Outdoor blue spaces, human health and well-being: a systematic review of quantitative studies

Mireia Gascona,b,c, Wilma Zijlemaa,b,c, Cristina Verta,b,c, Mathew P. Whited, Mark Nieuwenhuijsena,b,c

Affiliations
aISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clinic - Universitat de Barcelona, Barcelona, Spain
bUniversitat Pompeu Fabra (UPF), Barcelona, Spain
cCIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
dEuropean Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.

Name and contact of the corresponding author
Mireia Gascon
Parc de Recerca Biomèdica de Barcelona (PRBB) – ISGlobal (CREAL)
Doctor Aiguader, 88 | 08003 Barcelona, Catalonia, Spain
Phone: 0034 932147363 Fax: 0034 932045904
email: mireia.gascon@isglobal.org
Abstract

Background: a growing number of quantitative studies have investigated the potential benefits of outdoor blue spaces (lakes, rivers, sea, etc) and human health, but there is not yet a systematic review synthesizing this evidence.

Objectives: to systematically review the current quantitative evidence on human health and well-being benefits of outdoor blue spaces.

Methods: following PRISMA guidelines for reporting systematic reviews and meta-analysis, observational and experimental quantitative studies focusing on both residential and non-residential outdoor blue space exposure were searched using specific keywords.

Results: in total 35 studies were included in the current systematic review, most of them being classified as of “good quality” (N=22). The balance of evidence suggested a positive association between greater exposure to outdoor blue spaces and both benefits to mental health and well-being (N=12 studies) and levels of physical activity (N=13 studies). The evidence of an association between outdoor blue space exposure and general health (N=6 studies), obesity (N=8 studies) and cardiovascular (N=4 studies) and related outcomes was less consistent.

Conclusions: although encouraging, there remains relatively few studies and a large degree of heterogeneity in terms of study design, exposure metrics and outcome measures, making synthesis difficult. Further research is needed using longitudinal research and natural experiments, preferably across a broader range of countries, to better understand the causal associations between blue spaces, health and wellbeing.

Keywords: outdoor; blue spaces; health; well-being
Introduction

A growing body of literature suggests that natural outdoor environments might help reduce stress, promote physical activity and social relationships and potentially improve human health and well-being (Dadvand et al., 2016; Hartig et al., 2014; Nieuwenhuijsen et al., 2017; Pasanen et al., 2014; Völker and Kistemann, 2011). Furthermore, the presence of natural environments in urban settings, particularly green spaces (trees, grass, forests, parks, etc), has been associated with a reduction of the levels of air pollution and noise, as well as extreme temperatures in cities, which can lead to a reduction of the impacts of these environmental factors on our health (Burkart et al., 2016; Hartig et al., 2014; Shanahan et al., 2015; Wolf and Robbins, 2015). In a world with rapid urbanization and pressure on space (United Nations Department of Economic and Social Affairs, 2014), evidence of such health benefits of natural environments are of high relevance for healthcare professionals, urban planners and policymakers, who can help translate available evidence into salutogenic interventions and policies (i.e. ones that support and promote health and well-being).

Most of the studies in this field to date have focused on the health benefits of green spaces, including several systematic and non-systematic reviews (e.g. Dzhambov et al., 2014; Dzhambov and Dimitrova, 2014; Gascon et al., 2016, 2015; Kabisch et al., 2015; Lee and Maheswaran, 2011; Nieuwenhuijsen et al., 2017; WHO, 2016). However, fewer studies have focused on the health impacts of outdoor blue spaces, defined in the European Commission funded project BlueHealth (https://bluehealth2020.eu/) as “outdoor environments - either natural or manmade - that prominently feature water and are accessible to humans either proximally (being in, on, or near water) or distally/virtually (being able to see, hear or otherwise sense water)” (Grellier et al.,
Despite a rich and growing body of multi-faceted, qualitative and narrative work that is shedding important light on people’s interactions with blue space environments, including their perceptions of potential health benefits (Foley and Kistemann, 2015; Völker and Kistemann, 2011), we know less about the quantitative, primarily epidemiological data that seeks to address questions such as “Is living near or having better access to blue space environments associated with positive health and well-being outcomes?” Although one systematic review, focusing on mortality, did seek to explore the relationship with blue space, in addition to more commonly researched green space, no studies were found at that time to have considered this association (Gascon et al., 2016). However, we know of far more studies that have looked at blue space and morbidity and well-being outcomes although as yet no systematic review of this literature has been conducted. The aim of the current paper was to fill this gap. Moreover, given that it has been hypothesized that any of the potential benefits to health and well-being from exposure to outdoor blue space may follow pathways similar to those identified for green space including stress reduction, increased physical activity, promotion of positive social contacts, increased place attachment and the reduction of extreme temperatures may also play a role for outdoor blue spaces (Grellier et al., 2017), the current review will explore this potential pathways as well.

Materials and methods

Search strategy and selection criteria

We followed the PRISMA statement guidelines for reporting systematic reviews and meta-analyses (Moher et al., 2010). The bibliographic search was conducted using MEDLINE (National Library of Medicine) and SCOPUS search engines and keywords related to outdoor blue spaces (blue space, river, lake, sea, beach, fountains, riparian,
(oceans, coastal, marine) combined with keywords related to health and well-being
(mood disorder, depressive disorder, depression, anxiety disorder, anxiety, obsessive-compulsive disorder, stress, mental health, mental hygiene, mental disorders, emotional
well-being, psychological well-being, social well-being, well-being, cognitive function,
health, cardiovascular diseases, heart diseases, blood pressure, hypertension, obesity,
overweigh, weight, body mass index, BMI) as well as keywords related to the potential
mechanisms accounting for this association (physical activity, social capital, social
contacts, social support). The search was limited to the English language and studies in
humans and the last search was conducted on July 1st 2016. All studies published prior
to that date and that followed the inclusion criteria were included in the systematic
review. In order to have a potentially global overview, the country where the study had
been conducted was not an inclusion criterion. Two authors (MG and WZ)
independently identified and conducted the first screening of the articles based on the
information available in the title and abstract by using the Rayyan tool (Elmagarmid et
al., 2014), an online tool that provides procedural support in the selection of articles for
systematic reviews. After this first screening stage, based on titles and abstracts, both
authors independently read each article to decide whether or not these were eligible for
inclusion. After this process, authors compared the final list of papers included by each
of them and where disagreements or doubts were encountered the final decision was
resolved by discussion between the two independent researchers. We also checked the
references of the relevant articles and other sources to find additional articles following
the inclusion criteria.

Study eligibility criteria and quality of the studies
The selection criteria were as follows: a) the article needed to be an original research article, b) all type of study designs were included (ecological, prospective, cross-sectional, case-control, and intervention studies), c) the article used quantitative data to report analysis of health and well-being, social or physical activity outcomes in relation to outdoor blue space exposure, d) outdoor blue space exposure was included as a separate variable within the analysis and results were reported specifically for outdoor blue space, even if this was not the primary aim of the study.

We extracted the following data: author, year of publication, country, study design, study population, sample size, exposure assessment, outcome assessment, confounding factors, and other relevant information including information on potential biases (Tables 1-4 and supplemental material Table A). The data extraction work was conducted by the two authors independently, as well as the evaluation of their quality and classification of the evidence. Agreement was reached via consensus. Study quality evaluation was based on an adapted version of the criteria used in previous reviews in the green space field (Gascon et al., 2016, 2015). Further information on how the quality scores were given is provided in Table B of the supplemental material. The following quality scores (%) were derived as follows (supplemental material Table C): excellent quality (score \(\geq 81\% \)), good quality (between 61 and 80\%), fair quality (between 41 and 60\%), poor quality (between 21 and 40\%) and very poor quality (\(\leq 20\% \)). These quality scores facilitated establishing the degree of evidence for causal relationships (while recognizing that many of these studies are not designed to test causality directly) between outdoor blue spaces and the outcomes evaluated. The definitions of the degree of evidence for causal relationships used in the current systematic review are an adaptation of the International Agency for Research on Cancer (IARC) definition to
define evidence of a causal relationship for cancer (IARC, 2006): *sufficient* - a positive relationship has been observed between the exposure and outcome in most of the studies, including good quality studies, in which chance, bias and confounding could be ruled out with reasonable confidence; *limited* - several good quality, independent, studies report a statistically significant association, but chance, bias or confounding cannot be rule out and therefore evidence is not yet conclusive enough; *inadequate* - if statistically significant associations are reported in one or more studies, but insufficient quality, insufficient number of studies, lack of consistency, and/or lack of statistical power preclude a conclusion regarding the presence or absence of a causal relationship; *evidence for lack of association* - several good quality studies are consistent in showing no causal relationship. We separately evaluated the evidence according to the different outcomes assessed in the studies included.

Results

We identified 2438 articles in MEDLINE and 2380 articles in SCOPUS and 33 through other sources. After screening the title and the abstracts and checking for duplicates, 91 articles were chosen for full-text evaluation, of which 35 articles were finally included in the systematic review as these fulfilled the inclusion criteria (Figure 1).

Out of the 35 studies included, 29 had a cross-sectional design, of which three were ecological. Five studies were longitudinal and another had a pre-/post-observational study design. The quality of 35 the studies was mainly good (N=22), but one study received a score of excellent quality, six studies were rated as fair and the remaining six studies received a score of poor quality (no study was rated as very poor; supplemental material Table C).
All studies, except four, were conducted in high-income countries: twenty-one in Europe, including the United Kingdom (n=11), Croatia (N=3), Spain (N=2), France (N=2), The Netherlands (N=1), Finland (N=1), Ireland (N=1). The other studies were conducted in Australia (N=6), China (N=3), New Zealand (N=2), Canada (N=1), the USA (N=1) and Yemen (N=1). Additionally, most studies included in this review were published in the last five years (N=24).

Outdoor blue space exposure assessment

Regarding outdoor blue space exposure assessment we evaluated different aspects: outdoor blue space type (whether the outdoor blue space was inland – rivers, lakes, ponds, streams, rivulets, wetlands, fresh waters - or non-inland – including coast, beach, and salt waters), the environment of assessment (residential, school, leisure, etc.) and the method used to evaluate exposure to outdoor blue spaces (Figure 2). For all three aspects there was a high heterogeneity among studies.

Inland, non-inland outdoor blue space

Most studies only focused on salt water and/or the coast (N=20), while others combined fresh and salt water surfaces or inland and non-inland outdoor blue spaces in the analysis (N=11). Only four were limited to only freshwater (Table 1, 2, 3 and 4).

Outdoor blue space environment of assessment

Most studies (N=28) focused on outdoor blue space exposure around individuals’ residential area. Exceptions included three studies evaluating the use of outdoor blue spaces in general (Amoly et al., 2014; Elliott et al., 2015; White et al., 2013c), a study
evaluating running routes (Rogerson et al., 2016), a study that focused on exposure to
water bodies (e.g. oceans, lakes, rivers, streams) 5 km around schools (in addition to
home residence (Huynh et al., 2013), a study that used school location as a proxy for
home location (Gilmer et al., 2003), and a time-series study evaluating the real-time use
of different spaces, including outdoor blue spaces (MacKerron and Mourato, 2013).

Method of evaluation

Six studies used land-cover or land-use maps and GIS techniques to define the
percentage of outdoor blue spaces surface within a defined area (e.g. buffer or census
area unit) (Alcock et al., 2015; de Vries et al., 2003; Huynh et al., 2013; Karusisi et al.,
2012; Wheeler et al., 2015; White et al., 2013a). Two further studies used the land-
cover and land-use maps to define the presence/absence of blue space water
environments within a particular buffer (Perchoux et al., 2015; Triguero-Mas et al.,
2015). Another common approach, also using land-cover and land-use maps and GIS-
techniques, was measuring the distance between the residence, neighbourhood or school
of the participants and the edge of outdoor blue space of interest (e.g. coastline); some
studies evaluated linear distance (Brereton et al., 2008; Halonen et al., 2014; Wheeler et
al., 2012; White et al., 2014, 2013b; Wood et al., 2016; Ying et al., 2015) and others
network distance (Edwards et al., 2014; Wilson et al., 2011) or travelling time (Witten
et al., 2008). GIS-techniques and land-cover maps were also used to define whether the
study subjects lived in a coastal neighborhood (Ball et al., 2007). Three studies defined
coastal vs. inland residence based on the postal code (Bauman et al., 1999; Humpel et
al., 2004a, 2004b), whereas seven other studies defined exposure to coast based on
whether the region of the country or the state had coast or not (Bergovec et al., 2008;
Gilmer et al., 2003; Kern et al., 2009; Modesti et al., 2013; Qin et al., 2013; Turek et al.,
232. The three studies that used questionnaires as the tool to define outdoor blue space exposure assessed the time spent in blue spaces (Amoly et al., 2014; Elliott et al., 2015; White et al., 2013c), whereas MacKerron and Mourato evaluated real-time exposure to outdoor blue spaces based on a smartphone application with geolocation linked to a land-cover map (MacKerron and Mourato, 2013). Nutsford et al. created an index, named Vertical Visibility Index (VVI), which takes into account different aspects of the built environment to define visibility of outdoor blue spaces (or any other type of natural space) from the residence of the participants, in this case within a buffer of 15 km (Nutsford et al., 2016). Rogerson et al. evaluated exposure to outdoor blue spaces by recruiting runners using the routes that included the beach or the river, and who were therefore considered to be exposed (Rogerson et al., 2016). Finally, Wheeler et al. also factored in freshwater quality, as well as quantity, using an index created by the Environmental Agency for England and Wales (Wheeler et al., 2015).

246. **Outcomes**

246. **General health**

General health was evaluated in six studies (Table 1) (de Vries et al., 2003; Triguero-Mas et al., 2015; Wheeler et al., 2015, 2012; White et al., 2013b; Ying et al., 2015). In four of these studies information on perceived general health and well-being was self-reported by the participants and was based on one single question (which is supposed to have a strong association with more complex dimensions of physical and psychological health) (de Vries et al., 2003; Wheeler et al., 2015, 2012; White et al., 2013b). The study by de Vries et al. additionally asked for the number of symptoms experienced in the last 14 days (a maximum of 43 health symptoms, including e.g. headaches, fatigue, cough) (de Vries et al., 2003). A study conducted in Spain used the Short Form health
survey (SF-36) to define perceived general health (Triguero-Mas et al., 2015), whereas
a study of the Chinese population asked the question “How do you feel about your
health status?” (Ying et al., 2015) (Table 1).

Results for self-reported general health were heterogeneous; two ecological cross-
sectional studies reported better perceived general health in relation to outdoor blue
spaces (Wheeler et al., 2015, 2012). The first study observed this association among
those living in urban areas less than 1 km from the coast compared to those living more
than 50 km away, but not among those living in smaller towns or rural areas (Wheeler et
al., 2012). The second study observed beneficial effects among those subjects with a
higher percentage of salt and coastal water in their census area. However, no
associations were observed with freshwater (Wheeler et al., 2015). A longitudinal study
also reported better perceived general health among the same individuals when they
lived less than 5 km from the coast compared to years when they lived further inland
(White et al., 2013b). However, three cross-sectional studies reported no associations
between perceived general health and the percentage of fresh or salt water present
within a 3 km buffer (de Vries et al., 2003) or access to inland and non-inland outdoor
blue spaces in buffers between 100 m and 1 km (Triguero-Mas et al., 2015; Ying et al.,
2015). Although the pioneering de Vries (2003) study did not observe associations with
perceived general health, it did observe a reduction in the number of symptoms reported
by the participants associated with the percentage of fresh and salt water (de Vries et al.,
2003). Finally, Wheeler et al. also evaluated whether ecological quality of freshwater
was associated with better perceived general health; however, they observed an inverse
association (Wheeler et al., 2015) (Table 1).
Based on the few studies available, the quality of the studies, the heterogeneity in both study design and results obtained (Table 1), we classified the evidence of an association between outdoor blue space exposure and general health as ‘inadequate’ to make a firm conclusion for either inland or coastal waters at this time.

Mental health and well-being

Mental health and well-being was evaluated in twelve studies (Alcock et al., 2015; Amoly et al., 2014; Brereton et al., 2008; de Vries et al., 2003; Huynh et al., 2013; MacKerron and Mourato, 2013; Nutsford et al., 2016; Rogerson et al., 2016; Triguero-Mas et al., 2015; White et al., 2013b, 2013c, 2013a) (Table 2). Tools to evaluate mental health varied substantially; five studies used the General Health Questionnaire (GHQ) (Alcock et al., 2015; de Vries et al., 2003; Triguero-Mas et al., 2015; White et al., 2013a, 2013b), with remaining studies using a variety of validated questionnaires measuring behavioral and emotional problems, well-being, self-esteem, mood, perceived stress, and psychological distress (Table 2). Six studies used either widely utilized single item measures of well-being e.g. life satisfaction (Brereton et al., 2008; White et al., 2013a, 2013b), happiness (MacKerron and Mourato, 2013) with unknown validity; constructed original scales based on the content of existing surveys e.g. recalled mental restoration (White et al., 2013c) or perceived depression or anxiety, and visits to mental health specialists and medication intake (Triguero-Mas et al., 2015), within untested psychometric properties.

Three of the five studies using the GHQ to evaluate mental health did not observe associations with the percentage of residential fresh or salt water within the area of study (de Vries et al., 2003; White et al., 2013a) or access to inland and non-inland
outdoor blue spaces between 100 m and 1 km (Triguero-Mas et al., 2015). Triguero-
Mas et al. also failed to find a significant association with perceived depression or
anxiety, visits to mental health specialists or medication intake (tranquilizers,
antidepressants, sleeping medication) (Triguero-Mas et al., 2015). However, two other
studies, both using data from an 18 year longitudinal survey in the UK, reported
positive associations; the first study observed that people’s mental health was better in
years when they lived less than 5 km from the coast, compared to years when they were
living further inland (White et al., 2013b). The second study, including residents from
rural areas, found that while greater exposure to purely coastal areas was again
associated with better GHQ scores (over time), quantities of saltwater (estuaries) was
associated with worse GHQ scores (over time) (Alcock et al., 2015). These differences
were found for people moving between different areas over time, while cross-sectional
analyses did not reveal any significant patterns (similarly to most cross-section
findings), suggesting that moving location (to ones with more or less blue space) may
affect outcomes, but that people may adapt in the long-term so that these differences
wash-out over time. White et al. additionally evaluated life satisfaction as a proxy for
well-being, but the authors did not observe associations with residential coastal or
freshwater distance (White et al., 2013a, 2013b). A third study including life
satisfaction reported that those individuals living <2km from the coast were more
satisfied with their life than those living >5km. No associations were observed with
distances between 2 and 5 km and with residential distance from the beach (Brereton et
al., 2008). Nutsford et al. reported a reduction of psychological distress with increasing
outdoor blue space (oceanic and freshwater) visibility from the home in a buffer of 15
km (Nutsford et al., 2016). Finally, Huyhn et al. used the percentage of water bodies
within a 5 km buffer around schools to define exposure to outdoor blue spaces in
children aged 11 to 16 years (Huynh et al., 2013). The study observed that increasing exposure to water bodies increased emotional well-being, even after excluding children living outside the 5 km buffer around the schools (Huynh et al., 2013) (Table 2).

Three studies evaluated the effects of time spent at the beach (Amoly et al., 2014) or any blue space (MacKerron and Mourato, 2013; White et al., 2013c). The first study observed that children (7-10 years) whose parents reported spending more time at the beach during the year had less emotional problems and more pro-social behavior, but no associations were found with Attention Deficit Hyperactivity Disorder (ADHD) symptoms (Amoly et al., 2014). The second study used GPS and a smartphone application for geolocalization, as well as a real-time questionnaire about happiness, which the same individuals completed in many different locations. The results showed that individuals were happier when they reported being in marine and coastal areas, as well as freshwater, wetlands and flood plains than when they were in any other type of urban or rural setting (MacKerron and Mourato, 2013) (Table 2). The third study reported that adolescents and adults spending more time at the beach or the coast had better recalled restoration than urban green spaces (i.e. felt more relaxed/refreshed). However, this association was not statistically significant among those spending more time at inland waters such as rivers, lakes or canals (White et al., 2013c).

Finally, in a pre-/post-observational study, Rogerson et al. did not observe significant differences in self-esteem, perceived stress or mood between runners running along beach or riverside routes compared to those running along other routes called the “grass” and the “heritage” routes before and after the running (Rogerson et al., 2016) (Table 2).
Although some good quality studies reported an association between residential and the use of outdoor blue spaces and mental health and well-being, the number of studies is still limited and there is heterogeneity in study design and results among and within them (Table 2). We therefore feel that, based on the classification criteria defined, the most appropriate classification is ‘limited’ for both inland and coastal waters.

Physical activity

Thirteen cross-sectional studies focused on the promotion of physical activity (Ball et al., 2007; Bauman et al., 1999; Edwards et al., 2014; Elliott et al., 2015; Gilmer et al., 2003; Humpel et al., 2004a, 2004b; Karusisi et al., 2012; Perchoux et al., 2015; White et al., 2014; Wilson et al., 2011; Witten et al., 2008; Ying et al., 2015) (Table 3). Six of these studies used non-validated questionnaires, or at least the validation was not reported, whereas the other seven studies used validated tools. Two of these studies used the International Physical Activity Questionnaire (IPAQ) (Ball et al., 2007; Humpel et al., 2004b), another the Youth Health Survey (YHS) (Gilmer et al., 2003), Edwards et al. used the Adolescent Physical Activity Recall Questionnaire (APARQ) (Edwards et al., 2014) and Ying et al. used a pedometer (Ying et al., 2015). Wilson et al. reported previous validation of the questionnaire, but only in a sample of middle-aged women (Wilson et al., 2011), and Bauman et al. also referred to validity and reliability studies for the questionnaire used (Bauman et al., 1999) (Table 3). Additionally, six of the studies defined exposure based on a relatively coarse assessment of proximity to coastal areas (Ball et al., 2007; Bauman et al., 1999; Gilmer et al., 2003; Humpel et al., 2004a, 2004b; Wood et al., 2016), and not on the actual distance between the coastal areas and the address of residence of the participants (Table 3).
The studies using this relatively coarse exposure assessment obtained diverse results; Ball et al. reported increasing leisure-time and transport walking among adult women living in coastal suburbs (Ball et al., 2007). Bauman et al. also reported a higher likelihood of having a less sedentary lifestyle and achieving an adequate weekly energy expenditure or high levels of physical activity among those adults who lived near the coast (Bauman et al., 1999). However, two other studies including adults did not report associations between living in a coastal area and levels of physical activity (Humpel et al., 2004a, 2004b); only two statistically significant associations were observed in these two studies among the several results reported for men and women separately (Table 3).

Finally, a study including youth aged 11-14 years with a parental history of premature coronary heart disease reported statistically significantly lower levels of mean physical activity among youth living in coastal areas compared to non-coastal areas (Gilmer et al., 2003).

In a French cross-sectional study involving adults from 30 to 79 years of age the percentage of inland water in a buffer of 1 km from the residence was associated with reporting jogging behavior in the previous week (Karusisi et al., 2012). Some years later a similar methodology was applied, but in this case the exposure was defined as the presence of lakes or waterways in different spaces (residential, recreational, work, groceries, social and services) and buffers (Table 3) and the outcome was the reporting of recreational walking in the previous week (Perchoux et al., 2015). The results showed that subjects with access to residential and/or recreational blue spaces were less likely to not report recreation walking in the previous week. However, when outdoor blue spaces from all types of space were included in the analysis no association was
observed (Perchoux et al., 2015) (Table 3). In another study distance from the beach, measured as the driving travel time to access the nearest beach, was not associated with meeting the recommended levels of physical activity (at least 2.5 h on five or more days over the preceding week) in adolescents and adults above 15 years of age (Witten et al., 2008). However, those living between 9.2 and 31.8 min from the beach were more likely to report a sedentary behavior profile (< 30 min of physical activity in the past week) compared to those living less than 9.2 min. No associations were observed among those living further than 31.8 min walking distance to the coast (Witten et al., 2008). A study including adults of 40 to 65 years of age in Australia reported that living in a shorter network distance to the river or the coast was associated with spending more time walking for recreation (≥ 300 min/week) (Wilson et al., 2011). However, a similar study in China reported no associations between living within 500m from the river and physical activity measured with a pedometer (Ying et al., 2015). Again in Australia, Edwards et al. observed that rural adolescents reporting the use of the beach for physical activity were more likely to meet physical activity guidelines both in summer and winter, and that those living more than 800m from the beach were less likely to report using the beach for physical activity than those living less than 800m (Edwards et al., 2014). Related to visits to blue spaces and levels of physical activity, a study showed that living <1km from the coast statistically significantly increased the likelihood of doing 30 minutes or more of physical activity at least 5 days a week compared to those living more than 20 km from the coast. The study also showed that this association was mediated by the number of coastal visits and that coastal visits were associated to residential distance from the coast (White et al., 2014). Elliott et al. also reported increased levels of physical activity (MET minutes based on activity and duration of the
activity) among those who visited coastal areas (seaside resort and other coastal visits) compared to inland urban and rural green spaces (Elliott et al., 2015).

Despite the heterogeneity in relation to the study design, mainly in exposure and outcome assessment, most of the studies (N=8/13) were of good quality. Five of these good quality studies reported increasing levels of physical activity with increasing exposure to outdoor blue spaces (Table 3). Nevertheless, despite this relatively consistent association, we classified the evidence for an association as ‘limited’ given the methodological heterogeneities between studies. This classification of the evidence was mainly for non-inland waters, as most of the studies evaluated only beach and coastal areas (N=9/13).

Obesity and cardiovascular related outcomes

Eight studies evaluated obesity related outcomes in relation to blue spaces (Table 4). The only longitudinal study (8 years of follow-up) evaluating the relationship between residential distance to blue spaces (lakes, rivers or sea) and overweight and obesity did not find a significant pattern of associations, either among people who moved home residence over the time or those who did not (Halonen et al., 2014). Two cross-sectional studies comparing adults of coastal and non-coastal areas also failed to find any associations with abdominal obesity (Modesti et al., 2013) or statistically significant differences in BMI between regions (Turek et al., 2001). However, two Chinese studies with a similar study design to those of Modesti et al. and Turek et al. obtained heterogeneous results; Qin et al. reported increased risk of overweight, obesity and abdominal obesity among hypertensive adults aged 45-75 years living inland compared to those living in the coastal county, whereas Zhang et al. reported higher prevalence of
abdominal obesity among children (7-18 years) living in coastal districts. Ying et al. found no association between living within 500m distance from a river and BMI (continuous variable) in adults (40-80 years), but did find increased overweight/obesity (as compared to normal weight participants) in this range. In the cross-sectional study of Witten et al., where the estimated driving time to the nearest beach was used as a proxy for the distance to the beach, the BMI (self-reported) of adolescents and adults was higher among those living further (>31.8 min) from the beach compared to those living less than 31.8 min (Witten et al., 2008). A second study, of ecological design, observed that children living less than 1 km from the coast in England had a lower BMI than those living further (more than 20 km) (Wood et al., 2016) (Table 4).

Four cross-sectional studies also evaluated other outcomes related to cardiovascular disease and diabetes (Table 4). All of these studies based exposure on the region of residence of study subjects (coastal and non-coastal areas). Regarding hypertension, one study reported reduced hypertension among adult coronary heart disease patients in hospitals located in coastal areas (Bergovec et al., 2008). However, another study reported increased risk of hypertension among residents of coastal areas (Modesti et al., 2013) and the other study only reported statistically significant differences in hypertension prevalence in four different regions, but no gradient in distance to the coast (Turek et al., 2001). Finally, Kern et al. defined cardiovascular risk burden (CVRB) based on several cardiovascular factors (Table 4). The authors observed differences between regions, reporting higher prevalence of CVRB among those living in the continental regions compared to those living in the coastal region, particularly among women (Table 4) (Kern et al., 2009).
No associations or statistically significant differences were reported in relation to cholesterol and triglyceride levels in the two studies that evaluated the relationship with blue spaces (Bergovec et al., 2008; Turek et al., 2001). Only a reduced risk of decreased high-density lipoproteins (HDL) – they transport fat molecules out of artery walls to the liver - was observed in one of the studies (Bergovec et al., 2008). No associations with blue space proximity and diabetes were observed in the two studies that investigated this association (Bergovec et al., 2008; Modesti et al., 2013) (Table 4).

Given the very limited number of studies examining these outcomes and high heterogeneity in the study design and in the results obtained, we classified the evidence supporting a causal relationship between exposure to blue spaces and cardiovascular disease and diabetes as ‘inadequate’.

Discussion

In the present review we evaluated the current quantitative evidence on the relationship between exposure to outdoor blue space environments such as rivers, lakes and the coast, with a range of health and well-being outcomes. The 35 studies that were selected used a wide range of exposures and outcomes. The body of evidence suggested a positive association between exposure to outdoor blue spaces and mental health and well-being and the promotion of physical activity; however the evidence of any direct causation was ‘limited’. The evidence of an association between outdoor blue space and general health was even weaker, as was the evidence with respect to obesity and cardiovascular related outcomes, in part due to the paucity of studies to date. Further, the review found a large degree of heterogeneity across studies in terms of design,
exposures, outcomes assessed and measurement tools, preventing any possibility of conducting meta-analysis.

Study design

Most of the studies included in the review were of cross-sectional design, which are of course unable to rule out reverse causation (e.g. those with better mental health are more likely to move to areas with high residential blue space exposure). Indeed, some of these studies were ecological, a design open to the ecological fallacy, and very few were used longitudinal data. Furthermore, the study evaluating pre- and post-exposure measurement had a number of study design limitations (Rogerson et al., 2016). For instance, study participants were people already running in each of the routes established, and these same people did not run along the other routes (Rogerson et al., 2016). Overall, there is a need for more well-designed longitudinal and intervention studies.

Outdoor blue spaces exposure assessment and other urban determinants

The present review highlights the high heterogeneity among studies considering outdoor blue spaces exposure assessment. In order to facilitate comparability between studies and meta-analyses, efforts to conduct common approaches are recommended in future. To this end we suggest a number of things which could be considered in the future. First, although the main interest of a particular study was usually one type of outdoor blue space (e.g. % of or distance to seawater), other types of outdoor blue spaces could (perhaps even should) be included in the analysis as well (e.g. % inland water), to simultaneously explore multiple blue spaces, and reduce potential confounding across blue space types and aid comparability across more studies. Also, as green spaces are a
significant part of natural environments and are often highly correlated with outdoor
blue spaces and the outcomes of interest, green spaces should also be included in the
analysis (see supplemental material Table A for studies in the current review that did do
this), to clarify how the two exposures potentially interact or play the largest role. Other
characteristics of blue spaces also need greater consideration in future work, e.g. ease of
accessibility to a particular outdoor blue space (e.g. presence of busy roads, high slopes,
etc) or degree of urbanity. This would provide more accurate information on the actual
potential exposure to a particular outdoor blue space. Another important aspect to
consider is the inclusion of the actual use (and the type of uses) of outdoor blue spaces
in order to more accurately estimate actual exposure. Finally, one aspect that limits the
inference of long-term effects of outdoor blue spaces is the fact that some of the studies
did not take into account residential history (e.g. most did not report whether or not
respondents had been living in their current home for at least 12 months). On a related
point, even in the few longitudinal studies it was assumed that blue spaces were
constant over time but there may have been important changes in terms of the
development of reservoirs, changes in river courses or coastlines which may have
altered proximity for access to blue spaces within a given residential area over time.
Again, blue space studies should try and capture these longitudinal changes in
exposures when possible although we recognize that this is often difficult (Pearce et al.,
2016). Additionally, linkage of (historical) residential information to clinical databases
or cohort data provide great opportunities for blue health research and environmental
epidemiology in general, but researchers and data providers should be aware of
potential privacy issues associated with geographic data (Bovenberg et al., 2016). It
should also be acknowledged that many studies were using a relatively coarse
assessment of coastal proximity (e.g. living in a coastal area or non-coastal area) and
there was also considerable heterogeneity in blue space measurement limiting our ability to make direct comparison across studies or conduct meta-analyses. Future research would benefit from more standardized percentage of land cover buffers and/or network distance parameters.

Outcome assessment

Our literature search resulted in studies focusing on various outcomes: general health, mental health, physical activity, obesity and cardiovascular related outcomes. Many studies included in the present review used non-validated questionnaires, especially studies which focused on physical activity. In this sense, future studies should make use of existing standardized and validated questionnaires, although we recognize that much of this literature is relying on secondary datasets which the authors may not be able to influence in terms of item inclusion. Furthermore, in the case of physical activity, nowadays GIS techniques, apps and smartphones allow researchers to obtain more accurate estimates of both physical activity and exposure through processes of geospatial linkages (Bell et al., 2015; Bort-Roig et al., 2014; Donaire-Gonzalez et al., 2013) or real-time information on different health outcomes, as done by MacKerron et al. (MacKerron and Mourato, 2013). Tools evaluating the use of the outdoor blue spaces and the levels of physical activity conducted around or in these spaces are also an interesting option (McKenzie et al., 2006).

Mediators

As stated in the introduction, stress, physical activity, social contacts and place attachment, and the reduction of extreme temperatures, are potential pathways of the association between outdoor blue spaces and health and well-being indicators. In the
present review only one article attempted to examine mediation (i.e. visit frequency as a function of coastal proximity, White et al. 2014), and thus far more work is needed in order to understand whether certain health determinants could explain the associations observed between outdoor blue spaces and health. Indeed, a recent systematic review on green spaces and mental health highlighted that some of the included studies observed that the health benefits of green spaces could be mediated by some of these variables (Gascon et al., 2015). Including these analyses would help understand the mechanisms of the association between outdoor blue spaces and health.

Effect modifiers

It is also necessary to identify specific populations that could benefit more from urban planning actions (i.e. neighbourhoods of lower socioeconomic positions, women, children, elderly, etc.), in order to reduce health inequalities (WHO, 2012). In fact, Wheeler et al. conducted such analyses and observed that beneficial effects of outdoor blue spaces were largest in lower socioeconomic areas (Wheeler et al., 2015, 2012) but none of the other studies in this review explored this issue.

Limitations of this review

Although we believe this is the first systematic review in this area and we endeavored to use standard reviewing and grading protocols, we also recognize several limitations. First, the concept of “blue space” has not been widely used compared to, for instance, green space. In the present review we used search terms based on the keywords and title words used in the articles that we already knew about on the topic. However, at the end, and despite the efforts to find all relevant articles, only 18 of the 35 articles included in the review were found through the traditional online search databases; the rest were
obtained through other means such as searching citations of included papers, which may
have resulted in some key papers being missed. The causes for not detecting half of the
papers through the standard research tools could be that: 1) the blue spaces concept, in
contrast with green spaces, is not a common concept; or that 2) some studies were not
directly designed to evaluate health impacts of outdoor “blue exposure” but rather of
several urban characteristics, and did not focus on these relationships in titles or
abstracts despite having examined them. In this sense, the BlueHealth project aims to
explore this concept and to provide recognition and importance to these spaces, both in
research and in the implementation of policies to promote and protect public health. We
also recognize that scoring the quality of the papers and classifying the evidence is
associated with a degree of subjectivity (e.g. “was there careful consideration of
confounders” is open to interpretation). In the present review, in order to reduce
subjectivity and bias within the review process itself, two independent reviewers
conducted the quality appraisal of each paper independently and disagreements
discussed between the two reviewers, but again some bias may still have occurred. Even
if this was the case, however, we do not feel that the overall conclusions from our
review would substantially change if certain studies were reclassified as from fair to
poor or good and vice versa, given the few number of available studies and the
heterogeneity among them regarding study design. We also of course recognize the
possibility of publication bias, which may be inflating the number of positive
associations in the extant literature.

Other aspects to be considered

For this systematic review we decided to exclude qualitative research, as we aimed to
focus on those studies quantifying the health impacts of blue spaces. However, we still
think it is important to recognize the existing qualitative evidence in this field of research, which already suggests a range of benefits of being exposed to blue spaces (Finlay et al., 2015; Foley, 2015; Foley and Kistemann, 2015; Kearns et al., 2015; Völker and Kistemann, 2015, 2011), and indeed, addresses aspects that quantitative research often cannot or does not evaluate, such as perception, sensory exposure, or experiences that could explain the associations found by those studies conducting quantitative research. Moreover, this type of research is very relevant and should also be considered by policy makers when conducting interventions in urban or natural environments involving blue spaces.

In the current systematic review none of the studies addressed potential negative impacts of blue spaces or aspects related to blue spaces (e.g. drowning, pollution, flooding, etc). Far more work has been conducted on these issues already, which is why we focus on the benefits here, but there is no doubt that when a more complete picture of the benefits emerges it will be time to conduct the kind of full cost-benefit analyses usually required by policy makers (Grellier et al., 2017).

Finally, the relationship that people establish with blue spaces can be different across cultures and climates worldwide, and therefore blue spaces may have different meanings, functions and impacts on health and well-being. In the current review we included studies from different countries, but studies from the United Kingdom and Australia represented a large part of the included studies (49%). Therefore, our conclusions must be tentative at this point given the possibility of inherent “cultural bias”. In this sense, international projects like BlueHealth, in which the same approaches and methodologies are applied in many countries or geographical areas at
once, may help to better understand any cultural similarities or differences, and what role climatic factors may play in these issues.

Conclusion

As far as we are aware, this is the first systematic review of quantitative studies on outdoor blue spaces and human health and well-being. Results indicate this is emerging topic, as most of the studies have been conducted in the last five years. Also, results suggest potential health benefits of outdoor blue spaces, mainly with respect to mental health and well-being and the promotion of physical activity. However, further studies, with methodological improvements, standardized exposure and outcome measures enabling comparison across cultures and climates, and including urban health determinants other than outdoor blue spaces are needed in order to advance in our knowledge on the topic. Despite the limitations, current scientific evidence supports the promotion and recovery of outdoor blue spaces within urban planning as an interesting strategy for the promotion of health and well-being.

Acknowledgements

ISGlobal is a member of the CERCA Programme, Generalitat de Catalunya. The authors would like to thank Dieneke Schram, Jeroen Van Leuken and Tanja Wolf for their comments and advice.

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 666773. The authors have no conflicts of interest.
References

Edwards, N.J., Giles-Corti, B., Larson, A., Beesley, B., 2014. The Effect of Proximity...

environments and mental and physical health: Relationships and mechanisms.

Environ. Int. 77, 35–41. doi:10.1016/j.envint.2015.01.012

Völker, S., Kistemann, T., 2015. Developing the urban blue: Comparative health responses to blue and green urban open spaces in Germany. Health Place 35, 196–205.

Zhang, Y., Zhao, J., Chu, Z., Tan, H., 2014. Prevalence and regional disparities in
<table>
<thead>
<tr>
<th>Author (year, country)</th>
<th>Study design</th>
<th>Age of the study population</th>
<th>N</th>
<th>Blue space exposure</th>
<th>Tool to estimate blue space exposure</th>
<th>Outcome measured</th>
<th>Tools to measure outcome</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Vries et al. 2003, The Netherlands</td>
<td>Cross-sectional</td>
<td>All ages</td>
<td>10197</td>
<td>Fresh and salt water surface</td>
<td>Land-use map % BS in 1km & 3km buffers from the residence</td>
<td>Perceived general health (less than good) Number of symptoms experienced in the last 14 days</td>
<td>Questionnaire</td>
<td>β=-0.008 (SD=0.005) (for 3km buffer)</td>
</tr>
<tr>
<td>Triguero-Mas et al. 2015, Spain</td>
<td>Cross-sectional</td>
<td>34-64 years</td>
<td>8793</td>
<td>Inland and non-inland BS</td>
<td>BS presence in 100m, 300m, 500m and 1km buffers from the residence (land-cover)</td>
<td>Perceived general health (poor)</td>
<td>SF-36</td>
<td>OR (95%CI) = 0.82 (0.65, 1.05) for 300 m buffer</td>
</tr>
<tr>
<td>Wheeler et al. 2012, UK</td>
<td>Ecological Cross-sectional</td>
<td>Not specified</td>
<td>32482 CAUs</td>
<td>Coast</td>
<td>GIS to measure distance between population-weighted centroid and the coast (> 50 km, 20-50 km, 5-20 km, 1-5 km, < 1km)</td>
<td>Self-reported good health in the last 12 m</td>
<td>Questionnaire</td>
<td>β (95%CI) for distance < 1km vs > 50 km = 1.13 (0.99, 1.27) in urban settings, 1.19 (0.79, 1.59) in town settings and -0.09 (-0.69, 0.51) in rural settings</td>
</tr>
<tr>
<td>Wheeler et al. 2015, UK</td>
<td>Ecological Cross-sectional</td>
<td>Not specified</td>
<td>31672 CAUs</td>
<td>Salt water, freshwater, coastal Freshwater ecological quality</td>
<td>Land-cover map to measure % of BS within each population-weighted centroid Indicator of the Environment agency for England and Wales map</td>
<td>Self-reported good health</td>
<td>Questionnaire</td>
<td>β (95%CI) = 0.074 (0.032, 0.117) for saltwater, 0.000 (-0.010, 0.010 for freshwater and 0.019 (0.010, 0.027) for coastal water β (95%CI) = -0.095 (-0.153, -0.037)</td>
</tr>
<tr>
<td>White et al. 2013a, UK</td>
<td>Longitudinal</td>
<td>Adults > 25 years</td>
<td>Between 12360 and 15471b</td>
<td>Coast</td>
<td>Distance between population-weighted centroid and the coast (< 5 km, 5-50 km (reference category), > 50 km)</td>
<td>General health (good)</td>
<td>Questionnaire</td>
<td>β (SE; p-value<0.05) = 0.039 (0.018) for < 5 km and -0.005 (0.018) for > 50 km</td>
</tr>
<tr>
<td>Ying et al. 2015, China</td>
<td>Cross-sectional</td>
<td>Adults 46-80 years</td>
<td>1100</td>
<td>River</td>
<td>GIS to define 500m buffer distance to the river</td>
<td>Health status (worst to best)</td>
<td>Questionnaire</td>
<td>Coefficient (p-value)=0.016 (0.679)</td>
</tr>
</tbody>
</table>

BS: blue space; CAU level: Census Area Unit level; GIS: geographic information system; SF-36: Short form health survey (36 items).

*aNot validated questionnaire or not clarified

*bIn total there were between 90084 and 136756 observations included in the analysis

*cIn total there were between 56574 and 87573 observations included in the analysis

884 BS: blue space; CAU level: Census Area Unit level; GIS: geographic information system; SF-36: Short form health survey (36 items).
885 *Not validated questionnaire or not clarified
886 *In total there were between 90084 and 136756 observations included in the analysis
887 *In total there were between 56574 and 87573 observations included in the analysis
888
<table>
<thead>
<tr>
<th>Author (year, country)</th>
<th>Study design</th>
<th>Age of the study population</th>
<th>N</th>
<th>Blue space exposure</th>
<th>Tool to estimate blue space exposure</th>
<th>Outcome measured</th>
<th>Tools to measure outcome</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcock et al. 2015, UK</td>
<td>Longitudinal (18 years follow-up)</td>
<td>Adults (rural areas)</td>
<td>2020<sup>a</sup></td>
<td>Saltwater, freshwater, coastal</td>
<td>Land-cover map to determine % at CAU</td>
<td>Mental health</td>
<td>GHQ-12</td>
<td>β (SE; p-value<0.05) = 0.3398 (0.7027) for saltwater, -0.289 (0.0693) for freshwater, 0.298 (0.0818) for coastal between-individuals -2.4219 (1.1305<sup></sup>) for saltwater, 0.4700 (0.3545) for freshwater and 0.8380 (0.3318<sup>*</sup>) for coastal within-individuals</td>
</tr>
<tr>
<td>Amoly et al. 2014, Spain</td>
<td>Cross-sectional</td>
<td>Children 7-10 years</td>
<td>2111</td>
<td>Annual beach attendance (time spent)</td>
<td>Questionnaire</td>
<td>Emotional & behavioural problems</td>
<td>SDQ ADHD/DSM-IV</td>
<td>Percent change (95% CI) for an IQR increase in annual beach attendance (32 days) = -3.9 (-7.2, -0.4) for SDQ, 1.1 (0.0, 2.2) for pro-social behaviour and -0.1 (-6.7, 6.9) for ADHD</td>
</tr>
<tr>
<td>Brerenton et al. 2008, Ireland</td>
<td>Cross-sectional</td>
<td>Adults >18 years</td>
<td>1467</td>
<td>Proximity to coast and beach</td>
<td>Land-use map based on GIS information to determine proximity to coast (<2km, 2-5km, >5km) and to beach (<5km, 5-10, >10km)</td>
<td>Well-being/life satisfaction</td>
<td>Questionnaire<sup>b</sup></td>
<td>β (SE; p-value<0.05) = 0.8351 (4.32<sup></sup>) for <2km from the coast and 0.2271 (1.51) for 2-5km from the coast -0.1607 (0.73) for <5km from the beach and -0.0923 (0.42) for 5-10km from the beach</td>
</tr>
<tr>
<td>De Vries et al. 2003, The Netherlands</td>
<td>Cross-sectional</td>
<td>All ages</td>
<td>10197</td>
<td>Fresh and salt water surface</td>
<td>Land-use map % BS in 1km & 3km buffers from the residence</td>
<td>Minor psychiatric morbidity</td>
<td>GHQ</td>
<td>β=0.004 (SD=0.005) (for 3km buffer)</td>
</tr>
<tr>
<td>Huynh et al. 2013, Canada</td>
<td>Cross-sectional</td>
<td>Children 11-16 years</td>
<td>17249</td>
<td>Water bodies (oceans, lakes, rivers, streams)</td>
<td>Land-use map based on GIS information. Water bodies (%) in 5 km buffer from the schools (N=371)</td>
<td>(Positive) emotional well-being</td>
<td>Cantril’s ladder</td>
<td>RR (95%CI)=1.02 (0.97, 1.07) for Q2 of BS exposure, 1.06 (1.01, 1.11) for Q3 and 1.04 (0.99, 1.09) for Q4<sup>c</sup></td>
</tr>
<tr>
<td>MacKerron et al. 2013, UK</td>
<td>Longitudinal</td>
<td>Adults</td>
<td>21947<sup>d</sup></td>
<td>Marine and coastal margins and freshwater, wetlands and flood plains</td>
<td>Smartphone application with GPS location linked to land cover map</td>
<td>Happiness</td>
<td>Smartphone application with questionnaire<sup>d</sup></td>
<td>β (SE, p<0.05)=6.02 (0.68<sup></sup>) for marina and coastal margins and 1.80 (0.63<sup>*</sup>) for freshwater, wetlands and flood plains</td>
</tr>
<tr>
<td>Author (year, country)</td>
<td>Study design</td>
<td>Age of the study population</td>
<td>N</td>
<td>Blue space exposure</td>
<td>Tool to estimate blue space exposure</td>
<td>Outcome measured</td>
<td>Tools to measure outcome</td>
<td>Main results</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>----</td>
<td>---------------------</td>
<td>------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Nutsford et al. 2016, New Zealand</td>
<td>Cross-sectional</td>
<td>Adolescents and adults >15 years</td>
<td>442</td>
<td>Oceanic and freshwater blue spaces</td>
<td>VVI of BS created based on 4 land-cover maps and for a buffer of 15 km using residential meshblocks</td>
<td>Psychological distress</td>
<td>K10</td>
<td>β (95%CI) = -0.28 (-0.41, -0.15) (increase of 10% of BS visibility, 0.28% reduction of psychological stress)</td>
</tr>
<tr>
<td>Rogerson et al. 2016, UK</td>
<td>Pre/post observational study</td>
<td>Adult park runners</td>
<td>331</td>
<td>Beach, riverside, grass and heritage routes</td>
<td>Each participant run along one of the routes (they were recruited at the start of the route)</td>
<td>Self-esteem</td>
<td>RSE (pre/post running at each location)</td>
<td>There were no differences pre- and post-run between the different locations (p>0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perceived stress</td>
<td>PSS (pre/post running at each location)</td>
<td>There were no differences pre- and post-run between the different locations (p>0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mood</td>
<td>POMS (pre/post running at each location)</td>
<td>There were no differences pre- and post-run between the different locations (p>0.05)</td>
</tr>
<tr>
<td>Triguero-Mas et al. 2015, Spain</td>
<td>Cross-sectional</td>
<td>34-64 years</td>
<td>8793</td>
<td>Inland and non-inland BS</td>
<td>BS presence in 100m, 300m, 500m and 1km buffers from the residence (land-cover)</td>
<td>Perceived mental health (poor)</td>
<td>GHQ-12</td>
<td>OR (95%CI) = 1.13 (0.86, 1.49) for 300 m buffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perceived depression or anxiety (yes/no)</td>
<td>Questionnaire<sup>b</sup></td>
<td>OR (95%CI) = 1.13 (0.90, 1.41) for 300 m buffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Visits to mental health specialists (yes/no)</td>
<td>Questionnaire<sup>b</sup></td>
<td>OR (95%CI) = 1.30 (0.92, 1.84) for 300 m buffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medication intake (yes/no)</td>
<td>Questionnaire<sup>b</sup></td>
<td>OR (95%CI) = 0.85 (0.61, 1.17) for antidepressants and 0.84 (0.59, 1.19) for tranquilizers, 0.84 (0.59, 1.19) for antidepressants and 0.95 (0.69, 1.31) for sleeping medication for a 300m buffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β (SE; p-value<0.05) = 0.147 (0.065) for < 5 km and -0.121 (0.064) for > 50 km</td>
</tr>
<tr>
<td>White et al. 2013a, UK</td>
<td>Longitudinal</td>
<td>Adults > 25 years</td>
<td>Between 12360 and 15471<sup>c</sup></td>
<td>Coast</td>
<td>Distance between population-weighted centroid and the coast (< 5 km, 5-50 km (reference category), > 50 km)</td>
<td>Mental health</td>
<td>GHQ-12</td>
<td>β (SE; p-value<0.05) = 0.147 (0.065) for < 5 km and -0.121 (0.064) for > 50 km</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well-being (life satisfaction)</td>
<td>Questionnaire<sup>b</sup></td>
<td>β (SE; *p-value<0.05) = 0.044 (0.034) for < 5 km and 0.049 (0.034) for < 50 km</td>
</tr>
<tr>
<td>White et al. 2013b, UK</td>
<td>Longitudinal</td>
<td>Adults</td>
<td>Between 10168 and 12818<sup>d</sup></td>
<td>Freshwater</td>
<td>Land-cover map to determine % of freshwater at CAU</td>
<td>Mental health</td>
<td>GHQ-12</td>
<td>β (SE) = 0.0007 (0.0028) (p-value > 0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well-being (life satisfaction)</td>
<td>Questionnaire<sup>b</sup></td>
<td>β (SE) = 0.0018 (0.0014) (p-value > 0.05)</td>
</tr>
<tr>
<td>Author (year, country)</td>
<td>Study design</td>
<td>Age of the study population</td>
<td>N</td>
<td>Blue space exposure</td>
<td>Tool to estimate blue space exposure</td>
<td>Outcome measured</td>
<td>Tools to measure outcome</td>
<td>Main results</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>----</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>White et al. 2013c, UK</td>
<td>Cross-sectional</td>
<td>Adolescents and adults > 16 years</td>
<td>4255</td>
<td>Coast, beach, river, lake, canal</td>
<td>Questionnaire to ask for the time spent in these BS</td>
<td>Recalled restoration</td>
<td>Questionnaire<sup>b</sup></td>
<td>β (SE; p-value<0.05) = 0.13 (0.07) for river/lake/canal, 0.21 (0.07) for beach, 0.19 (0.08)* for coast (other than beach)</td>
</tr>
</tbody>
</table>

ADHD/DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; BS: blue space; CAU level: Census area unit level; GHQ-(12): General Health Questionnaire-(12 items); GIS: geographic information system; IQR: Interquartile range; K10: Kessler Psychological Distress Scale (10 items); POMS: Profile of Mood States; PSS: Perceived Stress Scale; RSE: Rosenberg Self-esteem Scale; SDQ: Strengths and Difficulties Questionnaire; VVI: Vertical Visibility Index.

^aWith 12697 observations included in the analysis

^bNot validated questionnaire or not clarified if the questionnaire is validated

^cResults are similar in a sensitive analysis including only those living within the 5km buffer.

^dWith 1138481 observations included in the analysis

^eIn total there were between 90084 and 136756 observations included in the analysis

^fIn total there were between 56574 and 87573 observations included in the analysis
<table>
<thead>
<tr>
<th>Author (year, country)</th>
<th>Study design</th>
<th>Age of the study population</th>
<th>N</th>
<th>Blue space exposure</th>
<th>Tool to estimate blue space exposure</th>
<th>Outcome measured</th>
<th>Tools to measure outcome</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball et al. 2007, Australia</td>
<td>Cross-sectional</td>
<td>Women 18-65 years</td>
<td>1282</td>
<td>Coastal neighbourhood</td>
<td>Living (yes/no) in a coastal (bayside) suburb defined with GIS and Open Space 2002</td>
<td>Walking for leisure-time and transport</td>
<td>IPAQ (long version)</td>
<td>OR (95%CI) = 1.46 (1.02, 1.90) for leisure-time walking and 2.74 (2.20, 3.28) for transport walking</td>
</tr>
<tr>
<td>Bauman et al. 1999, Australia</td>
<td>Cross-sectional</td>
<td>Adults</td>
<td>16178</td>
<td>Coast</td>
<td>Use of the postal code to define coastal residence vs inland residence</td>
<td>Physical activity</td>
<td>Questionnaire (to measure energy expenditure)</td>
<td>OR (95%CI) = 0.77 (0.69, 0.87) for being sedentary, 1.27 (1.18, 1.37) for being adequately active, 1.38 (1.25, 1.52) for having a high level of activity</td>
</tr>
<tr>
<td>Edwards et al. 2014, Australia</td>
<td>Cross-sectional</td>
<td>Rural adolescents 12-15 years</td>
<td>1304</td>
<td>Beach</td>
<td>Distance from the residence to the closest beach using network analysis (≤ 800 m and > 800 m)</td>
<td>Use of beach for PA</td>
<td>Questionnaire</td>
<td>OR (95%CI) of using the beach for PA in those living > 800 m = 0.84 (0.51, 1.30) in winter and 0.68 (0.50, 0.93) in summer</td>
</tr>
<tr>
<td>Elliot et al. 2015, UK</td>
<td>Cross-sectional</td>
<td>Adults >16 years</td>
<td>71603</td>
<td>Seaside resort or other coast visits</td>
<td>Questionnaire asking for visits to seaside resorts or towns, or other coast sites in the last week</td>
<td>Physical activity</td>
<td>Questionnaire (duration of the visit multiplied by METs associated to the activity performed during the visit)</td>
<td>β (95%CI)=0.03 (0.02, 0.04) for seaside visits and 0.02 (0.01, 0.04) for other coast visits using urban greenspace visits as reference. If only walkers included then numbers are: 0.07 (0.05, 0.08) and 0.10 (0.07, 0.12), respectively</td>
</tr>
<tr>
<td>Gilmer et al. 2003, USA</td>
<td>Cross-sectional</td>
<td>Youth 11-14 years (children of parents with premature heart disease)</td>
<td>113</td>
<td>Coastal region</td>
<td>Geographic regions based on school location within the state of North Carolina</td>
<td>Physical activity</td>
<td>Youth Health Survey</td>
<td>Mean (SD) of levels of PA between regions: coastal 229 (3.68), piedmont 237 (3.31), mountains 252 (2.99). Differences were significant (p<0.05) between coastal and the other two regions</td>
</tr>
<tr>
<td>Hummel et al. 2004a, Australia</td>
<td>Cross-sectional</td>
<td>Adults >40 years</td>
<td>399</td>
<td>Costal geographical locations</td>
<td>Based on postal code</td>
<td>Neighbourhood walking</td>
<td>Questionnaire</td>
<td>Men: OR (95%CI)=1.69 (0.69, 4.18) Women: 3.32 (1.51, 7.29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercise walking</td>
<td>Questionnaire</td>
<td>Men: 1.72 (0.70, 4.19) Women: 1.40 (0.62, 3.18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pleasure walking</td>
<td>Questionnaire</td>
<td>Men: 1.59 (0.64, 3.95) Women: 1.65 (0.72, 3.82)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Walking for commuting</td>
<td>Questionnaire</td>
<td>Men: 0.94 (0.40, 2.19) Women: 1.83 (0.87, 3.85)</td>
<td></td>
</tr>
<tr>
<td>Author (year, country)</td>
<td>Study design</td>
<td>Age of the study population</td>
<td>N</td>
<td>Blue space exposure</td>
<td>Tool to estimate blue space exposure</td>
<td>Outcome measured</td>
<td>Tools to measure outcome</td>
<td>Main results</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td>------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Humpel et al. 2004b, Australia</td>
<td>Cross-sectional</td>
<td>Adults 18-71 years</td>
<td>800</td>
<td>Coastal geographical locations</td>
<td>Based on postal code</td>
<td>Total walking</td>
<td>IPAQ</td>
<td>Men: OR (95%CI)=1.01 (0.64, 1.59) Women: 1.00 (0.63, 1.58)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total physical activity</td>
<td>IPAQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neighbourhood walking</td>
<td>Questionnaire^a</td>
<td></td>
</tr>
<tr>
<td>Karusisi et al. 2012, France</td>
<td>Cross-sectional</td>
<td>Adults 30-79 years</td>
<td>7290^b</td>
<td>Water (fresh)</td>
<td>Geographic unit was used to calculate % of area covered with water in a buffer of 1km from the residence</td>
<td>Jogging behaviour in the previous week (yes/no)</td>
<td>Questionnaire^a</td>
<td>RR (95%CI) of jogging = 1.15 (1.03, 1.36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Not reporting) recreational walking time within and outside their neighbourhood in the previous week</td>
<td>Questionnaire^a</td>
<td></td>
</tr>
<tr>
<td>Perchoux et al. 2015, France</td>
<td>Cross-sectional</td>
<td>Adults 30-79 years</td>
<td>4365</td>
<td>Lakes or waterways</td>
<td>Land-use maps to determine presence of lakes/waterways for different areas and buffers (residential – 1 km, work – 1 km, recreational – 500 m...)</td>
<td>Leisure and travel-related physical activity</td>
<td>Questionnaire^a</td>
<td>OR (95%CI) = 0.84 (0.71, 0.99) for residential BS, 0.83 (0.70, 0.98) for residential + recreational BS, 0.96 (0.78, 1.18) for all BS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Not reporting)</td>
<td>Questionnaire^a</td>
<td></td>
</tr>
<tr>
<td>White et al. 2014, UK</td>
<td>Cross-sectional</td>
<td>Adults</td>
<td>183755</td>
<td>Coast</td>
<td>Land-cover map to determine residential distance to the coast (<1km, 1-5km, 5-20km, >20km)</td>
<td>Leisure and travel-related physical activity</td>
<td>Questionnaire^a</td>
<td>OR (95%CI) for 5 days of 30 min of PA or more/week=1.08 (1.03, 1.14) for distance <1km vs >20km, when adjusted for coastal visits = 0.93 (0.89, 0.98)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Not reporting)</td>
<td>Questionnaire^a</td>
<td></td>
</tr>
<tr>
<td>Wilson et al. 2011, Australia</td>
<td>Cross-sectional</td>
<td>Adults 40-65 years</td>
<td>10286</td>
<td>Coastal visits River or coast</td>
<td>Questionnaire MapInfo GIS (quintiles) to define network distance from the residence to the river or the coast</td>
<td>Time spent walking for recreation, exercise or to go to places in the last week Sedentary behavior (<30 min of PA in the past week) Meet the recommended level of PA (at least 2.5 h on five or more days in the preceding week)</td>
<td>Questionnaire</td>
<td>OR (95%CI)= 1.62 (1.55, 1.69) OR (95%CI) of walking ≥ 300 min = 2.06 (1.41, 3.02) for those on Q1 (least distance) vs those on Q5 (greatest distance) OR (95%CI) for those living further from the beach (>31.8 min walking) = 1.04 (0.81, 1.33) OR (95%CI) for those living further from the beach= 0.88 (0.76, 1.03)</td>
</tr>
<tr>
<td>Witten et al. 2008, New Zealand</td>
<td>Cross-sectional</td>
<td>Adolescents and adults > 15 years</td>
<td>Between 11233 and 12425</td>
<td>Beach</td>
<td>GIS and land information New Zealand to obtain travel time to access the nearest beach and define access to (from the neighbourhood)</td>
<td>Meet the recommended level of PA (at least 2.5 h on five or more days in the preceding week)</td>
<td>Questionnaire^a</td>
<td>OR (95%CI)= 1.62 (1.55, 1.69) OR (95%CI) of walking ≥ 300 min = 2.06 (1.41, 3.02) for those on Q1 (least distance) vs those on Q5 (greatest distance) OR (95%CI) for those living further from the beach (>31.8 min walking) = 1.04 (0.81, 1.33) OR (95%CI) for those living further from the beach= 0.88 (0.76, 1.03)</td>
</tr>
<tr>
<td>Ying et al. 2015, China</td>
<td>Cross-sectional</td>
<td>Adults 46-80 years</td>
<td>1100</td>
<td>River</td>
<td>GIS to define 500m buffer distance to the river</td>
<td>PA</td>
<td>Pedometer</td>
<td>Coefficient (p-value)=0.112 (0.231)</td>
</tr>
</tbody>
</table>

^a APARQ: Adolescent Physical Activity Recall Questionnaire; BMI: body mass index; BS: blue space; IPAQ: International Physical Activity Questionnaire; PA: physical activity.
"Not validated questionnaire or not clarified if the questionnaire is validated.

The final number of subjects included in the analysis is not clear."
Table 4. Main characteristics and results of the studies on cardiovascular related outcomes and obesity.

<table>
<thead>
<tr>
<th>Author (year, country)</th>
<th>Study design</th>
<th>Age of the study population</th>
<th>N</th>
<th>Blue space exposure</th>
<th>Tool to estimate blue space exposure</th>
<th>Outcome measured</th>
<th>Tools to measure outcome</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergovec et al. 2008, Croatia</td>
<td>Cross-sectional</td>
<td>Adults 23-102 years (coronary heart disease patients)</td>
<td>3054</td>
<td>Coastal hospitals (vs continental)</td>
<td>Based on residence on a coastal region (not explained how it is defined)</td>
<td>Hypertension</td>
<td>Physical measurements</td>
<td>OR (95%CI)=0.73 (0.59, 0.89)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cholesterol and triglycerides</td>
<td></td>
<td>0.90 (0.68, 1.20) for total cholesterol, 0.74 (0.60, 0.92) for decreased HDL, 1.01 (0.81, 0.943) for triglycerides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diabetes</td>
<td></td>
<td>1.86 (0.69, 1.06)</td>
<td></td>
</tr>
<tr>
<td>Halonen et al. 2014, Finland</td>
<td>Longitudinal (8 years of follow-up)</td>
<td>Adults (urban areas)</td>
<td>25317 (15621 nonmovers and 9696 movers)</td>
<td>Lake, river, sea</td>
<td>Land-cover map to determine residential distance to each blue space (<250m to >750m)</td>
<td>BMI (normal weight, overweight and obesity)</td>
<td>Self-reported height and weight</td>
<td>No associations and no patterns were observed between distance to blue spaces and BMI, neither among non-movers nor among movers. The only statistically significant association observed was for overweight vs normal weight in distance 500-750m vs <250m in non-movers [OR (95%CI)=1.24 (1.01, 1.52)]</td>
</tr>
<tr>
<td>Kern et al. 2009, Croatia</td>
<td>Cross-sectional</td>
<td>Adults</td>
<td>Not reported</td>
<td>Coastal region (vs continental)</td>
<td>Based on administrative divisions of the regions of the country (Adriatic sea)</td>
<td>Cardiovascular risk burden (CVRB)</td>
<td>Not clearly reported</td>
<td>Prevalence of high CVRB in the coastal region=46.3% (95%CI 40.9, 51.8) for men and 43.9% (41.4, 46.4) for women, and in the northern region=53.1 (46.7, 59.6) and 54.2 (49.5, 58.9; p<0.05), respectively</td>
</tr>
<tr>
<td>Modesti et al. 2013, Yemen</td>
<td>Cross-sectional</td>
<td>Adults 15-69 years</td>
<td>10242</td>
<td>Coast</td>
<td>Based on administrative divisions of the regions of the country</td>
<td>Hypertension</td>
<td>Physical measurements & self-reported use of antihypertensive drugs at time of interview</td>
<td>OR (95%CI) = 1.53 (1.25, 1.84) compared to participants living in the capital of the country</td>
</tr>
<tr>
<td>Qin et al. 2013, China</td>
<td>Cross-sectional</td>
<td>Hypertensive adults 45-75 years</td>
<td>17656</td>
<td>Coastal county (vs inland)</td>
<td>Based on administrative divisions (two counties)</td>
<td>Diabetes Abdominal obesity Overweight and obesity (BMI based)</td>
<td>Physical measurements</td>
<td>0.88 (0.65, 1.20) 0.88 (0.72, 1.08) OR (95%CI)=1.10 (1.02, 1.18) for those living inland vs coastal Abdominal obesity (waist circumference based)</td>
</tr>
<tr>
<td>Turek et al. 2001, Croatia</td>
<td>Cross-sectional</td>
<td>Adults</td>
<td>5840</td>
<td>Coast</td>
<td>Based on residence in a coastal region</td>
<td>Hypertension</td>
<td>Physical measurements</td>
<td>Difference with a p-value<0.001 (coastal Rijeka=20.6% and Split=29.2%)</td>
</tr>
<tr>
<td>Author (year, country)</td>
<td>Study design</td>
<td>Age of the study population</td>
<td>N</td>
<td>Blue space exposure</td>
<td>Tool to estimate blue space exposure</td>
<td>Outcome measured</td>
<td>Tools to measure outcome</td>
<td>Main results</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>----</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Croatia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witten et al. 2008, New Zealand</td>
<td>Cross-sectional</td>
<td>Adolescents and adults > 15 years</td>
<td>Between 11233 and 12425</td>
<td>Beach</td>
<td>GIS and land information New Zealand to obtain travel time to access the nearest beach and define access to (from the neighbourhood)</td>
<td>BMI</td>
<td>Questionnaire<sup>c</sup></td>
<td>“No major differences between regions” (\beta (95%CI)) for those living further from the beach= 0.13 (0.07, 0.18)</td>
</tr>
<tr>
<td>Wood et al. 2016, UK</td>
<td>Ecological Cross-sectional</td>
<td>Children 10-11 years</td>
<td>1475617</td>
<td>Coast</td>
<td>Euclidean distance between population-weighted centroid and the coast</td>
<td>BMI > 95<sup>th</sup> percentile</td>
<td>Physical measurements</td>
<td>(\beta (95%CI)) for those living nearer (< 1km) vs further (> 20 km) = -0.684 (-1.141, -0.227)</td>
</tr>
<tr>
<td>Ying et al. 2015, China</td>
<td>Cross-sectional</td>
<td>Adults 46-80 years</td>
<td>1100</td>
<td>River</td>
<td>GIS to define 500m buffer distance to the river</td>
<td>BMI</td>
<td>Physical measurements</td>
<td>Coefficient (p-value)=0.040 (0.16)</td>
</tr>
<tr>
<td>Zhang et al. 2014, China</td>
<td>Cross-sectional</td>
<td>Children 7-18 years</td>
<td>42296</td>
<td>Coastal districts (vs inland)</td>
<td>Based on administrative divisions (sixteen districts)</td>
<td>Abdominal obesity (waist circumference based)</td>
<td>Physical measurements</td>
<td>Prevalence in boys=coastal (17.71%) and inland (14.97%), p<0.01 Prevalence in girls= coastal (7.91%) and (6.72%), p<0.01</td>
</tr>
</tbody>
</table>

BMI: body mass index
^aThey also measure plasma fibrinogen levels
^bCVRB: variable created based on several cardiovascular related outcomes or determinants (cardiovascular related incidents, weight status, blood pressure, smoking status, physical activity levels, alcohol consumption, nutrition).
^cNot validated questionnaire or not clarified if the questionnaire is validated.
Figure 1. Selection procedure of the articles.
Figure 2. Summary (%) of the blue space type, environment of assessment and the method of evaluation used in the studies included by each outcome assessed.

BS: blue space; CV: cardiovascular
Identification
Medline: 2438
Scopus: 2380
Other sources: 33

Screening
(title and abstract)
4622 excluded
4531 excluded

Eligibility
(full text)
91 excluded
56 excluded

Finally included: 35
Supplemental Material

Blue spaces, human health and well-being: a systematic review

Mireia Gascon, Wilma Zijlema, Cristina Vert, Mathew P. White, Mark Nieuwenhuijsen

Table A. Additional characteristics of the studies included in the systematic review2

Table B. Criteria for quality assessment of the studies8

Table C. Specific scores for each item evaluated and the final quality scores and categories given to each study9
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design/population (N)</th>
<th>Statistical methods</th>
<th>Co-variables of adjustment and interactions evaluated</th>
<th>Other information</th>
</tr>
</thead>
</table>
| Alcock et al. 2015 | Longitudinal (18 years follow-up) Adults (N=2020) | Random effects linear regression (with within- and between-individual effects) | ☑ CAU level: income, employment and education deprivation and crime
☑ Individual level: age, education, marital status, living with children (<16y), household income, work-limiting health, labour market status, residential accommodation, accommodation size, commuting time, data collection wave | It does not evaluate quality of BS
☑ No mention of the minimal time of residence
☑ Green and other natural spaces evaluated as well
☑ Restricted to urban areas
☑ They take into account residential permanency |
| Amoly et al. 2014 | Cross-sectional Children 7-10 years (N=2111) | Quasi-Poisson mixed effects models | ☑ CAU level: socioeconomic status
☑ Individual level: gender, school level, ethnicity, preterm birth, breastfeeding, exposure to environmental tobacco smoke, maternal smoking during pregnancy, responding person, parental education, employment and marital status | It does not evaluate quality of BS
☑ No mention of the minimal time of residence
☑ Green spaces evaluated as well
☑ Restricted to urban areas
☑ Only 0.5% and 1.7% of the participants lived within 300 m and 500 m of the beach, respectively. Analyses finally not conducted and distance information not included to adjust for the association reported in Table 1. |
| Ball et al. 2006 | Cross-sectional Women 18-65 years (N=1282) | Random effects logistic regression | ☑ CAU level: aesthetics, safety, walking track length, street connectivity
☑ Individual variables (statistically tested but not included): age, marital status, presence of children in the home and pregnancy
☑ Individual variables included: education, family and friend’s social support, club membership, dog owner, self-efficacy, enjoyment, barriers, intentions | It does not evaluate quality or use of BS
☑ No mention of the minimal time of residence
☑ PA information based on questionnaire
☑ Exposure information based on the neighbourhood
☑ Coarse assessment of coastal proximity and not defined based on actual residential distance |
| Bauman et al. 1999 | Cross-sectional Adults (N=16178) | Logistic regression | ☑ Individual level: age, sex, employment status, education level, country of birth | ☑ No mention of the minimal time of residence
☑ PA information based on questionnaire
☑ Coarse assessment of coastal proximity and not defined based on actual residential distance |
| Bergovec et al. 2008 | Cross-sectional Adults 23-102 years (N=3054) | Logistic regression | ☑ Not clearly specified | ☑ Coarse assessment of coastal proximity and not defined based on actual residential distance |
| Brerenton et al. 2007 | Cross-sectional Adults >18 years (N=1467) | Random effects linear regression | ☑ Area level: population density, congestion, commuting time, climatic and environmental variables
☑ Individual level: age, gender, employment status, educational attainment, health, marital status, income, number of dependent children, household tenure, Dublin | ☑ Individual and GIS data linked at the electoral division level (not individual level)
☑ It does not evaluate quality or use of BS
☑ No mention of the minimal time of residence |
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design/population (N)</th>
<th>Statistical methods</th>
<th>Co-variables of adjustment and interactions evaluated</th>
<th>Other information</th>
</tr>
</thead>
</table>
| De Vries et al. 2003 | Cross-sectional All ages (N=10197) | Logistic regression | ✓ CAU level: urbanity
✓ Individual level: age, gender, education, number of rooms, type of health insurance, number of life-events
✓ Interaction with education and urbanity degree | ✓ It does not evaluate quality or use of BS
✓ Participants have been living at least 1 year in the studied residence
✓ Exclusion of those with changes in urbanity in their neighbourhood
✓ BS and health data collected at different moments with 9 years in between |
| Edwards et al. 2014 | Cross-sectional Rural adolescents 12-15 years (N=1304) | Logistic regression | ✓ Individual level: age, sex, SES, ethnicity
✓ Presence of a major road (crossing busy road to go the beach)
✓ Stratification by season | ✓ It does not evaluate quality BS
✓ No mention of the minimal time of residence
✓ PA information based on questionnaire
✓ Information not based on exact home address but based on the nearest intersection |
| Elliot et al. 2015 | Cross-sectional Adults >16 years (N=71603) | Linear regression analysis | ✓ Individual level: self-reported PA, age, gender, SES, work, marital status, ethnicity, disability
✓ Visit characteristics: presence of other adults, children and dogs during the visit, starting point of the visit, distance travelled to the destination, travel mode, ownership of a car, frequent green space users, seasonality and year of the survey (2009-2014)
✓ Stratification by urban/rural and by travel distance | ✓ It does not evaluate quality BS
✓ Comparison of energy expenditure between BS and GS
✓ Duration of the visit was asked
✓ Sensitivity analysis excluding dog-walking visits
✓ PA information based on questionnaire |
| Gilmer et al. 2003 | Cross-sectional Youth 11-14 years (N=113) | ANCOVA | ✓ Individual level: age, gender, race, pubertal status, peer and family physical activity, SES and education of the parents
✓ Community characteristics: SES and geographic area
✓ Stratification by peer physical activity | ✓ This is a selected population of children with at least one parent with a history of premature coronary heart disease
✓ PA information based on questionnaire
✓ No mention of the minimal time of residence
✓ Coarse assessment of coastal proximity and not defined based on actual residential distance |
| Halonen et al. 2014 | Longitudinal (8 years of follow-up) Adults (N=25317) | Logistic regression | ✓ Individual level: age (at baseline), sex, education (as a proxy for SES), chronic somatic illnesses, smoking, alcohol use and physical activity
✓ Neighbourhood level: socioeconomic disadvantage | ✓ The cohort is based on workers of the public administration
✓ Height and weight self-reported
✓ Does not include green spaces in the analysis
✓ Separate analysis for movers and non-movers
✓ It does not evaluate use or quality BS |
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design/ population (N)</th>
<th>Statistical methods</th>
<th>Co-variables of adjustment and interactions evaluated</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huynh et al. 2013</td>
<td>Cross-sectional Children 11-16 years (N=17249)</td>
<td>Logistic regression</td>
<td>✓ Area level: neighbourhood aesthetics and SES
✓ Individual level: SES, perceived neighbourhood safety
✓ Stratification by rural, small city, metropolitan area
✓ Effect modifiers: age, gender, ethnicity, urban/rural</td>
<td>✓ It does not evaluate quality or use of BS
✓ No mention of the minimal time of residence
✓ Students living > 1h travel distance from school excluded
✓ 5 km buffer as a proxy for the neighbourhood environment (all children from same school had the same exposure estimates)</td>
</tr>
<tr>
<td>Humpel et al. 2004a</td>
<td>Cross-sectional Adults >40 years (N=399)</td>
<td>Logistic regression</td>
<td>✓ Individual level: age, education, physical environment attributes (perceived environment)
✓ Stratified by gender</td>
<td>✓ Sample of clients of a health insurance organization
✓ PA information based on questionnaire
✓ No mention of the minimal time of residence
✓ Low response rate study
✓ It does not evaluate use of BS
✓ Coarse assessment of coastal proximity and not defined based on actual residential distance</td>
</tr>
<tr>
<td>Humpel et al. 2004b</td>
<td>Cross-sectional Adults 18-71 years (N=800)</td>
<td>Logistic regression</td>
<td>✓ Individual level: age, education, physical environment attributes (perceived environment)
✓ Stratified by gender</td>
<td>✓ Sample of university staff members
✓ PA information based on questionnaire
✓ No mention of the minimal time of residence
✓ It does not evaluate use of BS
✓ Coarse assessment of coastal proximity and not defined based on actual residential distance</td>
</tr>
<tr>
<td>Karusisi et al. 2012</td>
<td>Cross-sectional Adults 30-79 years (N=7290)</td>
<td>Log binomial regression</td>
<td>✓ Neighbourhood level (1km buffer): SES, physical, service related, socio-interactional and symbolic environment, % GS and parks
✓ Individual level: age, sex, education, marital status, occupation, household income, homeownership, perceived financial strain, human development index of the country of birth, energy expenditure at work over the previous week, proximity of friends and family in the neighbourhood</td>
<td>✓ It does not evaluate quality or use of BS
✓ No mention of the minimal time of residence
✓ Daily meteorological data collected for the day before of the recruitment and 7 days later
✓ PA (jogging) information based on questionnaire</td>
</tr>
<tr>
<td>Kern et al. 2009</td>
<td>Cross-sectional Adults (N=3479588)</td>
<td>Prevalence (descriptive statistics)</td>
<td>✓ No variables of adjustment</td>
<td>✓ It does not evaluate quality or use of BS
✓ No mention of the minimal time of residence
✓ Coarse assessment of coastal proximity and not defined based on distance</td>
</tr>
<tr>
<td>MacKerron et al. 2013</td>
<td>Longitudinal Adults (N=21947)</td>
<td>Regression analyses with cluster-robust sandwich estimator for correlated standard errors</td>
<td>✓ Where the participants is (indoors, in a vehicle, outdoors), current activity (at home, at work, elsewhere), weather conditions when outdoors, selected activities, companionship (children, spouse, etc)</td>
<td>✓ Sample limited to sample Iphone users
✓ Self-selection of the participants (or moment of participation)
✓ It does not evaluate the quality of BS
✓ Objective measurement of use of BS</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Study design/ population (N)</td>
<td>Statistical methods</td>
<td>Co-variables of adjustment and interactions evaluated</td>
<td>Other information</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Modesti et al. 2013</td>
<td>Cross-sectional Adults 15-69 years (N=10242)</td>
<td>Logistic regression</td>
<td>✓ Age, gender, urban or rural location, level of education, average air temperature at the time of surveys, self-reported sedentary lifestyle, smoking habits, vegetable and fruit consumption, blood glucose, high cholesterol and high triglycerides</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence ✓ Coarse assessment of coastal proximity and not defined based on actual residential distance</td>
</tr>
<tr>
<td>Nutsford et al. 2016</td>
<td>Cross-sectional Adolescents and adults > 15 years (N= 442)</td>
<td>Linear regression</td>
<td>✓ CAU level: SES, population density, crime rates, housing quality index (HQI) ✓ Individual level: sex, age, income ✓ Others: missing teeth (SES proxy) as an outcome (test)</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence ✓ VVI is an index that takes into account slope, aspect, distance and elevation of visible areas relative to the observer location ✓ Exposure information not based on exact home address but the CAU</td>
</tr>
<tr>
<td>Perchoux et al. 2015</td>
<td>Cross-sectional Adults 30-79 years (N=4365)</td>
<td>Zero-inflated negative binomial models</td>
<td>✓ Individual level: age, sex, education, employment status, household income, living with at least 1 child <14 years, location in the regions, citizenship</td>
<td>✓ It does not evaluate quality or use of BS ✓ Did not take into account length of residence ✓ Different environments of activity evaluated</td>
</tr>
<tr>
<td>Qin et al. 2013</td>
<td>Hypertensive adults 45-75 years (N=17656)</td>
<td>Logistic regression</td>
<td>✓ Sex, smoking, alcohol drinking, antihypertensive treatment status, hypertension grade, standard of living, meat, fruit and vegetable consumption, education level, physical activity, family history of hypertension, diabetis, coronary heart disease or stroke</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence ✓ Coarse assessment of coastal proximity and not defined based on distance</td>
</tr>
<tr>
<td>Rogerson et al. 2016</td>
<td>Pre/post observational study Adult runners</td>
<td>ANOVA</td>
<td>✓ No adjustment for any co-variable</td>
<td>✓ Non-nature-based place for the comparison ✓ Data collected on four different days between September and November</td>
</tr>
<tr>
<td>Triguero-Mas et al. 2015</td>
<td>Cross-sectional 34-64 years (N=8793)</td>
<td>Logistic regression</td>
<td>✓ CAU level: indicators neighbourhood socioeconomic status ✓ Individual level: gender, age, education level, birth place, type of health insurance, marital status and indicators of household status ✓ Stratified: gender, SES, degree of urbanization</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence</td>
</tr>
<tr>
<td>Turek et al. 2001</td>
<td>Cross-sectional Adults (N=5840)</td>
<td>X² test, ANOVA</td>
<td>✓ No adjustment for any co-variable</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence ✓ Coarse assessment of coastal proximity and not defined based on actual residential distance</td>
</tr>
<tr>
<td>Wheeler et al. 2012</td>
<td>Ecological cross-sectional Not specified N=32482 (CAUs)</td>
<td>Linear regression</td>
<td>✓ Outcome sex and age standardized (% at CAU) ✓ CAU level: deprivation indices (income, employment, education, crime, environment) and % of GS ✓ Stratified by income deprivation, urban/rural</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Study design/population (N)</td>
<td>Statistical methods</td>
<td>Co-variables of adjustment and interactions evaluated</td>
<td>Other information</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Wheeler et al. 2015</td>
<td>Ecological cross-sectional Not specified N=31672 (CAUs)</td>
<td>Linear regression</td>
<td>✓ Outcome sex and age standardized (% at CAU) ✓ CAU level: income, education and employment status and urban/rural</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence ✓ Mutual adjustment for all other natural land cover types (excluding urban)</td>
</tr>
<tr>
<td>White et al. 2013a</td>
<td>Longitudinal Adults > 25 years (N=15361)</td>
<td>Linear regression</td>
<td>✓ Individual level: age, education, marital status, income, living with children, work-limiting health status, labour market status, residence type, household space, commute length, green space</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence</td>
</tr>
<tr>
<td>White et al. 2013b</td>
<td>Longitudinal Adults (N=10168 to 12818)</td>
<td>Linear regression</td>
<td>✓ CAU level: employment, education, income and crime, % of GS ✓ Individual level: age, education, marital status, living with children, work-limiting health status, labour status, commuting, household residence, income and space</td>
<td>✓ It does not evaluate quality or use of BS ✓ Does not separate between movers and non-movers along time</td>
</tr>
<tr>
<td>White et al. 2013c</td>
<td>Cross-sectional > 16 years (N=4255)</td>
<td>Linear regression</td>
<td>✓ CAU level: employment, education, income and crime, % of GS and % of freshwater ✓ Individual level: gender, age, SES, main activity engaged, visit duration, visit companions, starting location, distance travelled, mode of travel</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence</td>
</tr>
<tr>
<td>White et al. 2014</td>
<td>Cross-sectional Adults (N=183755)</td>
<td>Logistic regression</td>
<td>✓ Individual level: gender, age, occupational social grade, employment status, marital status, number of children in the household, ethnicity, work limiting health status, car access, dog ownership. Also included season and year of data collection ✓ CAU level: amount of greenness, local area deprivation (unemployment and crime), % of GS ✓ Stratified by region and mediation analysis including coast visits</td>
<td>✓ PA information based on questionnaire ✓ It does not evaluate quality of BS</td>
</tr>
<tr>
<td>Wilson et al. 2011</td>
<td>Cross-sectional Adults 40-65 years (N=10286)</td>
<td>Multinomial logit models</td>
<td>✓ Neighbourhood level: socioeconomic disadvantage ✓ Individual level: age, sex, education, occupation, living arrangement, household income</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence ✓ Multiple testing</td>
</tr>
<tr>
<td>Witten et al. 2008</td>
<td>Cross-sectional Adults >15 years (N=12529)</td>
<td>Linear and logistic regressions</td>
<td>✓ CAU levels: stratum (ethnic composition of the meshblock), deciles of number of respondents in the meshblock, area deprivation, urbanity ✓ Individual-level: age, sex, education, social class, receipt of benefits, working/not working and household income, number of adults in the household and ethnicity</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence</td>
</tr>
<tr>
<td>Wood et al. 2016</td>
<td>Ecological Cross-sectional Children 10-11 years</td>
<td>Linear regression</td>
<td>✓ Area level: % of greenspace, index of multiple deprivation, % of population 10-14 years, % of population of non-white ethnicity, rural/urban ✓ Stratified by rural/urban</td>
<td>✓ It does not evaluate quality or use of BS ✓ No mention of the minimal time of residence ✓ Coarse assessment of coastal proximity and not defined based on</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Study design/population (N)</td>
<td>Statistical methods</td>
<td>Co-variables of adjustment and interactions evaluated</td>
<td>Other information</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ying et al. 2015</td>
<td>Cross-sectional Adults 46-80 years (N=1100)</td>
<td>Hierarchical multilevel models</td>
<td>✓ Individual-level: age, gender, education, employment. Land-use mix, net residential density, street connectivity, proximity to parkland and square, road areas</td>
<td>✓ It does not evaluate quality or use of BS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ No mention of the minimal time of residence</td>
</tr>
<tr>
<td>Zhang et al. 2014</td>
<td>Cross-sectional Children 7-18 years (N=42296)</td>
<td>Prevalence (descriptive statistics)</td>
<td>✓ No variables of adjustment</td>
<td>✓ It does not evaluate quality or use of BS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ No mention of the minimal time of residence</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ Coarse assessment of coastal proximity and not defined based on distance</td>
</tr>
</tbody>
</table>

ANOVA: analysis of variance; ANCOVA: analysis of covariance; BS: blue spaces; CAU: Census at Unit level; GS: green spaces; PA: physical activity; SES: socioeconomic status
Table B. Criteria for quality assessment of the studies

<table>
<thead>
<tr>
<th>Category</th>
<th>Score 0</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>ecological, cross-sectional or case-control study, longitudinal or intervention study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding factors</td>
<td>no confounding factors considered, confounding factors considered but some key confounders omitted, careful consideration of confounders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>flaws in or inappropriate statistical testing or interpretation of statistical tests that may have affected results, appropriate statistical testing and interpretation of tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential bias</td>
<td>other study design or conduct issues that may have led to bias, no other serious study flaws</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplicity</td>
<td>exposure of interest one of the many variables being tested, exposure of interest the main variable tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome assessment</td>
<td>self-reported non-validated questionnaires, self-reported validated questionnaires, interviews conducted by experts or clinical records, or physical measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue exposure assessment</td>
<td>self-reported based or based on regional residence, satellite system or land-cover map based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of blue space</td>
<td>not measured and/or not included in the analysis, measured and included in the analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect size</td>
<td>incomplete information, complete information (estimate and standard error or confidence interval)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants have been living at least 1 year in the studied area</td>
<td>no or not clearly specified, yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table C. Specific scores for each item evaluated and the final quality scores and categories given to each study

<table>
<thead>
<tr>
<th>Study design (0-2)</th>
<th>Confounding factors (0-2)</th>
<th>Statistics (0-1)</th>
<th>Potential bias (0-1)</th>
<th>Multiplicity (0-1)</th>
<th>Outcome assessment (0-2)</th>
<th>BS assessment (0-1)</th>
<th>Use of BS (0-1)</th>
<th>Effect size (0-1)</th>
<th>Time of residence considered (0-1)</th>
<th>Score (absolute)</th>
<th>Score (%)<sup>a</sup></th>
<th>Quality category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcock et al. 2015</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>85</td>
<td>Excellent</td>
</tr>
<tr>
<td>Amoly et al. 2014</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>69</td>
<td>Good</td>
</tr>
<tr>
<td>Ball et al. 2007</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>69</td>
<td>Good</td>
</tr>
<tr>
<td>Bauman et al. 1999</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>Bergovec et al. 2008</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>46</td>
<td>Fair</td>
</tr>
<tr>
<td>Brereton et al. 2008</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>De Vries et al. 2003</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>54</td>
<td>Fair</td>
</tr>
<tr>
<td>Edwards et al. 2014</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>Elliott et al. 2015</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>NA</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>Gilmer et al. 2003</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>38</td>
<td>Poor</td>
</tr>
<tr>
<td>Halonen et al. 2014</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>77</td>
<td>Good</td>
</tr>
<tr>
<td>Humpel et al. 2004a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>54</td>
<td>Fair</td>
</tr>
<tr>
<td>Humpel et al. 2004b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>Huynh et al. 2013</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>Karusisi et al. 2012</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>Kern et al. 2009</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0<sup>b</sup></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>31</td>
<td>Poor</td>
</tr>
<tr>
<td>MacKerron et al. 2013</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>NA</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>Modesti et al. 2013</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>Nutsford et al. 2016</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>Perchoux et al. 2015</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>46</td>
<td>Fair</td>
</tr>
<tr>
<td>Qin et al. 2013</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>Rogerson et al. 2016</td>
<td>0<sup>c</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>NA</td>
<td>0</td>
<td>1</td>
<td>NA</td>
<td>3</td>
<td>Poor</td>
</tr>
<tr>
<td>Triguero-Mas et al. 2015</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>Study design (0-2)</td>
<td>Confounding factors (0-2)</td>
<td>Statistics (0-1)</td>
<td>Potential bias (0-1)</td>
<td>Multiplicity (0-1)</td>
<td>Outcome assessment (0-2)</td>
<td>BS assessment (0-1)</td>
<td>Use of BS (0-1)</td>
<td>Effect size (0-1)</td>
<td>Time of residence considered (0-1)</td>
<td>Score (absolute)</td>
<td>Score (%)<sup>a</sup></td>
<td>Quality category</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Turek et al. 2000</td>
<td>1 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>31</td>
<td>Poor</td>
</tr>
<tr>
<td>Wheeler et al. 2012</td>
<td>0 1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>38</td>
<td>Poor</td>
</tr>
<tr>
<td>Wheeler et al. 2015</td>
<td>0 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>31</td>
<td>Poor</td>
</tr>
<tr>
<td>White et al. 2013a</td>
<td>2 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>77</td>
<td>Good</td>
</tr>
<tr>
<td>White et al. 2013b</td>
<td>2 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>77</td>
<td>Good</td>
</tr>
<tr>
<td>White et al. 2013c</td>
<td>1 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>White et al. 2014</td>
<td>1 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>69</td>
<td>Good</td>
</tr>
<tr>
<td>Wilson et al. 2011</td>
<td>1 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>Witten et al. 2008</td>
<td>1 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>62</td>
<td>Good</td>
</tr>
<tr>
<td>Wood et al. 2016</td>
<td>0 1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>54</td>
<td>Fair</td>
</tr>
<tr>
<td>Ying et al. 2015</td>
<td>1 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>77</td>
<td>Good</td>
</tr>
<tr>
<td>Zhang et al. 2014</td>
<td>1 0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>46</td>
<td>Fair</td>
</tr>
</tbody>
</table>

^{NA}=not applicable

^aFor each study the total score was calculated by adding the scores of the 10 dimensions defined and expressing them as a percentage of the maximum score (for some studies some of the items did not apply to be evaluated (NA) so the maximum score could vary among studies). Based on the score in %, the following quality scores were obtained: Excellent quality (score ≥81%), good quality (between 61 and 80%), fair quality (between 41 and 60%), poor quality (between 21 and 40%) and very poor quality (≤20%).

^bKern et al. gets a “0” for outcome assessment because the methods for outcome measurements are not clearly reported.

^cRogerson et al. gets a “0” for study design because it is a pre-/post-natural intervention study, without controls and several flaws in the design.