
A SYSTEM FOR
SOUND ANALYSIS/TRANSFORMATION/SYNTHESIS

BASED ON A
DETERMINISTIC PLUS STOCHASTIC DECOMPOSITION

a dissertation
submitted to the department of music
and the committee on graduate studies

of stanford university
in partial fulfillment of the requirements

for the degree of
doctor of philosophy

By
Xavier Serra
October 1989



c© Copyright 1989 by
Xavier Serra

ii



A SYSTEM FOR
SOUND ANALYSIS/TRANSFORMATION/SYNTHESIS

BASED ON A
DETERMINISTIC PLUS STOCHASTIC DECOMPOSITION

Xavier Serra, Ph.D.

Stanford University, 1989

This dissertation introduces a new analysis/synthesis method. It is designed to obtain
musically useful intermediate representations for sound transformations. The method’s
underlying model assumes that a sound is composed of a deterministic component plus a
stochastic one. The deterministic component is represented by a series of sinusoids that are
described by amplitude and frequency functions. The stochastic component is represented
by a series of magnitude-spectrum envelopes that function as a time-varying filter excited
by white noise. Together these representations make it possible for a synthesized sound
to attain all the perceptual characteristics of the original sound. At the same time the
representation is easily modified to create a wide variety of new sounds.

This analysis/synthesis technique is based on the short-time Fourier transform (STFT).
From the set of spectra returned by the STFT, the relevant peaks of each spectrum are
detected and used as breakpoints in a set of frequency trajectories. The deterministic signal
is obtained by synthesizing a sinusoid from each trajectory. Then, in order to obtain the
stochastic component, a set of spectra of the deterministic component is computed, and
these spectra are subtracted from the spectra of the original sound. The resulting spectral
residuals are approximated by a series of envelopes, from which the stochastic signal is
generated by performing an inverse-STFT.

The result is a method that is appropriate for the manipulation of sounds. The in-
termediate representation is very flexible and musically useful in that it offers unlimited
possibilities for transformation.
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INTRODUCTION 1

Introduction

This dissertation is about sound transformation. The objective is the development of an
analysis/synthesis system (Fig. 1) that allows the largest possible number of transformations
on the analysis data before resynthesis. With such a system a representation is obtained that
captures the characteristics of a sound. Then, new sounds are synthesized by performing
transformations on the representation and inverting the analysis process.

The system developed in this dissertation is based on modeling the spectral character-
istics of a sound. In the frequency domain, a sound is decomposed into deterministic and
stochastic components. The sound representation is then obtained by simplifying these two
components in order to achieve three objectives. First, we desire a flexible representation,
i.e., one easy to transform. Second, the system has to be computationally efficient. Third,
the representation is to be judged solely on the quality of the sound it produces. From this
point of view, many aspects of the spectral characteristics of the original sound become
unimportant, and we wish to exclude them from the representation whenever possible.

The resulting system is an algorithm that is easily implemented in a computer or inte-
grated digital circuit. It is also general in the sense that it can be used for the transformation
of a wide variety of sounds.

There are two basic assumptions underlying this research. The first is that any sound
can be interchangeably represented in the time domain by a waveform or in the frequency
domain by a set of spectra. The second assumption is that most sounds can be decomposed
into a deterministic component, which includes the predictable part of the sound (approx-
imated by a sum of time-varying sinusoids), and a stochastic one, which consists of the
unpredictable part.

The text is organized as a progression towards the dissertation objective. We go from
a general and inflexible sound representation to a less general and more flexible sound

Figure 1: Diagram of a general analysis/synthesis system.

xserra
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2 INTRODUCTION

representation. Four different systems are presented in chapters 2 to 5, each system building
on top of the previous one and carrying the objective of this dissertation a step further.

Chapter 1 summarizes the historical developments relevant to this work. The main
ones are: (1) electronic sound-manipulating techniques used in music applications, and (2)
speech research oriented towards obtaining alternative representations of the speech signal.

In Chapter 2 the first sound representation is introduced. It is the result of the short-
time Fourier transform (STFT), and models a waveform by a set of discrete spectra. From
these spectra the original waveform can be recovered, allowing some simple transformations
before resynthesis.

Chapter 3 presents a simplification of the short-time Fourier transform that models
a sound with a set of sinusoids. These sinusoids are obtained by following the amplitude,
frequency and phase of the most prominent peaks over time in the series of spectra returned
by the STFT. The sum of all the sinusoids is perceptually equal to the original sound, even
though the waveform is not exactly the same. The flexibility of this representation is greater
than that of the STFT, thus allowing more transformations of the representations before
resynthesis.

A step further is taken in Chapter 4 by assuming that a sound can be decomposed into a
deterministic part and a residual. The sound representation is then obtained by restricting
the sinusoids of the previous chapter to modelling only the deterministic part of the sound,
leaving the rest of the spectral information in the residual component. The sum of the two
components is equal to the original sound, and the deterministic component is quite flexible
in terms of possible modifications.

The final representation is discussed in Chapter 5. This representation simplifies that
of the previous chapter by assuming the residual to be stochastic. Therefore the sound is
decomposed into a deterministic and a stochastic component. The representation obtained
is flexible and simple, allowing transformations of a variety of sounds. In the absence
of modifications, the synthesis from the representation is perceptually very close to the
original sound. Compared with the STFT, there is an enormous gain in the flexibility of
the representation in exchange for the identity property of the system.

In the appendices some related topics are presented. The first appendix is a description
of the hardware and software environment in which this dissertation has been implemented.
The next three appendices include variations of the techniques presented in the main chap-
ters that are useful for sound transformation applications. The final appendix is an index
of the sound examples that accompany the dissertation.1

1See Appendix E for instructions on how to obtain a copy of the sound examples.
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Chapter 1

Historical Background

1.1 Introduction

The manipulation of pre-recorded sounds has been an important creative resource in
electro-acoustic music. This has been accomplished since the early 1950s with tape recorders
and other analog devices, and more recently, with the widespread use of digital technology
in music, computers have practically replaced the analog media.

The first music compositions using sound manipulations of prerecorded sounds were done
in Paris by Pierre Schaeffer in the late 1940s by means of discs, tape recorders, and several
kinds of analog devices. Schaeffer used the name “Musique Concrète” to distinguish his new
way of creating music, which starts from existing sounds and builds a piece of music out of
it, from the traditional music composition, which starts from an abstract idea and only at
the end is it materialized into sound. The term Musique Concrète has since then described
the music created by transforming prerecorded sounds. Previous to Schaeffer’s work some
experiments were done in Germany and the U.S.A. with very crude technology that will not
be reported here. Comprehensive treatments of Musique Concrète exist elsewhere (Ernst,
1977; Manning, 1985).

With the use of digital computers the capabilities of the tape recorder and the analog
devices are extended. Many of the more advanced digital techniques were originally devel-
oped in non-musical applications. In particular, many techniques that are currently used
in computer music originated in the field of speech research.

This chapter covers the most important historical and current developments that have
contributed to the present state of the sound manipulation techniques used in electro-
acoustic music and that have influenced this dissertation. The next section summarizes
the accomplishments of the traditional Musique Concrète, both with analog and digital
means. After that, the speech research which later directly influenced music in the aspect
of sound manipulation is described. Then, we summarize the particular musical use of
Linear Predictive Coding (LPC), a speech research development, and of analysis-based
additive synthesis techniques. Finally, other techniques that have not directly influenced
this research, but that are used as analysis-based synthesis techniques, are briefly mentioned.
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1.2 Musique Concrète

Supported by the Radiodiffusion Télévision Française (RTF) Pierre Schaeffer used
recording techniques to create music out of natural sounds as early as 1948. His equipment
was very primitive, consisting of a simple direct disc-cutting lathe and some accompanying
analog equipment, but with it he was able to accomplish simple editing and transforma-
tions of sounds. The main techniques used were: looping, sound transposition, cutting and
juxtaposition of sounds, and filtering. Looping, the repetition of sound over and over, was
accomplished by recording a sound into a closed groove of a disk. Sound transposition,
which refers to changes in the pitch of a sound, was obtained by varying the speed of the
disk player. Cutting sounds was done by operating a volume control inserted between the
microphone and the cutter; in this way it was possible to record parts of a sound, for exam-
ple to leave out the attack of notes. Juxtaposition of sounds was done by simply recording
one sound next to the other.

The piece by Pierre Schaeffer and Pierre Henry “Symphonie pour un homme seul”
(Schaeffer and Henry, 1949), was done using disc techniques. The Symphonie makes use
of noises produced by a man, such as breathing, walking, shouting, humming, plus some
orchestral and percussion sounds.

1.2.1 Musique Concrète with analog tape

The tape recorder was first used by Schaeffer in 1951. With it appeared new possibilities
for sound manipulation, and the process involved in putting together a piece of music was
made a bit easier than with discs. The principal techniques developed at the studio of Pierre
Schaeffer using analog tape are the following: cutting and splicing, tape loops, change of
tape speed, change of direction of tape, tape delay, and combinations of the above. The
combinations can be either successions of sounds or simultaneous combinations. On top of
the tape manipulations, analog filters and reverberators were also used.

“Cutting and splicing” can be done with discs, but with tape, using the razor blade and
the splicing block, the process is more precise.

A tape loop is made by splicing together the two ends of a tape recording so that the
recorded passage will repeat continuously during playback.

Change of direction of tape provides a further means of varying the recorded sound.
Playing a sound backwards reverses its characteristic envelope and spectral evolution.

Tape delay, also known as tape-recorder feedback, involves the playback and recording
of a sound on one machine simultaneously. It adds a reverberation-like effect to the sound.

These tape manipulations and further processing with analog devices such as filters or
ring modulators are tools which have been used, and still are used, in electro-acoustic music.
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By themselves, or in conjunction with other means of creating sounds, acoustic or electronic,
they have proved to be, by listening to their results, very important for music creation. Some
of the early compositions involving tape manipulation procedures are: “Vocalise” by Pierre
Henry (Henry, 1952), “Williams Mix” by John Cage (Cage, 1952), “Gesang der Jünglinge”
by Karlheinz Stockhausen (Stockhausen, 1956), “Thema” by Luciano Berio (Berio, 1958),
“Poème Electronique” by Edgard Varèse (Varèse, 1958), “Orient-Occident I” by Iannis
Xenakis (Xenakis, 1960), and “Come Out” by Steve Reich (Reich, 1966).

1.2.2 Musique Concrète with computers

With digital computers, equipped with analog to digital (A/D) and digital to analog
(D/A) converters and sufficient memory to store the recorded sounds, all the tape techniques
can be implemented. However, this was not feasible until the mid seventies, mainly due
to memory limitations. Nowadays, elaborate sound editors that allow very precise editing,
mixing, and simple processing of waveforms, are available on a wide variety of computers.

Early work manipulating sounds using computers was done at CCRMA by Michael Mc-
Nabb in his piece “Dreamsong” (McNabb, 1978). The first computer composition from
Pierre Schaeffer’s center was “Erosphere” (1979) by François Bayle. Other early pieces are:
“Arcus” (1978) by York Höller, “Mirages” (1978) and “Songes” (1979) by Jean-Claude Ris-
set (Risset, 1988), and “Mortuos Plango, Vivos Voco” (1980) by Jonathan Harvey (Harvey,
1989).

1.3 Speech Research

A major aim of speech research is to find efficient representations of the speech waveform
for transmission and storage. By changing the parameters of the representation, modifica-
tions of the speech waveform are accomplished which have proved to be musically useful.
In this section the main developments in speech analysis/synthesis with musical potential
are presented.
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Figure 1.1: Diagram of the system used by Dudley.

1.3.1 The vocoder

The first analysis/synthesis system for speech was invented by Homer Dudley in the
1930s (Dudley, 1939; Schroeder, 1966). Dudley called his system a vocoder “because it
operates on the principle of deriving voice codes.” The basic idea is to represent the speech
waveform by an excitation waveform that represents the sound source, which then goes
through a filter that represents the vocal tract. The excitation is a pulse train during
vowel sounds and noise during consonants, and the vocal tract response characteristics are
represented by a set of “spectrum-analyzing channels.”

Figure 1.1 shows the diagram of the system. The output is speech approximately equal
in pitch and in spectrum to the original. Dudley’s Vocoder has control switches which
permit modifications in the operation of the synthesizer, “obtaining interesting effects.”
Converting voiced into unvoiced speech, by controlling the voiced/unvoiced classification,
turns normal speech into a throaty whisper. The pitch of the voice is easily modified by
changing the estimate of the pitch period. Any sound can be used as the excitation by using
the voice input to control only the bank of filters. This creates the effect of hybridizing the
two sounds. If the excitation function is the sound of a locomotive “the demonstrator can
make the locomotive puff intelligibly ‘We’re - start - ing - slow - ly - faster, faster, faster’
as the puffs come closer together.”

xserra
Imagen colocada
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1.3.2 Linear predictive coding (LPC)

In the late 1960s the mathematical technique of linear prediction was applied to the
problem of modeling speech behavior (Saito and Itakura, 1966; Atal and Schroeder, 1967),
and in 1970 Atal (Atal, 1970) presented the first use of the term linear prediction for speech
analysis. The basic idea behind linear predictive analysis is that a speech sample x(n) can
be approximated as the linear combination of past speech samples,

x̂(n) = −
p∑

k=1

αkx(n− k) (1.1)

By minimizing the sum of the squared differences (over a finite interval) between the actual
samples, x(n), and the linearly predicted ones, x̂(n), a unique set of predictor coefficients,
αk is determined. (The predictor coefficients are the weighting coefficients used in the linear
combination.)

The linear prediction formulation is intimately related to the traditional speech model in
which speech is modeled as the output of a linear, time-varying filter excited by either quasi-
periodic pulses (during voiced speech), or noise (during unvoiced speech). Figure 1.2 shows a
diagram of the speech model. The linear prediction method provides a robust, reliable, and
accurate method to estimate the parameters that characterize the time-varying system. In
the traditional LPC formulation the time-varying filter is an n-pole infinite impulse response
(IIR) filter whose poles approximately fall on the formant regions of the analyzed speech
sound. Then, there is a pitch detection and a voiced/unvoiced decision algorithm which
control the excitation function. With this technique it is possible to manipulate sounds in
the same manner as Dudley did with his vocoder.

There have been different formulations of the problem of obtaining the predictor coef-
ficients. The two most relevant ones are called the covariance method (Atal and Hanauer,
1971), and the autocorrelation formulation (Makhoul, 1975; Markel and Gray, 1976). (A
more detailed discussion of LPC is given in Appendix C.)
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Figure 1.2: Block diagram of simplified model for speech production.
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Figure 1.3: Filtering of speech used by Flanagan and Golden.

1.3.3 The phase vocoder

In 1966 Flanagan and Golden (Flanagan and Golden, 1966) proposed another technique
for encoding speech, the phase vocoder, that represents speech signals by their short-time
phase and amplitude spectra. Their starting assumption is that if a speech signal x(t)
is passed through a parallel bank of contiguous band-pass filters and then recombined,
the signal is not substantially degraded. The operation is illustrated in Fig. 1.3, where
BP1, . . . , BPN represent the contiguous filters. The output of the nth filter is xn(t), and
the original signal is approximated as

x̂(t) =
N∑

n=1

xn(t) (1.2)

The impulse response of the nth filter is

gn(t) = h(t)cos(ωnt) (1.3)

where h(t) is the impulse response of a low-pass filter. The output of the nth filter is the
convolution of x(t) with gn(t),

xn(t) =
∫ t

−∞
x(λ)gn(t− λ)dλ

=
∫ t

−∞
x(λ)h(t− λ) cos[ωn(t− λ)]dλ

= Re
[
ejωnt

∫ t

−∞
x(λ)h(t− λ)e−jωnλdλ

]
(1.4)

xserra
Imagen colocada



10 CHAPTER 1. HISTORICAL BACKGROUND

The latter integral is the short-time Fourier transform1 of the input signal x(t), evaluated
at radian frequency ωn. It is the Fourier transform of that part of x(t) which is “viewed”
through the sliding time aperture h(t). If the complex value of the transform is denoted
as X(ωn, t), its magnitude is the short-time amplitude spectrum |X(ωn, t)|, and its angle is
the short-time phase spectrum ϕ(ωn, t). Then

xn(t) = |X(ωn, t)| cos[ωnt + ϕ(ωn, t)] (1.5)

Each xn(t) may, therefore, be described as the simultaneous amplitude and phase mod-
ulation of a carrier cos(ωnt) by the short-time amplitude and phase spectra of x(t), both
evaluated at frequency ωn. However, the phase functions ϕ(ωn, t) are generally not bounded,
so their derivatives ϕ̇(ωn, t), which are more well-behaved, are used instead. Thus, an ap-
proximation to xn(t) is

x̂n(t) = |X(ωn, t)| cos[ωnt + ϕ̂(ωn, t)] (1.6)

where

ϕ̂(ωn, t) =
∫ t

0
ϕ̇(ωn, τ)dτ (1.7)

The reconstruction of the original signal is accomplished by summing the outputs of n
oscillators modulated in phase and amplitude. Flanagan and Golden showed that the phase
vocoder allowed the expansion and compression of the time and frequency scales in a very
flexible way.

1.3.4 Recent developments

Research in speech coding is a very active field with constant advances. Here, there is
no intention of summarizing the main developments in the field; we will simply mention
some of the most recent research that has more or less directly influenced this dissertation.

One important modification on the traditional LPC formulation is what is known as the
multipulse LPC (Atal and Remde, 1982). With this formulation the standard pitch-pulse
and white-noise excitation is replaced with a sequence of pulses. Their amplitudes and
locations are chosen to minimize the perceptual difference between original and synthetic
speech signals.

The traditional phase vocoder presented by Flanagan has also been extensively modi-
fied. A new formulation was introduced by Portnoff (Portnoff, 1976) where most of the
computation required is performed by the fast Fourier transform (FFT) algorithm, making
the process more efficient while maintaining the properties of the phase vocoder. For further

1This technique will be discussed in greater detail in the next chapter.
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improvements see: Allen 1977; Allen and Rabiner, 1977; Crochiere, 1980; Portnoff, 1980,
1981; Nawab, Quatieri and Lim, 1983; Griffin and Lim, 1984.

More recently, a new speech model has been formulated which is referred to as the Multi-
band Excitation Model (Griffin and Lim, 1988). In this model, the short-time spectrum of
speech is modeled as the product of an excitation spectrum and a spectral envelope. The
spectral envelope is a smoothed version of the speech spectrum and the excitation spectrum
is represented by a fundamental frequency, a voiced/unvoiced decision for each harmonic of
the fundamental, and the phase of each harmonic declared voiced.

Another recent development is the work done by McAulay and Quatieri on an analy-
sis/synthesis technique based on a sinusoidal model (McAulay and Quatieri, 1986; Quatieri
and McAulay, 1986). A very similar method is presented in Chapter 3.

1.4 LPC in Computer Music

Among all the techniques developed for speech purposes, LPC has been used the most
in music applications. With LPC a wide variety of speech transformations are possible
due to the decomposition of the sound into an excitation function and a time varying filter
(Lansky, 1989). Typical modifications are: (1) changing the pitch of the voiced speech while
retaining speed and timbre by modifying the pulse train, (2) speed modification by changing
the rate at which the filter coefficients are updated, and (3) creating either whisper or tonal
voice out of normal speech by using as the excitation either the noise or the pulse train
alone.

Charles Dodge was one of the first composers to use LPC in music composition (Dodge,
1975; Dodge, 1985; Dodge and Jerse, 1985; Dodge, 1989). His piece “Speech Songs” done
between 1972 and 1973 (Dodge, 1975) can be considered one of the first computer music
works to be based directly on the computer analysis of recorded sound. Other early pieces
by Dodge using LPC are: “In Celebration,” and “The Story of Our Lives” (Dodge, 1975).

An interesting musical usage of LPC is the possibility of hybridizing two sounds (already
done by Dudley in the 1930s), commonly referred as cross-synthesis (Petersen, 1976; Moorer,
1979). Instead of the noise or periodic pulse, one sound is used as the excitation function
for the LPC filtering process. One of the early compositions using this capability of LPC is
Tracy Petersen’s “Voices” (Petersen, 1975). An alternative technique for cross-synthesis is
presented in appendix B.

J. A. Moorer made an important contribution by discussing some of the particular
problems that the use of LPC presents in music, and offered solutions (Moorer, 1977;
Moorer, 1979). His pieces “Perfect days” (1977) and “Lions are growing,” composed in
1978 (Moorer, 1983) are excellent examples of the musical possibilities of LPC.
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LPC can be used for the analysis/synthesis of sounds other than speech, even though the
synthesized sounds may be quite different from the original. This is most successful when
the sounds to be analyzed have a clear formant structure (Lansky and Steiglitz, 1981).

1.5 Analysis-Based Additive Synthesis

One of the first computer-based analysis-synthesis systems used for musical applications
was fashioned by David Luce (Luce, 1963). The use of such a system gave insight into the
behavior of musical instruments and its possible perceptual implications. The object of
Luce’s method was to determine the amplitudes and frequencies of each of the harmonics
of a tone as a function of time. The synthesis had the purpose of checking the accuracy
of the analysis data. Some improvements on Luce’s method were made by Morris David
Freedman (Freedman 1965; Freedman 1967; Freedman 1968). Similar work was carried out
by James Beauchamp (Beauchamp, 1969) and by Jean-Claude Risset and Max Mathews
(Risset and Mathews, 1969).

The current state of the art in additive analysis/synthesis was defined by J. A. Moorer
and John Grey in a landmark series of investigations (Moorer, 1975; Grey, 1975; Grey and
Moorer, 1977; Grey and Gordon, 1978). They used what they called the heterodyne filter
as a means of doing analysis-based additive synthesis.

More recently, the phase vocoder has become the standard technique for analyzing
musical sounds and performing additive synthesis from the analysis data (Moorer, 1978;
Dolson, 1983a, 1983b, 1984, 1985, 1986, 1988; Gordon and Strawn, 1985). It has also
been extensively used in music compositions, especially at the studios of UCSD (San
Diego) and IRCAM (Paris). With the phase vocoder, temporal and spectral features of
the sound can be manipulated independently (Dolson, 1989). Possible sound modifications
are: (1) time scaling—changing the duration of a sound without altering its pitch, (2) pitch
transposition—changing pitch without affecting duration, and (3) time-varying filtering.
For example, in “Transfigured Wind” Roger Reynolds uses the phase vocoder to stretch
flute sounds. However, when the analyzed sounds are harmonic, a wider variety of transfor-
mations is possible. For example in “Solera” (Chafe, 1983), Chris Chafe uses the analysis
of a clarinet tone as the basis for the whole piece.
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1.6 Other Analysis-Based Synthesis Techniques

Apart from LPC and additive synthesis there are other analysis-based synthesis tech-
niques that have been used in music applications and deserve to be mentioned, even though
they have not influenced the present research.

Xavier Rodet developed the formant-wave-function synthesis, better known as the
CHANT program (Rodet, 1984; Rodet, Potard and Barrière, 1984; Bennett and Rodet,
1989). CHANT is what is known as a synthesis-by-rule technique. Originally designed for
the synthesis of the singing voice, this method is based on an acoustical model of the vocal
tract and of the singing voice, and directly calculates the amplitude of the waveform of a
signal as a function of time. Conceptually, it can be understood as a kind of LPC, where the
voice is represented by an excitation going through a set of filters that model the formant
evolution.

Another technique originally designed for speech is the VOSIM sound synthesis (Kaegi
and Tempelaars, 1978; Janssen and Kaegi, 1986). This synthesis method is based on sin2

pulses, where the amplitude of the successive pulses decreases uniformly.

A recent development is the use of the wavelet transform for analysis and synthesis of
sounds (Kronland-Martinet, 1988). This technique analyzes signals in terms of wavelets—
functions limited in both the time and frequency domains.

Physical modeling, where a sound is created by emulating the physical behavior of
musical instruments, can also be considered a kind of analysis-based synthesis technique
(Smith, 1983, 1987; Adrien, Causse and Rodet, 1987; Adrien, Causse and Ducasse, 1988).

Finally, the work by Serra, Rubine and Dannenberg (Serra, Rubine and Dannenberg,
1988) should also be mentioned. Their analysis/synthesis technique is based on the inter-
polation of spectra over time.
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Chapter 2

The Short-Time Fourier Transform

2.1 Introduction

The auditory system functions as a spectrum analyzer, detecting the frequencies present
in the incoming sound at every moment in time. In the inner ear, the cochlea can be
understood as a set of band-pass filters, each filter passing only frequencies in a very narrow
range. This is what a spectrum analyzer does. Spectral representations are so widely used in
sound applications because they mimic the behavior of the ear. These representations, also
known as Fourier representations, are well studied (Rabiner and Gold, 1975; Oppenheim
and Schafer, 1975) and are used in many scientific and technical applications. In particular,
in computer music they have been extensively used for the analysis and synthesis of sounds
(Moorer, 1977; Cann, 1979; Dodge and Jerse, 1985).

In this chapter we present a particular Fourier-based analysis and synthesis system,
called the short-time Fourier transform, STFT, (Allen, 1977; Allen and Rabiner, 1977).
This is a very general technique useful in the study of time-varying signals, such as musical
sounds, that can be used as the basis for more specialized techniques. In the following
chapters the STFT is used as the basis for several analysis/synthesis systems.

The spectral analysis performed by the auditory system differs in some respects from the
standard Fourier analysis methods, as well as from the STFT. It is important to know the
divergences so that they can be corrected, or at least taken into account when interpreting
the results of the analysis. The most important difference is that the auditory system obtains
a log-scale spectrum whereas traditional Fourier analysis computes the spectrum with a
linear scale. In addition, other characteristics of the auditory system such as masking both
in time and in frequency domains,1 and perception of amplitude in relation with frequency
(Plomp, 1966; Yost and Nielsen, 1977; Roederer, 1979), are not considered in the standard
spectrum analysis implementations.

1Time domain masking refers to the masking of one event by another one that precedes or follows it in
time. Frequency domain masking refers to the masking of one frequency component by another one.
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The purpose of this dissertation is a musical one. Perceptual considerations are taken
into account whenever they bring improvements to the musical results and do not excessively
complicate the technique. This is a trade-off which is not always easy to make and has to
be weighted in every situation.

This chapter presents the STFT as it will be used by the analysis/synthesis techniques
developed in the following chapters. Emphasis is given to aspects which are relevant for
those techniques. Before introducing the STFT, we present the Fourier transform, the
basis of all spectral representations. After the Fourier transform, we introduce the model
on which the STFT is based. Then, an analysis/synthesis system based on the STFT is
presented, first the analysis part and then the synthesis part, followed by a summary of the
system. The chapter ends with an example that demonstrates the use of the STFT and a
section with conclusions.

2.2 The Fourier Transform

The Fourier transform is a method that allows the conversion of a time domain waveform
into its frequency spectrum, or, in other words, the decomposition of a waveform into a
number sinusoidal components.

The most common definition of the Fourier transform is

X(ω)
4
=
∫ +∞

−∞
x(t)e−jωtdt (2.1)

where t is the continuous time index in seconds and ω is the continuous frequency index
expressed in radians per second.

Given a continuous waveform x(t), the Fourier transform returns X(ω), a complex
number of the form (a + ib) for every value of ω. The magnitude of the complex number,√

a2 + b2, specifies the amplitude of a sinusoidal component of x(t) with frequency ω, and the
angle, tan−1 (b/a), specifies the phase of that same sinusoidal component. It is customary
to interpret X(ω) as the whole frequency spectrum, that is, the values for all ω.

This transform is widely used and well understood (see, for example, Bracewell, 1978).
For the purpose of this thesis it is not necessary to go into its properties. It is sufficient to
say that X(ω) is a periodic function of ω with period 2π and that it is possible to recover
the original function x(t) by means of the inverse Fourier transform,

x(t)
4
=

1
2π

∫ +∞

−∞
X(ω)ejωtdω (2.2)

That is, given the spectrum X(ω), the inverse Fourier transform returns the waveform x(t)
from which it was obtained. Thus, the Fourier transform is an identity system.
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In the discrete world of computers, sounds exist as sampled waveforms and the contin-
uous Fourier transform becomes the discrete Fourier transform (DFT). If x(n) is a signal
N samples long, then its DFT is

X(k)
4
=

N/2−1∑
n=−N/2

x(n)e−jωkn, ωk = 2πk/N, N even, k = 0, 1, . . . , N − 1 (2.3)

where ω is the discrete radian frequency, n is the discrete time index in samples, and k the
discrete frequency index in bins (frequency domain samples are referred as bins). X(k) is
the discrete spectrum. The relation between radian frequency and frequency in Hertz is
given by

f = fsω/2π (2.4)

where f the frequency in Hz, fs is the sampling rate and ω the radian frequency.

Since the frequency index k is discrete, the DFT assumes that x(n) can be represented
by a finite number of sinusoids, therefore the signal x(n) is bandlimited in frequency. The
frequencies of the sinusoids are equally spaced between 0 Hz and the sampling rate fs, or in
radians between 0 and 2π. Thus, the DFT takes a sequence of length N (the time signal)
and produces another sequence of length N (the frequency spectrum).

The corresponding inverse-DFT is

x(n)
4
=

1
N

N/2−1∑
k=−N/2

X(k)ejωkn (2.5)

That is, given the discrete spectrum X(k), the inverse-DFT returns the discrete waveform
x(n) from which it was obtained.

The prevalence of the DFT in so many different applications is due to the existence
of a very fast algorithm for its computation called the fast Fourier transform (FFT). The
traditional implementation of the FFT requires the length of the signal, N , to be a power
of 2. By making this restriction the computation time is reduced from one proportional to
N2 for the DFT to one proportional to N log N for the FFT.

2.3 The Short-Time Fourier Model

Every useful analysis/synthesis system is based on an underlying mathematical model.
The STFT is no exception. The model underlying the STFT technique presented in this
chapter can be formulated as

s(n) =
L−1∑
l=0

1
2π

(∫ π

−π
Xl(ω)ejω(n−lH)dω

)
(2.6)

were Xl(ω) is the continuous spectrum of a signal x(n) at frame l. That is, the signal s(n)
is modeled as the sum of a series of inverse Fourier transforms.
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Figure 2.1: General diagram of the analysis part of the STFT.

2.4 Short-Time Fourier Transform

In practice, musical sounds are non-periodic and time-varying waveforms, characteristics
for which the Fourier transform is not appropriate. The alternative is to use the short-time
Fourier transform. A diagram of the transform is shown in figure 2.1 and figure 2.2 includes
a graphic example. In the discrete case it may be defined as

Xl(k)
4
=

N−1∑
n=0

w(n)x(n + lH)e−jωkn, l = 0, 1, . . . (2.7)

where w(n) is a real “window” that determines the portion of the input signal x(n) that
receives emphasis at a particular frame l. H is the hop-size, or time advance, of the window.

The spectrum Xl(k) is a function of two variables, the frame number l and the discrete
frequency index k. Depending on which one is considered fixed, the spectrum Xl(k) has
two different interpretations (Allen and Rabiner, 1977). For the purpose of this thesis only
the interpretation with l fixed, called overlap-add decomposition, will be considered. In
this case, Xl(k) is the normal discrete Fourier transform, the spectrum, of the sequence
w(n)x(n + lH), 0 ≤ n < N − 1. The STFT computes a spectrum at every frame l,
advancing with a hop-size of H so as to “slide” the window w(n) along the sequence x(n).

The other interpretation of Xl(k) is as a function of l, for a fixed frequency index
k. In this filter-bank or sinusoidal interpretation the values for each frequency bin k (a
complex number at every l) describe a sinusoid. (In the next chapter a system is developed
which uses a sinusoidal interpretation, but since it has major differences with the filter-bank
interpretation it may be confusing to relate them.)

In the overlap-add interpretation the process of windowing not only selects the portion
of signal to be processed but by tapering the ends of the analyzed data it also converts the
frequency spectrum into a smooth function (except when a rectangular window is used).
This allows the analysis of non-periodic sounds, that is sounds which have partials at non-
integer multiples of the fundamental frequency. In a smooth spectrum the peaks need not
be centered on the discrete samples and every possible peak can theoretically be detected
by doing the appropriate interpolation, as will be seen later.

xserra
Imagen colocada
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Figure 2.2: STFT example: (a) speech waveform, (b) windowed waveform, (c) magnitude
spectrum from the windowed waveform, (d) corresponding phase spectrum.
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The output of the STFT is a series of spectra, one for every frame l of the input waveform.
Each spectrum Xl(k) is a complex valued function, but a more useful representation is in
terms of magnitude and phase, obtained by

Al(k)
4
= |Xl(k)| 4

=
√

a2(k) + b2(k)

Θl(k)
4
= 6 Xl(k)

4
= tan−1 [b(k)/a(k)] (radians) (2.8)

where |Xl(k)| is the magnitude, 6 Xl(k) is the phase, and a(k) and b(k) are the real and
imaginary parts of the complex value returned by the Fourier transform,

a(k)
4
= Re{Xl(k)}

b(k)
4
= Im{Xl(k)} (2.9)

The most common version of the STFT used in computer music is the phase-vocoder
(Flanagan, 1966; Dolson, 1986). This particular implementation of the STFT goes one
step further by converting the phase values into instantaneous frequencies. If the phase at
frequency bin k and frame l is given by θl(k), then the instantaneous frequency at the same
bin is

f̂l(k)
4
=

θl(k)− θl−1(k)
2πHT

(Hz) (2.10)

where H is the hop-size of the window, T (= 1/fs) the sample period (in seconds), and f̂ is
the estimated instantaneous frequency. The phase is discarded and redefined as the integral
of the instantaneous frequency when needed,

θ̂m(k)
4
= θ̂m−1(k) + 2πT f̂m(k) (2.11)

where f̂m(k) is the linear interpolated frequency from f̂l−1(k) to f̂l(k).

The phase-vocoder is a more flexible representation than the standard STFT. It provides
for time scaling and frequency transposition of sounds. However, only the standard STFT
implementation is discussed in this chapter since it is the one used as the intermediate step
for the techniques presented in the following chapters.

There are several issues in the calculation of the STFT that require particular attention:
(1) choice of the analysis window, (2) computation of the DFT, and (3) hop size of the
window. They are discussed below in that order.
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2.4.1 Analysis window

The first step in computing the STFT is the windowing of the waveform. The choice
of the analysis window is important. It determines the trade-off of time versus frequency
resolution which affects the smoothness of the spectrum and the detectability of different
sinusoidal components. The most commonly used windows are called Rectangular, Ham-
ming, Hanning, Kaiser, Blackman, and Blackman-Harris. Harris (Harris, 1978) gives a good
discussion of these windows and many others.

To understand the effect of the window, let us look at what happens to a sinusoid when
its Fourier transform is computed. A complex sinusoid of the form

x(n) = Aejωxn (2.12)

where A is the amplitude and ωx is the radian frequency, when multiplied by a length M
window transforms to

Xw(ω) =
∞∑

n=−∞
x(n)w(n)e−jωn

= A

(M/2)−1∑
n=−M/2

w(n)e−j(ω−ωx)n

= AW (ω − ωx) (2.13)

where W (ω) is the transform of the analysis window. Thus, the transform of a windowed
sinusoid, whether isolated or part of a complex tone, is the transform of the window scaled
by the amplitude of the sinusoid and centered at the sinusoid’s frequency (Fig. 2.3).

All the standard windows are real and symmetric and have a frequency spectrum with
a sinc-like shape2 (Fig. 2.3). For the purpose of this thesis, and in general for any sound
analysis/synthesis application, the choice is mainly determined by two of the spectrum’s
characteristics: (1) the width of the main lobe, defined as the number of bins (DFT-sample
points in a spectrum computed by a DFT of the size of the window length) between the
two zero crossings,3 and (2) the highest side-lobe level, which measures how many dB down
the highest side lobe is from the main lobe. Ideally, we want a narrow main lobe (i.e.,
good resolution) and a very low side-lobe level (i.e., no cross-talk between DFT channels).
The choice of window determines this trade-off. For example, the rectangular window has
the narrowest main lobe, 2 bins (= 2fs/MHz), but the first side-lobe is very high, −13dB
relative to the main-lobe peak. The Hamming window has a wider main lobe, 4 bins, and

2A sinc function is defined as sin(x)/x. Most of the standard windows can be expressed as a sum of these
functions.

3When the analysis-window size is equal to the DTF-size, a bin corresponds to fs/MHz, where fs is the
sampling rate and M the window length.
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Figure 2.3: (a) Magnitude spectrum of a rectangular window, fs = sampling rate, M =
analysis-window size, (b) magnitude spectrum of a sinusoid with frequency f0 and amplitude
A, windowed using a rectangular window.
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Figure 2.4: (a) Kaiser window M samples long, with β = 1.4, (b) magnitude spectrum of
window, (c) Kaiser window with β = 3, (d) magnitude spectrum of window.

the highest side-lobe is 43dB down. A very different window, the Kaiser, allows control of
the trade-off between the main-lobe width and the highest side-lobe level. If a narrower
main-lobe width is desired then the side-lobe level will be higher, and vice versa. Since
control of this trade-off is valuable, the Kaiser window is a good general-purpose choice.
Figure 2.4 shows the Kaiser window and its magnitude spectrum, and Figure 2.5 shows the
values of this trade-off as a function of the control parameter β (Kaiser, 1974).

Another good general purpose window for sound applications is the Blackman-Harris
window (Harris, 1978; Nuttall, 1981). This window has four different settings for the main-
lobe width versus side-lobe level trade-off. However, in this dissertation the precise control
offered by the Kaiser window has proved very valuable and it is used throughout.

Let us look at this problem in actual practice. To “resolve” two sinusoids separated in
frequency by ∆Hz, we need (in noisy conditions) two clearly discernible main lobes, i.e.,
they should look something like Fig. 2.6. To obtain the separation shown (main lobes meet
at zero-crossings), we require a main-lobe bandwidth in Hz, Bf , such that

Bf ≤ ∆ (2.14)
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Figure 2.5: Table for the Kaiser window, showing the trade-off between main-lobe width
and highest side-lobe level as a function of the control parameter β. The main-lobe width
is expressed as the distance between the zero crossings.

or, if

Bf = Bsfs/M

∆ = |fk+1 − fk| (2.15)

where Bs is the main-lobe bandwidth (in samples), fs the sampling rate, M is the window
length, and fk, fk+1 are the frequencies of the sinusoids, we need

M ≥ Bs
fs

∆
= Bs

fs

|fk+1 − fk|
(2.16)

If fk and fk+1 are successive harmonics of a fundamental frequency f1, then f1 =
fk+1 − fk = ∆. Thus, harmonic resolution requires Bf ≤ f1 and thus M ≥ Bsfs/f1. Note
that fs/f1 = T1/T = P , the period, in samples. Hence,

M ≥ BsP (2.17)

Thus, with a Hamming window, with main-lobe bandwidth Bs = 4 bins, we want at
least four periods of a harmonic signal under the window. From Fig. 2.5 we can see that if
we want the same side-lobe level for the Kaiser window that the Hamming window has, β
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Figure 2.6: Magnitude spectrum of two sine waves with frequencies f0 and f1.

has to be 1.75 and the number of periods under the window has to be a little bigger than
4. Thus, the Kaiser window can be set to approximately equal the Hamming window.

It is not always the case that four periods of a waveform can be taken to compute a
single spectrum in the STFT. In some situations the waveform is not stable enough and
a shorter window is needed. Thus, some compromises have to be made in order to obtain
both frequency and time resolution. With the Kaiser window this is done very simply. For
example, when a sound is very stable the window length M can be taken to be quite long,
4 or more periods, and the β parameter big, 2.5 or more, therefore obtaining a very good
frequency resolution and good side-lobe rejection. When the sound is less stable, and the
window has to be shorter, it is possible to maintain the frequency resolution by decreasing
β and thus compromising on the side-lobe rejection.

In other situations the sound is not periodic and the four-periods rule cannot be applied
either. In these situations the length of the window is determined by the closest two
frequencies that we want to separate.

If the waveform to be analyzed has pronounced time-varying characteristics, either in
terms of the frequencies present or of the instantaneous amplitude, it may be necessary to
use a variable window size throughout the sound. Such a time-varying analysis causes prob-
lems in an overlap-add synthesis method, as will be shown later, but not in the sinusoidal
representation introduced in the next chapter.4

4Though possible, a time-varying window-size has been unnecessary in the analysis/synthesis systems
presented in the next chapters.
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A final point to be made about windows is the choice between odd and even length. A
window of odd length can be centered around the middle sample, while one of even length
does not have a mid-point sample. If one end point is deleted, an odd-length window can
be overlapped and added so as to sum to a constant in the same way that the even length
window does, a point which, as discussed in section 2.4.3, is important. For purposes of
phase detection a constant-phase spectrum5 is preferred, and this is obtained most naturally
by using a symmetric window with the middle sample at the time origin.

2.4.2 Computation of the DFT

Once a section of the waveform has been windowed (as shown in Figure 2.2), the next
step is to compute the spectrum using the DFT. For practical purposes the FFT (fast
Fourier transform) should be used whenever possible. But this requires the length of the
analyzed signal to be a power of two, and in theory this should rarely be possible since the
window length is controlled very precisely depending on the necessary resolution at every
particular portion of a sound. However in practice this can be overcome by taking the
appropriate window length and simply filling with zeros the rest of the length required by
the FFT. This not only allows the use of the FFT algorithm, but it computes a smoother
spectrum.

The FFT size N is normally chosen to be the first power of two that is at least twice
the window length M , with the difference N −M filled with zeros (“zero-padded”), since
zero-padding in the time domain corresponds to interpolation in the frequency domain,
and interpolating the spectrum has various benefits. First, it is easier to find spectral
peaks which are not exact bin frequencies when the spectrum is more densely sampled
(this is very important for the applications that will be developed in the next chapters).
Second, plots of the magnitude of the more smoothly sampled spectrum are less likely
to confuse the untrained eye. (Only signals truly periodic in M samples should not be
zero-padded. They should also be windowed only by the Rectangular window.) Third,
for overlap-add synthesis from spectral modifications (discussed below) the zero-padding
allows for multiplicative modification in the frequency domain (convolutional modification
in the time domain) without time-aliasing6 in the inverse FFT. The length of the allowed
convolution in the time domain (the impulse response of the effective digital filter) equals
the number of extra zeros (plus one) in the zero padding.

If Bs is the number of samples in the main lobe when the zero-padding factor is 1
(N = M), then a zero-padding factor of N/M gives BsN/M samples for the same main
lobe (and same main-lobe bandwidth). The zero-padding (interpolation) factor N/M should

5A constant-phase spectrum is defined as the spectrum produced by a zero-phase window, that is, a
spectrum in which the windowing process has not modified the phases of the analyzed waveform.

6Time-aliasing is defined as the overlap of samples.
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be large enough to enable an accurate estimation of the true maximum of the main lobe.
That is, since the window length is not an exact number of periods for every frequency,
the center of the spectral peaks does not correspond to the frequency bins, but by an
appropriate zero-padding factor the center of the peak can be found. It has been determined
by computational search that, for a rectangularly windowed sinusoid (as shown in Figure
2.3), quadratic frequency interpolation (using the three highest bins) yields at least 0.1%
(of the distance from the sinc peak to the first zero-crossing) accuracy if the zero-padding
factor N/M is 5 or higher.7

As mentioned in the previous section, we facilitate phase detection by using a zero-phase
window, i.e., the windowed data (using an odd length window) is centered about the time
origin. A zero-centered data frame appears in the length N FFT input buffer as shown
in Figure 2.7. The first (M − 1)/2 samples of the windowed data, the “negative-time”
portion, are stored at the end of the buffer, from sample N − (M − 1)/2 to N − 1, and the
remaining (M + 1)/2 samples, the zero and “positive-time” portion, are stored starting at
the beginning of the buffer, from sample 0 to (M − 1)/2. Thus, all zero padding occurs in
the middle of the FFT input buffer.

2.4.3 Choice of hop size

Once the spectrum has been computed at a particular point in the waveform, the STFT
process hops along the waveform and computes the spectrum of another section in the
sound. This hop size H, i.e., how much the analysis time origin is advanced from frame
to frame, is an important parameter. Its choice depends very much on the purpose of the
analysis. In general, more overlap will give more analysis points and therefore smoother
results across time, but the computational expense is proportionately greater. A general
and valid criterion is that the successive frames should overlap in time in such a way that all
the data are weighted equally. For overlap-add synthesis, as will be seen in next section, this
criterion is strictly followed. However for other synthesis techniques or different applications
this criterion may be overly conservative when the signal is stable and too adventurous for
fast-changing signals. Thus, the choice of hop size is determined by the application and the
sound characteristics.

For certain window types there exist perfect overlap factors, that is, the windows can
add perfectly to a constant. For example, a Rectangular window can hop by M/j, where
j is any positive integer, and a Hanning or Hamming window can use any hop size of the
form (M/2)/j. This overlap factor can be expressed by

Aw(m)
4
=

∞∑
n=−∞

w(m− nH) = c (2.18)

7This peak interpolation strategy is discussed in detail in the next chapter.
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Figure 2.7: (a) Windowed waveform, (b) same waveform as it is stored in the FFT buffer
for a constant-phase spectrum.
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where w(n) is the window, H the hop size, Aw(m) the resulting envelope, and c a constant.8

For most windows, however, there is no perfect hop size, and Aw(m) is not a constant, other
than for H = 1. A measure of the deviation of Aw from a constant is the difference between
the maximum and minimum values for the envelope as a percentage of the maximum value,

dw = 100× maxm[Aw(m)]−minm[Aw(m)]
maxm[Aw(m)]

(2.19)

This measure is referred to as the amplitude deviation of the overlap factor. Hop sizes of the
form (M/2)/j give good results (i.e., small amplitude deviations) in windows such as the
Blackman or Blackman-Harris. However, with the Kaiser window the amplitude deviation
depends on β. For the case of the Kaiser window, Figure 2.8 shows the envelope Aw(m) for
two different hop sizes and Figure 2.9 shows the amplitude deviation values for a hop size
of M/4 and different β values.

The STFT process finishes when a spectrum has been computed at every frame in
the waveform. Each spectrum is a complex valued function, that, as was shown, can be
converted into polar coordinates to obtain the phase and magnitude values.

The control of the STFT is accomplished through the use of four parameters: window-
type, window-length, hop-size, and FFT-size. These parameters will be often referred to in
the following chapters.

2.5 Inverse Short-Time Fourier Transform

From the analysis data returned by the STFT we can recover the original waveform by
computing the inverse STFT. Thus, the inverse process can be viewed as the synthesis part
of the STFT. We can also apply some modifications to the spectra before resynthesis, such
as multiplication by a smooth function (i.e., filtering in the frequency domain). A general
diagram of the STFT synthesis process is shown in Figure 2.10.

The overlap-add interpretation of the STFT yields a particular method of synthesis
(Allen and Rabiner, 1977). It corresponds to equation 2.6 and its implementation can be
expressed by

s(n) =
L−1∑
l=0

ShiftlH,n

[
1
K

K−1∑
k=0

Xl(k)ejωkm
]

(2.20)

8Due to numerical errors there is always some small deviation from the ideal constant.
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Figure 2.8: Overlap of a Kaiser window with β = 2.5 and length M : (a) hop size of M/2,
(b) hop size of M/4.
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Figure 2.9: Amplitude-deviation for the Kaiser window for a constant hop size of 1/4
of the window length. The horizontal axis is the β parameter and the vertical axis is the
deviation as a percentage of the maximum value.

Figure 2.10: General diagram of the inverse STFT.
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where Xl(k) is the spectrum computed at frame l, m = 0, 1, . . . ,K − 1 is the time index
inside the frame, and

Shifts,n [x(m)] =


0, n < s

x(n− s), s ≤ n < s + K

0, n ≥ s + K

(2.20)

expresses the shift that takes place before the frames are added together.

This says that in order to reconstruct the signal, the spectrum Xl(k) is inverse trans-
formed for each l at which the analysis was performed, which, by definition of X, gives

sl(n) = x(n + lH)w̃(n) (2.21)

where w̃(n) is the normalized window,

w̃(n) =
w(n)∑M/H−1

i=0 w(iH)
(2.22)

responsible for normalizing the overlap-add sum.

Then sl(n) is summed over l to give

s(n) =
L−1∑
l=0

sl(n− lH) = x(n)
L−1∑
l=0

w(n− lH) (2.23)

that is, the final output is the sum of a series of windowed waveforms. A graphical example
is shown in Figure 2.11.

Thus, it can be seen that analysis and resynthesis by overlap-add (in the absence of spec-
tral modifications) is an identity operation (i.e., s(n) = x(n)) if the overlapped and added
analysis windows sum to a constant (i.e., if Aw(m) =

∑L−1
l=0 w(n− lH) = constant). When

the overlap factor Aw(m) is not constant, it is then an amplitude modulation envelope with
period H (see Figure 2.8). That is, when the analysis window does not displace and add to
a constant, the output is amplitude modulated by a periodic signal having its fundamental
frequency at the frame rate fs/H. However, this amplitude modulation is negligible when
the amplitude deviation of the overlap factor is on the order of .03% or less.

A more general method of the inverse-STFT, called the weighted overlap-add method
(Crochiere, 1980; Portnoff, 1980), uses a synthesis window prior to overlap-adding.9 The

9The inverse-STFT discussed above assumes the synthesis window to be a rectangular window.
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Figure 2.11: Example of the overlap-add synthesis process.
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identity property of the process is maintained if and only if the analysis window, w(n), and
the synthesis window, w′(n), are related by

∞∑
n=−∞

w(m− nH)w′(m− nH) = c for all m (2.24)

that is, the function created by multiplying the two windows overlaps and adds to a constant.

The synthesis window is needed when the phase spectrum is modified. This is because
the inverse Fourier transform of a spectrum with modified phases does not maintain the
windowing performed in the analysis. Each resulting frame does not tapper smoothly to
zero at the ends, which creates discontinuities at the frame boundaries.10 In Chapter 5 this
synthesis window is used for a similar purpose.

The filter-bank interpretation of the STFT (Allen and Rabiner, 1977) yields a synthesis
method which synthesizes a sine wave for each frequency bin obtained in the analysis. These
sine waves are added to recover the original waveform.

2.6 Summary of the STFT Analysis

A review of the main steps for a traditional computer implementation of an analysis
system based on the STFT is given below.

1. Read M samples of the input signal x into a local buffer,

xl(m)
4
= x(m + lH), m =

−M − 1
2

,
−M − 1

2
+ 1, . . . , 0, . . . ,

M − 1
2

− 1,

M − 1
2

, M odd, l = 0, 1, 2, . . . (2.25)

where xl is called the frame of the input signal at time lH, and M is the frame
length.11 The time advance H (in samples) from one frame to the next is called the
hop-size.

10In the phase-vocoder, where the original phase is redefined as the integral of the instantaneous frequency,
the synthesis window makes sure that each inverse Fourier-transform tapers at the frame ends, thus allowing
for a good overlapping.

11This summary considers the frame to be of odd length. The same formulation can be made for an even
length frame.
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2. Multiply the data frame pointwise by a length M analysis window w(m), to obtain
the windowed data frame at time l,

x̃l(m)
4
= xl(m)w(m), m =

−M − 1
2

, . . . ,
M − 1

2
(2.26)

3. Extend x̃l with zeros on both sides to obtain a zero-padded windowed data frame,

x̃′l(m)
4
=



x̃l(m), |m| ≤ M−1
2

0, M−1
2 < m ≤ N

2 − 1

0, −N
2 ≤ m < −M−1

2

(2.26)

where N is chosen as a power of two larger than M . The number N/M is called the
zero-padding factor.

4. Take a length N FFT of x̃′l to obtain the spectrum,

X̃ ′
l(k) =

N/2−1∑
n=−N/2

x̃′l(n)e−jωkn (2.27)

where ωk = 2πk/N , and k is the FFT bin number.

5. Convert each FFT bin of X̃ ′
l(k) from rectangular to polar form to get the magnitude

and phase in each FFT bin,

Al(k)
4
= |X̃ ′

l(k)|

Θl(k)
4
= 6 X̃ ′

l(k) (radians) (2.28)

2.7 Summary of the STFT Synthesis

Below are described the steps for a computer implementation of the STFT-synthesis by
using what is called overlap-add reconstruction.

1. Apply any desired modification to the magnitude and phase spectra, such as multi-
plying it by a filter frequency response function, to obtain the modified frame spectra
Âl(k) and Θ̂l(k).
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2. Convert each FFT bin from polar to rectangular form to get back the complex number
in each FFT bin,

Re{Sl(k)} 4
= Âl(k) cos[Θ̂l(k)]

Im{Sl(k)} 4
= Âl(k) sin[Θ̂l(k)] (2.29)

3. Inverse FFT Sl to obtain a time waveform,

sl(m) =
1
N

N/2−1∑
k=−N/2

Sl(k)ejωkm (2.30)

When modifications are performed on the phase spectrum apply a synthesis window
to the resulting sl(m).

4. Reconstruct the final output by overlapping and adding the output frames,

s(n) =
L−1∑
l=0

sl(n− lH) (2.31)

2.8 Examples

The STFT is an identity system, independent of the parameter settings, as long as the
analysis windows overlap and add to one. There is only relevance in the parameters when
some modification is desired on the analysis data.

The following example shows the identity property of the STFT plus its capability to
stretch a sound by integer factors. For examples of filtering using the STFT see appendix
B.
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2.8.1 Sound example 1

Excerpt from the Gloria of the Mass in C minor, K427, by Wolfgang Amadeus Mozart.
(sampling-rate = 34000, length = 12 sec.)

Analysis parameters: window-type = Hamming, window-length = 2048 samples (.06 sec),
FFT-size = 2048 samples, hop-size = 256 samples (.0075 sec).

1. original sound

2. synthesis from the STFT analysis

3. synthesis with a time expansion by a factor of 2

The time expanded synthesis is the result of doubling the hop size in the inverse-STFT
from 256 samples to 512 samples (notice that the final overlap is still 1/4 of the window
length).

The resynthesis without modifications is clearly identical to the original sound. The
resynthesis with time expansion has quite a bit of distortion.

2.9 Conclusions

In this chapter the short-time Fourier transform (STFT) has been presented. This
analysis/synthesis technique can be thought of as the time-varying version of the Fourier
transform, in which a sound is represented by a set of complex spectra. For the purpose of
this dissertation, the STFT is not appropriate for the manipulation of sounds; only limited
time scaling and filtering are possible.12 However it is an excellent intermediate technique
for more suitable analysis/synthesis systems. The next chapter presents a simplification of
the STFT that gives a more flexible sound representation.

12The Phase-vocoder is a more flexible STFT implementation which allows for better time-scaling trans-
formations plus frequency transposition of sounds. However, there has been no need to discuss this technique
in detail.
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Chapter 3

A Sinusoidal Model

3.1 Introduction

The analysis/synthesis technique presented in the previous chapter, the STFT, is not
a flexible sound representation, and thus, not very appropriate for sound modifications.
However, it is useful as the basis of more suitable representations. In this chapter a sinusoidal
representation based on the STFT is introduced that is characterized by the amplitudes,
frequencies, and phases of the component sine waves. The representation results from
following the amplitude, frequency, and phase of the most prominent peaks over time in
the series of spectra returned by the STFT. From this representation, or a modification
of it, a sound is generated by synthesizing a sine wave for each peak trajectory found. In
the absence of modifications the process can produce a perceptual identity; that is, the
synthesized sound can be made to be perceptually equal to the original one. The analysis
results can be modified to obtain new sounds in the synthesis process.

This kind of system can be understood as an instantiation of a tracking phase-vocoder
(Dolson, 1983) in which there are a set of band-pass filters and each filter follows and
extracts a particular energy component of the input sound. The traditional phase-vocoder
(Flanagan, 1966; Portnoff, 1976) is the particular case in which the filters are equally spaced
and non-time-varying. We can also interpret the sinusoidal representation as a simplification
of the output of the STFT, where only the relevant spectral peaks are taken from the set of
spectra returned by the STFT. These peaks, each representing a sinusoid, are then grouped
into frequency trajectories.

Sinusoidal representations have been used extensively in music applications (Risset and
Mathews, 1969; Grey, 1975; Moorer, 1973, 1975, 1977, 1978; Strawn, 1980). However
the particular sinusoidal representation discussed in this chapter has only recently been
proposed and used (McAulay and Quatiery, 1984, 1986; Quatiery and McAulay, 1986; Smith
and Serra 1987; Maher 1989). This representation has proved to be more general than the
previous sinusoidal representations. For the purpose of this thesis its interest is as an
analysis/transformation/synthesis system, where sounds can be analyzed and transformed
in different ways before resynthesis. It will be shown that even though it is more flexible than
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the STFT as a sound modification technique, sinusoidal representations are not appropriate
for manipulating sounds that have noise components. In the next two chapters, alternative
representations that extend this one are presented to include such sounds.

In this chapter, the model which serves as the basis for the sinusoidal representation
is presented first. Then, there is a general description of the system, and in the following
sections the different steps involved in the process are discussed. The chapter ends with a
summary of the system, a presentation of some sound examples, and conclusions.

3.2 The Sinusoidal Model

The sinusoidal model is the basis for the analysis/synthesis system presented in this
chapter. In this model the waveform s(t) is assumed to be the sum of a series of sinusoids,

s(t) =
R∑

r=1

Ar(t) cos[θr(t)] (3.1)

where R is the number of sine-wave components, Ar(t) the instantaneous amplitude and
θr(t) the instantaneous phase. This instantaneous phase is defined by:

θr(t) =
∫ t

0
ωr(τ)dτ + θr(0) + φr (3.2)

where ωr(t) is the instantaneous radian frequency, θr(0) the initial phase value, and φr the
fixed phase offset, which accommodates the fact that the sine waves are generally not in
phase.

3.3 General Description of the System

Figure 3.1 shows a general block diagram of a system based on the sinusoidal model.
It starts by computing the STFT, in the manner presented in Chapter 2. Then, from
the magnitude and phase spectra returned by the STFT, a series of peak trajectories are
extracted by a peak detection and a peak continuation algorithm. Each trajectory represents
a sinusoid characterized by time-varying phase, frequency, and magnitude values. The
synthesis part of the system uses the peak trajectories to generate sine waves that are
added to create the final synthesized waveform.
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Figure 3.1: General block diagram of the sinusoidal system.

3.4 Computation of the Magnitude and Phase Spectra

The analysis/synthesis system starts by computing a set of spectra with the STFT.
Since the details of this computation were discussed in the previous chapter, only the
distinct aspects affecting the current system are mentioned here.

The sinusoidal system detects the prominent spectral peaks out of the magnitude and
phase spectra of the sound. Thus, conversion of each spectrum from rectangular to polar
coordinates is required. Then, since the system detects the prominent peaks in the magni-
tude spectra, it is important to have the peaks as well resolved as possible. It was shown
in Chapter 2 that zero-padding results in a smoother spectrum, making the peak detection
easier and more accurate. Here, the zero-padding factor should be as large as it is practical.

Another point concerning the STFT is related to the synthesis part of the system. The
synthesis process is based on an additive synthesis model, not an overlap-add one. This
implies that the restriction imposed for the overlap-add method, that the analysis windows
add to a constant (or close to it), is unnecessary. Now the hop-size of the analysis window,
a parameter that affects the overlap factor, is more flexible than in an overlap-add synthesis
process.
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3.5 Spectral Peak Detection

Once the set of complex spectra of a sound is computed and converted to polar coordi-
nates, the system extracts the prominent peaks of each spectrum. In this section, the peak
detection algorithm is described.

A peak is defined as a local maximum in the magnitude spectrum |Xl(k)|, where l is the
frame number. If kβ is a bin number in the spectrum, then its value is a maximum when

|X(kβ − 1)| ≤ |X(kβ)| ≥ |X(kβ + 1)| (3.3)

However not all the peaks are equally prominent in the spectrum and it is important to have
control over their selection. This is done by measuring the height of the peaks in relation
to the neighboring valleys. Where the neighboring valleys are the closest local minima on
both sides of the peak. If the detected valleys for X(kβ) are X(kγ−) and X(kγ+), left and
right respectively, then a measure of the peak height, h(kβ), is determined by

h(kβ)
4
=

|X(kβ)|
[|X(kγ−)|+ |X(kγ+)|]/2

(3.4)

For perceptual purposes it is useful to convert the magnitude into decibels (dB) by

X̂(k) = 20 log10 |X(k)| (3.5)

where X(k) is the linear magnitude spectra and X̂(k) is the magnitude spectra in dB. Then,
the peak height is redefined as

h(kβ)
4
= X̂(kβ)−

[
X̂(kγ−) + X̂(kγ+)

]
2

(3.6)

A parameter in the peak detection algorithm, called minimum-peak-height, uses this measure
to control the minimum height (in dB) at which a peak is detected.

This is more complex because not all peaks of the same height are equally relevant
perceptually, their amplitude and frequency is very important. There are many factors
which intervene on this issue and it can become an extremely complicated problem. Here,
a very simple method is devised that controls the frequency and magnitude ranges to be
considered in each spectrum. A more elaborate strategy is proposed by Terhardt (Terhardt,
Stoll and Seewann, 1982a, 1982b) for the purpose of perceptual analysis, which however, is
not appropriate in an analysis/synthesis system.

The spectral peaks are searched within a frequency-range described by its lower and
upper bounds. If fl and fh are these bounds in Hz, the corresponding frequency bins, kl

and kh, are then obtained by

kl = flN/fs

kh = fhN/fs (3.7)
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where N is the FFT-size and fs the sampling rate.

By choosing an appropriate range, regions outside the auditory frequency range are
discarded. Practical values for fl and fh are 20Hz and 16KHz respectively.

The selection of a magnitude range is more complicated. First, since the perception of
magnitude is approximately logarithmic, it is important to use a dB scale as calculated in
equation 3.5. For convenience, the maximum value is set to 0dB. Then, the magnitude range
is specified by a number that expresses the lowest dB magnitude that the peak detection
algorithm will search for. In most situations it is important to have two different ranges, one
relative to the overall sound (general-dB-range) and another one relative to the maximum
magnitude of the current frame (local-dB-range). For each spectrum the two ranges are
compared and the widest one is taken. Typical bottom values of the ranges are −70dB for
the overall one and −60dB for the local one. Then, for example, if a peak is at −75dB in
a spectrum whose local maximum is 30dB below the overall maximum (the peak is 45dB
down from the local maximum), this peak is detected since it is inside the local range, even
though is outside the overall range. Thus, in a quiet passage softer peaks are detected,
mimicking the auditory system.

Another attribute of the auditory system is that it does not necessarily perceive two
different frequency components of the same complex tone (e.g., two partials) with the same
physical magnitude as being equally loud. The equal loudness curve across the frequency
range is not flat. Thus, prior to the peak detection, we might want to equalize the magnitude
spectrum according to an equal-loudness criterion. The problem is to find the appropriate
equal-loudness curve to use. Unfortunately, the data of traditional loudness experiments
are valid only for the comparison of separate tones, whether they are sinusoids (Fletcher
and Munson, 1933) or complex tones (Zwicker and Scharf, 1965). Here we are dealing with
components of a complex tone, not independent tones, and there is no conclusive literature
on this subject. A practical compromise is to design a smooth function which approximates
one of the equal loudness curves from Fletcher and Munson (Fletcher and Munson, 1933).
We have chosen the 40dB curve, whose approximation is given by the function

Q(x) = x10−x (3.8)

where

x = .05 +
4000

f
(3.9)

and f is the frequency in Hz. This function is then applied to every spectrum, independent
of the specific magnitude of each component frequency. In Figure 3.2 this function and its
effect on a spectrum are shown.
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Figure 3.2: Applying an equal-loudness curve to a spectrum: (a) equal-loudness curve,
(b) magnitude spectrum of a saxophone sound, (b) equalized spectrum.
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3.5.1 Peak interpolation

Due to the sampled nature of the spectra returned by the STFT, each peak–a spectral
bin that is a local maximum–is accurate only to within half a sample. A bin (sample in the
frequency spectrum) represents a frequency interval of fs/NHz, where N is the FFT size.
As we saw in Chapter 2, zero-padding in the time domain increases the number of DFT bins
per Hz and thus increases the accuracy of the simple peak detection. However, to obtain
frequency accuracy on the level of 0.1% of the distance from the top of the sinc function to
its first zero crossing (in the case of a rectangular window), the zero-padding factor required
is 1000. Since we take at least two periods in the data frame (for a Rectangular window), a
100Hz sinusoid at a sampling rate of 50KHz has a period of 50, 000/100 = 500 samples, so
that the FFT size must exceed one million. A more efficient spectral interpolation scheme is
to zero-pad only enough so that quadratic (or other simple) spectral interpolation, using only
bins immediately surrounding the maximum-magnitude bin, suffices to refine the estimate
to 0.1% accuracy.

We have seen that a sinusoid appears as a shifted window transform, which is a sinc-like
function. A robust method for estimating peak frequency of stable sinusoidal components
with very high accuracy fits a window transform to the sampled spectral peaks by cross-
correlating the whole window transform with the entire spectrum and taking an interpolated
peak location in the cross-correlation function as the frequency estimate. This method offers
much greater immunity to noise and to interference from other signal components. But such
a method is computationally very expensive and not appropriate for peaks which do not
correspond to stable sinusoidal components. For the current system a practical solution is
to use a parabolic interpolator which fits a parabola through the highest three samples of
a peak to estimate the true peak location and height (Smith and Serra, 1987), as shown in
Fig. 3.3.

To describe the parabolic interpolation strategy, let us define a coordinate system cen-
tered at (kβ , 0), where kβ is the bin number of a spectral magnitude maximum (Fig. 3.3).
We desire a general parabola of the form

y(x)
4
= a(x− p)2 + b, (3.10)

where p is the center of the parabola, a is a measure of the concavity, and b is the offset.
In the current problem we set y(−1) = α, y(0) = β, and y(1) = γ, where α, β, and γ are
the values of the three highest samples,

α
4
= 20 log10 |X(kβ − 1)|

β
4
= 20 log10 |X(kβ)|

γ
4
= 20 log10 |X(kβ + 1)| (3.11)



46 CHAPTER 3. A SINUSOIDAL MODEL

Figure 3.3: Parabolic interpolation: (a) illustration on a spectral peak, (b) coordinates to
perform the interpolation.
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It has been found empirically that the frequencies tend to be about twice as accurate
when dB magnitude is used rather than linear magnitude.

Solving for the parabola peak location p, we get

p =
1
2

α− γ

α− 2β + γ
(3.12)

then the estimate of the true peak location (in bins) is

k∗
4
= kβ + p (3.13)

and the peak frequency in Hz is fsk
∗/N . Using p, the peak height (magnitude) estimate is

then
y(p) = β − 1

4
(α− γ)p (3.14)

In the system, the magnitude spectrum is used only to find p, but y(p) is computed
separately for the real and imaginary parts of the complex spectrum to yield a complex-
valued peak estimate (magnitude and phase). The result of the peak detection algorithm
is a triad of the form (Â, ω̂, ϕ̂) for every peak, where Â is the estimated amplitude of the
peak, ω̂ the radian frequency, and ϕ̂ the phase.

The success of the parabolic interpolation depends on the analysis window used. Among
all the windows the Gaussian is, in theory, particularly suited for parabolic interpolation.
This window, which is of the form

w(x) = e−(1/2)x2
(3.15)

transforms to a Gaussian window (Harris, 1978), and its log is just a parabola,

ln[w(x)] = −1
2
x2 (3.16)

Thus, parabolic interpolation in the dB spectrum is perfect for the Gaussian window. How-
ever, this window does not terminate and in practice it is truncated, discarding the tails.
Then, the perfect interpolation is lost in part. A possible compromise is to taper the ends
of the window smoothly, with, for example, a Kaiser window, thus preserving some of the
characteristics.

It is important to normalize the amplitude values returned by the peak detection in
such a way that they correspond to the actual sinusoidal amplitudes. Then the synthesis
generates sinusoids which reproduce the amplitudes of the original sound. The amplitude
of the spectral peak is dependent on the analysis window used. In order to normalize it the
measured amplitude is multiplied by a scale factor,

α =
2

W (0)
(3.17)
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where W (0) is the value of the window transform at time 0, which can be calculated in the
time domain by

W (0) =
M−1∑
m=0

w(m) (3.18)

where w(n) is the time domain window and M is the window-length.

Figure 3.4 shows the result of the peak detection algorithm on a magnitude and a phase
spectrum.

3.6 Spectral Peak Continuation

The peak detection process returns the estimated magnitude, frequency, and phase of
the prominent peaks in a given frame sorted by frequency. The next step is to assign these
peaks to frequency trajectories using the peak continuation algorithm. If the number of
spectral peaks were constant with slowly changing amplitudes and frequencies, this task
would be straightforward. However, this is not often the case.

There are many possibilities for such a process. Here, we present a simple and general
method which is adequate for the analysis/synthesis system of this chapter. This algorithm
is used by McAulay and Quatiery in their sinusoidal representation (McAulay and Quatiery,
1986). A more complex algorithm is developed in Chapter 4 for a different type of system.

To describe the peak continuation process let us assume that the frequency trajectories
are initialized at frame 1 and that we are currently at frame n. Suppose that at frame n−1
the frequency values for the p track are f1, f2, . . . , fp, and that we want to match them to
the r peaks of frame n, with frequencies g1, g2, . . . , gr.

Each trajectory looks for its peak in frame n by finding the one which is closest in
frequency to its current value. The ith trajectory claims frequency gj for which |fi −
gj | is minimum. The change in frequency must be less than a specified maximum ∆fi,
which can be frequency-dependent (e.g., linear, corresponding to a relative frequency change
limit). The parameter controlling this value is called maximum-peak-deviation. The possible
situations are as follows:

1. If a match is found inside the maximum-peak-deviation, the trajectory is continued
(unless there is a conflict to resolve, as described below).

2. If no match is made, it is assumed that the trajectory with frequency fi must be
“killed” entering frame n, and fi is matched to itself with zero magnitude. Since the
track amplitudes are linearly ramped from one frame to the next, the terminating
trajectory ramps to zero over the duration of one hop size.
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Figure 3.4: Peak detection on a spectrum of a piano attack sound: (a) magnitude spec-
trum, (b) phase spectrum.
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Figure 3.5: Illustration of the peak continuation process.

3. If a trajectory finds a match that has already been claimed by another one, we give
the peak to the trajectory which is closest in frequency, and the “loser” looks for
another match. If the current trajectory loses the conflict, it simply picks the best
available non-conflicting peak which is inside the allowable deviation. If the current
trajectory wins the conflict, it calls the assignment procedure recursively on behalf
of the dislodged trajectory. When the dislodged trajectory finds the same peak and
wants to claim it, it sees that there is a conflict which it loses and will move on. This
process is repeated for each trajectory, solving conflicts recursively, until all existing
tracks are matched or “killed.”

After each trajectory has extended itself forward in time, or turned off, the peaks of
frame n which have not been used are considered to be new trajectories and a new trajectory
is “born” for each one of them up to the maximum number of tracks specified. The new
trajectories are started at frame n − 1 with zero magnitude, and ramped to the correct
amplitude at the current frame n. A few frames of the peak-matching process are illustrated
by Fig. 3.5.
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3.7 Sinusoidal Synthesis

The peak continuation algorithm returns the values of the prominent peaks organized
into frequency trajectories. Each peak is a triad (Âl

r, ω̂
l
r, ϕ̂l

r) where l is the frame number
and r the track number to which it belongs.

The synthesis process takes these trajectories, or their modification, and computes one
frame of the synthesized sound s(n) by

sl(m) =
Rl∑

r=1

Âl
r cos[mω̂l

r + ϕ̂l
r], m = 0, 1, 2, . . . , S − 1 (3.19)

where Rl is the number of trajectories present at frame l and S is the length of the synthesis
frame.1 The final sound s(n) results from the juxtaposition of all the synthesis frame (i.e.,
there is no overlap). To avoid “clicks” at the frame boundaries, the parameters (Âl

r, ω̂
l
r, ϕ̂l

r)
are smoothly interpolated from frame to frame.

Let (Â(l−1)
r , ω̂

(l−1)
r , ϕ̂

(l−1)
r ) and (Âl

r, ω̂
l
r, ϕ̂

l
r) denote the sets of parameters at frames l− 1

and l for the rth frequency trajectory (we will simplify the notation by omitting the subscript
r). These parameters are taken to represent the state of the signal at time 0 (the left
endpoint) of the frame.

The instantaneous amplitude Â(m) is easily obtained by linear interpolation,

Â(m) = Âl−1 +
(Âl − Âl−1)

S
m (3.20)

where m = 0, 1, . . . , S − 1 is the time sample into the lth frame.

Frequency and phase values are tied together (frequency is the phase derivative), and
both control the instantaneous phase θ̂(m), defined as

θ̂(m) = mω̂ + ϕ̂ (3.21)

Given that four variables affect the instantaneous phase: ω̂(l−1), ϕ̂(l−1), ω̂l, and ϕ̂l,
we need three degrees of freedom for its control, but linear interpolation gives only one.
Therefore, we need a cubic polynomial as an interpolation function,

θ̂(m) = ζ + κm + ηm2 + ιm3 (3.22)

1A synthesis frame is S samples long and does not correspond to an analysis frame. Without time scaling
the synthesis frame l goes from the middle of the analysis frame l− 1 to the middle of the analysis frame l,
i.e., corresponds to the analysis hop size.
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It is unnecessary to go into the details of solving this equation since they are described
by McAulay and Quatieri (McAulay and Quatieri, 1986). The result is

θ̂(m) = ϕ̂(l−1) + ω̂(l−1)m + ηm2 + ιm3 (3.23)

where η and ι are calculated using the end conditions at the frame boundaries,

η =
3
S2

(ϕ̂l − ϕ̂l−1 − ω̂l−1S + 2πM)− 1
S

(ω̂l − ω̂l−1)

ι = − 2
S3

(ϕ̂l − ϕ̂l−1 − ω̂l−1S + 2πM) +
1
S2

(ω̂l − ω̂l−1) (3.24)

This gives a set of interpolating functions depending on the value of M , among which we
select the maximally smooth function. This is done by choosing M to be the integer closest
to x, where x is

x =
1
2π

[
(ϕ̂l−1 + ω̂l−1S − ϕ̂l) +

S

2
(ω̂l − ω̂l−1)

]
(3.25)

Finally, the synthesis equation for frame l becomes

sl(m) =
Rl∑

r=1

Âl
r(m) cos[θ̂l

r(m)] (3.26)

which goes smoothly from frame to frame with each sinusoid accounting for both the rapid
phase changes (frequency) and the slowly varying phase changes (Fig. 3.6).

3.8 Representation Modifications

The possibilities that this analysis/synthesis system offers for sound transformations
have a number of musical applications. Quatieri and McAulay (Quatieri and McAulay,
1986) indicate some useful modifications for speech applications and Smith and Serra (Smith
and Serra, 1987) discuss more musical applications. All the modifications are obtained by
scaling and/or resampling the amplitude and the frequency trajectories.

Time-scale modifications are accomplished by resampling the amplitude, frequency, and
phase trajectories. This is done by changing the synthesis frame-size, slowing down or
speeding up the sound while maintaining pitch and formant structure. A time-varying
frame-size gives a time-varying modification. However, due to the sinusoidal nature of the
representation, a considerable time stretch in a “noisy” part of a sound, causes the individual
sine waves to be heard and the noise-like quality is lost.

Frequency transformations, with or without time scaling, are also possible. A simple one
is to scale the frequencies to alter pitch and formant structure together. A more powerful
class of spectral modifications comes about by decoupling the sinusoidal frequencies (which
convey pitch and inharmonicity information) from the spectral envelope (which conveys
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Figure 3.6: Example of the frame to frame interpolation used in the synthesis process. A,
f, and p are the amplitude frequency and phase values respectively.

formant structure so important to speech perception and timbre). By measuring the formant
envelope of a harmonic spectrum (e.g., by drawing straight lines or splines across the tops
of the sinusoidal peaks in the spectrum and then smoothing), modifications are introduced
which alter only the pitch or only the formants.

3.9 Magnitude-Only Analysis/Synthesis

A traditional principle of sound perception is that the ear is mainly sensitive to the short-
time spectral magnitude and not to the phase, provided phase continuity is maintained.
Our experience has been that this depends on the sound and application. If the phase
information is discarded, the analysis, modification, and synthesis processes are simplified
enormously. Thus, it is better to use the magnitude-only option of the system whenever
auditory considerations permit.

In the peak-detection process, we calculate the magnitude and phase of each peak by
using the complex spectrum. Once we decide to discard the phase information, there is
no need for complex spectra, and the magnitude of the peak is calculated by doing the
parabolic interpolation directly on the log magnitude spectrum.
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The synthesis also becomes easier; there is no need for a cubic function to interpolate
the instantaneous phase. The phase becomes a function of the instantaneous frequency, and
we only require phase continuity at the frame boundaries. Therefore, the frequency, like
the amplitude, can be linearly interpolated from frame to frame. Without phase matching
the synthesized waveform looks very different from the original (Fig. 3.7), but for many
applications the perceived sound quality is the same.

3.10 Summary of the Technique

To summarize the technique presented in this chapter let us enumerate the main steps
that are carried out. Figure 3.8 shows a block diagram.

1. Perform a STFT with specific values for window-type, window-length, FFT-size, and
hop-size,

Xl(k)
4
=

N−1∑
n=0

w(n)x(n + lH)e−jωkn, l = 0, 1, 2, . . . (3.27)

where w(n) is the analysis window, l the frame number, and H the hop-size. The
result is a series of complex spectra.

2. Convert to polar coordinates,

Al(k)
4
= |Xl(k)|

Θl(k)
4
= 6 Xl(k) (radians) (3.28)

3. Convert each magnitude spectrum to dB magnitude,

X̂l(k) = 20 log10 Al(k) (3.29)

4. Find prominent spectral peaks by using the peak detection algorithm, given the
minimum-peak-height in dB, and the frequency and amplitude ranges.

5. Perform a parabolic interpolation to refine the peak location (frequency), the peak
height in the magnitude spectra (amplitude), and the phase value. This returns
amplitude, frequency, and phase estimates of the form (Â, ω̂, ϕ̂).

6. Assign each peak to a frequency trajectory by matching the peaks of the previous
frame with the current one. These trajectories are “born,” or “killed” at any frame
by ramping the amplitude from or toward 0.

7. Apply any desired modification to the analysis parameters before resynthesis.
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Figure 3.7: Sinusoidal synthesis example: (a) original cello sound, (b) synthesis using
phase information, (c) synthesis without phase information.
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Figure 3.8: Block diagram of the sinusoidal system.

8. Generate a sine wave for each frequency trajectory, and sum them all,

sl(m) =
Rl∑

r=1

Âl
r(m) cos[θ̂l

r(m)] (3.30)

The instantaneous amplitude, and phase for each sine wave are calculated by interpo-
lating the values from frame to frame. The length of the synthesis frame is equal to
the hop size H (unless time expansion or compression is desired), which is typically
some fraction of the window length M .

3.11 Examples

The sinusoidal analysis/synthesis system is more flexible than the STFT. The following
two examples show some of the possibilities of the sinusoidal representation, first on a
complex musical excerpt and then on a more simple one.
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3.11.1 Sound example 2

Excerpt from “El Amor Brujo” by Manuel de Falla. (sampling-rate = 34000, length
= 6.8 sec.)

Analysis parameters: window-type = Kaiser (β = 2), window-length = 1601 samples
(.047 sec.), FFT-size = 2048 samples, hop-size = 400 samples (.012 sec.), local-dB-range
= 75dB, general-dB-range = 85dB, minimum-peak-height = .5dB, frequency-range = 30Hz–
16KHz, maximum-peak-deviation = 80Hz, number-trajectories = 250.

1. original sound

2. synthesis with phase

3. synthesis without phase

4. synthesis with time expansion by factor of 1.68

5. synthesis with frequency transposition by factor of 1.4

6. synthesis with frequency transposition by factor of .8

The synthesis has some modulation which is the result of not tracking enough peaks
(only 250). For a higher quality version many more trajectories are required.

The difference between the synthesis with phase and the one without phase is minimal.
It is more noticeable with sounds with a prominent noise component.

The sound transformations presented are quite successful, however bigger stretches or
more pronounced frequency transpositions result in noticeable problems. The most common
one is that the component sine waves do not fuse together.
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3.11.2 Sound example 3

Guitar passage. (sampling-rate = 34000, length = 7.14 sec.)

Analysis parameters: window-type = Kaiser (β = 2.5), window-length = 801 samples
(.024 sec.), FFT-size = 2048 samples, hop-size = 200 samples (.0059 sec.), local-dB-range
= 70dB, general-dB-range = 75dB, minimum-peak-height = .5dB, frequency-range = 30Hz–
16KHz, maximum-peak-deviation = 80Hz, number-trajectories = 150.

1. original sound

2. synthesis with phase tracking

3. synthesis without phase tracking

4. synthesis with time expansion by a factor of 1.45

Due to the simplicity of the sound, compared with the previous example, the synthesis
is successful with only 150 sinusoids. However the attacks of the guitar sound are very
sensitive to transformation and very easily the noise component present in it acquires a
tonal quality.

3.12 Conclusions

In this chapter, an analysis/synthesis system based on a sinusoidal model has been
presented. The resulting representation is characterized by the amplitudes, frequencies, and
phases of the component sine waves. This system is more flexible than the one presented
in Chapter 2 and a wider variety of sound transformations can be performed. However
it is still not ideal, especially for sounds with noise components. In the next chapter, a
modification to the sinusoidal system is made in order to accommodate noise.
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Chapter 4

A Deterministic plus Residual Model

4.1 Introduction

The sinusoidal model presented in the previous chapter is not appropriate for the ma-
nipulation of sounds that contain noise components. Noise does not lend itself easily to a
sinusoidal representation. For example, the breathy part of a flute sound, the attack of a
drum stroke, or the sound of rain, are not well represented by sinusoids. In this chapter an
alternative model is introduced which considers a sound to be composed of a deterministic
part plus a residual.

A deterministic signal is traditionally defined as anything that is not noise (i.e., a per-
fectly predictable part, predictable from measurements over any continuous interval). How-
ever in the present discussion the class of deterministic signals considered is restricted to
sums of quasi-sinusoidal components (sines with piecewise linear amplitude and frequency
variation). Each sinusoid models a quasi sinusoidal component of the original sound and it
is an independent element which can be synthesized by itself. By contrast, in the sinusoidal
model, each sinusoid modeled a peak in the spectrum (not always a sinusoidal component)
and it was only the sum of all sinusoids that made any sense. In more musical terms the
deterministic component models the partials1 of the sound, not just any energy. The resid-
ual is then defined as the difference between the original and the estimated deterministic
part. In musical instruments this residual generally comprises the energy produced by the
excitation mechanism (e.g., the bow in a string instrument) that is not transformed by the
resonating body into stationary vibrations, plus any other energy component that is not
sinusoidal in nature. The sum of the two components results in the original sound.

This decomposition technique does not allow extensive modifications of the representa-
tion. While the deterministic component can be modified easily, the residual (a waveform)
is difficult to transform. In this respect it is a step backwards in attaining the goal of
this dissertation. However, this technique is an intermediate step en route to the next

1A partial is a sinusoidal component of a sound that usually corresponds to a mode of vibration of the
producing sound system.
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chapter, where, by making some assumptions about both the deterministic and residual
components, a more flexible representation is obtained. Nevertheless, it will be shown how
this decomposition method is useful in itself for a variety of applications.

In this chapter the decomposition system is elaborated. First, the deterministic plus
residual model, the basis for the technique, is presented, followed by a general description
of the system. The next sections include a detailed discussion of the steps carried out by
the decomposition process. The chapter ends with a summary of these different steps, some
examples, and a conclusion.

4.2 The Deterministic plus Residual Model

A sound model assumes certain characteristics of the waveform or of the sound gener-
ation mechanism. In general, every analysis/synthesis technique has an underlying model.
For example, many speech analysis/synthesis techniques are based on what is known as
the speech production model (Rabiner and Schafer, 1978). Such a model assumes that a
speech waveform s(t) is the result of passing a glottal excitation waveform e(t) through a
linear time-varying filter h(t, σ) that models the characteristics of the vocal tract. If the
time-varying impulse response of the vocal tract filter is h(t, σ), then

s(t) =
∫ t

0
h(t, t− τ)e(τ)dτ (4.1)

Thus, the speech waveform is the convolution of the filter h(t, σ) with the excitation e(t).

In the current system, the deterministic-plus-residual model considers a waveform s(t)
as the sum of a series of sinusoids plus a residual e(t),

s(t) =
R∑

r=1

Ar(t) cos[θr(t)] + e(t) (4.2)

where R is the number of sinusoids, Ar(t) is the instantaneous amplitude and θr(t) the
instantaneous phase. The residual is the difference between the signal and the deterministic
part. This deterministic component is defined in the same way as in the sinusoidal model,
thus the instantaneous phase θ(t) is defined (as in equation 3.2) by

θr(t) =
∫ t

0
ωr(τ)dτ + θr(0) + φr (4.3)

where ωr(t) is the instantaneous radian frequency, θr(0) is the initial phase value, and φr is
the fixed phase offset. The only differences between the deterministic and sinusoidal model
are that: (1) we now keep a residual signal, and (2) now the sinusoids are restricted to be
stable (i.e., follow stable quasi-sinusoidal components), thus they model only the partials
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Figure 4.1: General diagram of the deterministic plus residual system.

of the sound. In the sinusoidal model, spectral peaks need not form meaningful long-term
trajectories.

The deterministic part is now more constrained, but the new residual signal actually
increases the generality of the model with respect to the sinusoidal one.

4.3 General Description of the System

We use the deterministic-plus-residual model to develop a system that decomposes a
sound into a sum of sinusoids plus a residual. A general diagram of the method is shown
in Fig. 4.1. The process starts by computing a set of magnitude and phase spectra from
a sound with the STFT. From these spectra, sinusoidal trajectories are found with peak
detection and peak continuation algorithms. The behavior of the peak trajectories is more
restrained than in the system of Chapter 3 in order to accommodate the “deterministic
signal” concept, and a new peak continuation algorithm is presented in this chapter for
this purpose. The sinusoids are then generated with additive synthesis, and the residual is
calculated simply by subtracting the deterministic signal from the original waveform.

In the next sections, a detailed discussion of each step is presented.
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4.4 Computation of the Magnitude and Phase Spectra

The computation of the magnitude and phase spectra is the first step in the decompo-
sition technique. It is in the spectrum that the sinusoids are tracked and the decision takes
place as to whether a part of the signal is considered deterministic or residual. The compu-
tation of the spectra is carried out by the STFT using the steps and criteria presented in
Chapter 2. It is important to set the parameters (window-length, window-type, FFT-size,
and hop-size) in accordance with the sound to be processed.

There are two points to be considered when setting the STFT parameters. The first
is that a good resolution of the sinusoidal peaks is desired, more so than in the sinusoidal
system of Chapter 3, because the process that extracts the sinusoids must isolate the peaks
which correspond to the deterministic component. The second point is that the phase infor-
mation is particularly important in this decomposition technique. Therefore (as discussed
in Chapter 2) the STFT should use an odd-length analysis window and the windowed data
should be centered in the FFT-buffer at the origin in order to obtain a constant-phase
spectrum.

The result of this computation is a complex spectrum of the form Xl(k), where l is the
frame number and k is the frequency-bin index in the spectrum, for every frame. Then, by
changing the coordinates from rectangular to polar, the magnitude and phase spectra are
obtained.

4.5 Spectral Peak Detection

Once the set of magnitude and phase spectra are computed, the next step is to find the
prominent peaks in every spectrum. The process is the same as for the sinusoidal system.

The restriction added to the sinusoids of this model, i.e., that they be partials of the
sound, does not change the peak detection algorithm. Theoretically, a partial (a sinusoid)
that is stable both in amplitude and in frequency has a well defined frequency representation,
the transform of the analysis window used to compute the Fourier transform. It should be
possible to take advantage of this characteristic to distinguish partials from other frequency
components. However, in practice this is rarely the case since most natural sounds are not
perfectly periodic and do not have nicely spaced and clearly defined peaks in the frequency
domain. There are interactions between the different components and the shape of the
spectral peaks cannot be used in the peak detection process. Only some instrumental
sounds (e.g., the steady-state part of a violin or oboe sound) are periodic enough and
sufficiently free from prominent noise components that the frequency representation of a
stable sinusoid could be used in the peak detection.
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Figure 4.2: Example of a surface of spectral peaks. The size of each dot represents the
amplitude of the peak.

A practical solution is to detect as many peaks as possible and delay the decision of
deterministic, or “well behaved partial,” to the next step in the system, the peak continua-
tion algorithm. Nonetheless, some simple control of the peak detection process is achieved
through the minimum-peak-height parameter and the specification of the magnitude and
frequency ranges where the search for peaks takes place, thus rejecting areas of the mag-
nitude spectrum which are known to have irrelevant partials. This results in fewer peaks,
thus making the peak continuation process easier and faster.

4.6 Spectral Peak Continuation

Once the spectral peaks have been detected, a subset of them is organized by the peak
continuation algorithm into peak trajectories. The design of such an algorithm can be
approached as a line detection problem, where out of a surface of discrete points, each one
being a peak (as shown in Fig. 4.2), the algorithm finds lines according to the characteristics
imposed by the model.

Approaches to this type of problem are found in the image processing literature under
line and edge detection (Rosenfeld, 1969; Tou and Gonzales, 1974; Wahl, 1987), and in the
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Figure 4.3: Tracking error of the peak continuation algorithm presented in Chapter 3.
The dotted line is the actual continuation of the partial which the algorithm is not able to
follow.

estimation and detection theory literature under extraction of sine waves from Gaussian
noise (Van Trees, 1968; Wolcin, 1980). However, the algorithms found on both types of
literature are difficult to apply to this particular situation. The alternative has been to
adapt the sequential scheme of the peak continuation algorithm of Chapter 3 to the current
model.

The algorithm presented in Chapter 3 finds peak trajectories both in the noise and
deterministic parts of a waveform, thus obtaining a sinusoidal representation for the whole
sound. That algorithm is unsuitable when it is desired that each partial be extracted
by a single trajectory; it is unlikely for a trajectory to follow a particular partial. The
trajectories are easily turned on and off whenever the peaks pertaining to a partial are not
perfectly linearly aligned. For example, when the partials change in frequency substantially
from frame to frame, the algorithm easily switches from the partial that it was tracking
to another one which at that point is closer. Figure 4.3 shows a typical example of this
problem. These tracking errors are responsible in part for the distortions created in the
synthesis when some transformations are done to the sinusoidal representation.

In this chapter the objective is to design an algorithm such that: (1) only the clear and
stable partials of a sound are tracked, and (2) each partial belongs to a single trajectory.

xserra
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4.6.1 Description of the peak continuation algorithm

The input to the algorithm is the set of peaks returned by the peak detection process.
The output is a subset of the same peaks ordered into trajectories, where each trajectory
represents a stable sinusoid.

The algorithm is intended for a variety of sounds. The behavior of a partial, and
therefore the way to track it, varies depending on the sound. Whether it is speech, an
instrumental sound with a harmonic spectrum, a sound of a gong, a sound of an animal,
or any other, the time evolution of the component partials will vary. Thus, the algorithm,
apart from being general, requires some knowledge about the characteristics of the sound
that is being analyzed. In the current algorithm there is no attempt to make the process
completely automatic. The user is expected to know some of the characteristics of the sound
beforehand, specifying them through a set of parameters.

The basic idea of the algorithm is that a set of frequency guides advances in time through
the spectral peaks, looking for the appropriate ones (according to the specified constraints)
and forming trajectories out of them.2 The instantaneous state of the guides, their fre-
quency, is kept in f̃1, f̃2, f̃3, . . . , f̃p, where p is the number of existing guides. These values
are continuously updated as the guides are turned on, advanced, and finally turned off.

Before explaining in detail the algorithm let us describe the control parameters available
to the user.

• initial-guides. With this parameter the user specifies the approximate frequency of
partials which are known to be present in the sound, thus reserving guides for them.
The algorithm adds new guides to this initial set as it finds them. When no initial
guides are specified, the algorithm creates all of them.

• maximum-peak-deviation. Guides advance through the sound selecting peaks. With
this parameter there is a control on the maximum allowable frequency distance from a
peak to the guide that it is selected by. It is useful to make this parameter a function
of frequency in such a way that the allowable distance is bigger for higher frequencies
than for lower ones. Thus, the deviation can follow a log-scale, which is perceptually
more meaningful than a linear frequency scale.

2It is important to distinguish between guides and trajectories. A guide is an abstract entity which is
used by the algorithm to create the peak trajectories. The trajectories are the actual result of the peak
continuation algorithm.
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• peak-contribution-to-guide. The frequency of each guide does not have to correspond
to the frequency of the actual trajectory. It is updated every time it incorporates a
new peak. This parameter is a number from 0 to 1 that controls how much the guide
frequency changes when a new peak is incorporated. That is, given that the current
guide has a frequency f̃ , what will be its value when it incorporates a peak with
frequency h. For example, if the value of the parameter is 1 it means that the value
of the guide, f̃ , is updated to h, thus the peak makes the maximum contribution. If
the value of the parameter is smaller, the contribution of the peak is correspondingly
smaller; the new value falls between the current value of f̃ and h. This parameter
is useful, for example, to circumscribe a guide to a narrow frequency band (done by
specifying a number close to 0).

• maximum-number-of-guides. This is the maximum number of guides used by the peak
continuation process at each particular moment in time. The total number of guides
may be bigger because when a guide is turned off a new one can use its place.

• minimum-starting-guide-separation. A new guide can be created at any frame from
a peak which has not yet been incorporated into any existing guide. This parameter
specifies the minimum required frequency separation from a peak to the existing guides
in order to create a new guide at that peak. Consequently, through this parameter
peaks which are very close to existing guides can be rejected as candidates for starting
guides.

• maximum-sleeping-time. When a guide has not found a continuation peak for a certain
number of frames the guide is killed. This parameter specifies the maximum “non
active” time, that is, the maximum number of frames that the guide can be alive
while not finding continuation peaks. If its value is 0 the guide is killed as soon as it
does not find a continuation peak.

• maximum-length-of-filled-gaps. Given that a certain sleeping time is allowed, we may
wish to fill the resulting gaps. This parameter specifies the length of the biggest gap
to be filled (a number smaller or equal than maximum-sleeping-time). The gaps are
filled by interpolating between the end points in the trajectory.

• minimum-trajectory-length. Once all the trajectories are created, this parameter con-
trols the minimum trajectory length. All trajectories shorter than this length are
deleted.

To describe the peak continuation algorithm let us assume that the frequency guides
were initialized with initial-guides and that they are currently at frame n. Suppose that
the guide frequencies at the current frame are f̃1, f̃2, f̃3, . . . , f̃p,

3 where p is the number

3These frequencies may not be the frequencies of the actual trajectories; this depends on the value of
peak-contribution-to-guide.
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Figure 4.4: Illustration of the peak continuation algorithm. The frequency-guides have
just been continued through frame n.

of existing guides. We want to continue the p guides through the peaks of frame n with
frequencies g1, g2, g3, . . . , gm, thus continuing the corresponding trajectories. Figure 4.4
illustrates the algorithm.

There are three steps in the algorithm: (1) guide advancement, (2) update of the guide
values, and (3) start of new guides. Next, these steps are described.

4.6.1.1 Guide advancement

Each guide is advanced through frame n by finding the peak closest in frequency to its
current value. The rth guide claims frequency gi for which |f̃r − gi| is a minimum. The
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change in frequency must be less than maximum-peak-deviation. The possible situations
are as follows:

1. If a match is found within the maximum deviation, the guide is continued (unless
there is a conflict to resolve, as described below). The selected peak is incorporated
into the corresponding trajectory.

2. If no match is found, it is assumed that the corresponding trajectory must “turn off”
entering frame n, and its current frequency is matched to itself with zero magnitude.
Since the trajectory amplitudes are linearly ramped from one frame to the next, the
terminating trajectory ramps to zero over the duration of one hop size. Whether the
actual guide is “killed” or not, depends on the maximum-sleeping-time.

3. If a guide finds a match which has already been claimed by another guide, we give the
peak to the guide that is closest in frequency, and the “loser” looks for another match.
If the current guide loses the conflict, it simply picks the best available non-conflicting
peak which is within the maximum-peak-deviation. If the current guide wins the
conflict, it calls the assignment procedure recursively on behalf of the dislodged guide.
When the dislodged guide finds the same peak and wants to claim it, it sees there is a
conflict which it loses and moves on. This process is repeated for each guide, solving
conflicts recursively, until all possible matches are made.

4.6.1.2 Update of the guide values

Once all the existing guides and their trajectories have been continued through frame
n, the guide frequencies are updated. There are two possible situations:

1. If a guide finds a continuation peak, its frequency is updated from f̃r to h̃r according
to:

h̃r = α(gi − f̃r) + f̃r, αε[0, 1] (4.4)

where gi is the frequency of the peak that the guide has found at frame n, and α is
the peak-contribution-to-guide. When α is 1 the frequency of the peak trajectory is
the same than the frequency of the guide, therefore the difference between guide and
trajectory is lost.

2. If a guide does not find a continuation peak for maximum-sleeping-time frames, the
guide is killed at frame n. If it is still under the sleeping-time it keeps the same value
(its value can be negated in order to remember that it has not found a peak). When
maximum-sleeping-time is 0 any guide that does not find a continuation peak at frame
n is killed. In order to distinguish between guides that find a continuation peak from
the ones that do not but still are alive, we refer to the first ones as active guides and
the second ones as sleeping guides.



4.6. SPECTRAL PEAK CONTINUATION 69

4.6.1.3 Start of new guides

New guides, and therefore new trajectories, are created from the peaks of frame n that
are not incorporated into trajectories by the existing guides. If the number of current guides
is smaller than maximum-number-of-guides a new guide can be started.

A guide is created at frame n by searching through the “unclaimed” peaks of the frame
for the one with the highest magnitude which is separated from every existing guide by at
least minimum-starting-guide-separation. The frequency value of the selected peak is the
frequency of the new guide. The actual trajectory is started in the previous frame, n − 1,
where its amplitude value is set to 0 and its frequency value to the same as the current
frequency, thus ramping in amplitude to the current frame. This process is recursively done
until there are no more unclaimed peaks in the current frame, or the number of guides has
reached maximum-number-of-guides.

In order to minimize the creation of guides with little chance of surviving (thus inter-
fering with more consolidated guides in the peak continuation process), a temporary buffer
is used for the starting guides. The peaks selected to start a trajectory are stored into this
buffer and continued by only using peaks that have not been taken by the “consolidated”
guides. Once these temporary guides have reached a certain length they become “normal
guides.”

The attack of most sounds is quite “noisy,” and the search for partials is harder in such
a rich spectrum. A useful modification to the algorithm is to start the process from the
end of the sound, that is, to start tracking the peaks from the last frame and work towards
the front. The tracking process encounters the end of the sound first, and since this is a
very stable part in most instrumental sounds, the algorithm finds a very clear definition
of the partials. When the guides arrive at the attack, they are already tracking the main
partials and can reject non-relevant peaks appropriately, or at least evaluate them with
some acquired knowledge.

4.6.1.4 Sound composed of several events

When the sound to be analyzed includes several events (or notes), with different char-
acteristics and non-overlapped in time, it is useful to specify the boundaries of these events
so that each one can be treated as a separate unit by the peak continuation algorithm.
The guides are then reset at the beginning of each event and new values for the control
parameters are specified.

Unless the variation between events is very pronounced in terms of frequency com-
ponents, it is unnecessary to perform a time varying STFT analysis and peak detection
algorithm. It is sufficient to reinitialize the guides of the peak continuation process.
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4.6.2 Variations on the algorithm for harmonic sounds

When the sound to be analyzed is known to be harmonic, the peak continuation algo-
rithm can be restricted even more. Now the frequency guides are circumscribed to track
harmonic frequencies. There are three major changes with respect to the general algorithm,
(1) there is a specific fundamental frequency at every frame, (2) the number of guides re-
main constant throughout the sound, and (3) each guide tracks a specific harmonic number.
For these changes the following parameters are added to the algorithm,

• initial-fundamental. This is the approximate fundamental frequency at the beginning
of the sound.

• fundamental-range. With this parameter the user specifies the approximate maximum
and minimum values reached by the fundamental frequency throughout the sound.

• maximum-fundamental-deviation. This parameter controls the maximum allowable
deviation in the fundamental frequency from frame to frame.

In this version of the peak continuation algorithm the frequency guides are initialized
with the harmonic series of the initial-fundamental.4 Unless initial-fundamental is given
the algorithm does not create trajectories until it finds a fundamental frequency and it is
able to initialize the guides. The number of guides (i.e., number of harmonics) is constant
throughout the sound, set by maximum-number-of-guides. Therefore, the guides are not
started or killed as in the general algorithm.

There are two parameters used in the general algorithm which are unnecessary in the
harmonic case. These are the initial-guides and the minimum-starting-guide-separation.

The steps involved in this new algorithm are slightly different. At the current frame the
succession of steps is now as follow: (1) detection of fundamental, (2) guide-advancement,
and (3) update of the guide values.

The only new step is the detection of the fundamental, the other two have already been
discussed for the general case.

4A harmonic series is formed by taking the fundamental frequency and the integer multiples of it.
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4.6.2.1 Detection of fundamental

Before advancing the guides through frame n a pitch detection algorithm searches for
the fundamental frequency of frame n. If this is found the guide values are reset to the
harmonic series of the new fundamental. If the fundamental is not found the guides keep
the frequency values that resulted from the previous frame.

Given the set of peaks of frame n, with magnitude and frequency values for each one,
there are many possible fundamental detection strategies (Schroeder, 1968; Piszczalski and
Galler, 1979; Terhardt, 1982b; Hess, 1983; Amuedo, 1985). In the current application
we are dealing with single-source sounds and assuming that a fundamental peak exists.5

With these restrictions, a simple algorithm is designed that suffices for this situation. It is
based on finding the 3 highest peaks at frame n and then searching for the peak which is a
fundamental for the three of them.6 By choosing the highest peaks it is assured that they
are “good” harmonic partials, therefore they are multiples of a fundamental. The search
for the fundamental is done through the peaks which are within the fundamental-range and
not further than maximum-fundamental-deviation from the previous fundamental.

If a clear fundamental is found, the guides are set to its harmonic series, otherwise their
values are not changed. Then the guides are continued through frame n by the process
already described. Finally the guide values are updated in case a clear fundamental is not
found at frame n + 1 (in which case these new values are used).

This algorithm is succesful with many instrumental sounds and with speech.7 However
there are some cases for which the general algorithm is more adequate. This is the case
with sounds that include superposed notes (i.e., one note rings through another one), or not
very well defined partials (e.g., noisy recording), or with sounds that are not quite harmonic
(e.g., the piano with its stretch partials).

5Most pitch detection algorithms do not have this restriction.

6The choice of three peaks has been a practical one and any other number is also possible.

7In the case of speech a further improvement can be made to assure that the algorithm does turn off
the trajectories through unvoiced portions of the sound. This is done by simply not continuing trajectories
when a fundamental is not found in the current frame.
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4.6.3 Conclusions on the peak continuation algorithm

The algorithm presented is only one approach to the peak continuation problem. The
creation of trajectories out of the spectral peaks is compatible with very different strategies
and algorithms. For example, we might design algorithms to track partials in piano sounds,
or in polyphonic music, or to separate multiple source sounds. In fact, the peak continuation
algorithm is the part of this dissertation that is the most open for further work.

A computer implementation of this analysis/synthesis system should allow for extensions
of the peak continuation algorithm, and even more, for the inclusion of other peak tracking
techniques as part of the system.

4.7 Deterministic Synthesis

The synthesis of the sinusoidal part of the sound proceeds in the same way as in the
previous chapter. The analysis returns a set of amplitudes Âl, frequencies ω̂l, and phases
ϕ̂l for each frame l, with a “triad” (Âl

r, ω̂
l
r, ϕ̂

l
r) for each trajectory r (i.e., identical to the

previous chapter). From these trajectories the synthesis process computes one frame of the
deterministic component d(n) by

dl(m) =
Rl∑

r=1

Âl
r cos[mω̂l

r + ϕ̂l
r], m = 0, 1, 2, . . . , S − 1 (4.5)

where Rl is the number of trajectories present at frame l and S is the length of the synthesis
buffer. The final sound is the result of juxtaposing all the frames. In Chapter 3 it was
shown how to interpolate the analysis values from frame to frame in order to obtain the
instantaneous amplitudes and phases.
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Figure 4.5: Decomposition example: (a) attack of a piano tone, (b) deterministic compo-
nent, (c) residual.

xserra
Sello



74 CHAPTER 4. A DETERMINISTIC PLUS RESIDUAL MODEL

4.8 Computation of the Residual

The waveform returned by the deterministic synthesis reproduces the instantaneous
phase and amplitude of the partials of the original sound. Thus, it is possible to subtract
the synthesized sinusoids from the original sound and obtain a meaningful residual. Figure
4.5 shows an example with a piano tone.

As can be seen in Figure 4.5 the attack of both the deterministic component and the
residual are smeared in comparison with the original waveform. The reason for this is that
the sharpest attack possible on the deterministic component is determined by the hop-size
of the analysis window (since the amplitudes are ramped from frame to frame), and clearly
the attack of the piano note is sharper than any reasonable hop-size. In most cases this
is perceptually irrelevant. However if a more accurate attack is desired in the separate
components, an even smaller hop-size may be specified. But if a more real attack is desired
only in the residual part, the solution is to obtain the residual by the following subtraction

e(n) =


max[x(n), d(n)]− d(n), x(n) ≥ 0

min[x(n), d(n)]− d(n), x(n) < 0
(4.5)

where e(n) is the residual, x(n) the original waveform, and d(n) the deterministic compo-
nent. Such a subtraction prevents the residual from having a bigger (positive or negative)
amplitude than the original, and thus the attacks of the original sound are preserved.

4.8.1 Residual from magnitude-only analysis/synthesis

It is also possible to obtain a residual when the phase of the original sound is not
preserved in the deterministic synthesis by performing the subtraction in the frequency
domain. The identity property of the system is then lost, but perceptually the result is
identical to the decomposition already presented.

A diagram of this alternative decomposition technique is shown in Figure 4.6. In this
case the deterministic component does not maintain the phase of the original waveform,
therefore the subtraction is done on the magnitude spectrum, since the frequency and
magnitude of each partial has been preserved. Given that the magnitude spectrum of the
original sound at frame l is |Xl(k)| and that of the deterministic signal |Dl(k)|, the residual
is

|El(k)| = |Xl(k)| − |Dl(k)| (4.6)

The residual waveform results from an inverse-STFT. This is performed by using the
magnitude-spectrum residuals and the set of phase spectra of the original sound (instead,
the phase spectra of the deterministic component can also be used).
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Figure 4.6: General diagram of an alternative deterministic plus residual decomposition
for a magnitude-only analysis/synthesis system.

Since the phase tracking, and specially the additive synthesis using phase, are compu-
tationally quite expensive, this alternative is a valuable simplification of the decomposition
system.

4.9 Summary of the Technique

A review of the main steps for a computer implementation of the decomposition tech-
nique is given below.

1. Perform a STFT with specific values for window-type, window-length, FFT-size, and
hop-size,

Xl(k)
4
=

N−1∑
n=0

w(n)x(n + lH)e−jωkn, l = 0, 1, 2, . . . (4.7)

where w(m) is the analysis window, H the hop-size, and l the frame number. The
result is a series of complex spectra that are then converted to polar coordinates.

2. Detect the prominent spectral peaks in specific frequency and magnitude ranges using
the peak-detection algorithm. The result is a set of amplitudes Âl, frequencies ω̂l, and
phases ϕ̂l for each frame l.

3. Create peak trajectories with the peak-continuation algorithm. Now, the values for
each peak (Âl

r, ω̂
l
r, ϕ̂

l
r) belong to a specific trajectory r.
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4. Synthesize the deterministic component from the peak trajectories,

dl(m) =
Rl∑

r=1

Âl
r(m) cos[θ̂l

r(m)], m = 0, 1, 2, . . . , S − 1 (4.8)

where Rl is the number of trajectories present at frame and S is the length of the
synthesis frame. Âl

r(m) is the instantaneous amplitude, obtained by interpolating the
amplitude trajectories, and θ̂l

r(m) is the instantaneous phase, obtained by a quadratic
interpolation using the frequency and phase trajectories.

5. Obtain the residual e(n) by subtracting the deterministic component d(n) from the
original signal x(n),

e(n) = x(n)− d(n) (4.9)

Therefore the synthesized signal is

s(n) = d(n) + e(n) (4.10)

which by definition is equal to x(n).

4.10 Examples

This decomposition system can be applied to a variety of sounds and it is very flexible
in terms of defining the deterministic component. For the next examples the analysis
parameters are set so that the deterministic component extracts as many partials as possible.

4.10.1 Sound example 4

Guitar passage. (sampling-rate = 34000, length = 7.14 sec., lowest fundamental ≈
215Hz, highest fundamental ≈ 291Hz)

STFT parameters: window-type = Kaiser (β = 2.8), window-length = 801 samples (.024
sec.), FFT-size = 2048 samples, hop-size = 200 samples (.0059 sec.).

Peak detection parameters: local-dB-range = 75dB, general-dB-range = 85dB,
minimum-peak-height = 1dB, frequency-range = 150Hz–12KHz.

Peak continuation parameters: maximum-peak-deviation = 80Hz, peak-contribution-to-
guide = .4, maximum-number-of-guides = 30, minimum-starting-guide-separation = 90Hz,
maximum-sleeping-time = 2 frames (.025 sec.), length-of-filled-gaps = 2 frames (.025 sec.),
minimum-trajectory-length = 20 frames (.25 sec.).

1. original sound
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2. deterministic synthesis

3. residual

4. deterministic synthesis plus residual

The peak continuation algorithm does not use the harmonic variation simply because it
was unnecessary, thus resulting in one less complication.

The deterministic portion of this guitar passage includes all the stable modes of vibration
of the string. The residual includes the left-hand finger-noise, non-linear components of the
string vibration, plus other unstable components of the sound such as reverberation and
tape-hiss.

4.10.2 Sound example 5

Flute sound. (sampling-rate = 18000, length = 2.3 sec., fundamental frequencies ≈
1182Hz and 1118Hz)

STFT parameters: window-type = Kaiser (β = 2.8), window-length = 401 samples (.022
sec.), FFT-size = 1024 samples, hop-size = 100 samples (.007 sec.).

Peak detection parameters: local-dB-range = 65dB, general-dB-range = 80dB,
minimum-peak-height = 2dB, frequency-range = 400Hz–9KHz.

Peak continuation parameters: maximum-peak-deviation = 100Hz, peak-contribution-to-
guide = .5, maximum-number-of-guides = 30, minimum-starting-guide-separation = 200Hz,
maximum-sleeping-time = 0 frames, length-of-filled-gaps = 0 frames, minimum-trajectory-
length = 50 frames (.28 sec.).

1. original sound

2. deterministic synthesis

3. residual

4. deterministic synthesis plus residual

The residual of this sound is very prominent. Its main component is the air produced
by the performer that is not transformed into periodic vibrations by the flute.
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4.10.3 Sound example 6

Vocal sound. (sampling-rate = 16000, length = 4.5 sec., fundamental frequency ≈ 94Hz)

STFT parameters: window-type = Kaiser (β = 3), window-length = 1001 samples (.063
sec.), FFT-size = 2048 samples, hop-size = 250 samples (.016 sec.).

Peak detection parameters: local-dB-range = 60dB, general-dB-range = 70dB,
minimum-peak-height = 1dB, frequency-range = 50Hz–2KHz.

Peak continuation parameters: harmonic-sound = true, maximum-peak-deviation =
30Hz, peak-contribution-to-guide = .5, maximum-number-of-guides = 20, maximum-
sleeping-time = 2 frames (.025 sec.), length-of-filled-gaps = 2 frames (.025 sec.), minimum-
trajectory-length = 40 frames (.5 sec.), initial-fundamental = 90Hz, fundamental-range
= 85Hz–120Hz.

1. original sound

2. deterministic synthesis

3. residual

4. deterministic synthesis plus residual

This is an example of a very “raspy” vocal sound. There is a lot of breath noise and
only a few stable harmonics. Most of the high harmonics are completely masked by the
breath noise and the deterministic analysis is unable to find them. They are kept in the
residual.
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4.10.4 Sound example 7

Piano passage. (sampling-rate = 34000, length = 4 sec., lowest fundamental ≈ 140Hz,
highest fundamental ≈ 270Hz)

STFT parameters: window-type = Kaiser (β = 2.8), window-length = 1201 samples
(.035 sec.), FFT-size = 2048 samples, hop-size = 150 samples (.0044 sec.).

Peak detection parameters: local-dB-range = 75dB, general-dB-range = 85dB,
minimum-peak-height = 2dB, frequency-range = 100Hz–14KHz.

Peak continuation parameters: maximum-peak-deviation = 60Hz, peak-contribution-to-
guide = .4, maximum-number-of-guides = 45, minimum-starting-guide-separation = 100Hz,
maximum-sleeping-time = 1 frames, length-of-filled-gaps = 1 frames, minimum-trajectory-
length = 20 frames (.09 sec.).

1. original sound

2. deterministic synthesis

3. residual

4. deterministic synthesis plus residual

The stretching of the piano partials does not allow the use of the harmonic variation of
the peak continuation algorithm. A special variation should be designed for piano tones.

This example shows how much noise is present in a normal piano sound. The residual
is a very important component of the sound and includes the noise that the fingers make
when playing and the noise produced by the piano action.
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4.11 Conclusions

In this chapter an analysis/synthesis technique has been introduced that is based on
a deterministic plus residual decomposition. The deterministic component comprises sinu-
soids which are described by a set of magnitude, frequency, and phase values. The residual
is defined as the subtraction of the deterministic signal from the original sound. Such a
system is an identity process (i.e., the input and the output are mathematically identical).
However, it is not very flexible for performing sound transformations. In the next chapter
a simplification is presented that is appropriate for sound modifications.

Nonetheless, this sound decomposition is useful in itself for a number of applications.
The deterministic component is a set of partials, and the residual includes noise and very
unstable components of the sound. This technique has been used by Robert Schumacher
and Chris Chafe (Chafe, 1989; Schumacher and Chafe, 1989) to study bow noise in string
instruments and breath noise in wind instruments. Other possible decompositions only
extract a certain number of partials. In general this decomposition can give a lot of insight
into the makeup of sounds.

The residual component is the part of the instrumental sounds that the existing synthesis
techniques have a harder time reproducing. This residual is most important in the attack.
A practical application would be to add these residuals to synthesized sounds in order to
make them more realistic. Since these residuals remain invariant throughout most of the
instrumental range, only a few residuals would be necessary to cover all the sounds of a
single instrument.

In appendix D a variation of this technique is used to splice an attack of an original
sound into an additive synthesis reproduction of it.
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Chapter 5

A Deterministic plus Stochastic Model

5.1 Introduction

By going a step further in the deterministic plus residual model presented in the previ-
ous chapter, a more flexible and useful representation for sound manipulation is obtained.
The change is based on the observation that for the dissertation objective it is irrelevant
to preserve the instantaneous phase of the original waveform, both in the deterministic
component and in the residual. Even more, when the residual approaches a stochastic, or
noise, signal it is also irrelevant to maintain the exact frequency characteristics (i.e., the
exact magnitude spectrum), and the spectrum’s general shape suffices. These observations
lead to the deterministic plus stochastic model.

To disregard phase in the deterministic signal means that the phase tracking performed
in the previous chapter is unnecessary. Now, only phase continuity is preserved.

To restrict the residual to be a stochastic signal simplifies enormously the residual signal,
but it implies that the deterministic component has to account for whatever is not stochastic.
In contrast, in the previous chapter, if the deterministic component omitted some partials,
these were preserved in the residual. Therefore in the current system, the extraction of the
deterministic part is more critical than before.

With this new model, a musically useful representation is obtained that enables trans-
formations of a variety of sounds, extending the capabilities of the previous models. The

Figure 5.1: General diagram of the deterministic plus stochastic system.
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resulting representation (Figure 5.1) has two parts: (1) a series of frequency and ampli-
tude functions for the deterministic component, and (2) a series of magnitude-spectrum
envelopes for the stochastic part of the sound.

The deterministic signal is generated from the amplitude and frequency functions with
additive synthesis. The stochastic component is created by performing the inverse-STFT
of the spectral envelopes. The sum of the two resulting waveforms is, for many sounds,
perceptually very close to the original.

Compared with the system of the previous chapter there is a gain in the flexibility of the
representation in exchange for the identity property of the process. With the deterministic
plus residual model, any sound was represented; on the other hand, with the deterministic
plus stochastic model not every sound can be fit by the model. For example, multiple source
sounds are not appropriate because the deterministic plus stochastic separation is more
confused.1 But, for the objective of this dissertation, the flexibility is the most important
attribute of a representation, and some compromises in generality are made in order to
achieve it.

The sections of this chapter are organized in the following way. In the next section
the deterministic plus stochastic model is presented, followed by a general description of
the analysis/synthesis technique based on it. Then, in the next sections there is a detailed
presentation of the steps carried out by the technique. The chapter ends with a set of
examples, and the conclusions.

5.2 The Deterministic plus Stochastic Model

This model is based on a modification of the deterministic plus residual model presented
in Chapter 4. That model considered a waveform s(t) as the sum of a series of sinusoids
plus a residual,

s(t) =
R∑

r=1

Ar(t) cos[θr(t)] + e(t) (5.1)

where Ar(t) and θr(t) are the instantaneous amplitude and phase of each sinusoid and e(t)
is the residual signal.

Now, in the deterministic plus stochastic model the general equation 5.1 still applies,
but there is a simplification of the components. In this new model each sinusoid is described
only by its amplitude and frequency (i.e., the phase term is ignored). The instantaneous
phase is then taken to be the integral of the instantaneous frequency,

θr(t) =
∫ t

0
ωr(τ)dτ (5.2)

1There are some possible extensions to the technique which could handle multiple source sounds.
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where ω(t) is the radian frequency measured from the power spectrum, and r is the sinusoid
number. (This equation is the counterpart of equation 4.3.)

The simplification of the residual e(t) in (5.1) is based on assuming that it is a stochastic
signal. Such an assumption permits modeling the residual as filtered white noise,

ê(t) =
∫ t

0
h(t, t− τ)u(τ)dτ (5.3)

where u(t) is white noise and h(t, σ) is the impulse response of a slowly time varying filter
(at time t the impulse response is h(t, ·)). That is, the residual is modeled by the convolution
of white noise with a frequency shaping filter.

The filtering of a noise signal can be implemented by taking the inverse Fourier transform
of the filter frequency response times a random phase term. This last approach is the one
taken in this chapter to synthesize the stochastic signal.

5.3 General Description of the System

Figure 5.2 shows a general diagram of a system based on the deterministic plus stochastic
model. First we derive a series of magnitude spectra from the waveform by computing the
STFT. The phase spectrum is not needed and therefore it is not calculated. Next we detect
and follow the prominent peaks on each spectrum, resulting in a set of peak trajectories with
a magnitude and a frequency value for every frame. From these trajectories we synthesize
the deterministic part of the sound by generating a sine wave for each trajectory.

To calculate the stochastic part of the waveform we first obtain the magnitude-spectrum
residual. This is done by computing the magnitude spectrum of the deterministic compo-
nent and then subtracting it from the corresponding magnitude spectrum of the original
waveform. Each magnitude-spectrum residual is simplified by fitting an envelope to it. The
resulting set of envelopes constitutes the stochastic representation. From every spectral
envelope the corresponding complex spectrum is generated. Then, the stochastic waveform
is synthesized by performing an inverse-STFT using the overlap-add method.
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Figure 5.2: Block diagram of the deterministic plus stochastic system.
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5.4 Computation of the Magnitude Spectra

With the assumption that the sinusoids are deterministic and the residual stochastic,
the phase spectrum is unnecessary in the analysis process. Therefore, the first step is the
computation of the set of magnitude spectra of the sound. This is accomplished by using
the STFT as described in Chapter 2, and simply discarding each phase spectrum. Thus,
there are a few steps in the STFT process that are simplified.

When the phase spectrum is relevant it is important to place the windowed data in the
FFT-buffer in such a way that the phase of each spectral peak corresponds to the actual
phase of the sinusoid in the time domain (i.e., constant-phase spectrum). This is realized by
centering the windowed data around the origin of the data buffer when the FFT is computed
(as described in Chapter 2). On the other hand, when the phase spectrum is irrelevant this
step is unnecessary and the windowed data can be placed anywhere in the FFT-buffer. For
the same reason the analysis window is not restricted to an odd-length size in order to be
perfectly centered around the origin.

The settings for the rest of the parameters used in the STFT, that is, window-type,
FFT-size, and hop-size, can be the same as in the deterministic plus residual system of the
previous chapter.

5.5 Spectral Peak Detection and Continuation

Once the set of magnitude spectra are computed, the next step is to find the prominent
peaks in every spectrum, and their continuation in time. The process is the same as for
the deterministic plus residual model. The only difference is that the analysis returns only
magnitude and frequency values for each peak, not phase. Therefore the deterministic anal-
ysis comprises a simplified version of the peak detection and peak continuation algorithms
discussed in Chapter 4.

It has already been mentioned that for the current model to be successful the determin-
istic analysis should be able to extract as many partials of the sound as possible. Thus, a
careful setting of all the parameters is necessary. This does not mean that all the analysis
data has to be used for the final synthesis. All the data is used to perform the subtraction,
but once the residual is obtained the deterministic representation can be simplified, thus
excluding irrelevant sinusoids.
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Figure 5.3: Deterministic representation example: (a) frequency function of the first
partial of a piano phrase, (b) amplitude function for the same partial.

5.6 Representation of the Deterministic Part

The output of the peak continuation algorithm is a set of peak trajectories. These
represent the deterministic component, i.e., the partials of the analyzed sound. Each peak is
a pair of numbers of the form (Âr(l), ω̂r(l)) where Â and ω̂ are the amplitude and frequency,
respectively, for each frame l and each trajectory r. The pairs corresponding to a trajectory
r are interpreted as breakpoints for amplitude and frequency functions, one breakpoint for
each frame l (Figure 5.3). From these functions a series of sinusoids can be synthesized
which reproduce the deterministic part of the sound.

These amplitude and frequency functions can be further processed to achieve a data
reduction of the representation or a smoothing of the functions. A data reduction strategy
is to perform a line-segment approximation on each function, thus reducing the number of
breakpoints (Grey, 1975; Strawn, 1980). However, for the purpose of easy manipulation
of the representation it is useful to have equally spaced points along each function, and
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thus it may be better to keep one breakpoint per frame as returned by the analysis, unless
data reduction is a priority. Another alternative for data reduction is to combine groups of
similar functions into a single one, thus reducing the number of functions.

5.7 Deterministic Synthesis

Given the representation of the deterministic part of the sound, the generation of the
time domain waveform is done with an additive synthesis technique. From the amplitude
and frequency functions, Âr(l) and ω̂r(l), a frame of the deterministic sound is obtained by

dl(m) =
Rl∑

r=1

Âl
r cos[mω̂l

r], m = 0, 1, 2, . . . , S − 1 (5.4)

where Rl is the number of trajectories present at frame l and S is the length of the synthesis
frame (without any time scaling S = H, the analysis hop size). The final sound d(n) results
from the juxtaposition of all the synthesis frames. To avoid “clicks” at the frame boundaries,
the parameters (Âl

r, ω̂
l
r) are smoothly interpolated from frame to frame.

This synthesis process corresponds to the one used for the sinusoidal model of Chapter 3,
but now the phase trajectory is discarded. The instantaneous amplitude Â(m) is obtained
by linear interpolation,

Â(m) = Âl−1 +
(Âl − Âl−1)

S
m (5.5)

where m = 0, 1, . . . , S − 1 is the time sample in the lth frame. The main difference with
Chapter 3 is that the instantaneous phase is now taken to be the integral of the instan-
taneous frequency, where the instantaneous radian frequency ω̂(m) is obtained by linear
interpolation,

ω̂(m) = ω̂l−1 +
(ω̂l − ω̂l−1)

S
m (5.6)

and the instantaneous phase for the rth trajectory is

θ̂r(m) = θ̂r(l − 1) + ω̂r(m) (5.7)

Finally, the synthesis equation becomes

dl(m) =
Rl∑

r=1

Âl
r(m) cos[θ̂l

r(m)] (5.8)

where Â(m) and θ̂(m) are the calculated instantaneous amplitude and phase.
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5.8 Computation of the Stochastic Part

Once the deterministic component of the sound has been detected, the next step is to
obtain the residual, which in a simplified form becomes the stochastic component.

In the previous chapter the deterministic component preserved the instantaneous phase
of the original sound, thus allowing a time domain subtraction. In the current system
the phase is discarded, making the time domain subtraction useless. However since the
magnitude and frequency of each sinusoid are preserved, the magnitude spectrum of both
signals is comparable, as shown in Figure 5.4. Accordingly it is possible to perform a
frequency domain subtraction from the magnitude spectra of both signals. The result is a
set of magnitude-spectrum residuals.

One of the underlying assumptions of the current model is that the residual is a stochastic
signal. Such an assumption implies that the residual is fully described by its amplitude and
its general frequency characteristics. It is unnecessary to keep either the instantaneous
phase or the exact frequency information. Based on this the stochastic residual can be
completely characterized by the envelopes of the magnitude-spectrum residuals, i.e., these
envelopes keep the amplitude and the general frequency characteristic of the residual. The
set of envelopes form the stochastic representation.

The computation of the stochastic representation involves: (1) subtraction of each mag-
nitude spectrum of the deterministic component from the corresponding magnitude spec-
trum of the original sound, and (2) approximation of each residual spectrum with an enve-
lope. Each step is described next.

5.8.1 Computation of the magnitude-spectrum residuals

The first step in obtaining the stochastic component is to subtract the set of magni-
tude spectra of the deterministic signal from that of the original sound. This results in
the magnitude-spectrum residuals (Figure 5.5). For this to be feasible the spectra to be
subtracted have to be comparable, and therefore have to be computed in the same man-
ner. The STFTs from which they are obtained use the same window-type, window-length,
FFT-size, and hop-size.

Given that the magnitude spectrum of the original sound at frame l is |Xl(k)| and that
of the deterministic signal |Dl(k)|, then the residual is

|El(k)| = |Xl(k)| − |Dl(k)| (5.9)

To avoid negative numbers, in case the spectrum of the deterministic signal results in
slightly higher spectral peaks than the original spectrum, the subtraction is done as

|El(k)| = max ([|Xl(k)| − |Dl(k)|] , 0) (5.10)
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Figure 5.4: Example of the deterministic synthesis without phase tracking: (a) waveform
from an original piano tone, (b) deterministic component without phase tracking, (c) mag-
nitude spectrum of original sound, (d) magnitude spectrum of deterministic component.
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Figure 5.5: Example of the magnitude spectrum subtraction: (a) magnitude spectrum
from a piano tone, (b) residual spectrum.
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5.8.2 Approximation of the spectral residual

Assuming that the residual signal is quasi-stochastic, each magnitude-spectrum resid-
ual can be approximated by its envelope, since only its shape contributes to the sound
characteristics.

This type of problem is generally solved by performing some sort of curve fitting (Strawn,
1980; Sedgewick, 1988), i.e., finding a function which matches the general contour of a given
curve, which in our case is a magnitude spectrum. Standard techniques are: spline interpo-
lation (Cox, 1971), the method of least squares (Sedgewick, 1988), or straight line approxi-
mations (Phillips, 1968). For the purpose of this thesis a simple line-segment approximation
is accurate enough and gives the desired flexibility.

Another practical alternative is to use a type of least squares approximation called linear
predictive coding, LPC (Makhoul, 1975; Markel and Gray, 1976). LPC is a popular tech-
nique used in speech research for fitting an nth-order polynomial to a magnitude spectrum.
Its use in this particular situation is discussed in Appendix C. Here it is sufficient to say
that the line-segment approach is more flexible than LPC, and even though LPC results in
less analysis points, the flexibility is considered more important.

The particular line-segment approximation performed here is done by stepping through
the magnitude spectrum and finding local maxima in every section,

Ẽl(q) = max
k

(|El(qM + k)|), k = −M/2,−M/2 + 1, . . . , 0, . . . ,M/2− 2,M/2− 1,

q = 0, 1, . . . , N/M − 1 (5.11)

where M is the step size and the window size (or size of the section) and Ẽl(q) is the
maximum of section q at frame l. This gives Q(= N/M) equally spaced points in the
spectrum that are connected by straight lines to create the spectral envelope (Figure 5.6).
The accuracy of the fitting is given by the number of points, Q, which is set depending on
the sound complexity.
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Figure 5.6: Example of the line-segment approximation on a spectral residual: (a) residual
spectrum from a piano tone, (b) envelope approximation of the residual.
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5.9 Representation of the Stochastic Part

The stochastic analysis returns an envelope Ẽl(q) for every frame l, where q is the
breakpoint number in the envelope, q = 0, 1, . . . , Q− 1. These envelopes can be interpreted
differently depending on which variable, l or q, is considered fixed.2 When l is fixed the
interpretation is as a series of envelopes or frequency-shaping filters, one per frame. But
when q is fixed the interpretation is as equally spaced band-pass filters, each one centered
at fsq/2Q Hz and with a bandwidth of fs/2QHz.

These frequency envelopes or time functions, depending on the interpretation, can be
simplified and smoothed as in the deterministic representation. As with that representation
it is useful to keep the same number of breakpoints on both the frequency and the time
axes.

5.10 Stochastic Synthesis

The synthesis of the stochastic component can be understood as the generation of a
noise signal that has the frequency and amplitude characteristics described by the spectral
envelopes of the stochastic representation. The intuitive operation is to filter white noise
with these frequency envelopes, that is, performing a time-varying filtering of white noise.
But in practice we generate the stochastic signal by an overlap-add synthesis technique
(discussed in Chapter 2) from the spectral envelopes. The inverse Fourier transform of each
envelope is computed and the resulting waveforms are overlaped and added.

Before the inverse-STFT is performed, a complex spectrum (i.e., magnitude and phase
spectra), is obtained from each frequency envelope. The magnitude spectrum is generated
by linear interpolating the approximation Ẽl(q) of length Q to a curve of length N/2, where
N is the FFT-size. There is no phase information in the stochastic representation, but since
the phase spectrum of noise is a random signal, the phase spectrum can be created with
a random number generator. To avoid a periodicity at the frame rate different values are
generated at every frame. Therefore the magnitude and phase spectra at frame l are

Al(k) = Ẽ′
l(k)

Θl(k) = π − ran(2π) (5.12)

where Ẽ′
l(k) is the interpolated spectral envelope and ran(2π) is a function that produces

random numbers in the range from 0 to 2π (i.e., according to its argument).

2This is similar to the difference between overlap-add versus filter-bank interpretation in the STFT.
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From the interpolated magnitude envelope and the random phase spectrum, the complex
spectrum Êl(k) results from a change of the coordinates,

Re{Êl(k)} 4
= Al(k) cos[Θl(k)]

Im{Êl(k)} 4
= Al(k) sin[Θl(k)] (5.13)

Its inverse Fourier transform gives one frame of the noise waveform,

ê′l(m) =
1
N

N/2−1∑
k=−N/2

Êl(k)ejωkm, m = 0, 1, . . . , N − 1 (5.14)

The waveform ê′l(m) is a constant-amplitude waveform of size N , where N is the FFT-size.
Since the phase spectrum used is not the result of an analysis process (with windowing of a
waveform, zero-padding, and FFT computation) the resulting waveform does not maintain
the windowing characteristics of the analyzed waveform. This is because a phase spec-
trum with random values corresponds to a phase spectrum of a rectangular-windowed noise
waveform of size N (i.e., no windowing or zero-padding). But in order to succeed in the
overlap-add we need a windowed waveform of size M , where M is the analysis-window
length. Therefore the resulting waveform ê′l(m) is multiplied by a length M window,

êl(m) = ê′l(m)w(m), m = 0, 1, . . . ,M − 1 (5.15)

This windowing process corresponds to the use of a synthesis window in the inverse-STFT,
as discussed in Chapter 2. There is no reason to use the same window as in the STFT-
analysis, nor to use a very “sophisticated” one. A simple Hanning window suffices. Then
the stochastic signal results from the overlap and add of these windowed waveforms,

ê(n) =
L−1∑
l=0

êl(n− lH) (5.16)

where H is the analysis hop-size and l is the frame number. Figure 5.7 shows an example
of the stochastic synthesis.

5.11 Representation Modifications

The deterministic analysis results in a set of amplitude and frequency functions, Âr(l)
and ω̂r(l), where r is the function number, and l the breakpoint number in each func-
tion. The stochastic analysis results in a set of spectral envelopes, Ẽl(q), where q is the
breakpoint number on the envelope. Together these representations are ideal for modifica-
tion purposes, they allow a great number of sound transformations. The modifications are
applied separately to the deterministic and stochastic representations.
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Figure 5.7: Stochastic synthesis example: (a) envelope of a spectral residual, (b) gener-
ated phase-spectrum, (c) inverse Fourier-transform of the complex spectrum, (d) windowed
inverse Fourier-transform.
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Time-scale modifications are accomplished in both representations by resampling the
analysis points in time. This is done by changing the synthesis frame-size (and the hop-size
in the case of the stochastic synthesis) and results in slowing down or speeding up the sound
while maintaining pitch and formant structure. A time-varying frame-size gives a time-
varying modification. Due to the stochastic and deterministic separation, this representation
is more successful in time-scale modifications than the sinusoidal representation (presented
in Chapter 3). Now the noise part of the sound remains “noise” no matter how much the
sound is stretched.

In the deterministic representation each function pair, amplitude and frequency, rep-
resents a partial of the original sound. The manipulation of these functions is easy and
musically intuitive. All kinds of frequency and magnitude transformations are possible. For
example, the partials can be transposed in frequency, with different values for every par-
tial and varying along the sound. It is also possible to decouple the sinusoidal frequencies
from their amplitude, obtaining effects such as changing pitch while maintaining formant
structure. Graphical interfaces are easily devised to manipulate this representation.

The stochastic representation is modified by changing the shape of each of the envelopes.
This can be done by applying functions to these envelopes, or simply editing them by hand.
Changing the envelope shape corresponds to filtering the stochastic signal further. Their
manipulation is much simpler and more intuitive than the manipulation of a set of all-pole
filters, such as those resulting from an LPC analysis.

Interesting effects are accomplished by changing the relative amplitude of the two com-
ponents, thus emphasizing one or the other at different moments in time.

The characterization of a single sound by two different representation may cause prob-
lems. When different transformations are applied to each representation it is easy to create
a sound in which the two components, deterministic and stochastic, do not fuse into a single
entity. This may be desirable for some musical applications, but in general it is avoided,
and requires some practical experimentation with the actual representations.

The best synthesis is generally considered the one that results in the best perceptual
identity with respect to the original sound. Then, transformations are performed on the
corresponding representation. But for musical applications this may not be always desirable.
Very interesting effects result from purposely setting “wrong” the analysis parameters. For
example we may set the parameters such that the deterministic analysis only captures
partials in a specific frequency range, leaving the rest to be considered stochastic. The
result is a sound with a much stronger noise component (Wolman, 1989).
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Figure 5.8: Block diagram of the analysis part of the deterministic plus stochastic system.

5.12 Summary of the Analysis Technique

Figure 5.8 shows a block diagram of the analysis part of the system. A review of the
steps for a computer implementation is given below.

1. Perform a STFT with specific values for window-type, window-length, FFT-size, and
hop-size,

Xl(k)
4
=

N−1∑
n=0

w(n)x(n + lH)e−jωkn l = 1, 2, . . . (5.17)

where w(m) is the analysis window, H the hop-size, and l the frame number. The
result is a series of complex spectra from which only the magnitude spectra |Xl(k)|
are computed.
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2. Detect the prominent magnitude-peaks in specific frequency and magnitude ranges us-
ing the peak-detection algorithm. The result is a set of amplitudes Âl

i, and frequencies
ω̂l

i, for each frame l.

3. Organize peak trajectories from a subset of the peaks using the peak-continuation
algorithm. Now, the values for each peak (Âl

r, ω̂
l
r) belong to a specific frequency

trajectory r.

4. Synthesize the deterministic component (as described below), then compute its STFT
with the same parameters as for the original sound, and subtract each magnitude
spectrum of the synthesized sound from the corresponding spectrum of the original
sound. This results in a set of magnitude-spectrum residuals,

|El(k)| = |Xl(k)| − |Dl(k)| (5.18)

where |Xl(k)| is the original spectrum, |Dl(k)| the deterministic spectrum, and |El(k)|
the residual spectrum.

5. Compute the envelope for each spectral residual by performing a line-segment approx-
imation on each one,

Ẽl(q) = max
k

(|El(qM + k)|), k = −M/2,−M/2 + 1, . . . , 0, . . . ,M/2− 2,

M/2− 1,

q = 0, 1, . . . , N/M − 1 (5.19)

where M is the step size and the window size (or size of the section) and Ẽl(q) is the
maximum of section q and frame l.

5.13 Summary of the Synthesis Technique

Figure 5.9 shows the diagram of the synthesis part of the deterministic plus stochastic
system. The steps involved are the following.

1. Modify the amplitude and frequency functions of the deterministic representation,

Ãr(l) = T
[
Âr(l)

]
ω̃r(l) = T [ω̂r(l)] (5.20)
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Figure 5.9: Block diagram of the synthesis part of the deterministic plus stochastic system.

2. Generate the deterministic signal from the modified amplitude and frequency func-
tions,

dl(m) =
Rl∑

r=1

Ãl
r(m) cos[θ̃l

r(m)], m = 0, 1, 2, . . . , S − 1 (5.21)

where Rl is the number of trajectories present at frame l and S is the length of
the synthesis frame (the analysis hop-size times the desired time-scale factor). The
instantaneous amplitude Ãl

r(m) and phase θ̃l
r(m) are obtained by linearly interpolating

the amplitude and frequency trajectories respectively.

3. Apply any modifications to the stochastic representation,

Ẽ′
l(q) = T

[
Ẽl(q)

]
(5.22)

4. Generate a magnitude and phase spectrum from every modified envelope. The magni-
tude spectrum is the result of interpolating the residual approximation, and the phase
spectrum is generated with a random number generator,

Al(k) = Ẽ′′
l (k)

Θl(k) = π − ran(2π) (5.23)

where Ẽ′′
l (k) is the interpolated spectral envelope and ran(2π) is a function that

generates random numbers in the range from 0 to 2π.
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5. Convert each spectrum from polar to rectangular coordinates,

Re{Êl(k)} 4
= Al(k) cos[Θl(k)]

Im{Êl(k)} 4
= Al(k) sin[Θl(k)] (5.24)

6. Compute the inverse-FFT of Êl,

ê′l(m) =
1
N

N/2−1∑
k=−N/2

Êl(k)ejωkm, m = 0, 1, . . . , N − 1 (5.25)

7. Apply a synthesis window,

êl(m) = ê′l(m)w(m), m = 0, . . . ,M − 1 (5.26)

where w(m) is a Hanning window. Its length M is the length of the analysis window
times the desired stretch factor.

8. Generate the final stochastic signal by overlapping and adding the windowed wave-
forms,

ê(n) =
L−1∑
l=0

êl(n− lH) (5.27)

where H is the analysis hop-size times the stretch factor.

9. Sum the deterministic and the stochastic components,

s(n) = d(n) + ê(n) (5.28)

5.14 Examples

The current system is appropriate for the analysis/transformation/synthesis of a wide
variety of sounds. Next we present a few sound examples that show the capabilities of the
system.
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5.14.1 Sound example 8

Guitar passage. (sampling-rate = 34000, length = 7.14 sec., lowest fundamental ≈
215Hz, highest fundamental ≈ 291Hz)

STFT parameters: window-type = Kaiser (β = 2.8), window-length = 801 samples (.024
sec.), FFT-size = 2048 samples, hop-size = 200 samples (.0059 sec.).

Peak detection parameters: local-dB-range = 75dB, general-dB-range = 85dB,
minimum-peak-height = 1dB, frequency-range = 150Hz–12KHz.

Peak continuation parameters: maximum-peak-deviation = 80Hz, peak-contribution-to-
guide = .4, maximum-number-of-guides = 30, minimum-starting-guide-separation = 90Hz,
maximum-sleeping-time = 2 frames (.025 sec.), length-of-filled-gaps = 2 frames (.025 sec.),
minimum-trajectory-length = 20 frames (.25 sec.).

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. frequency transposition by a factor of .3

6. frequency transposition by .7 and stretching of partials

7. compression of the frequency evolution

8. inversion of the frequency evolution

9. time-varying glissando and stretching of partials

10. time-varying time-scale

11. time expansion by 2.3

12. time expansion by 2.3 with time-varying time-scale and stretching of partials

13. time compression by .5 with time-varying time-scale and stretching of partials

14. time compression by .5 and frequency transposition by a factor of .4

15. time compression by .5 and glissando down
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The setting of the analysis parameters is the same than for sound example 4.

It is important to remark that the final number of sinusoids is not the maximum-number-
of-guides, the actual number is 25.

All the transformations performed in the examples of this chapter are obtained by apply-
ing functions to the three data structures that form the representation, that is, frequency
and amplitude functions of the deterministic component and envelopes of the stochastic
component.

5.14.2 Sound example 9

Speech phrase. (sampling-rate = 16000, length = 4.5 sec., fundamental frequency ≈
94Hz)

STFT parameters: window-type = Kaiser (β = 3), window-length = 1001 samples (.063
sec.), FFT-size = 2048 samples, hop-size = 250 samples (.016 sec.).

Peak detection parameters: local-dB-range = 60dB, general-dB-range = 70dB,
minimum-peak-height = 1dB, frequency-range = 50Hz–20KHz.

Peak continuation parameters: harmonic-sound = true, maximum-peak-deviation =
30Hz, peak-contribution-to-guide = .5, maximum-number-of-guides = 20, maximum-
sleeping-time = 2 frames (.025 sec.), length-of-filled-gaps = 2 frames (.025 sec.), minimum-
trajectory-length = 40 frames (.5 sec.), initial-fundamental = 165Hz, fundamental-range
= 85Hz–120Hz.

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. frequency transposition by a factor of .6

6. compression of the frequency evolution and frequency transposition by a factor of .4

7. frequency transposition by .4 and stretching of partials

8. time-varying glissando and stretching of partials

9. time-varying time-scale and time-varying compression of the frequency evolution

10. from deterministic to stochastic signal
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11. time compression by .3, compression of the frequency, and frequency transposition by
a factor of .4

12. time compression by .3 and compression of the frequency

13. time expansion by 3

14. time expansion by 3 of only stochastic component and time-varying time-scale

The sampling rate of this example is fairly low, 16000, and 20 guides suffice to detect
the deterministic component.

5.14.3 Sound example 10

Conga passage. (sampling-rate = 32000, length = 3 sec.)

STFT parameters: window-type = Kaiser (β = 2.8), window-length = 800 samples (.025
sec.), FFT-size = 1024 samples, hop-size = 100 samples (.006 sec.).

Peak detection parameters: local-dB-range = 75dB, general-dB-range = 85dB,
minimum-peak-height = 2dB, frequency-range = 150Hz–8000Hz.

Peak continuation parameters: maximum-peak-deviation = 80Hz, peak-contribution-to-
guide = .4, maximum-number-of-guides = 30, minimum-starting-guide-separation = 90Hz,
maximum-sleeping-time = 2 frames (.025 sec.), length-of-filled-gaps = 2 frames (.025 sec.),
minimum-trajectory-length = 20 frames (.25 sec.).

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. compression of the frequency evolution

6. compression of the frequency evolution and frequency transposition by .3

7. compression of the frequency evolution and frequency transposition by 2

8. stretch partials

9. glissando down

10. glissando up
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11. time-varying change of noise component

12. time-varying time-scale

13. time-varying time-scale (inverse of previous example)

14. time-varying time-scale and time-varying stretch partials

15. change of the frequency evolution

16. inverse of the previous example

17. time expansion by 3

5.14.4 Sound example 11

Flute passage, from “Exchange” by Richard Karpen. (sampling-rate = 34000, length
= 7 sec., lowest fundamental ≈ 311Hz, highest fundamental ≈ 1000Hz)

STFT parameters: window-type = Kaiser (β = 3), window-length = 900 samples (.026
sec.), FFT-size = 2048 samples, hop-size = 225 samples (.0066 sec.).

Peak detection parameters: local-dB-range = 65dB, general-dB-range = 75dB,
minimum-peak-height = 4dB, frequency-range = 250Hz–10KHz.

Peak continuation parameters: harmonic-sound = true, maximum-peak-deviation =
200Hz, peak-contribution-to-guide = .4, maximum-number-of-guides = 15, maximum-
sleeping-time = 2 frames, length-of-filled-gaps = 2 frames, minimum-trajectory-length = 40
frames (.26 sec.), initial-fundamental = 689Hz, fundamental-range = 300Hz–1100Hz.

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. compression of the frequency evolution

6. frequency transposition by .5 and stretch partials

7. compression of the frequency evolution, frequency transposition by .8, time-varying
time-scale, and stretch partials

8. inversion of frequency evolution
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9. time compression by .4

10. time compression by .4, frequency transposition by .8, and compression of the fre-
quency evolution

This example is particularly problematic. Many of the notes have a very strong sub-
harmonic at half the fundamental frequency. For practical purposes we have decided not
to track those components, that is, to track only the harmonics of the fundamental. Such
a choice results into a lower quality synthesis, but also a simpler and a more flexible repre-
sentation.

5.14.5 Sound example 12

Piano passage. (sampling-rate = 34000, length = 4 sec., lowest fundamental ≈ 140Hz,
highest fundamental ≈ 270Hz)

STFT parameters: window-type = Kaiser (β = 2.8), window-length = 1201 samples
(.035 sec.), FFT-size = 2048 samples, hop-size = 150 samples (.0044 sec.).

Peak detection parameters: local-dB-range = 75dB, general-dB-range = 85dB,
minimum-peak-height = 2dB, frequency-range = 100Hz–14KHz.

Peak continuation parameters: maximum-peak-deviation = 60Hz, peak-contribution-to-
guide = .4, maximum-number-of-guides = 45, minimum-starting-guide-separation = 100Hz,
maximum-sleeping-time = 1 frames, length-of-filled-gaps = 1 frames, minimum-trajectory-
length = 20 frames (.09 sec.).

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. frequency transposition by .5

6. compression of the frequency evolution

7. time-varying stretch partials

The final number of sinusoids in the deterministic component is 35. This does not mean
that we could have been able to set maximum-number-of-guides to 35 and obtain the same
result. The 45 guides are used, but due to all the other restrictions, at the end of the peak
continuation process the number of trajectories is reduced to 35.
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5.14.6 Sound example 13

Singing-voice passage. (sampling-rate = 18000, length = 5 sec., lowest fundamental
≈ 115Hz, highest fundamental ≈ 270Hz)

STFT parameters: window-type = Kaiser (β = 2.6), window-length = 500 samples (.028
sec.), FFT-size = 1024 samples, hop-size = 125 samples (.007 sec.).

Peak detection parameters: local-dB-range = 70dB, general-dB-range = 80dB,
minimum-peak-height = 2dB, frequency-range = 80Hz–8KHz.

Peak continuation parameters: harmonic-sound = true, maximum-peak-deviation =
100Hz, peak-contribution-to-guide = .7, maximum-number-of-guides = 55, maximum-
sleeping-time = 2 frames, length-of-filled-gaps = 2 frames, minimum-trajectory-length = 5
frames (.035 sec.), initial-fundamental = 118Hz, fundamental-range = 115Hz–270Hz.

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. frequency transposition by .8 and stretch partials

6. frequency transposition by .8 and compress partials

7. glissando and expansion of the frequency evolution

8. time-varying time-scaling

9. more percentage of stochastic component and increasing with time

More interesting transformations may be obtained if the vibrato and formant structure
are extracted as independent parameters in the representation, thus being able to control
them as independent variables.
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5.15 Conclusions

In this chapter the final analysis/synthesis system of this dissertation has been pre-
sented. It is based on a model that considers a sound as composed of a deterministic and
a stochastic component. This model results in a specific representation for each of the
components. The deterministic representation includes a set of amplitude and frequency
functions, one for every partial of the sound. The stochastic representation comprises a
series of spectral envelopes. These envelopes describe the general frequency characteristics
and the amplitude of the residual waveform, where the residual is defined as the difference
between the original sound and the deterministic component. Additive synthesis is used
to generate the deterministic signal. The stochastic signal is generated by performing the
inverse Fourier-transform of the spectral envelopes, a process that can be thought as the
filtering of white noise by these frequency envelopes.

The objective of this dissertation was to achieve a musically useful sound representation
that would allow broad transformations of a variety of sounds. This representation achieves
such a goal.

The analysis is the central part of the system. It is a complex set of algorithms that
require the manual setting of a few control parameters. Further work may automate the
analysis process, particularly if it is specialized to a group of sounds. Also, some aspects of
the analysis are open to further research, in particular the peak-continuation algorithm.

The synthesis from the deterministic plus stochastic representation is simple and can
be performed in real-time with current technology. A real-time implementation of this
system would allow the use of this technique in performance. The representation would be
precomputed and stored, and the sound transformations would be done interactively.

In this chapter some examples of the possible sound transformations have been pre-
sented, but it is beyond the scope of this dissertation to explore all the possible applications
of this system. Many more sound transformations are possible, limited only by the mu-
sical intuition of the user, and applications other than sound modification have also been
suggested.



108 CHAPTER 5. A DETERMINISTIC PLUS STOCHASTIC MODEL



109

Appendix A

Software and Hardware Environment

A.1 Introduction

This appendix describes the environment used for the development of the analysis/syn-
thesis systems described in this dissertation. This environment integrates all the tools
required to experiment with the techniques presented. It is very flexible and open ended,
making it an ideal development environment where it is very easy to extend or change the
available techniques and incorporate new ones.

The next section describes the software and hardware environment on which the program
has been developed. Then follows a description of the actual program.

A.2 Description of the Environment

This research has been developed on a Lisp Machine workstation (Symbolics LM-2) and
making use of an array processor (FPS AP-120B) for the signal processing calculations.
The sound conversion is done with the DSC-200, 16-bit A/D and D/A converters. The
software is written in Zetalisp and uses tools borrowed from SPIRE (Speech and Phonetics
Interactive Research Environment).
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A.2.1 The Lisp Machine

The Lisp Machine is conceptually unlike any other computer (Weinreb and Moon, 1981).
It was originally developed at the M.I.T. Artificial Intelligence Laboratory as a means of
effectively writing, using, and maintaining large interactive Lisp programs. The LM-2 was
the first commercially available Lisp Machine, introduced by Symbolics in 1981.

The system software of the LM-2 constitutes a large-scale programming environment,
with over half a million lines of system code accessible to the user. Object-oriented pro-
gramming techniques are used throughout the system to provide a reliable and extensible
integrated environment without the usual division between an operating system and pro-
gramming languages. Zetalisp is the Lisp dialect used on the LM-2, which is closely related
to the Maclisp developed in the 1970s, and to the Common Lisp specification.

The main characteristics of the LM-2 hardware are:

1. 36-bit processor

2. virtual memory

3. high resolution black and white display

4. color display

5. mouse

6. dedicated 300 Mbyte disc drive

7. Chaos network

8. Unibus

At CCRMA there are four LM-2s on the Chaos network. They share a tape drive for
permanent storage and are connected to the main-frame computer of the center (Foonly
F4) via Ethernet. Through the F4 the LM-2s have access to several printing devices and
other peripherals. The DSC-200 converters and the array processor are connected to the
Unibus of one of the machines. Figure A.1 shows the hardware configuration of the system.
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Figure A.1: Hardware configuration of the overall system.
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A.2.2 Flavors

This environment, like all the LM-2 software, makes extensive use of objects, a pro-
gramming style which was first used in the Smalltalk and Actor families of languages.

Object-oriented programming deals with objects, which are instances of types, and
generic operations defined on those types. The definition of a type is done by defining the
data known to the type and the operations that are valid for those data. Then an instance
of that type can be created. Each instance maintains a local state and has an interface to
the world through the defined operations. Thus, in object-oriented programming, data and
procedures are encapsulated within an instance of the type.

The support of object-oriented programming on the LM-2 is done through a collection
of language features known as the Flavor system. Flavors are the abstract types; methods
are the generic operators. The objects are flavor instances that are manipulated by sending
messages, which are requests for specific operations.

The flavor dependencies form a graph structure; they are not constrained to be hier-
archical as in some languages that support an object-oriented style. Figure A.2 shows an
example of flavor dependencies.

A.2.3 The Array Processor

Connected to the Unibus of the Lisp Machine is the array processor (AP-120B). The
AP-120B (from Floating Point Systems, Inc.) is a high-speed (167-ns cycle time) peripheral
floating-point Array Processor, which works in parallel with the host computer. Its internal
organization is particularly well suited to performing the large numbers of reiterative multi-
plications and additions required in digital signal processing. The highly parallel structure
of the AP-120B allows the “overhead” of array indexing, loop counting, and data fetching
from memory to be performed simultaneously with arithmetic operations on the data. This
allows much faster execution than on a typical general-purpose computer, where each of the
above operations must occur sequentially.

The AP-120B comes with a Math Library which includes over 350 routines covering a
wide range of array processing needs. These routines, written in AP Assembly Language,
can be called by functions on the Lisp Machine or other programs written in AP Assembly
Language. The AP performs arithmetic operations using a 38-bit floating-point format:
one exponent sign bit, nine exponent bits, one mantissa sign bit, and 27 mantissa bits. The
binary point is always located between the mantissa sign bit and the most significant bit of
the mantissa.

The combination of the Lisp Machine and the Array Processor allows one to maintain
a high level of both numeric and symbolic processing power, which is very appropriate for
our application.
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Figure A.2: Example of flavor dependencies.
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A.2.4 The D/A and A/D converters

The DSC-200 includes a 16-bit digital-to-analog and analog-to-digital converters. It
plugs into the Unibus of the Lisp machine and provides a link between standard audio
equipment and the computer. It has variable sampling rate up to 60KHz and the machine
in use at CCRMA includes two anti-aliasing low-pass filters, with cut-off frequencies of
8KHz and 16KHz.

A.2.5 SPIRE

SPIRE is the Speech and Phonetics Interactive Research Environment, which runs on
Symbolics Lisp Machines ( Shipman, 1982; Roads, 1983; Cyphers, 1985; Kassel, 1986). It is
a program for manipulating speech signals and computations on those signals interactively.
In addition, it can be used as a basis for developing other speech processing systems and
can be extended and customized by the user to perform specific tasks.

SPIRE was implemented by David Shipman at MIT in 1982. Since then the program has
been modified by many members of the Speech Communication Group of MIT and runs on
the recent models of Lisp Machines built by Symbolics. The original SPIRE was designed
for collecting speech data and looking at transformations of it, but the recent versions have
become more general and allow other applications. On the LM-2 the last version of the
SPIRE that can be run is the 1984 one. There are a few changes in Zetalisp from the time of
the LM-2s, and SPIRE is supported only for the last releases of the Lisp Machine software.

SPIRE’s basic tools can be used on a system for the analysis, transformation and resyn-
thesis of musical sounds. However some tools are very specific to Speech and have been
changed or completely rewritten, and some others that would be useful are not available
in SPIRE. Therefore our program is a combination of unmodified parts of SPIRE, sections
that have been rewritten, plus code written from scratch.

A.3 Description of the Program

The program is entirely written in Zetalisp. It makes extensive use of the Flavor system
available on the LM-2. The graphic interface is based on the display system from SPIRE.
The signal processing computations use the AP-120B and the collection of array processing
utilities that come with it. The control of the AP-120B has also been borrowed from SPIRE.

The program is divided into two parts, the computation system and the display system.
The basic data structure is the utterance.
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A.3.1 Utterance

An utterance (term borrowed from speech and not very appropriate for music) is the
basic data structure of the program. The utterance is implemented as an object and groups
together information related to a single sound, including:

1. a digital representation of the sound

2. a set of computations based on the digitized waveform, called attributes

3. a pathname where the utterance is stored

The acoustic signal is digitized with the A/D converters and then stored as the original
waveform of an utterance. All the analysis, transformations, documentation, or any kind
of data that we may think of are stored with the utterance in the form of attributes.

A.3.2 Computation system

The computation system is responsible for analyzing, transforming, resynthesizing, and
generally, manipulating utterances. This includes the control of the array processor, and
all the signal-processing tools required for the computations.

The control of the array processor is borrowed from SPIRE and includes an assembler,
a debugger, a library of AP routines supplied by the manufacturer, and software tools for
loading the programs into the AP and transferring data to and from the AP.

Routines for the Array Processor can be written in AP-120B assembly language or in
FPS-Lisp. FPS-Lisp is a highly-constrained Lisp subset which compiles into AP assem-
bly language. The FPS-Lisp facility is primarily used to chain together or iterate through
sequences of precoded routines which are available in the Math Library. For most of our
purposes the FPS-Lisp facility is sufficient and there is no need to write in assembly lan-
guage.

Signal processing tools are built on top of the low level AP routines and include all the
algorithms described throughout this dissertation.

The computation results are called attributes, which are objects, or flavor-instances.
They are computed by having messages sent to them. For example, an FFT is an instance
of the flavor called “FFT-flavor.” The instance is first created and then the FFT computed
by sending messages to the instance with the input waveform and the values of its control
variables. An attribute may receive a computing message from the display system, from
another attribute which requires its data, or as a specific function call from outside the
environment.
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Figure A.3: Example of a Display system.

A.3.3 Display system

The display system gives a complete, interactive control over the computation system
and utterances. It is based on the window system of the Lisp Machine which is a very
powerful tool for dealing with displays.

The system has three different window levels. The higher one is called the layout, the
middle one the display, and the bottom one the overlay. The data of the attributes is
displayed on the overlays. Figure A.3 shows a typical organization of the display system.

The overlays are the simplest display objects that the program manipulates. They
describe how the values are drawn on the screen. They come in two varieties:

1. attribute overlays, which draw the values of an attribute

2. background overlays, which draw utterance-independent annotations
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The background overlays are mainly used to display the two different kinds of cursors
that are available plus background grids or axis. The overlays are transparent. Two overlays
can occupy the same area of the screen and both are drawn.

A display is a rectangular area of the screen containing one or more overlays. Unlike
overlays, displays are not transparent. Partially covered displays are hidden from view.

A display contains information which can be accessed by its overlays. For example, we
may want to draw two overlays on a common axis. The scale and position of each overlay’s
axis default to the values stored in the containing display.

The overall screen is managed through layouts. Each layout specifies a collection of
displays and their positions. There can be any number of layouts, but only one is displayed
at any time. Some layouts have been designed in advance and come with a set of displays
and overlays to be used for a specific task. For example there is a layout to manage the
recording of sounds with the A/D converter and another to study the problem of time-
domain windowing of waveforms. But the normal layouts are called “blank” layouts. On
these, the user defines the structure of displays and overlays interactively during every
particular session. FigA.4 shows an example of a layout.

A.4 Conclusions

This appendix has presented the environment on which this dissertation has been de-
veloped. It has proved to be an excellent workbench for the processing of sounds and for
the development of new signal processing algorithms.

Although this environment has been designed with the objective of developing the algo-
rithms presented in this dissertation, it is also used for various related projects. A particu-
larly relevant application is as a workbench for composers. Using the environment, sounds
are transformed with any of the analysis/synthesis systems available, which then, with the
help of other programs, are integrated into musical compositions.
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Figure A.4: Example of a layout.
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Appendix B

Cross-synthesis

B.1 Introduction

The technique used for the stochastic analysis and synthesis can apply the spectral
characteristics of one sound on to another one, thus creating the effect of a hybridization.
This process is traditionally called cross-synthesis (Moorer, 1979).

The hybridization of two sounds by applying the spectral characteristics of one sound to
another one goes back to the 1930s with the work of Dudley (Dudley, 1939). At that time
this was accomplished with an analog vocoder. More recently, the digital method of linear
predictive coding, LPC (discussed in the next appendix) has been used for that purpose in
music applications.

The cross-synthesis technique presented in this chapter is more flexible than the LPC
implementation. It offers a lot of control on the process, allowing the creation of a wide
variety of hybridization effects.

B.2 Description of the System

Figure B.1 shows a diagram of the cross-synthesis system and Figure B.2 includes a
graphic example. A spectral envelope of a sound is obtained by computing a set of mag-
nitude spectra using the STFT and then performing a line-segment approximation on each
spectrum. Each envelope is then applied to the corresponding magnitude spectrum of an-
other sound; where this spectrum has also been obtained from a STFT analysis. This
process returns a set of modified magnitude spectra. Then, the hybridized sound results
from an inverse STFT of the modified magnitude spectra and the untouched phase spectra
of the second sound.
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Figure B.1: General diagram of the cross-synthesis system.

B.3 Applying a Spectral Envelope to a Magnitude Spectrum

All the steps involved in this system (Figure B.1) are discussed in previous chapters,
except the actual product of the spectral envelope of one sound with the magnitude spectrum
of the other one. This process corresponds to the filtering of a sound by a time varying
filter. For clarity purposes we call excitation to sound to which the envelopes are applied,
and modulating sound to the other sound.

To explain this process let us consider Êl(k) a magnitude-spectrum envelope at frame l of
the modulating sound, in dB, and Al(k) a magnitude spectrum, also in dB, of the excitation.
Since we are in a log scale (dB), to apply the envelope to the excitation spectrum we simply
add the two together. The only problem is the scaling of the result. If what we want is
to keep the magnitude of Al(k) in the result, that is, to maintain the magnitude of the
excitation, the envelope Êl(k) is modified to have an average of 0dB; done by subtracting
its current average,

Ēl(k) = Êl(k)− al (B.1)

where

al =
1
N

N−1∑
k=0

Êl(k) (B.2)

is the average dB-level of one spectral frame.

The cross-synthesized magnitude spectrum is then,

Bl(k) = Al(k) + Ēl(k) (B.3)
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Figure B.2: Cross-synthesis example: (a) magnitude spectrum of a speech sound (modula-
tor), (b) computed spectral envelope, (c) magnitude spectrum of a rain sound (excitation),
(d) hybridized spectrum.
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This method gives a sound with the amplitude evolution of the excitation. However, it
is also possible to maintain the amplitude of the modulating sound in the cross synthesis,
or any amplitude in between the two sounds. For this purpose both the envelope and the
magnitude spectrum are normalized to have an average of 0dB using equation B.1, then
added,

B̄l(k) = Āl(k) + Ēl(k) (B.4)

where B̄l(k) is the normalized result with a 0dB average. Then B̄l(k) is scaled by

cl = αal + βbl, αε[0, 1], βε[0, 1] (B.5)

where al is the average of the envelope at frame l, bl the average of the corresponding
magnitude spectrum, and α and β are parameters that control the balance between the
two amplitudes. For example, when α = 0 and β = 1 the cross-synthesized sound has the
amplitude of the excitation. Enough headroom has to be left in order not to overflow the
result when α and β sum to a number bigger than 1.

B.4 Summary of the Technique

A review of the steps for a computer implementation is given below.

1. Perform the STFT of a sound x(n) (modulating sound) with specific values for window-
type, window-length, FFT-size, and hop-size,

Xl(k)
4
=

N−1∑
n=0

w(n)x(n + lH)e−jωkn, (B.6)

where w(m) is the analysis window, l the frame number, and H the hop-size. The
result is a series of complex spectra from which only their magnitude |Xl(k)| is com-
puted.

2. Compute the envelope for each magnitude spectrum by performing a line-segment
approximation,

Ẽl(q) = max
k

(|Xl(qM + k)|), k = −M/2,−M/2 + 1, . . . , 0, . . . ,M/2− 2,

M/2− 1,

q = 0, 1, . . . , N/M − 1 (B.7)

where M is the step size and the window size (or size of the section), Ẽl(q) is the
maximum of section q and frame l.
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3. Perform the STFT of another sound y(n) (i.e., excitation), with same window-type,
window-length, FFT-size, and hop-size as for sound x(n),

Yl(k)
4
=

N−1∑
n=0

w(n)y(n + lH)e−jωkn, (B.8)

If length of sound y(n) is different from the one of x(n), the window-length and hop-size
are changed in order to have the same number of frames in both analysis.

4. Compute its magnitude spectrum in dB,

Al(k) = 20 log |Yl(k)| (B.9)

5. Interpolate each line-segment approximation Ẽl(q) to a curve of size N/2, where N is
the FFT-size used for sound y(n), convert it to dB, and normalize it to have a 0dB
average.

6. Obtain the cross-synthesized magnitude spectrum Bl(k) by adding the normalized
envelope Ēl(k) (or its modification) and the magnitude spectrum Al(k),

Bl(k) = Al(k) + Ēl(k) (B.10)

7. Compute the complex spectrum Sl(k) from the phase spectrum of Yl(k) and the
modified magnitude spectrum Bl(k),

Re{Sl(k)} 4
= Bl(k) cos[ 6 Yl(k)]

Im{Sl(k)} 4
= Bl(k) sin[ 6 Yl(k)] (B.11)

8. Compute the inverse-FFT of Sl,

sl(m) =
1
N

N/2−1∑
k=−N/2

Sl(k)ejωkm (B.12)

9. Obtain the hybridized sound by overlapping and adding the output frames,

s(n) =
L−1∑
l=0

sl(n− lH) (B.13)

B.5 Examples

Speech is very appropriate as the source for the spectral envelopes. The excitation can
be any sound that is spectrally rich. Next, a set of examples are presented that use the
same speech phrase as the spectral envelope, and each one uses a different excitation.
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B.5.1 Sound example 14

Speech phrase hybridized with other sounds (sampling-rate = 18000).

Analysis parameters: window-type = Kaiser (β = 2.5), window-length = 400 samples
(.022 sec.), FFT-size = 512 samples, hop-size = 100 samples (.005 sec.), number-segments-
in-spectral-approximation = 50.

1. speech sound

2. cat sound

3. cross-synthesis of cat with speech

4. cow sound

5. cross-synthesis of cow and speech

6. gong sound

7. cross-synthesis of gong and speech

8. plane sound

9. cross-synthesis of plane and speech

10. ship creaking sound

11. cross-synthesis of ship creaking and speech

12. modification of the spectral envelopes on the previous example

13. another modification of the spectral envelopes

In all these examples the length of the excitation is kept unchanged. The sequence of
envelopes of the speech signal are stretched or compressed in time to accommodate to the
length of the excitation.

B.6 Conclusions

In this appendix we have presented a sound hybridization technique that is more flexible
than the traditional cross-synthesis implementations based on LPC. With it, the spectral
and/or amplitude characteristics of one sound are applied to another sound. This process is
most successful when the modulating sound has a pronounced formant structure, and when
the excitation sound has a very rich spectrum.
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Appendix C

Use of LPC to Model the Stochastic Component

C.1 Introduction

The representation of the stochastic component was obtained in Chapter 5 by performing
a line-segment approximation to the magnitude-spectrum residual. An alternative is to fit an
nth-order polynomial to the spectral residual using linear predictive coding, LPC (Makhoul,
1975; Markel and Gray, 1976; Rabiner and Schafer, 1978; Moorer, 1979). Even though this
alternative loses some of the flexibility of the line-segment approximation approach, it has
the advantage of being a simpler representation (i.e., less data points).

LPC has become the standard technique in speech research for estimating the basic
parameters, e.g., pitch, formants, spectra, vocal tract area functions, and for representing
speech for low bit-rate transmission and storage. In this appendix LPC is used to obtain
a time-varying all-pole filter that matches a set of magnitude-spectrum residuals. This
technique is successful even though in our application the characteristics of the spectra are
very different from the ones obtained in traditional speech applications.

In this appendix the linear prediction model is first presented. Then a particular so-
lution, called the autocorrelation method, is discussed, followed by its application to the
residual approximation problem. This appendix ends with the synthesis of the stochastic
signal from the LPC parameters and conclusions.
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C.2 Linear Prediction Model

This model assumes that a signal x(n) is the result of a linear combination of past values
and some input u(n),

x(n) = −
p∑

k=1

akx(n− k) + Gu(n) (C.1)

where G is a gain factor.

Given a particular signal x(n), the problem is to determine the predictor coefficients ak

and the gain G in some manner. Because of the time-varying nature of most sounds, the
predictor coefficients are estimated from short segments of the signal.

C.3 Solution of the Model

The standard LPC formulation assumes that the input u(n) is unknown white noise
or an impulse train whose impulses are separated by more than p samples. In the noise-
driven case the signal x(n) can be predicted only approximately from a linearly weighted
summation of past samples. Let this approximation of x(n) be x̂(n), where

x̂(n) = −
p∑

k=1

akx(n− k) (C.2)

Then the error between the actual value x(n) and the predicted value x̂(n) is given by

e(n) = x(n)− x̂(n) = x(n) +
p∑

k=1

akx(n− k) (C.3)

where the problem is to minimize the error, normally done by minimizing the mean or the
total squared error with respect to each of the parameters. There are several ways of doing
it. The one discussed here is the autocorrelation method (for other methods see: Makhoul,
1975; Markel and Gray, 1976). This approach assumes that the frame x̃l(n) is 0 outside
the interval 0 ≤ n ≤ N − 1, where N is the length of the window used to perform the
short-time analysis. The windowing process corresponds to the one used for the STFT, and
the discussion of Chapter 2 applies here.

Denote the squared error by E and the windowed frame by x̃l(n), then

E =
∞∑

n=−∞
e(n)2 =

∞∑
n=−∞

(
x̃l(n) +

p∑
k=1

akx̃l(n− k)

)2

(C.4)
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E is minimized by setting

∂E

∂ai
= 0, 1 ≤ i ≤ p (C.5)

From (C.4) and (C.5) we obtain the set of equations:

p∑
k=1

akR(i− k) = −R(i), 1 ≤ i ≤ p (C.6)

and

Ep = R(0) +
p∑

k=1

akR(k) (C.7)

where

R(i) =
∞∑

n=−∞
x̃l(n)x̃l(n + i) (C.8)

is the autocorrelation of the signal x̃l(n).

The predictor coefficients ak are obtained by solving the set of equations (C.6), p equa-
tions with p unknowns. There are many methods of solving these equations. Even though
the most popular and well known of these methods are the Levinson and Robinson algo-
rithms (Markel and Gray, 1976), the most efficient method known for solving this system
of equations is Durbin’s recursive procedure (Makhoul, 1975; Rabiner and Schafer, 1978).

C.4 Modeling the Stochastic Component

In Chapter 5 it is shown how the subtraction of the deterministic component from the
original sound results in a set of magnitude-spectrum residuals. The stochastic representa-
tion is then obtained by fitting an envelope to each one of these spectra. In Chapter 5 this
is done with a line-segment approximation; here LPC is used.

The LPC model and its solution can either be formulated in the time or frequency
domain (in the previous section it was presented in the time domain for simplicity). The
only practical difference between the two is whether the autocorrelation function R(i),
which is an intermediate step, is calculated from the time signal x(n) or from the spectrum
X(k). Since the residual to be approximated is obtained in the frequency domain, it is
convenient to calculate R(i) from the spectrum. This is done by performing the inverse
Fourier transform of the power spectrum,

Rl(n) =
1
N

N/2−1∑
k=−N/2

|Xl(k)|2ejωkn (C.9)
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Figure C.1: Approximation of a magnitude-spectrum residual using LPC: (a) residual
spectrum from a piano note attack, (b) LPC approximation of the residual.

where |X(k)l|2 is proportional to an estimate of the power spectrum of a windowed portion
of x(n).

The LPC coefficients ak are then obtained by solving the set of equations (C.6). Figure
C.1 shows how these coefficients match the residual spectrum. (The frequency domain
envelope shown in Figure C.1 is the Fourier transform of the coefficients.)

C.5 Synthesis of the Stochastic Component

The stochastic signal is synthesized by filtering a white noise signal with the time-
varying all-pole filter represented by the LPC coefficients. The simplest implementation is

xserra
Sello
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Figure C.2: Direct form realization of an all-pole filter.

to use equation (C.1), where u(n) is unit variance white noise with zero-mean, and G, the
amplitude of the noise, is given by equation (C.7). The resulting synthesis structure, shown
in Fig. C.2, is the direct form of the all-pole filter. The gain G is linearly interpolated from
frame to frame, and the coefficients are updated at every frame.

The direct form structure may have stability problems, specially when the coefficients
are interpolated from frame to frame. A very attractive alternative is to use lattice filters
(Markel and Gray, 1976). An example is shown in Fig. C.3. The multipliers, ki, are
reflection coefficients and can be interpolated without fear of instabilities. The conversion
from direct-form coefficients to reflection coefficients is performed by a recursive procedure
which is discussed by Markel and Gray (Markel and Gray, 1976).

C.6 Conclusions

In this appendix an alternative representation for the stochastic component of the sound
has been presented. This alternative uses the well known LPC method to fit an nth-
order pole filter on every magnitude-spectrum residual. Compared with the line-segment
approximation approach, the LPC method has the advantage that it reduces the number
of data points in the stochastic representation. However, it has an important drawback,
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Figure C.3: Lattice form realization of an all-pole filter.

it is not a flexible representation. Compared with the line-segments, the LPC-coefficients
are very difficult to modify. Another disadvantage is that the LPC analysis and synthesis
process is more sensitive to numerical errors than a Fourier-based technique.

The decision as to which stochastic representation to use depends on the application. If
the main concern is flexibility, the line-segment approximation is clearly the choice, however,
if data reduction is the main priority, the LPC method may be a better choice.
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Appendix D

Deterministic Synthesis with Original Attack

D.1 Introduction

A simple extension of the deterministic analysis/synthesis performed in Chapter 4 is the
splicing of an original attack into the deterministic synthesis.

Most instrumental sounds have a noisy attack and a fairly periodic steady-state and de-
cay portions. Therefore, except for the attack, the deterministic analysis is able to capture
most of the sound characteristics. Then, a more realistic attack can be obtained by splicing
the original attack into the synthesized sound. This is not possible with most synthesis tech-
niques because the synthesized waveform does not match the phases of the original sound.
But in the deterministic analysis performed in Chapter 4 the splicing is successful because
the amplitude, frequency, and phase of every partial are tracked. With this technique the
synthesized sound preserves the phase of the original waveform during the steady-state and
it is possible to splice both sounds together at a single sample (Figure D.1).

When the part of the waveform where the splice is done is not stable enough, a cross-fade
of a few samples, done with a simple Hanning window, may be necessary. In fact, the cross-
fade is even successful when the phase is not tracked (magnitude-only analysis/synthesis)
if the original sound is very periodic and the cross-fade is chosen to be a few periods long.

D.2 Examples

The splicing of an original attack into its synthesized version is most effective with
sounds that have very sharp attacks. Here examples are shown with a marimba and a
piano.
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Figure D.1: Example of deterministic synthesis with original attack: (a) marimba tone,
(a) deterministic synthesis with phase tracking, (c) deterministic synthesis with original
attack.
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D.2.1 Sound example 15

Marimba note. (sampling-rate = 34000, length = 2 sec.)

STFT parameters: window-type = Kaiser (β = 2.8), window-length = 1001 samples (.03
sec.), FFT-size = 2048 samples, hop-size = 500 samples (.014 sec.).

Peak detection parameters: local-dB-range = 75dB, general-dB-range = 85dB,
minimum-peak-height = 2dB, frequency-range = 80Hz–10KHz.

Peak continuation parameters: maximum-peak-deviation = 80Hz, peak-contribution-to-
guide = .2, maximum-number-of-guides = 20, minimum-starting-guide-separation = 120Hz,
maximum-sleeping-time = 0 frames, length-of-filled-gaps = 0 frames, minimum-trajectory-
length = 5 frames (.037 sec.).

1. original sound

2. deterministic synthesis

3. deterministic synthesis with original attack

Note that the hop-size is 1/2 the window-length, not 1/4 as in the examples of the
previous chapters.

D.2.2 Sound example 16

Piano note. (sampling-rate = 34000, length = 1 sec.)

STFT parameters: window-type = Kaiser (β = 2.8), window-length = 1201 samples
(.035 sec.), FFT-size = 2048 samples, hop-size = 600 samples (.018 sec.).

Peak detection parameters: local-dB-range = 75dB, general-dB-range = 85dB,
minimum-peak-height = 2dB, frequency-range = 80Hz–12KHz.

Peak continuation parameters: maximum-peak-deviation = 50Hz, peak-contribution-to-
guide = .3, maximum-number-of-guides = 50, minimum-starting-guide-separation = 100Hz,
maximum-sleeping-time = 0 frames, length-of-filled-gaps = 0 frames, minimum-trajectory-
length = 5 frames (.04 sec.).

1. original sound

2. deterministic synthesis

3. deterministic synthesis with original attack
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D.3 Conclusions

This appendix has presented a use of the deterministic analysis/synthesis process which
permits splicing the attack of an original sound onto its synthesized version. Since in most
instrumental sounds the attack is the main non-linear portion, and thus hard to synthesize,
and since it is very important perceptually, the use of a real attack improves the quality of
the sound enormously. Some transformations are still possible in the synthesized component
of the sound.

This process can also be used to splice attacks of one sound onto steady states of other
sounds. Thus obtaining hybrid sounds. For example, it is possible to splice the attack of a
trumpet onto the decay of a piano. This is done by matching the phases of the synthesized
piano with the real trumpet sound at the splice point. The phases of the trumpet are
detected by performing a Fourier transform at the splice point and then used as phase
values in the deterministic analysis of the piano tone at that same point.
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Appendix E

Sound Examples Index

This appendix includes an index of the sound examples that accompany this dissertation.

An audio tape with the examples can be ordered from: Center for Computer Research
in Music and Acoustics, Department of Music, Stanford University, Stanford, CA. 94305.

E.1 STFT Examples

1. Excerpt from the Gloria of the Mass in C minor, K427, by Wolfgang Amadeus Mozart.

1. original sound

2. synthesis from the STFT analysis

3. synthesis with a time expansion by a factor of 2

E.2 Sinusoidal Model Examples

2. Excerpt from “El Amor Brujo” by Manuel de Falla.

1. original sound

2. synthesis with phase

3. synthesis without phase

4. synthesis with time expansion by factor of 1.68

5. synthesis with frequency transposition by factor of 1.4

6. synthesis with frequency transposition by factor of .8
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3. Guitar passage.

1. original sound

2. synthesis with phase tracking

3. synthesis without phase tracking

4. synthesis with time expansion by a factor of 1.45

E.3 Sinusoidal plus Residual Model Examples

4. Guitar passage.

1. original sound

2. deterministic synthesis

3. residual

4. deterministic synthesis plus residual

5. Flute sound.

1. original sound

2. deterministic synthesis

3. residual

4. deterministic synthesis plus residual

6. Vocal sound.

1. original sound

2. deterministic synthesis

3. residual

4. deterministic synthesis plus residual

7. Piano passage.
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1. original sound

2. deterministic synthesis

3. residual

4. deterministic synthesis plus residual

E.4 Sinusoidal plus Stochastic Model Examples

8. Guitar passage.

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. frequency transposition by a factor of .3

6. frequency transposition by .7 and stretching of partials

7. compression of the frequency evolution

8. inversion of the frequency evolution

9. time-varying glissando and stretching of partials

10. time-varying time-scale

11. time expansion by 2.3

12. time expansion by 2.3 with time-varying time-scale and stretching of partials

13. time compression by .5 with time-varying time-scale and stretching of partials

14. time compression by .5 and frequency transposition by a factor of .4

15. time compression by .5 and glissando down

9. Speech phrase.

1. original sound

2. deterministic synthesis
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3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. frequency transposition by a factor of .6

6. compression of the frequency evolution and frequency transposition by a factor of .4

7. frequency transposition by .4 and stretching of partials

8. time-varying glissando and stretching of partials

9. time-varying time-scale and time-varying compression of the frequency evolution

10. from deterministic to stochastic signal

11. time compression by .3, compression of the frequency, and frequency transposition by
a factor of .4

12. time compression by .3 and compression of the frequency

13. time expansion by 3

14. time expansion by 3 of only stochastic component and time-varying time-scale

10. Conga passage.

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. compression of the frequency evolution

6. compression of the frequency evolution and frequency transposition by .3

7. compression of the frequency evolution and frequency transposition by 2

8. stretch partials

9. glissando down

10. glissando up

11. time-varying change of noise component

12. time-varying time-scale



E.4. SINUSOIDAL PLUS STOCHASTIC MODEL EXAMPLES 139

13. time-varying time-scale (inverse of previous example)

14. time-varying time-scale and time-varying stretch partials

15. change of the frequency evolution

16. inverse of the previous example

17. time expansion by 3

11. Flute passage.

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. compression of the frequency evolution

6. frequency transposition by .5 and stretch partials

7. compression of the frequency evolution, frequency transposition by .8, time-varying
time-scale, and stretch partials

8. inversion of frequency evolution

9. time compression by .4

10. time compression by .4, frequency transposition by .8, and compression of the fre-
quency evolution

12. Piano passage.

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. frequency transposition by .5

6. compression of the frequency evolution

7. time-varying stretch partials
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13. Singing-voice passage.

1. original sound

2. deterministic synthesis

3. stochastic synthesis

4. deterministic plus stochastic synthesis

5. frequency transposition by .8 and stretch partials

6. frequency transposition by .8 and compress partials

7. glissando and expansion of the frequency evolution

8. time-varying time-scaling

9. more percentage of stochastic component and increasing with time

E.5 Cross-synthesis Examples

14. Speech phrase hybridized with other sounds.

1. speech sound

2. cat sound

3. cross-synthesis of cat with speech

4. cow sound

5. cross-synthesis of cow and speech

6. gong sound

7. cross-synthesis of gong and speech

8. plane sound

9. cross-synthesis of plane and speech

10. ship creaking sound

11. cross-synthesis of ship creaking and speech

12. modification of the spectral envelopes on the previous example

13. another modification of the spectral envelopes
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E.6 Deterministic Synthesis with Original Attack Examples

15. Marimba note.

1. original sound

2. deterministic synthesis

3. deterministic synthesis with original attack

16. Piano note.

1. original sound

2. deterministic synthesis

3. deterministic synthesis with original attack
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Adrien, Jean Marie, René Causse and Eric Ducasse. 1988. “Dynamic modeling of stringed
and wind instruments, sound synthesis by physical models,” Proc. of the International
Computer Music Conference, 1988, Cologne, Germany, pp. 265–276.

Allen, Jont B. 1977. “Short term spectral analysis, synthesis, and modification by discrete
fourier transform,” IEEE Trans. on Acoust., Speech, and Signal Proc., vol. ASSP–25,
pp. 235–238.

Allen, Jont B. and Lawrence R. Rabiner. 1977. “A Unified approach to short-time fourier
analysis and synthesis,” Proc. IEEE, vol. 65, pp. 1558–1564.

Almeida, Luis B. and Fernando M. Silva. 1984. “Variable-frequency synthesis: An improved
harmonic coding scheme,” 1984 Proc. IEEE Int. Conf. Acoust. Speech and Sig. Proc.,
San Diego, CA, pp. 27.5.1–27.5.4.

Amuedo, John. 1985. “Periodicity estimation by hypothesis-directed search,” 1985 Proc.
IEEE Int. Conf. Acoust. Speech and Sig. Proc. Tampa, Florida, pp. 11.6.1–11.6.4.

Atal, B. S. and M. R. Schroeder. 1967. “Predictive coding of speech signals,” Proc. 1967
Conf. Commun. and Process., pp. 360–361.

Atal, B. S. 1970. “Speech analysis and synthesis by linear prediction of the speech wave,”
J. Acoust. Soc. Amer., vol. 47, no. 1, pp. 65.

Atal, Bishnu S. and Suzanne L. Hanauer. 1971. “Speech analysis and synthesis by linear
prediction of the speech wave,” J. Acoust. Soc. Amer., vol. 50, no. 2, pp. 637–655.

Atal, Bishnu S. and Joel R. Remde. 1982. “A new model of LPC excitation for producing
natural-sounding speech at low bit rates,” 1982 Proc. IEEE Int. Conf. Acoust. Speech
and Sig. Proc., pp. 614–617.

Beauchamp, James W. 1969. “A computer system for time-variant harmonic analysis and
synthesis of musical tones,” in Heinz von Foerster and James W. Beauchamp, eds. Music
by computers, New York: Wiley, pp. 19–62.



144 BIBLIOGRAPHY

Bennett, Gerald and Xavier Rodet. 1989. “Synthesis of the singing voice,” Current di-
rections in computer music research, Max Mathews and John Pierce ed., Cambridge,
Massachusetts: The MIT Press, pp. 19–33.

Berio, Luciano. 1958. “Thema (Omaggio a Joyce),” Turnabout 34177. (disk)

Bracewell, Ronald N. 1978. The Fourier transform and its applications, New York:
McGraw-Hill.

Cage, John. 1952. “Williams Mix,” Avakian JC-1. (disk)

Cann, Richard. 1979-1980. “An analysis/synthesis tutorial,” (parts 1, 2, 3). Computer
Music Journal, vol. 3, no. 3, pp. 6–11; vol. 3, no. 4, pp. 9–13; vol. 4, no.1, pp. 36–42.

Chafe, Chris. 1983. “Solera,” Computer Music from CCRMA, vol. 1, CCRMA, Stanford
University. (cassette)

Chafe, Chris. 1989. “Pulsed noise in self-sustained oscillations of musical instruments,”
submitted to ICASSP-90.

Cox, M. G. 1971. “An algorithm for approximating convex functions by means of first-
degree splines,” Computer Journal, vol. 14, pp. 272–275.

Crochiere, R. E. 1980. “A weighted overlap-add method of fourier analysis-synthesis,” IEEE
Trans. on Acoust., Speech, and Signal Proc., vol. ASSP–28, pp. 55–69.

Cyphers, David S. 1985. “Spire: A speech research tool,” Master’s Thesis, Elec. Eng. Dept.,
Massachusetts Institute of Technology.

Davies, Hugh. 1968. International electronic music catalog, Cambridge, Massachussets:
The M.I.T. Press.

Dodge, Charles. 1975. “Synthetic speech music,” Composer’s Recordings, Inc., New York,
CRI-SD-348. (disk)

Dodge, Charles. 1983. “Cascando,” Composer’s Recordings, Inc., New York, CRI-SD-454.
(disk)

Dodge, Charles. 1985. “In Celebration: The composition and its realization in synthetic
speech,” Composers and the Computer, Curtis Roads ed., Los Altos, California: William
Kaufmann, Inc. pp. 47–74.

Dodge, Charles and Thomas A. Jerse. 1985. Computer music, New York: Schirmer Books.

Dodge, Charles. 1989. “On Speech Songs,” Current directions in computer music research,
Max Mathews and John Pierce ed., Cambridge, Massachusetts: The MIT Press, pp.
9–17.



BIBLIOGRAPHY 145

Dolson, Mark B. 1983a. “A tracking phase vocoder and its use in the analysis of ensemble
sounds,” Ph.D. Dissertation, California Institute of Technology.

Dolson, Mark B. 1983b. “Musical applications of the phase vocoder,” Proc. of the Interna-
tional Computer Music Conference, 1983, Rochester, New York, pp. 99–102.

Dolson, Mark B. 1984. “Refinements in the phase-vocoder-based modification in music,”
Proc. of the International Computer Music Conference, 1984, Paris, France, pp. 65–66.

Dolson, Mark B. 1985. “Recent advances in musique concrete at CARL,” Proc. of the
International Computer Music Conference, 1985, Burnaby, B.C., Canada, pp. 55–60.

Dolson, Mark B. 1986. “The phase vocoder: A tutorial,” Computer Music J., vol. 10, no.
4, pp. 14–27.

Dolson, Mark B. 1989. “Fourier-transform-based timbral manipulations,” Current direc-
tions in computer music research, Max Mathews and John Pierce ed., Cambridge, Mas-
sachusetts: The MIT Press, pp. 105–112.

Dudley, Homer. 1939. “The vocoder,” Bell Labs Rececord, vol. 18, pp. 122–126.

Ernst, David. 1977. The evolution of electronic music, New York: Schirmer Books.

Flanagan, J. L., and R. M. Golden. 1966. “Phase vocoder,” Bell System Technical Journal,
vol. 45, pp. 1493–1509.

Fletcher, Harvey and W. A. Munson. 1933. “Loudness, its definition, measurement and
calculation,” J. Acoust. Soc. Amer., vol. 5, pp. 82–108.

Freedman, M. D. 1965. A technique for analysis of musical instrument tones, Ph.D. Dis-
sertation, University of Illinois.

Freedman, M. D. 1967. “Analysis of musical instrument tones,” J. Acoust. Soc. Amer., vol.
41, pp. 793–806.

Freedman, M. D. 1968. “A method for analyzing musical tones,” J. Audio Eng. Soc., vol.
16, no. 4, pp. 419–425.

Gordon, John W. and John Strawn. 1985. “An introduction to the phase vocoder,” Digital
audio signal processing: An anthology, J. Strawn, ed., Los Altos, CA: William Kaufmann,
Inc.

Grey, John M. 1975. An exploration of musical timbre, Ph.D. Dissertation, Stanford Uni-
versity.

Grey, John M. and James A. Moorer. 1977. “Perceptual evaluations of synthesized musical
instrument tones,” J. Acoust. Soc. Amer., vol. 62, no. 3, pp. 454–462.



146 BIBLIOGRAPHY

Grey, John M. and John W. Gordon. 1978. “Perceptual effects of spectral modifications
on musical timbres,” J. Acoust. Soc. Amer., vol. 63, no. 5, pp. 1493–1500.

Griffin, Daniel W. and Jae S. Lim. 1988. “Multiband excitation vocoder,” IEEE Trans. on
Acoust., Speech, and Signal Proc., vol. ASSP–36, pp. 1223–1235.

Griffin, Daniel W. and Jae S. Lim. 1984. “Signal estimation from modified short-time
fourier transform,” IEEE Trans. on Acoust., Speech, and Signal Proc., vol. ASSP–32,
pp. 236–242.

Harris, Fredric J. 1978. “On the use of windows for harmonic analysis with the discrete
fourier transform,” Proc. IEEE, vol. 66, pp. 51–83.

Harvey, Jonathan. 1980. “Mortuos Plango, Vivos Voco,” Digital Music Digital, Wergo,
WER 2025-50. (CD)

Henry, Pierre. 1952. “Vocalise,” Ducretet-Thomson-9. (disk)

Hess, Wolfgang. 1983. Pitch determination of speech signals, New York: Springer-Verlag.

Jaffe, David. 1987a. “Spectrum analysis tutorial, Part 1: The discrete Fourier transform,”
Computer Music J., vol. 11, no. 2, pp. 9–24.

Jaffe, David. 1987b. “Spectrum analysis tutorial, Part 2: Properties and applications of
the discrete Fourier transform,” Computer Music J., vol. 11, no. 3, pp. 17–35.

Janssen, Jos and Heinerich Kaegi. 1986. “MIDIM–Duplication of a central-javanese sound
concept,” Interface, Vol. 15, pp. 185–229.

Kaegi, Werner and S. Tempelaars. 1978. “VOSIM–A new sound synthesis system,” J.
Audio Eng. Soc., vol. 26, no. 6, pp. 418–425.

Kaiser, J. F. 1974. “Nonrecursive digital filter design using the I0-sinh window function,”
Proc. 1974 IEEE Int. Symp. on Circuits and Syst., pp. 20–23.

Kassel, Robert H. 1986. A user’s guide to SPIRE, Speech Communication Group, Mas-
sachusetts Institute of Technology.

Kronland-Martinet, Richard. 1988. “The wavelet transform for analysis, synthesis, and
processing of speech and music sounds,” Computer Music J., vol. 12, no. 4, pp. 11–20.

Lansky, Paul and Kenneth Steiglitz. 1981. “Synthesis of timbral families by warped linear
prediction,” Computer Music J., vol. 5, no. 3, pp. 45–49.

Lansky, Paul. 1989. “Compositional applications of linear predictive coding,” Current
directions in computer music research, Max Mathews and John Pierce ed., Cambridge,
Massachusetts: The MIT Press, pp. 5–8.



BIBLIOGRAPHY 147

Luce, David A. 1963. Physical correlates of nonpercussive musical instrument tones, Ph.D.
Dissertation, Department of Physics, Massachusetts Institute of Technology.

Maher, Robert C. 1989. An approach for the separation of voices in composite musical
signals, Ph.D. Dissertation, University of Illinois at Urbana-Champaign.

Makhoul, John. 1975. “Linear prediction: A tutorial review,” Proc. IEEE, vol. 63, pp.
561–580.

Manning, Peter. 1985. Electronic and computer music, London: Oxford University Press.

Markel, J. D. and A. H. Gray. 1976. Linear prediction of speech, New York: Springer-Verlag.

McAulay, Robert J. and Thomas F. Quatieri. 1984. “Magnitude-only reconstruction using
a sinusoidal speech model,” 1984 Proc. IEEE Int. Conf. Acoust. Speech and Sig. Proc.
San Diego, California, pp. 27.6.1–27.6.4.

McAulay, Robert J. and Thomas F. Quatieri. 1986. “Speech analysis/synthesis based on
a sinusoidal representation,” IEEE Trans. on Acoust., Speech, and Signal Proc., vol.
ASSP–34, pp. 744–754.

Moorer, James A. 1973. “The heterodyne filter as a tool for analysis of transient waveforms,”
Report No. STAN-CS-73-379, Computer Science Department, Stanford University.

Moorer, James A. 1975. On the segmentation and analysis of continuous musical sound by
digital computer, Ph.D. Dissertation, Stanford University.

Moorer, James A. 1977. “Signal processing aspects of computer music: A survey,” Proc.
IEEE, vol. 65, pp. 1108–1137.

Moorer, James A. 1978. “The use of the phase vocoder in computer music applications,”
J. Acoust. Soc. Amer., vol. 26, no. 3/2, pp. 42–45.

Moorer, James A. 1979. “The use of linear prediction of speech in computer music appli-
cations,” J. Acoust. Soc. Amer., vol. 27, no. 3, pp. 134–140.

Moorer, James A. 1983. “Lions are growing,” Computer Music from CCRMA, vol. 1.
CCRMA, Stanford University. (cassette)

Nawab, S. Hamid, Thomas F. Quatieri and Jae S. Lim. 1983. “Signal reconstruction from
short-time fourier transform magnitude,” IEEE Trans. on Acoust., Speech, and Signal
Proc., vol. ASSP–31, pp. 986–998.

Nuttall, Albert H. 1981. “Some windows with very good sidelobe behavior,” IEEE Trans.
on Acoust., Speech, and Signal Proc., vol. ASSP–29, pp. 84–91.

Oppenheim, Alan V. and Ronald W. Schafer. 1975. Digital signal processing, Englewood
Cliffs, New Jersey: Prentice-Hall.



148 BIBLIOGRAPHY

Petersen, Tracy L. 1975. “Voices,” Tulsa, Okla.: Tulsa Studios.

Petersen, Tracy L. 1976. “Vocal tract modulation of instrumental sounds by digital filter-
ing,” Proceedings of the Int. C.M.C., part I, 1975, Urbana, Illinois, pp. 33–41.

Phillips, G. M. 1968. “Algorithms for piecewise straight line approximation,” Computer
Journal, vol. 11, pp. 211–212.

Piszczalski, M. and B. A. Galler. 1979. “Predicting musical pitch from component frequency
ratios,” J. Acoust. Soc. Amer., vol. 66, no. 3, pp. 710–720.

Plomp, R. 1966. Experiments on tone perception, Institute for perception RVO-TNO,
Soesterberg, The Netherlands.

Portnoff, Michael. R. 1976. “Implementation of the digital phase vocoder using the fast
fourier transform,” IEEE Trans. on Acoust., Speech, and Signal Proc., vol. ASSP–24,
pp. 243–248.

Portnoff, Michael R. 1980. “Time-frequency representation of digital signals and systems
based on short-time fourier analysis,” IEEE Trans. on Acoust., Speech, and Signal Proc.,
vol. ASSP–28, pp. 55–69.

Portnoff, Michael. R. 1981. “Time-scale modification of speech based on short-time fourier
analysis,” IEEE Trans. on Acoust., Speech, and Signal Proc., vol. ASSP–29, pp. 374–390.

Quatieri, Thomas F. and Robert J. McAulay. 1986. “Speech transformations based on
a sinusoidal representation,” IEEE Trans. on Acoust., Speech, and Signal Proc., vol.
ASSP–34, pp. 1449–1464.

Rabiner, Lawrence R. and Bernard Gold. 1975. Theory and applications of digital signal
processing, Englewood Cliffs, New Jersey: Prentice-Hall.

Rabiner, Lawrence R. and Ronald W. Schafer. 1978. Digital processing of speech signals,
Englewood Cliffs, New Jersey: Prentice-Hall.

Reich, Steve. 1966. “Come Out,” Odyssey 32160160. (disk)

Risset, Jean-Claude. 1988. “Songes,” Digital Music Digital, Wergo, WER 2013-50. (CD)

Risset, Jean-Claude, and Max V. Mathews. 1969. “Analysis of musical-instrument tones,”
Physics Today, vol. 22, no. 2, pp. 23–30.

Roads, Curtis. 1983. “A report on SPIRE: An interactive audio processing environment,”
Computer Music J., vol. 7, no. 2, pp. 70–74.

Rodet, Xavier. 1984. “Time-domain formant-wave-function synthesis,” Computer Music
J., vol. 8, no. 3, pp. 9–14.



BIBLIOGRAPHY 149

Rodet, Xavier, Y. Potard, and J. B. Barrière. 1984. “The CHANT project: From synthesis
of the singing voice to synthesis in general,” Computer Music J., vol. 8, no. 3, pp. 15–31.

Roederer, Juan G. 1979. Introduction to the physics and psychophysics of music, New York:
Springer-Verlag.

Rosenfeld, Azriel. 1969. Picture processing by computer, New York: Academic Press.

Saito, S. and F. Itakura. 1966. “The theoretical consideration of statistically optimum
methods for speech spectral density,” Report No. 3107, Electrical Communication Lab-
oratory, N.T.T., Tokyo. (In Japanese).
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