to energy (dynamics), and another
one related to kinetics (rubato).

Dannenberg et al. [6] investigated the trumpet artic-
ulation transformations using (manually generated) rules.
They developed a trumpet synthesizer which combines a
physical model with an expressive performance model.
The performance model generates control information for
the physical model using a set of rules manually extracted
from the analysis of a collection of performance record-
ings. Dannenberg’s work is not directly related to the
work reported in this paper in the sense that here we do
not induce any rules about intra-note expressive transfor-
mations. However, we have studied this in [27].

5. CONCLUSION

This paper describes an inductive logic programming ap-
proach for learning expressive performance rules from record-
ings of Jazz standards by a skilled saxophone player. Our
objective has been to find local and structure-level rules
which predict, for a significant number of cases, how a
particular note in a particular context should be played
or how a melody should be altered. In order to induce
these rules, we have extracted a set of acoustic features
from the recordings resulting in a symbolic representa-
tion of the performed pieces and then applied an induc-
tive logic programming algorithm to the symbolic data
and information about the context in which the data ap-
peared. Inductive logic programming has proved to be
an extremely well suited technique for learning expressive
performance rules. This is mainly due to the expressive-
ness of the induced first order logic rules, and the fact that
inductive logic programming allows background knowl-
edge to play an important role in the learning process. In
addition, inductive logic programming allows considering
an arbitrary-size note context without explicitly defining
extra attributes for each context extension.



Future work: We plan to increase the amount of train-
ing data as well as experiment with different information
encoded in it. Increasing the training data, extending the
information in it and combining it with background mu-
sical knowledge will certainly generate a more complete
set of rules. We plan to induce rules about intra-note ex-
pressive transformations which certainly play a very im-
portant role in expressive Jazz saxophone. In the past, we
have also used our research not only for obtaining inter-
pretable rules about expressive transformations in musi-
cal performances, but also to generate expressive perfor-
mances. In this direction, we are exploring how to best
implement the induced rules in order to obtain expres-
sive performances of a piece and at the same time be able
to explain the transformations undertaken by the system
[26]. We also intend to incorporate higher-level structure
information (e.g. phrase structure information) to obtain
a more complete integrated model of expressive perfor-
mance. Another short-term research objective is to com-
pare expressive performance rules induced from record-
ings at substantially different tempos. This would give
us an indication of how the musician’s note-level choices
vary according to the tempo.
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