SUPPLEMENTARY MATERIAL

Performance of low-cost monitors to assess household air pollution

Curto, A.; Donaire-Gonzalez, D.; Barrera-Gómez, J.; Marshall, JD.; Nieuwenhuijsen, MJ.;

Wellenius, GA.; Tonne, C.

Number of pages: 25

Number of Figures: 10

Number of Tables: 3

Content of the material supplied:

- Figure S1: Diagram of the time course (or design) of the experiment.
- **Figure S2**: Map showing the four villages near Hyderabad and the fixed-station where the field-based sampling took place.
- Figure S3: Time-series showing PM_{2.5} (in μg/m³) levels measured by the benchmark monitor (DustTrak) and the two PM low-cost monitors (HAPEX, TZOA-R) in the experiment.
- Figure S4: Time-series showing the carbon monoxide (CO) levels measured by the benchmark monitor (Q-Trak) and the three low-cost units (EL-USB-CO) and temperature in the experiment.
- Figure S5: Plot showing the relationship between PM_{2.5} (in μg/m³) measured by nephelometric (DustTrak) and gravimetric (BGI pump) sampling.
- Figure S6, S7, S8: Bland-Altman plots.
- **Figure S9, S10**: Scatter plots of 5-min CO levels from unit 2 and 3 of EL-USB-CO versus Q-Trak during the experiment stratified by fire and room ventilation conditions.
- **Table S1**: Summary table of characteristics of the used and excluded air quality devices.

- **Table S2**: Descriptive table of all the parameters measured by the benchmark monitors used in the validation study, split by fire and room ventilation conditions.
- Table S3: Adjusted R² (in percentage) for the fitted models and partial contribution to
 R² of each term in the model.
- Expanded version of the Methods section.
- R script to read the raw output files of the main devices used in the study.

Figure S1 Diagram of the time course of the wood-combustion experiment.

F = a change of the Teflon filter from the BGI pump was done.

The experiment was divided conveniently into three consecutive days and 2 separate consecutive days, having in total 5 non-consecutive days. Almost all days fire was set at 12-1pm (in orange). Window was only opened during fire hours (in blue). A total of 25 gravimetric filters were obtained (F1-F25).

Table S1 Summary table of characteristics of the used and excluded air quality devices.

Device [software	Model (university/	Detection method	Measure(s)	PM / CO	Battery life ¹	Max.	Cost per unit	Used?	Exclusion
used, if applicable]	company)	of PM / CO		Range ¹		Operating	(US Dollar)		reason(s)
						T (°C) ¹			
Particle and	PATS+ (Berkeley Air	light-scattering	PM _{2.5} , CO,	$10 \ \mu g/m^3$ to	> 80 hours	+50	~ 550	No	Not available for
Temperature sensor	Monitoring Group)	(Sharp GP sensor)	T, RH,	50 mg/m^3			(depending on		retail until
(PATS+)		/ electrochemical	movement	$(PM_{2.5}) / 0$ to			quantity and the		September 2016
		(COA4		500 ppm			optional		
		Alphasense		(CO)			inclusion of the		
		sensor)					CO sensor)		
Ultrasonic Personal	UPAS v2.0 (Colorado	ultrasonic	PM _{2.5} , T,	25 to 800	23-45 hours 2	+85	~ 150 ²	No	Filter-based
Aerosol Sampler	State University and	piezoelectric pump	RH,	$\mu g/m^3$		(BME280			
(UPAS)	Access Sensor	2	movement,			sensor from			
	Technologies)		UV light			Bosch			
						Sensortec)			
Dylos	Model DC1700	light-scattering	PM _{2.5} , PM ₁₀	0.5 to 1 000	6 hours	Not reported	425	No	Short battery life
	(Dylos Corporation)	(with fan)		$\mu g/m^3$					and already
									validated in
									indoor
									environments
DustTrak DRX	DRX Aerosol	light-scattering	PM ₁ , PM _{2.5} ,	0.001 to 150	6 hours	+50	~ 8,000	Yes	-
[TrakPro v4.1.0.]	Monitor 8534, hand-	and gravimetric ³	PM ₄ , PM ₁₀	mg/m ³					
	held (TSI Inc.)								

BGI/Mesa Labs	BGI4004-Personal	gravimetric	PM _{2.5} ,	Non	24 hours	+50	> 1,000	Yes	-
pump	IAQ Monitor (4-6		absorbance ⁴	applicable					
(discontinued)	lpm) (BGI/Mesa			(although					
	Labs)			commonly					
				filters					
				accumulate					
				10 to 25 µg					
				of mass)					
SKC pump	Model Universal	gravimetric	PM _{2.5} ,	Non	12 hours	+40	> 1,000	Yes	-
	PCXR8 (0,005 to 5		absorbance ⁴	applicable	(with				
	lpm) (SKC Inc.)			(although					
				commonly	extended				
				filters	times with				
				accumulate	intermittent				
				10 to 25 µg	1				
				of mass)	sampling)				
TZOA-R	TZOA Research	light-scattering	$PM_1, PM_{2.5},$	Not reported	60 days	+40	400	Yes	-
	Devices (RD02)	(with fan)	PM ₁₀ , T, RH						
	(MyTZOA)								
HAPEX [HAPEX	HAPEX Nano,	light-scattering	PM _{2.5}	5 μ g/m ³ to	2 years	Not reported	95	Yes	-
Nano Launcher v2]	firmware version 1.0	(without fan)		150 mg/m^3					
	(Climate Solutions								
	Consulting)								
Atmotube	Atmotube	Not a selective	CO, VOCs,	100 to 1 000	1 month	+45 (for best	89 (retail)	No	Not available at

	(NotAnotherOne	sensor for CO	T, RH	ppb (tVOCs)		accuracy:			the time of the
	with technology from	(estimated				+30)			study and low
	Arrow Electronics)	indirectly by							robustness to
		tVOCs sensor							long term
		highly							meteorological
		sensitive to CO)							extremes
Foobot	Foobot (Airboxlab	light-scattering	PM _{2.5} , CO	0 to 1.6	plugged	+60	190	No	Lack of internal
	with technology from	(Sharp GP sensor)	and CO ₂	mg/m ³					battery (i.e.
	TechCrunch)	/ metal oxide	indirectly,	(PM _{2.5})					electricity
			VOCs, T,						dependant) and
			RH						CO detection
									range too low
									(from 0.1 to
									1ppm)
NODE+	NODE+ Sensor	electrochemical	СО	0 to 1 000	54 days (in	+50	149 platform	No	Difficulties to
	Platform NK-02B			ppm	standby time)		(+75 sensor)		transmit the data
	with NODE+OXA								wirelessly
	CO sensor (Variable								through
	Inc.)								Bluetooth to an
									iOS and Android
									smart devices
									(tested by
									authors) and
									impossibility to

									upload the data
									to a computer
Dräger	Dräger Pac 7000	electrochemical	СО	0 to 1 999	24 hours	+50	487 (+ 147 USB	No	Short battery life
	(Drägerwerk AG)			ppm			cable)		
Aeroqual	Aeroqual s500	electrochemical	СО	0 to 1 000	8 hours	+45	704 (only the	No	Expensive and
	(Aeroqual Ltd.)			ppm			sensor head)		short battery life
CO-O3	Single Gas Personal	electrochemical	СО	0 to 500	125 days	+50	449 (+190	No	Expensive
	Monitor, CO-Series			ppm	(replaceable)		software + 267		
	03 (RKI Instruments)						USB cable)		
Indoor Air	IAP Meter 5000	light-scattering	PM _{2.5} , CO T,	0 to 60	3 to 30 days	Not reported	~ 2,500	No	Expensive
Pollution (IAP)	series (Aprovecho	and	RH	mg/m ³	(depending				
Meter	Research Centre)	electrochemical		$(PM_{2.5}) / 0$ to	on sample				
				1 000 ppm	frequency				
				(CO)	mode)				
Q-Trak [TrakPro	Indoor Air Quality	NDIR (CO2),	CO ₂ , CO, T,	0 to 500	6 hours	+45	3,100	Yes	-
v4.1.0.1]	Monitor 7575 with	electrochemical	RH	ppm					
	IAQ Probe Model	(CO)							
	982								
EL-USB-CO	Lascar EL-USB-CO	electrochemical	СО	0 to 1 000	3 months	+40	125	Yes	-
[EasyLog]				ppm	(with specific				
					settings and				
					with a non-				

		rechargeable		
		1/2AA 3.6V		
		battery)		

PM₁: particles less than 1 μm; PM_{2.5}: particles less than 2.5 μm; PM₄: particles less than 4 μm; PM₁₀: particles less than 10 μm; T: Temperature; RH: Relative Humidity;

CO₂: Carbon Dioxide; CO: Carbon Monoxide; NDIR: Non-Dispersive Infra-Red absorption; UV: Ultraviolet light; VOCs: Volatile Organic Compounds; tVOC: Total VOCs.

- 1. According to operating manufacturer manuals or datasheets. Battery life varies according to the settings specified.
- 2. Volckens, J. et al. Development and evaluation of an ultrasonic personal aerosol sampler. Indoor Air 27, 409–416 (2017).
- 3. Note that a pre-weighted filter can be loaded to the DustTrak DRX in order to avoid additional gravimetric pump and filter assembly.
- 4. Absorbance was also measured both in Spain and India, but data are not shown.

Table S2 Descriptive table of all the parameters measured by the benchmark monitors used in the wood-combustion experiment, split by fire and room

ventilation conditions.

	TOTA	AL			NON-	FIRE			FIRE, WINDOW OPENED				FIRE			
	n	min to	mean ±	median	n	min to	mean ±	median	n	min to	mean ±	median	n	min to	mean ±	median
		max	SD			max	SD			max	SD			max	SD	
UFP	6270	0 to	28575.8	16170.0	3006	0 to	12706.8	16170.0	868	8570.0	24545.3	18202.0	2396	4792 to	49944.9±	28085.5
(pt/cm ³)		586745.2	±			212480.6	±			to	±			586745.2	67463.5	
			47263.4				17108.3			156847.0	20341.7					
$PM_1(\mu g/m^3)$	7031	6.0 to	42.7 ±	30.0	3672	6.0 to	26.8 ±	21.0	830	11 to	35.6 ±	24.0	2529	12.0 to	68.2 ±	46.0
		588.0	51.7			588.0	30.2			461	32.6			527.0	68.7	
PM _{2.5}	25	5.1 to	34.5 ±	23.2	-	-	-	-	-	-	-	-	-	-	-	-
$(\mu g/m^3)$, by		94.8	24.8													
BGI pump																
PM _{2.5}	7014	4.9 to	30.3 ±	21.5	3655	4.9 to	19.0±	14.8	830	8.9 to	27.5 ±	18.5	2529	8.7 to	47.6 ±	34.0
$(\mu g/m^3)$, by		370.9	32.9			370.9	18.8			311.7	23.0			332.9	42.9	
DustTrak																
DRX																
PM ₁₀	7031	7.0 to	69.3 ±	48.0	3672	7.0 to	41.9 ±	27.0	830	16.0 to	41.9 ±	27.0	2529	17.0 to	105.2 ±	80.0
$(\mu g/m^3)$		1990.0	80.4			682.0	43.9			1990.0	126.5			808.0	86.6	
CO (ppm)	7135	0 to 9.8	0.7 ±	0.2	3748	0 to 4.4	0.2 ±	0.0	858	0.0 to	1.1 ±	0.7	2529	0.0 to	1.3 ± 1.4	0.9
			1.1				0.4			6.2	1.2			9.8		
BC ($\mu g/m^3$)	7176	0.1 to	1.6 ±	1.4	3783	0.06 to	1.3 ±	1.2	864	0.2 to	1.4 ±	1.3	2529	0.06 to	2.2 ± 1.2	1.9
		8.3	1.1			8.1	0.1			5.9	0.8			8.3		

T (°C)	7261	19 to	29.4 ±	28.5	3864	19.5 to	23.6 ±	22.5	868	23.5 to	35.5 ±	35.5	2529	19.0 to	$36.2 \pm$	34.5
		55.5	8.0			43.5	3.8			46.0	5.5			55.5	6.5	
RH (%)	7261	10 to	31.6 ±	32.0	3864	16.5 to	37.9 ±	38.0	868	12.0 to	21.9 ±	21.5	2529	10.0 to	25.1 ±	25.0
		53.5	9.6			53.5	6.5			38.5	6.2			48.0	7.2	

UFP: Ultra Fine Particles (measured with the Condensation Particle Counter (CPC) 3007 from TSI Inc.); PM1: particles less than 1 µm; PM2.5: particles less than 2.5 µm;

*PM*₁₀: particles less than 10 μm; CO: Carbon Monoxide; BC: Black Carbon (measured with the MicroAeth AE51 from Aethlabs); T: Temperature; RH: Relative Humidity;

SD: Standard Deviation. UFP, PM_{2.5} and BC data presented in this table have been post-processed.

Figure S2 The four villages near Hyderabad (southern India) and the fixed-station ("North Site") where the field-based sampling took place.

Figure S4 Carbon monoxide (CO) levels measured by the benchmark monitor (Q-Trak) and the three low-cost units (EL-USB-CO) and temperature in the experiment.

Figure S5 Relationship between $PM_{2.5}(\mu g/m^3)$ measured by light-scattering/nephelometric (DustTrak DRX) and gravimetric (BGI pump) sampling.

PMadj= *PM adjusted gravimetrically; PMdust*= *time weighted average (TWA) of DustTrak DRX raw values.*

Figure S6 Bland-Altman plot for HAPEX (low-cost) versus DustTrak (benchmark).

Figure S7 Bland-Altman plot for TZOA-R (low-cost) versus DustTrak (benchmark).

Figure S9 Scatter plots of 5-min CO levels from unit 2 of EL-USB-CO (low-cost sensor) versus Q-Trak (benchmark monitor) during the experiment stratified

by fire and room ventilation conditions.

CO: carbon monoxide (in ppm). Plots include only the first three days. Solid lines correspond to the fitted mean concentration of *EL-USB-CO*. Dashed lines correspond to the 95% confidence interval for the prediction. Grey lines represent the ideal (*EL-USB-CO* = *Q*-Trak). The fitted linear model showed an $R^2 = 0.76$.

Figure S10 Scatter plots of 5-min CO levels from unit 3 of EL-USB-CO (low-cost sensor) versus Q-Trak (benchmark monitor) during the experiment stratified by fire and room ventilation conditions.

CO: carbon monoxide (in ppm). Plots include only the first three days. Solid lines correspond to the fitted mean concentration of EL-USB-CO. Dashed lines correspond to the 95% confidence interval for the prediction. Grey lines represent the ideal (EL-USB-CO = Q-Trak). The fitted linear model showed an $R^2 = 0.84$.

Table S3 Adjusted R^2 (in percentage) for the fitted models and partial contribution to R^2 of each term in the model (device, fire and ventilation condition and

Device	n ^a	R² (device)	R ² (condition)	R² (interaction)	\mathbf{R}^2 (total)
HAPEX	1267	42	20	8	70
HAPEX (2 days)	573	43	16	15	74
TZOA-R	463	76	5	5	85
EL-USB-CO (unit 1)	851	71	8	2	82
EL-USB-CO (unit 2)	851	52	22	2	76
EL-USB-CO (unit 3)	851	75	7	3	84

the interaction between device and condition).

a. "n" represents the sample size of 5-min pollutant data.

MATERIAL AND METHODS (expanded version)

Wood-combustion experiment in Spain

The fireplace was located in the 26-m² living room, at 6m from the kitchen area, at 1m from the window and with a ceiling height of 2.5m. All benchmark monitors were plugged to AC power and after 24h, they were stopped, cleaned, zeroed, and synchronized before the following 24-h experiment. In contrast, low-cost sensors ran continuously without electricity supply. Flow-rate of DustTrak DRX was set to 1.7 L/min on each experiment day.

The flow rate of the pump was adjusted at the beginning of each gravimetric round to 3.5L/min with a rotameter (Model RM67, BGI Inc.) and checked at the end of that round to make sure that it had remained at 3.5L/min (\pm 20%) during the course of sampling. Sampled filters were packed individually in 37-mm cassette housings sealed in zipped plastic bags and stored at 4°C before post-weighing. Both before and after sampling, filters were double weighed with a microbalance of 1 µg accuracy (Model MX5, Mettler-Toledo International Inc., Switzerland) at the facilities of the Scientific Service of Nuclear Magnetic Resonance of the University of Lleida (Spain). A temperature (20-23 \pm 2°C) and humidity (30-40 \pm 5%) controlled room was used to condition filters 24h before each weighing session. Quality control included weighing filters two non-consecutive times and discarded both of readings if they differed more than 5 µg. We corrected filters for the mass of 22 field-blanks obtained in the same area using few months earlier the same equipment and following the same protocol.

Field-based pilot study in India

The flow rate of the pump was adjusted at the beginning of each gravimetric round to 1.5 L/min with a flow meter (Model Defender 510, Mesa Labs Inc.) and checked at the end of that round to make sure that it had remained at 1.5 L/min during the course of sampling. Sampled filters were packed individually in 37-mm cassette housings. Both before and after sampling, filters were double weighed with a microbalance of 5 µg accuracy (Model CPA2P-F, Sartorius AG, Germany) at the facilities of the Sri Ramachandra University, Chennai, Tamil Nadu (India). A

temperature (21-24°C) and humidity (42-60%) controlled room was used to condition filters 24h before each weighing session. Quality control included weighing filters a third time only if the two previous readings differed more than 5 μ g; if so, the closest two measurements of the three were accepted. All filters obtained were corrected for mass accumulated on field-blank filters (season-specific correction using median blank weight). For more details in the filter weighing and quality control procedures, see Data Supplement 3 of the TAPHE protocol study ¹.

REFERENCES

 Balakrishnan, K. *et al.* Establishing integrated rural-urban cohorts to assess air pollutionrelated health effects in pregnant women, children and adults in Southern India: an overview of objectives, design and methods in the Tamil Nadu Air Pollution and Health Effects (TAPHE) study. *BMJ Open* 5, e008090–e008090 (2015).

R script to read raw output files

- Reading the raw output files from the low-cost sensors (HAPEX, TZOA-R & EL-USB-CO)

- ## Reading the raw output files from the benchmark monitors (DustTrak & Q-Trak)
- ##
- ## Ariadna Curto & David Donaire
- ## ISGlobal-Campus Mar
- ## Mar-2016
- ## Version 1.0

```
#### LOW-COST SENSORS ####
#### HAPEX FUNCTION ####
read.hapex <- function(x,tz=Sys.timezone(),...){</pre>
  monitor <- paste("hapex",read.csv(x,header=F,nrow=1)[2],sep="_")</pre>
  aux <- read.csv(x,skip=11,stringsAsFactors=F,na.strings = "N/A")</pre>
  names(aux) <- tolower(names(aux))</pre>
  aux$time.stamp <- as.POSIXct(as.POSIXlt(as.POSIXct(aux$time.stamp,format="%m/%d/%Y %I:%M:%OS</pre>
%p",tz="GMT"),tz=tz))
  aux <- aux[,1:2]</pre>
  names(aux)[1] <- "date.time"</pre>
  names(aux)[!names(aux)%in%"date.time"] <-</pre>
paste(monitor,names(aux)[!names(aux)%in%"date.time"],sep=".")
  aux
}
#### TZOA-R FUNCTION ####
read.tzoa <- function(x,min=5,...){</pre>
  suppressWarnings(suppressMessages(if (!require(data.table)){
    install.packages(pkgs="data.table",repos="http://cran.r-project.org");
    require(data.table)}))
```

```
aux <- read.csv(x)</pre>
  names(aux) <- c("date.time","sample","temp","rh","pm10","ufp","fp","cp")</pre>
  aux$date.time <- as.POSIXct(ceiling(as.numeric(as.POSIXct(aux$date.time))</pre>
                                        /(60*min))*(60*min),origin="1970-01-01")
  aux$ufp <- aux$pm10*(aux$ufp/100)</pre>
  aux$fp <- aux$pm10*(aux$fp/100)</pre>
  aux$cp <- aux$pm10*(aux$cp/100)</pre>
  aux <- aux[,-2]</pre>
  monitor <- paste("tzoa",gsub("(.*_)|(.CSV)","",x),sep="_")</pre>
  aux <- data.table(aux)</pre>
  aux <- aux[, lapply(.SD,function(x)exp(mean(log(x),na.rm=T))), by=date.time]</pre>
  aux <- data.frame(aux)</pre>
  names(aux)[!names(aux)%in%"date.time"] <-</pre>
paste(monitor,names(aux)[!names(aux)%in%"date.time"],sep=".")
  aux
}
#### USB-CO FUNCTION ####
read.usb.co <- function(x){</pre>
  au <-read.csv(x,skip=1,header=F,stringsAsFactors=F)</pre>
  aux <- data.frame(date.time=as.POSIXct(au[,2],format="%d/%m/%Y %H:%M:%S"),co=au[,3])</pre>
  monitor=paste("usb.co",au[1,4],sep="_")
  names(aux)[!names(aux)%in%"date.time"] <-</pre>
paste(monitor,names(aux)[!names(aux)%in%"date.time"],sep=".")
  aux
}
#### BENCHMARK MONITORS ####
#### DUSTTRAK FUNCTION ####
read.dusttrak <- function(x){</pre>
  aux <- read.csv(x,sep="\t",row.names=NULL,skip=29,header=F)</pre>
  names(aux) <- c("date","time","pm1","pm2.5","resp","pm10","total")</pre>
  date.time=as.POSIXct(paste(aux$date,aux$time),format="%d/%m/%Y %H:%M:%S")
  aux <- data.frame(date.time=date.time,aux[,3:7])</pre>
```

```
names(aux)[!names(aux)%in%"date.time"] <-
paste("dust",names(aux)[!names(aux)%in%"date.time"],sep=".")
aux
}
##### Q-TRAK FUNCTION ####
read.qtrak <- function(x){
  aux <- read.csv(x,sep="\t",skip=32,header=F)
  names(aux) <- c("date","time","co2","t","h","dewpoint","wetbulb","co","bp")
  date.time <- as.POSIXct(paste(aux$date,aux$time),format="%d/%m/%Y %H:%M:%S")
  aux <- data.frame(date.time=date.time,aux[,3:9])
  names(aux)[!names(aux)%in%"date.time"] <-
paste("qtrak",names(aux)[!names(aux)%in%"date.time"],sep=".")
  aux</pre>
```

```
}
```