Dynamic sensitivity and nonlinear interactions influence the system-level evolutionary patterns of phototransduction proteins

Brandon M. Invergo1,2, Ludovica Montanucci1, Jaume Bertranpetit1,*

September 9, 2015

1. IBE – Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), CEXS-UPF-PRBB, 08003 Barcelona, Catalonia, Spain
2. Present address: European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK

* Corresponding Author: Jaume Bertranpetit, jaume.bertranpetit@upf.edu

Running title: Natural selection on signaling dynamics

Keywords: natural selection, molecular evolution, models/simulations, epistasis, evolutionary systems biology

Subject Categories: Quantitative Biology & Dynamical Systems, Evolution
Abstract

Determining the influence of complex, molecular-system dynamics on the evolution of proteins is hindered by the significant challenge of quantifying the control exerted by the proteins on system output. We have employed a combination of systems biology and molecular evolution analyses in a first attempt to unravel this relationship. We employed a comprehensive mathematical model of mammalian phototransduction to predict the degree of influence that each protein in the system exerts on the high-level dynamic behavior. We found that the genes encoding the most dynamically sensitive proteins exhibit relatively relaxed evolutionary constraint. We also investigated the evolutionary and epistatic influences of the many non-linear interactions between proteins in the system and found several pairs to have coevolved, including those whose interactions are purely dynamical with respect to system output. This evidence points to a key role played by nonlinear system dynamics in influencing patterns of molecular evolution.

Introduction

The flood of genomic and molecular data that has become available in recent years has permitted the investigation of high-level trends in molecular evolution, particularly in the context of whole biochemical systems, with an aim of unraveling the diverse selective pressures acting on proteins. To date, studies on the patterns of molecular evolution within systems have largely focused on representing the systems as networks, in which proteins are represented as nodes and their interactions as the edges that connect them. Graph-topological properties of the proteins are then calculated and correlations between these properties and the evolutionary histories of the genes are measured (Rausher et al., 1999; Lu and Rausher, 2003; Flowers et al., 2007; Livingstone and Anderson, 2009; Yang et al., 2009; Ramsay et al., 2009; Alvarez-Ponce et al., 2009; Montanucci et al., 2011; Alvarez-Ponce et al., 2011; Luisi et al., 2012; Dall’Olio et al., 2012; Invergo et al., 2013). While correlations between network topology and molecular evolutionary histories (e.g. between node centrality and evolutionary rates) were found by all, the observed relationships varied from system to system. Thus, there is still no general principle relating the structure of biomolecular networks to molecular evolutionary patterns.

A shortcoming of the network approach is that it treats molecular systems as static entities, defined solely by the existence or absence of interactions between them. That is, it does not consider important dynamic
relationships between proteins. In reality, it is likely to be not only the existence of an interaction that is evolutionarily relevant but also its kinetics, because they will influence the function of the interaction and, in turn, its fitness effect. It is clear that a mutation that would cause an existing interaction to occur at a significantly different rate or affinity would have potentially significant consequences for survival.

Recent studies on molecular evolution in metabolic pathways have begun to consider the influence of system dynamics on natural selection via estimates of the metabolic flux or flux control distributions of the pathways. These are a means of quantifying the flow of metabolites through the pathway and the degree of control that each enzyme has on this flow. In an early study, Vitkup et al. (2006) found that yeast proteins carrying high metabolic flux evolved under exponentially stronger selective constraints. More recently, Colombo et al. (2013) compared the metabolic fluxes of the erythrocyte core metabolic reaction network with molecular evolutionary rates and found, like Vitkup et al. (2006), that enzymes that carry high fluxes have been more constrained in their evolution. Meanwhile, Olson-Manning et al. (2013) found that the first upstream enzyme in the alipathic glucosinolate pathway of Arabidopsis thaliana has higher flux control and that this protein is the only one to show evidence of selection. Though these studies have highlighted some of the processes underlying molecular evolution within metabolic pathways, their methodologies cannot be easily applied to other molecular systems, such as signaling networks. While these methodologies certainly present a more dynamic view of the system than network-based methods would, the steady-state assumption in calculating a metabolic flux distribution or flux control coefficients precludes any assessment of the adaptive influence of non-equilibrium dynamic behavior. Thus, it is difficult to draw a connection between flux coefficients and the phenotype, which creates a challenge in interpreting flux-based, system-level evolutionary analyses of metabolic pathways.

In order to gain insight into the selective significance of the non-equilibrium system dynamics in molecular evolution, a non-trivial but well-characterized pathway is necessary. Perhaps one of the most well-understood signaling pathways is visual phototransduction, an archetypal G-protein signaling cascade. Phototransduction is the process by which a visual stimulus is converted to a neuronal response. In short, a light stimulus is absorbed by a visual pigment associated with the receptor, rhodopsin, triggering a conformational change. A heterotrimeric G protein, transducin, binds the activated rhodopsin, which catalyzes the exchange of GDP for GTP on the G_{α} subunit of transducin, leading to the dissociation of the G protein. G_{α} is then free to activate the signal effector, a phosphodiesterase, resulting in the hydrolysis of cyclic GMP (cGMP). Falling cGMP concentrations lead to the closure of cGMP-gated ion channels, causing a drop in the cytoplasmic Ca$^{2+}$ concentration and a subsequent hyper-polarization of the cell, which initiates the neuronal signal. Several parallel processes then act to recover from the signal, via
deactivating the receptor and the effector and re-opening the ion channels, in order to prepare the cell to
respond to further stimuli. Falling Ca2+ concentrations activate multiple feedback mechanisms, which
tightly regulate the deactivation of the receptor, the re-synthesis of cGMP and the affinity of the ion
channels for cGMP. For a detailed overview of the molecular mechanisms of phototransduction, see Pugh

Recently, a comprehensive model of phototransduction has been developed to simulate the murine
phototransduction response (Invergo et al., 2014). Applying a parameter sensitivity analysis to this model,
we could make an estimate of the impact of functional variations in the system’s proteins on the dynamics
of the photoresponse. The system-level phenotype was quantified through four electrophysiological
characteristics of the photoresponse, which are in common usage for capturing important functional
characteristics of photoreception. They represent high-level, salient features of the system dynamics that
conceivably have been evolutionarily relevant during mammalian divergence. We then investigated whether
there exists any relationship between the evolutionary histories of the proteins and the sensitivity of the
system to their functional variation in order to gain insight into how genetic variants influence function and
thus are filtered by natural selection. Finally, we perturbed pairs of parameters together in order to predict
whether any potential non-linear interactions exist between genes of the phototransduction system and we
compared this with evidence for coevolution between the proteins of the system.

Results

Parameter Sensitivity

We first investigated the local sensitivities of the model parameters in order to determine the degree of
influence each parameter has over the response. Parameter sensitivity was estimated for four
electrophysiological properties of the photoresponse which characterize high-level features of the system
dynamics under different light stimulus regimes (see Materials & Methods). Under dim-light conditions, we
measured the peak amplitude and the time constant of signal recovery (\(\tau_{\text{rec}}\)); under bright-light conditions,
we measured the time spent in saturation and the rate at which this time increases with greater stimulus
intensities (\(\tau_D\)) (Figure 1).

Parameter sensitivity values spanned several orders of magnitude and, even after log-transformation, their
distribution remained skewed towards higher sensitivity values (Supplementary Figure S1). Because we
measure parameter sensitivity empirically, based on an arbitrarily chosen perturbation size of 1\%., we
checked for extreme changes in the empirical measurement functions over a large range of perturbation sizes. Such extremes might indicate less-reliable initial parameter values or that a smaller perturbation size would be needed. For each parameter, we generated 39 models in which the parameter value was set between 5% and 195% of its default value (thus, the value used for the sensitivity measurements was 101%). We then simulated flash responses to dim and bright stimuli with each model and measured the peak amplitudes, τ_{rec} values, saturation times and τ_D values for each one (for two examples, see Supplementary Figures S2 and S3). In all cases, the magnitude of change in the electrophysiological measurements was relatively small for minimal perturbation sizes. For some parameters, such as k_{RGS1} (Figure S2), significant effects could be seen for large perturbations (< 50%).

Gene Dynamic Sensitivity

We performed Spearman’s rank correlation test for dN/dS and gene sensitivities for the four electrophysiological measurements. Of these, two tests were significant: τ_{rec} ($P = 0.036, \rho = 0.585$) and saturation time ($P = 0.028, \rho = 0.607$) (Figure 2). Peak amplitude ($P = 0.365, \rho = 0.274$) and τ_D ($P = 0.107, \rho = 0.468$) showed no significant relationship with dN/dS. The correlation between dN/dS and the mean sensitivity for each gene was also found to be significant ($P = 0.026, \rho = 0.612$) (Figure 3).

Because a strongly negative correlation between expression levels and evolutionary rates has previously been identified in yeast (Drummond et al., 2005; Wall et al., 2005), expression may be a confounding factor in our analysis. We checked the baseline expression patterns of the genes in a panel of RNA-seq data from 53 different human tissues (Lonsdale et al., 2013), as provided by the Expression Atlas service (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2919, Petryszak et al. (2014)). The retina was not included in this dataset. Of the phototransduction genes that we studied, only $GNB1$ shows high expression across many tissues (mean of 47.21 FPKM (Fragments Per Kilobase of transcript per Million mapped reads), standard error 2.51), with $GNB5$ (mean 2.93 FPKM, standard error 0.343) and $RGS9$ (mean 2.57 FPKM, standard error 0.687) also showing moderate mean expression levels. The other genes, if present, only showed low expression ($PDE6B$: mean 1.84; others: mean of less than 1 FPKM). We found no significant correlation between dN/dS and mean expression levels, nor were significant correlations found between our sensitivity measurements and mean expression levels (peak amplitude: $P = 0.216, \rho = -0.385$; τ_{rec}: $P = 0.254, \rho = -0.357$; saturation time: $P = 0.905, \rho = -0.039$; τ_D: $P = 0.974, \rho = 0.011$; average sensitivity: $P = 0.459, \rho = -0.237$). While transcript levels for these genes are not available for the retina, protein quantities for the genes were found in the literature to be in the range of 1×10^5 to 1×10^8 copies.
per rod photoreceptor outer segment during construction of the phototransduction model (Invergo et al., 2014). These protein quantities also do not correlate with dN/dS ($P = 0.356, \rho = -0.279$). This lack of a correlation between expression and dN/dS agrees with recent data that shows that in mammals this relationship is weaker than expected (Kryuchkova-Mostacci and Robinson-Rechavi, 2015).

While mean expression levels showed no correlation with dN/dS, broad expression patterns should cause proteins to evolve under a larger range of selective pressures. Thus, constraint on $GNB1$, for example, is not exclusively the result of selection on the phototransduction system. When we removed the three proteins showing the highest mean expression levels outside the retina ($GNB1, GNB5, RGS9$), the previously found correlations between dN/dS and the gene sensitivity measurements became more significant: τ_{rec} ($P = 0.030, \rho = 0.681$), saturation time ($P = 0.002, \rho = 0.839$) and mean sensitivity ($P = 0.023, \rho = 0.705$). Additionally, the correlation between dN/dS and τ_D became significant with the removal of these genes ($P = 0.020, \rho = 0.717$). The relationship with peak amplitude remained insignificant ($P = 0.192, \rho = 0.450$).

Non-additive Phenotypic Effects

We next used the model to determine whether any non-additive interactions exist in the dynamics. Such nonlinearity would indicate functional interdependence between the proteins’ activities, which would have strong implications for their evolution. We tested for non-additive interactions between parameters by checking for equality between the effect of simultaneously perturbing two parameters and the sum of the effects of perturbing each of these two parameters individually. Deviance from equality of these two measurements would indicate a non-linear interaction between the parameters. For each of the four empirical measurements of phototransduction, every pair of parameters showed a difference in effect size between the “double mutant” and the sum of the “single mutants”. The magnitudes of these differences from linearity were small, concomitant with the small, 1% parameter perturbations (ranges in terms of absolute base-2 logarithms of the fold-change – peak amplitude: 2.31×10^{-12} to 7.76×10^{-5}; τ_{rec}: 5.06×10^{-14} to 1.79×10^{-4}; saturation time: 6.16×10^{-11} to 3.55×10^{-5}; τ_D: 2.23×10^{-10} to 5.27×10^{-5}). While the smallest effects are arguably negligible, the larger non-linear effects point to potentially significant interactions across the network that could have selective relevance, particularly with mutations of larger effect. The parameter pairs showing the highest magnitude of differences from linearity for each empirical measurement are listed in Table 1.
Coevolution

Non-linear dynamic interactions between proteins can result in epistasis and subsequent coevolution between genes. Thus, we measured the degree of coevolution between the phototransduction genes by calculating the correlation of their phylogenetic trees using the Mirrortree method (Pazos and Valencia (2001); see Supplementary Figures S4 – S16 for the phylogenetic trees and Supplementary Table S4 for the Mirrortree correlation coefficients). The gene pair \textit{GNAT1–RHO} (\(\alpha\)-transducin – rhodopsin) showed the highest phylogenetic correlation coefficient, consistent with previous assertions of coevolution between G proteins and their receptors (Fryxell, 1996). Using this pair as a reference, we tested the other gene pairs for significant evidence of coevolution using Fisher’s \(\texttt{r-to-z}\) transformation. Pairs of genes with correlation coefficients that do not differ significantly from that of the reference (with a confidence of 0.05) were then taken to show evidence of coevolution themselves. Thirteen additional gene pairs were found in this way to have coevolved (Figure 4).

Several of the coevolved protein pairs correspond neatly to the strongest non-linear parameter interactions (Table 1). Some cases involve proteins that physically interact and correspond to parameter pairs whose interaction is readily understood. For example, the rate of binding of activated, \(\alpha\)-transducin-bound PDE6 with its regulatory protein RGS9-1 \((kRGS)\) and rates of cGMP hydrolysis by PDE6 \((\beta_{dark}, \beta_{sub})\) have strong non-linear interaction effects on peak amplitude, \(\tau_{rec}\) and saturation time. Of the proteins involved in these processes, a PDE6 catalytic subunit \((PDE6A)\) shows significant evidence of coevolution with RGS9-1 \((RGS9)\) and with RGS9-1’s anchor protein \((RGS9BP)\). Similarly, the parameters for the interaction between rhodopsin kinase and its regulatory protein recoverin \((kRec3, kRec4)\) show strong non-linear interactions with the parameters governing a conformational change of recoverin that modulates in its regulation of the kinase, affecting peak amplitude and saturation time. This is potentially reflected in the significant evidence of coevolution between the genes encoding the kinase \((GRK1)\) and recoverin \((RCVRN)\). However, in these cases, because the proteins physically interact, one would more typically ascribe the coevolution simply to maintaining the ability to bind.

More interesting are the cases where proteins that do not physically interact were found to show evidence of coevolution. Two regulatory proteins, RGS9-1 and arrestin \((SAG)\) appear to have coevolved despite regulating two different proteins (the activated PDE6 complex and activated rhodopsin, respectively). In the model, we find parameter pairs associated with these two proteins among the parameter pairs showing the strongest divergences from linearity (the interactions between \(kA3\) and \(kA4\) with \(kRGS1\) for \(\tau_{rec}\)). Specifically, the former parameter pair regulate arrestin’s propensity to form homo-dimers and
homo-tetramers, while the latter regulates the rate of binding of RGS9-1 and the activated PDE6 complex. We also see coevolution between the RGS9-1 anchor protein (RGS9BP) and another regulatory protein, recoverin (RCVRN) reflected in a non-linear interaction for kRec1 and kRec2 with kRGS1. Finally, we found evidence of coevolution between γ-transducin (GNGT1) and a catalytic PDE6 subunit (PDE6A) as well as RGS9BP, which is interesting in that only the α-subunit of transducin physically interacts with PDE6. However, we find strong non-linear interactions between the parameter governing the initial binding of transducin with rhodopsin (kG1o) and both the cGMP hydrolysis rates (βsub and βdark) and RGS9-1 activity (kRGS1). In the case of the rhodopsin-transducin interaction, βγ-transducin is known to be directly involved in the initial docking (Herrmann et al., 2004), so it is feasible that evolution of GNGT1 could affect this process.

There are some cases where coevolution is expected but not seen. Most notably, parameters related to arrestin’s activity show a tendency towards non-linear interaction with parameters related to rhodopsin kinases’s activity or that of its regulating protein recoverin. This is not surprising, because the binding affinity of arrestin for rhodopsin, and therefore the rate of arrestin’s regulatory activity, is modulated by phosphorylation of rhodopsin by rhodopsin kinase. Nevertheless, no coevolution was found between rhodopsin, recoverin/rhodopsin kinase, or arrestin.

Importantly, not all protein pairs within the system showed evidence of having coevolved. This indicates that it is not sufficient to attribute the coevolution to simply being active in the same system. Likewise, most of the physically interacting pairs did not show evidence of having coevolved (Figure 4), implying that physical interaction is also not a sufficient condition for coevolution. Most interestingly, the clustering of coevolution patterns confirms the separation of the genes GNB5 and GNB1 as having evolved under largely unrelated selective pressures, given that their phylogenetic patterns show little to no correlation with those of most of the other genes of the system (Figure 4). On the other hand, the strong coevolutionary signal found for RGS9 and other phototransduction proteins, despite its broad expression in other tissues, suggests that its evolutionary history may have been strongly shaped by its role in this system.

Discussion

In order to truly understand how natural selection on the phenotype gives rise to evolutionary patterns at the genetic level, it is critical to understand how proteins contribute to the phenotype. While each protein taken independently has functionality that contributes to the survival of the organism, it is clear that the nature of that protein’s interactions with others should also influence fitness. Indeed, the complex
properties that arise out of molecular systems are “closer” to the phenotype, the organism’s interface with natural selection, than the properties of the individual proteins. Nevertheless, probing the influence of genetic variation on high-level system properties in vitro or in vivo, by testing the effects of functional changes in many interacting proteins, is a significant undertaking. To date, advances have been made in this direction only in the use of unicellular organisms (Jelier et al., 2011). For more complex organisms, it would be necessary to use in silico techniques to predict how functional changes will affect the phenotype. However, until a robust method of predicting a complex phenotype from a genotype is available, we must presently seek correlations between system-level traits and evolutionary patterns at the sequence level.

Given the potential influence of system dynamics on survival, the question arises of how selective constraint varies between proteins with different degrees of influence on a system’s output. One would expect that these sensitive parts of the system would be strongly constrained in their evolution, due to their potential to greatly disrupt the normal dynamics. In order to investigate this, we employed a comprehensive model of mammalian visual phototransduction that mathematically captures the main physiological features of the system. We found that, in fact, the more sensitive proteins (those associated with the parameters that most strongly define the photoresponse) have shown less evolutionary constraint during mammalian divergence. Furthermore, we found that concurrent mutations in several pairs of proteins of this system should often result in multiplicative phenotypic effects, which would result in tightly intertwined functionality between the proteins. This may have manifested in the patterns protein coevolution during species divergence that we identified.

Gene dynamic sensitivity is a determinant of evolutionary constraint

While the dN/dS ratios of the genes in this system are relatively low, indicating that strong purifying selection has been the dominant evolutionary force acting on the genes, it is clear that the more dynamically sensitive proteins have accumulated amino acid substitutions at a faster rate during mammalian divergence. This is an interesting observation as it shows an unexpected behavior in the strength of conservation in the genome: the genes that have a strong effect on the phenotype are not necessarily those under the strongest purifying selection and thus are not the most conserved. This could be linked to evolvability of the system during adaptation to new visual environments. While we cannot make predictions regarding the specific impact, if any, of those substitutions in such sensitive genes, we show that they would have more potential to alter the system dynamics to a greater degree than functional substitutions in other genes.
Previously, we have shown that proteins that are topologically central in a network representation of the phototransduction pathway have been under stronger purifying selection (Invergo et al., 2013). Interestingly, we found no correlation between our gene sensitivity measurements and the topological network measurements described in that publication. Nevertheless, the contrast between the two results is striking. This difference is likely due to the distinct attributes of the system captured by the two approaches, the static network and the dynamic model. The network was constructed according to the known physical interactions between the proteins. The central proteins may thus be seen as being important in the overall communication of the signal throughout the system. Because they tend to have many interacting partners, their loss would lead to a catastrophic failure to transduce the signal. The way in which we utilized the dynamic model does not capture this behavior; slightly modifying one of the parameters associated with such a protein may not, in fact, disrupt the system dynamics to any significant degree. However, if one were to disable that protein in the model altogether, the dynamics would be greatly affected. For example, the proteins comprised by the phosphodiesterase (PDE) heterotrimer have relatively high centralities in the network, while the model parameters associated with them were found to be extremely insensitive in the present study. Nevertheless, removing PDE from the model would result in cGMP not being hydrolysed and a subsequent lack of any photoresponse. Thus, a network representation is appropriate for capturing the essentiality of the proteins of this system, while a dynamic model can give information on their kinetic fine-tuning. We argue that the use of dynamic models, in fact, may be the key to understanding the evolvability of biochemical systems.

Non-additive interactions and coevolution

When considering the evolution of proteins that interact in a system, it is important to know whether any epistatic interactions exist between them. Epistasis will cause the functional effect of a mutation to be dependent upon the genetic background in which it occurs. Typically, this should manifest as non-additive mutational effects, which are greater or smaller than what is expected (Costanzo et al., 2010), and it may implicate coevolution between some of the genes (Schlosser and Wagner, 2008). More importantly, the identification and characterization of epistasis is an important challenge in understanding the nature of the genotype-to-phenotype map (Lehner, 2013). Here we have proposed a novel approach that employs an accurate, detailed model to predict non-additive functional effects. It proved to be a promising means to quickly assay for the potential for epistatic interactions in a given biological system. We found all parameter interactions in the system to be non-linear to some degree. This indicates a high probability of finding true epistatic interactions between the genes of the phototransduction pathway and the potential
for detecting coevolution between them.

We then tested our predictions of epistasis by looking for evidence of coevolution between pairs of genes. We could identify several such pairs that corroborate the evidence for potential epistasis. For example, the genes \textit{RGS9} and \textit{SAG}, which encode the proteins RGS9-1 and arrestin, respectively, are responsible for deactivating two distinct parts of the pathway: RGS9-1 accelerates the dissociation of \(\alpha\)-Transducin from PDE6 and halts further hydrolysis of cGMP; arrestin, on the other hand, caps rhodopsin and prevents further activation of the G protein, transducin. Despite interacting with different proteins, they help to shape the recovery of the photoresponse together in a nonlinear manner (Table 1). We hypothesize that the indirect dynamic relationship of these proteins is the cause of the significant evidence of coevolution found between their genes (Figure 4). We believe that the use of mathematical model of biochemical systems can in this way provide a quantitative basis on which to quickly and easily form hypotheses about coevolution between proteins that do not physically interact.

It is also interesting to observe that a standard hierarchical clustering of the pairwise correlation coefficients shown in Figure 4 can effectively discriminate between genes whose encoded proteins are primarily responsible for the activation of the phototransduction cascade (\textit{RHO, GNGT1, GNAT1, PDE6B,} and \textit{PDE6G}) from those which encode proteins that work to deactivate the system (\textit{RGS9, SAG, RCVRN, GRK1,} and \textit{RGS9BP}). Only the gene \textit{PDE6A} did not cluster with its expected group (activation). Overall this reveals broad coevolution within the two modules, as would be expected. Notably, however, we could also identify statistically significant coevolutionary relationships that bridge the activation and deactivation modules. This points to a clear adaptive need to harmonize the dynamics of activation and deactivation of the system.

\textbf{Future Directions}

Similar analyses of other molecular systems are necessary to further unravel the influence of signaling dynamics on natural selection. The present work depended on the availability of a high-quality mathematical model of the phototransduction system. Critically, the model gives focus to the proteins, rather than second messengers and it consists primarily of low-level descriptions of the reactions rather than mathematically convenient, albeit more abstract, empirical formulas. Its existence was made possible by the fact that phototransduction is perhaps one of the best-studied G-protein signaling pathways, with a rich history of biochemical research that spans decades. Future studies will require models of a similar scale to help to elucidate any general trends in the influence of system dynamics on molecular evolution.
While this phototransduction model was constructed from the most up-to-date information available on the phototransduction system, future research may serve to fine-tune the parameter estimates or to reveal currently unknown mechanisms. However, the core network of this system is widely agreed upon and, to this end, the model has already proven to accurately simulate a wide range of experimental conditions, indicating that it is largely correct (Invergo et al., 2014). Therefore, we believe that subsequent iterations of the model will not greatly disrupt our results. Rather, they will allow the addition of other proteins to the analysis (e.g. phosducin or the guanylate cyclases) and a more accurate assignment of model parameters to specific proteins, especially in the cases of protein complexes.

While we believe the model to be largely accurate, it nevertheless remains a model. Its primary utility in this case was to rapidly assay the effects of many functional perturbations across the whole system. Such tests of functional importance of molecular dynamics and nonlinear interactions on the scale of entire systems remains challenging in a laboratory environment and thus such simulation-based approaches provide a convenient means to make meaningful predictions on which to base targeted experiments. In particular, it is hoped that the insights gained in the present study will help to guide future investigations into the evolution of phototransduction proteins. For example, biochemical assaying of the dynamically sensitive proteins from diverse mammalian species may reveal functional differences.

Conclusions

This investigation has offered an intriguing insight into molecular evolution in the context of biochemical systems. It is intuitive that the complex dynamics of protein interactions will influence their evolution. However, until now, it has been difficult to show this. With modern advances in computational power along with an ever-increasing depth of knowledge of biochemical pathways, we can begin to assess the role of system dynamics in natural selection by *in silico* means. In this study, we have found that the the dynamic sensitivity of proteins shows a relationship with rates of molecular evolution. Surprisingly, we found that the relationship was the inverse of our expectations: genes encoding proteins with stronger control over high-level system properties have higher rates of evolution. Furthermore, we found evidence for epistatic interactions arising from these dynamics that would indicate tight functional coupling between proteins of the system.

An implication of this finding is that adaptive tuning of signaling pathways can be rapidly effected by few mutations in dynamically sensitive proteins. Nevertheless, it is likely that most of such mutations would be detrimental. Therefore, compensatory mutations would be necessary to undo this effect. The presence of
epistatic interactions in the system would allow for the complementary or other compensatory mutations to occur in other proteins in the system, even those that do not physically interact. This would give rise to sequences over time of such mutations occurring between proteins, giving rise to coevolution during species divergence. In the present study of the phototransduction system, we found that there were, indeed, many pairs of coevolving proteins, confirming the importance of system-level epistasis (while finding that, importantly, there were also many pairs that have not coevolved; that is, one cannot claim that simply all of the proteins in the system have coevolved together as a unit).

In the case of highly dynamic and nonlinear biochemical systems such as signaling pathways, it is insufficient to consider the evolution of proteins as static, isolated units. We have shown that the concerted activity of proteins in shaping the phenotype may have a notable influence on natural selection. This broadens our understanding of the multitudinous determinants of molecular evolutionary patterns, while opening new methods for investigating evolution on a systems level.

Materials & Methods

Model Implementation & Simulations

A previously developed model of mammalian phototransduction was used for all simulations (Invergo et al., 2014) (BioModels (under review): MODEL1501210000). The model comprises a system of ordinary differential equations that deterministically track the time-evolution of 72 molecular species in 96 reactions and using 62 parameters. It was implemented using SBTOOLBOX2 for MATLAB (http://www.sbttoolbox2.org) (Schmidt and Jirstrand, 2006). Simulations were run from automatically generated and compiled C-code models, based on the CVODE integrator from SUNDIALS (Hindmarsh et al., 2005). The primary output of the model is the current across the membrane of the photoreceptor outer segment; specifically, we measure the suppression of this current from its dark-adapted levels after stimulation by light.

Simulated Electrophysiological Measurements

In order to measure changes in the photoresponse upon perturbation of the system, we required means of quantifiably characterizing the model output. Importantly, we wished to characterize the photoresponse under both dim and bright stimulus conditions. After a very bright stimulus, all cGMP-gated ion channels
in the photoreceptor close and the photoresponse saturates such that the current cannot be suppressed further. The saturating visual paradigm exhibits different behavior from the non-saturating one, thus it is important to accurately capture the salient characteristics of both. We ultimately chose four high-level properties, two each for measuring non-saturating and saturating responses, respectively. For the former case, we measured signal amplification via the peak amplitude (maximum change in current from the dark-adapted level) after a dim stimulus; and we quantified the recovery from this peak via the time constant (τ_{rec}) of a single exponential fit to the second half of the recovery phase of the response to a dim stimulus (see Figure 1 for an illustration). For the saturating paradigm, we measured the saturation time (T_{sat}), or the total time the current spends at more than 90% of its peak amplitude after a bright stimulus; and we quantified recovery from saturation via τ_{D}, measured as the change in T_{sat} with logarithmically increasing stimulus intensities (Pepperberg et al., 1992) (Figure 1). All four metrics are commonly used in experimental research to assess phototransduction performance.

Dim-light responses were generated from a simulated stimulus causing 6.536 photoisomerizations per second (R^*/s). T_{sat} was determined for simulated responses to a flash generating 1808 R^*/s. τ_{D} was computed as the slope of a least-squares fit of the T_{sat} values measured for responses to stimuli resulting in 403.43 to 1808 R^*/s, increasing by half-log units. All flash stimuli had a duration of 0.02 s.

Parameter Sensitivity Analysis

Local parameter sensitivity analysis was performed for each parameter at its default, “wild-type” value by measuring the affect of a small “mutation” of the parameter value on each of the four electrophysiological properties. Lists of parameters associated with each of the proteins of the system were then compiled. For each gene encoding these proteins, four sensitivity values were calculated as the geometric means of the sensitivities of the associated parameters, transformed to account for values ranging several orders of magnitude, for each of the electrophysiological properties. Additionally, an average sensitivity across the four properties was computed for each gene. For a full mathematical description, see the Supplementary Materials.

Evolutionary Constraint

The evolutionary constraints acting on each gene were estimated according to the ratio of the rates of non-synonymous (dN) to synonymous (dS) substitution. dN/dS values for the genes in this study were retrieved from a previous publication (Invergo et al., 2013). These values were computed for a phylogenetic
tree of nine mammalian species: human, chimpanzee, gorilla, orangutan, macaque, marmoset, mouse, rat,
and dog. Sequences had been retrieved from the Ensembl database (release 60) or from DNA resequencing.
Rates were computed using CODEML model M0 of the PAML package version 4.4c (Yang, 2007). This
model computes a single dN/dS ratio for the entire tree, treating all sites in the alignment as having
evolved at the same rate. While the model is simple, it is relatively conservative and can be used to
capture general trends in the evolutionary rates during a phylogenetic divergence. This ratio, in the
common case of values less than one, can be taken as an overall measure of the strength of purifying
selection (Montanucci et al., 2011; Andrés et al., 2007).

Non-additive Phenotypic Effects

Non-additive dynamic effects were measured by comparing the output of simulations in which a pair of
parameters was perturbed to the expected output given independent effects of the perturbations.
Specifically, for each pair of parameters, we generated a model with both parameter values increased by
1% as well as models with each of the two parameter values individually increased by 1%. The
measurements of the electrophysiological properties of the photoresponses generated from these “mutant”
models were then computed. The effect sizes of both of the “single-mutant” models were computed as the
difference between the measurement for that “mutant” model and the corresponding measurement for the
“wild-type” model. The two “single-mutant” effect sizes were added to the “wild-type” measurement to
form the expected measurement value given strictly linear interaction. The magnitude of deviation from
linearity for each parameter pair and empirical phototransduction measurement was then computed as the
base-2 logarithm of the ratio of the “double-mutant” measurement to the expected measurement given a
linear interaction.

Coevolution

Coevolution between the genes was estimated by comparing the similarity of their phylogenetic trees using
the Mirrortree algorithm (Pazos and Valencia, 2001). The amino acid sequences of all one-to-one orthologs
within the mammalian clade of the human genes were fetched from Ensembl (version 77). Sequences
containing chains of five ambiguous residues or more were discarded. Multiple sequence alignments were
created using MAFFT (version 7.205; Katoh and Standley (2013)) and then filtered and used to produce
phylogenetic trees using TreeBeST with the default species tree (version 1.9.2;
Mirrortree correlation values were then computed for each pair of genes. These correlations were then converted to z-scores using Fisher’s r-to-z transformation, following Edgar et al. (2012). For a full mathematical description, see the Supplementary Materials. Because a general trend of coevolution between G proteins and their receptors has been described previously, we chose the Mirrortree correlation between the reference pair RHO–GNAT1 for the basis of comparison in the r-to-z transformation (Fryxell, 1996). Protein pairs with MirrorTree correlation coefficients that are significantly less than this reference value, as determined by a significant z-score with a confidence of 0.05, should then be considered to have not coevolved.

Statistical Analyses

Correlations were tested by computing Spearman’s ρ. Correction for multiple testing was performed by controlling for the false discovery rate using the method of Benjamini and Hochberg (1995). All statistical calculations were performed using R version 3.2.1.

Acknowledgments

We would like to thank David Ochoa for his implementation of the MirrorTree algorithm. We would also like to thank Ben Lehner and Luis Serrano for helpful discussion. This work was supported by the Ministerio de Economía y Competitividad, Spain (grant BFU2010-19443, subprogram BMC); the Direcció General de Recerca, Generalitat de Catalunya (Grup de Recerca Consolidat 2009SGR 1101); AGAUR, Generalitat de Catalunya (2011 FI BI 00275 to B.M.I); and the Spanish Ministry of Science and Innovation (MICINN) (Juan de la Cierva Program to L.M.).

Author Contributions

B.M.I., L.M. and J.B. conceived of the study and contributed to the manuscript. B.M.I. implemented and performed the simulations and analyses. All authors gave approval for the final publication.

Competing Interests

The authors declare that they have no competing interests.
References

Figure 1: An illustration of the four electrophysiological properties of the photoresponse as used in the present study. A) Peak amplitude after a dim light stimulus. B) τ_{rec}, the time constant of a single exponential fit to the second half of signal recovery after a dim light stimulus. C) Time spent in saturation after a bright stimulus. D) τ_D, the dominant time constant of recovery, measured as the rate of increase of saturation time with logarithmically increasing stimulus intensities.
Figure 2: dN/dS plotted as a function of gene dynamic sensitivities for the four electrophysiological measurements. There was a clear statistical outlier ($GNB5$), indicated by a red triangle, which was removed from the dataset for tests of correlation. Additionally, the gene $GNB1$ (green diamond) was removed due to its broad baseline expression outside of the retina.
Figure 3: dN/dS plotted as a function of the average sensitivity for each gene. The statistical outlier ($GNB5$) is indicated as a red triangle and the broadly expressed $GNB1$ is shown as a green diamond. Both of these genes were omitted from the correlation analysis.
Figure 4: Hierarchically clustered phylogenetic tree correlations between phototransduction genes. High correlation values (dark red) indicate evidence of coevolution between the pair. Open square symbols indicate pairs that physically interact (directly or via a molecular complex), closed squares indicate pairs that show statistically significant evidence of coevolution, and closed squares nested within open squares indicate physically interacting pairs that show significant evidence of coevolution.
Tables
Peak Amplitude

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\tau_{\text{rec}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_{\text{dark}} \cdot \beta_{\text{sub}})</td>
<td>(kA4 \cdot kRGS1)</td>
</tr>
<tr>
<td>(kG1_0 \cdot \beta_{\text{dark}})</td>
<td>(kRGS1 \cdot kRec3)</td>
</tr>
<tr>
<td>(kRGS1 \cdot \beta_{\text{dark}})</td>
<td>(kRGS1 \cdot kRec1)</td>
</tr>
<tr>
<td>(kRGS1 \cdot \beta_{\text{sub}})</td>
<td>(kRGS1 \cdot kRec3)</td>
</tr>
<tr>
<td>(kG1_0 \cdot \beta_{\text{sub}})</td>
<td>(kA3 \cdot kRGS1)</td>
</tr>
<tr>
<td>(kG5_{\text{GTP}} \cdot \beta_{\text{dark}})</td>
<td>(kA4 \cdot kRec3)</td>
</tr>
<tr>
<td>(kRec3 \cdot \beta_{\text{dark}})</td>
<td>(kA3 \cdot \beta_{\text{dark}})</td>
</tr>
<tr>
<td>(kRec1 \cdot kRec3)</td>
<td>(kA4 \cdot kRec1)</td>
</tr>
<tr>
<td>(kRec2 \cdot kRec3)</td>
<td>(kA4 \cdot kG1_0)</td>
</tr>
<tr>
<td>(kRec2 \cdot kRec4)</td>
<td>(kRGS1 \cdot \beta_{\text{dark}})</td>
</tr>
</tbody>
</table>

Saturation Time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\tau_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kRGS1 \cdot \beta_{\text{sub}})</td>
<td>(kA4 \cdot kRec2)</td>
</tr>
<tr>
<td>(kG1_0 \cdot kRGS1)</td>
<td>(kRec2 \cdot \beta_{\text{dark}})</td>
</tr>
<tr>
<td>(kArr \cdot kG1_0)</td>
<td>(kArr \cdot kRec3)</td>
</tr>
<tr>
<td>(kRGS1 \cdot \beta_{\text{dark}})</td>
<td>(kA4 \cdot kG5_{\text{GTP}})</td>
</tr>
<tr>
<td>(kRec2 \cdot kRec3)</td>
<td>(kA4 \cdot kA5)</td>
</tr>
<tr>
<td>(kRGS1 \cdot kRec3)</td>
<td>(kG5_{\text{GTP}} \cdot \beta_{\text{dark}})</td>
</tr>
<tr>
<td>(kRec1 \cdot kRec3)</td>
<td>(kG5_{\text{GTP}} \cdot kRec3)</td>
</tr>
<tr>
<td>(kRK1_0 \cdot kA5)</td>
<td>(kArr \cdot kRGS1)</td>
</tr>
<tr>
<td>(kA5 \cdot kRec4)</td>
<td>(kArr \cdot kG1_0)</td>
</tr>
</tbody>
</table>

Table 1: The ten parameter pairs showing the largest non-linear interaction effects for each of the empirical measurements. Pairs of genes that showed significant evidence of coevolution and that are associated with the respective parameters are provided in parentheses.