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ABSTRACT

Rāga is the melodic framework of Indian art music. It is
a core concept used in composition, performance, organi-
zation, and pedagogy. Automatic rāga recognition is thus a
fundamental information retrieval task in Indian art music.
In this paper, we propose the time-delayed melody surface
(TDMS), a novel feature based on delay coordinates that
captures the melodic outline of a rāga. A TDMS describes
both the tonal and the temporal characteristics of a melody,
using only an estimation of the predominant pitch. Consid-
ering a simple k-nearest neighbor classifier, TDMSs out-
perform the state-of-the-art for rāga recognition by a large
margin. We obtain 98% accuracy on a Hindustani music
dataset of 300 recordings and 30 rāgas, and 87% accuracy
on a Carnatic music dataset of 480 recordings and 40 rāgas.
TDMSs are simple to implement, fast to compute, and have
a musically meaningful interpretation. Since the concepts
and formulation behind the TDMS are generic and widely
applicable, we envision its usage in other music traditions
beyond Indian art music.

1. INTRODUCTION

Melodies in Hindustani and Carnatic music, two art mu-
sic traditions of the Indian subcontinent, are constructed
within the framework of rāga [3, 29]. The rāga acts as a
grammar within the boundaries of which an artist com-
poses a music piece or improvises during a performance.
A rāga is characterized by various melodic attributes at dif-
ferent time scales such as a set of svaras (roughly speak-
ing, notes), specific intonation of these svaras, ārōhana-
avrōhana (the ascending and descending sequences of
svaras), and by a set of characteristic melodic phrases or
motifs (also referred to as ‘catch phrases’). In addition to
these melodic aspects, one of the most important charac-
teristics of a rāga is its calan [23] (literally meaning move-
ment or gait). The calan defines the melodic outline of a
rāga, that is, how a melodic transition is made from one
svara to another, the precise intonation to be followed dur-
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ing the transition, and the proportion of time spent on each
svara. It can also be thought of as an abstraction of the
characteristic melodic phrases mentioned above.

Rāga is a core musical concept used in the composition,
performance, organization, and pedagogy of Indian art mu-
sic (IAM). Numerous compositions in Indian folk and film
music are also based on rāgas [9]. Despite its significance
in IAM, there exists a large volume of audio content whose
rāga is incorrectly labeled or, simply, unlabeled. This is
partially because the vast majority of the tools and tech-
nologies that interact with the recordings’ metadata fall
short of fulfilling the specific needs of the Indian music tra-
dition [26]. A computational approach to automatic rāga
recognition can enable rāga-based music retrieval from
large audio collections, semantically-meaningful music
discovery, musicologically-informed navigation, as well as
several applications around music pedagogy.

Rāga recognition is one of the most researched top-
ics within music information retrieval (MIR) of IAM. As
a consequence, there exist a considerable amount of ap-
proaches utilizing different characteristic aspects of rāgas.
Many of such approaches use features derived from the
pitch or pitch-class distribution (PCD) [2, 4, 5, 16]. This
way, they capture the overall usage of the tonal material in
an audio recording. In general, PCD-based approaches are
robust to pitch octave errors, which is one of the most fre-
quent errors in the estimation of predominant melody from
polyphonic music signals. Currently, the PCD-based ap-
proach represents the state-of-the-art in rāga recognition.
One of these approaches proposed by Chordia et al. [2]
has shown promising results with an accuracy of 91.5% on
a sizable dataset comprising 23 rāgas and close to 550 ex-
cerpts of 120 s duration, extracted from 121 audio record-
ings (note that the authors use monophonic recordings
made under laboratory conditions).

One of the major shortcomings of PCD-based ap-
proaches is that they completely disregard the temporal as-
pects of the melody, which are essential to rāga character-
ization [23]. Temporal aspects are even more relevant in
distinguishing phrase-based rāgas [17], as their aesthetics
and identity is largely defined by the usage of meandering
melodic movements, called gamakas. Several approaches
address this shortcoming by modeling the temporal aspects
of a melody in a variety of ways [18, 21, 27]. Such ap-
proaches typically use melodic progression templates [27],
n-gram distributions [18], or hidden Markov models [21]
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to capture the sequential information in the melody. With
that, they primarily utilize the ārōhana-avrōhana pattern of
a rāga. In addition, most of them either transcribe the pre-
dominant melody in terms of a discrete svara sequence, or
use only a single symbol/state per svara. Thus, they dis-
card the characteristic melodic transitions between svaras,
which are a representative and distinguishing aspect of a
rāga [23]. Furthermore, they often rely on an accurate tran-
scription of the melody, which is still a challenging and an
ill-defined task given the nature of IAM [22, 24].

There are only a few approaches to rāga recognition that
consider the continuous melody contour and exploit its raw
melodic patterns [6, 11]. Their aim is to create dictionar-
ies of characteristic melodic phrases and to exploit them in
the recognition phase, as melodic phrases are prominent
cues for the identification of a rāga [23]. Such phrases
capture both the svara sequence and the transition char-
acteristics within the elements of the sequence. However,
the automatic extraction of characteristic melodic phrases
is a challenging task. Some approaches show promising
results [11], but they are still far from being perfect. In ad-
dition, the melodic phrases used by these approaches are
typically very short and, therefore, more global melody
characteristics are not fully considered.

In this paper, we propose a novel feature for rāga recog-
nition, the time-delayed melody surface (TDMS). It is in-
spired by the concept of delay coordinates [28], as rou-
tinely employed in nonlinear time series analysis [15]. A
TDMS captures several melodic aspects that are useful in
characterizing and distinguishing rāgas and, at the same
time, alleviates many of the critical shortcomings found in
existing methods. The main strengths of a TDMS are:

• It is a compact representation that describes both the
tonal and the temporal characteristics of a melody

• It simultaneously captures the melodic characteris-
tics at different time-scales, the overall usage of the
pitch-classes in the entire recording, and the short-
time temporal relation between individual pitches.

• It is robust to pitch octave errors.

• It does not require the transcription of the melody
nor a discrete representation of it.

• It is easy to implement, fast to compute, and has a
musically-meaningful interpretation.

• As it will be shown, it obtains unprecedented accura-
cies in the raga recognition task, outperforming the
state-of-the-art by a large margin, without the use of
any elaborated classification schema.

In our experiments, we use TDMSs together with a k-
nearest neighbor classifier and a set of well known distance
measures. The reported results are obtained on two scal-
able, diverse, and representative data sets of Carnatic and
Hindustani music, one of which is originally introduced in
this study and made publicly available. To the best of our
knowledge, these are the largest publicly available data sets
for rāga recognition in terms of the number of recordings,
number of rāgas, and total audio duration. The main con-
tributions of the present study are:

Pre-processing

Post-processing

Predominant Melody Estimation

Tonic Normalization

Surface Generation

Power Compression

Gaussian smoothening

Audio signal

TDMS

Figure 1. Block diagram for the computation of TDMSs.

• To perform a critical review of the existing methods
for rāga recognition and identify some of their main
constraints/limitations.

• To propose a novel feature based on delay coordi-
nates, the TDMS, that has all the previously outlined
strengths.

• To carry out a comparative evaluation with the best-
performing state-of-the-art methods under the same
experimental conditions.

• To publicly release a scalable Hindustani music
dataset for rāga recognition that contains relevant
metadata, annotations, and the computed features.

• To publicly release the code used for the computa-
tion of TMDSs and the performed evaluation.

2. RAGA RECOGNITION WITH TIME-DELAYED
MELODY SURFACES

2.1 Time-delayed melody surface

The computation of a TDMS has three steps (Figure 1):
pre-processing, surface generation, and post-processing.
In pre-processing, we obtain a representation of the
melody of an audio recording, which is normalized by
the tonic or base frequency of the music piece. In sur-
face generation, we compute a two dimensional surface
based on the concept of delay coordinates. Finally, in
post-processing, we apply power compression and Gaus-
sian smoothing to the computed surface. We subsequently
detail these steps.

2.1.1 Predominant melody estimation

We represent the melody of an audio excerpt by the pitch
of the predominant melodic source. For predominant
pitch estimation, we use the method proposed by Sala-
mon and Gómez [25]. This method performed favorably in
MIREX 2011 (an international MIR evaluation campaign)
on a variety of music genres, including IAM, and has been
used in several other studies for a similar task [7, 12, 13].
We use the implementation of this algorithm as available

752 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



in Essentia [1]. Essentia 1 is an open-source C++ library
for audio analysis and content-based MIR. We use the de-
fault values of the parameters, except for the frame and
hop sizes, which are set to 46 and 4.44 ms, respectively. In
subsequent steps, we discard frames where a predominant
pitch cannot be obtained.

2.1.2 Tonic normalization

The base frequency chosen for a melody in IAM is the
tonic pitch of the lead artist [10], to which all other accom-
panying instruments are tuned. Therefore, for a musically
meaningful feature for rāga recognition we normalize the
predominant melody of every recording by considering its
tonic pitch ω as the reference frequency during the Hertz-
to-cent-scale conversion,

ci = 1200 log2

(
fi
ω

)
,

for 0 ≤ i < N , where N is the total number of pitch sam-
ples, ci is the normalized ith sample of the predominant
pitch (in cents), and fi is the ith sample of the predominant
pitch (in Hz). The tonic pitch ω for every recording is iden-
tified using the multi-pitch approach proposed by Gulati
et al. [10]. This approach is reported to obtain state-of-the-
art results and has been successfully used elsewhere [8,11].
We use the implementation of this algorithm as available
in Essentia with the default set of parameter values. The
tonic values for different recordings of an artist are further
majority voted to fix the Pa (fifth) type error [10].

2.1.3 Surface generation

The next step is to construct a two-dimensional surface
based on the concept of delay coordinates (also termed
phase space embedding) [15, 28]. In fact, such two-
dimensional surface can be seen as a discretized histogram
of the elements in a two-dimensional Poicaré map [15].
For a given recording, we generate a surface Š of size η×η
recursively, by computing

šij =
N−1∑

t=τ

I (B (ct) , i) I (B (ct−τ ) , j)

for 0 ≤ i, j < η, where I is an indicator function such
that I(x, y) = 1 iff x = y, I(x, y) = 0 otherwise, B is an
octave-wrapping integer binning operator defined by

B(x) =
⌊ ( ηx

1200

)
mod η

⌋
, (1)

and τ is a time delay index (in frames) that is left as a pa-
rameter. Note that, as mentioned, the frames where a pre-
dominant pitch could not be obtained are excluded from
any calculation. For the size of Š we use η = 120. This
value corresponds to 10 cents per bin, an optimal pitch res-
olution reported in [2].

An example of the generated surface Š for a music
piece 2 in rāga Yaman is shown in Figure 2 (a). We see that

1 https://github.com/MTG/essentia
2 http://musicbrainz.org/recording/e59642ca-72bc-466b-bf4b-

d82bfbc7b4af
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Figure 2. Generated surface for a music piece before (a)
and after (b) applying post-processing (Š and Ŝ, respec-
tively). For ease of visualization, both matrices are nor-
malized here between 0 and 1.

the prominent peaks in the surface correspond to the svaras
of rāga Yaman. We notice that these peaks are steep and
that the dynamic range of the surface is high. This can be
attributed to the nature of the melodies in these music tradi-
tions, particularly in Hindustani music, where the melodies
often contain long held svaras. In addition, the dynamic
range is high because the pitches in the stable svara re-
gions are within a small range around the svara frequency
compared to the pitches in the transitory melodic regions.
Because of this, the frequency values in the stable regions
are mapped to a smaller set of bins, making the prominent
peaks more steep.

2.1.4 Post-processing

In order to accentuate the values corresponding to the tran-
sitory regions in the melody and reduce the dynamic range
of the surface, we apply an element-wise power compres-
sion

S = Šα,

where α is an exponent that is left as a parameter. Once
a more compact (in terms of the dynamic range) surface
is obtained, we apply Gaussian smoothing. With that, we
attempt to attenuate the subtle differences in S correspond-
ing to the different melodies within the same rāga, while
retaining the attributes that characterize that rāga.

We perform Gaussian smoothing by circularly convolv-
ing S with a two-dimensional Gaussian kernel. We choose
a circular convolution because of the cyclic (or octave-
folded) nature of the TDMS (Eqn (1)), which mimics the
cyclic nature of pitch classes. The standard deviation of
this kernel is σ bins (samples). The length of the kernel is
truncated to 8σ+1 bins in each dimension, after which the
values are negligible (below 0.01% of the kernel’s maxi-
mum amplitude). We experiment with different values of
σ, and also with a method variant excluding the Gaussian
smoothing (loosely denoted by σ = −1), so that we can
quantify its influence on the accuracy of the system.

Once we have the smoothed surface Ŝ, there is only one
step remaining to obtain the final TDMS. Since the overall
duration of the recordings and of the voiced regions within
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them is different, the computed surface Ŝ needs to be nor-
malized. To do so, we divide Ŝ by its L1 matrix norm:

S = Ŝ/‖Ŝ‖1.

This also yields values of S, the final TDMS, that are in-
terpretable in terms of discrete probabilities.

The result after post-processing the surface
of Figure 2 (a) with power compression and Gaus-
sian smoothing is shown in Figure 2 (b). We see that the
values corresponding to the non-diagonal elements are
accentuated. A visual inspection of Figure 2 (b) provides
several musical insights to the melodic aspects of the
recording. For instance, the high salience indices along
the diagonal, (0, 0), (20, 20), (40, 40), (60, 60), (70, 70),
(90, 90), and (110, 110), correspond to the 7 svaras used
in rāga Yaman. Within which, the highest salience at
indices (110,110) correspond to the Ni svara, which is
the Vadi svara, i.e., musically the most salient svara of
the rāga, in this case rāga Yaman [23]. The asymmetry
in the matrix with respect to the diagonal indicates the
asymmetric nature of the ascending and descending svara
pattern of the rāga (compare, for example, the salience at
indices (70, 90) to indices (90, 70), with the former being
more salient than the latter). The similarity of the matrix
between indices (20, 20) and (70, 70) with respect to the
matrix between indices (70, 70) and (120, 120) delineates
the tetra-chord structure of the rāga. Finally, it should be
noted that an interesting property of TDMSs is that the
mean of the sum across its row and columns yields a PCD
representation (see Section 1).

2.2 Classification and distance measurement

In order to demonstrate the ability of the TDMSs in cap-
turing rāga characteristics, we consider the task of classify-
ing audio recordings according to their rāga label. To per-
form classification, we choose a k-nearest neighbor (kNN)
classifier [20]. The reasons for our choice are manifold.
Firstly, the kNN classifier is well understood, with well
studied relations to other classifiers in terms of both per-
formance and architecture. Secondly, it is fast, with prac-
tically no training and with known techniques to speed up
testing or retrieval. Thirdly, it has only one parameter, k,
which we can just blindly set to a relatively small value or
can easily optimize in the training phase. Finally, it is a
classifier that is simple to implement and whose results are
both interpretable and easily reproducible.

The performance of a kNN classifier highly depends on
the distance measure used to retrieve the k neighbors. We
consider three different measures to compute the distance
between two recordings n andmwith TDMS features S(n)

and S(m), respectively. We first consider the Frobenius
norm of the difference between S(n) and S(m),

D
(n,m)
F = ‖Sn − Sm‖2.

Next, we consider the symmetric Kullback-Leibler diver-
gence

D
(n,m)
KL = DKL

(
S(n),S(m)

)
+DKL

(
S(m),S(n)

)
,

with

DKL (X,Y) =
∑

X log

(
X

Y

)
,

where we perform element-wise operations and sum over
all the elements of the resultant matrix. Finally, we con-
sider the Bhattacharyya distance, which is reported to out-
perform other distance measures with a PCD-based feature
for the same task in [2],

D
(n,m)
B = − log

(∑√
S(n) · S(m)

)
.

We again perform element-wise operations and sum over
all the elements of the resultant matrix. Variants of our
proposed method that use DF, DKL and DB are denoted
byMF,MKL, andMB, respectively.

3. EVALUATION METHODOLOGY

3.1 Music collection

The music collection used in this study is compiled as a
part of the CompMusic project [26]. It comprises two
datasets: a Carnatic music data set (CMD) and a Hin-
dustani music data set (HMD). Due to the differences in
the melodic characteristics within these two music tradi-
tions, and for a better analysis of the results, we eval-
uate our method separately on each of these data sets.
CMD and HMD comprise 124 and 130 hours of commer-
cially available audio recordings, respectively, stored as
160 kbps mp3 stereo audio files. All the editorial meta-
data for each audio recording is publicly available in Mu-
sicbrainz 3 , an open-source metadata repository. CMD
contains full-length recordings of 480 performances be-
longing to 40 rāgas with 12 music pieces per rāga. HMD
contains full-length recordings of 300 performances be-
longing to 30 rāgas with 10 music pieces per rāga. The
selected music material is diverse in terms of the number
of artists, the number of forms, and the number of compo-
sitions. In these terms, it can be regarded as a represen-
tative subset of real-world collections. The chosen rāgas
contain diverse sets of svaras (notes), both in terms of the
number of svaras and their pitch-classes (svarasthānās).

Note that CMD has already been introduced and made
publicly available in [11]. With the same intentions
to facilitate comparative studies and to promote repro-
ducible research, we make HMD publicly available on-
line 4 . Along with the rāga labels for each recording,
we also make predominant melody, TDMSs, and the code
used for our experiments openly available online.

3.2 Comparison with existing methods

In addition to our proposed method, we evaluate and com-
pare two existing methods under the same experimental
setup and evaluation data sets. The two selected methods
are the ones proposed by Chordia & Şentürk [2], denoted
by EPCD, and by Gulati et al. [11], denoted by EVSM. Both
approaches have shown encouraging results on scalable

3 https://musicbrainz.org/
4 http://compmusic.upf.edu/node/300
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datasets and can be regarded as the current, most competi-
tive state-of-the-art in rāga recognition. The former, EPCD,
employs PCD-based features computed from the entire au-
dio recording. The latter, EVSM, uses automatically discov-
ered melodic phrases and vector space modeling. Read-
ers should note that the experimental setup used in [11] is
slightly different from the one in the current study. There-
fore, there exists a small difference in the reported accura-
cies, even when evaluated on the same dataset (CMD). For
both EPCD and EVSM, we use the original implementations
obtained from the respective authors.

3.3 Validation strategy

To evaluate the performance of the considered methods we
use the raw overall accuracy [20]. Since both CMD and
HMD are balanced in the number of instances per class,
we do not need to correct such raw accuracies to counteract
for possible biases towards the majority class. We perform
a leave-one-out cross validation [20], in which one record-
ing from the evaluation data set forms the testing set and
the remaining ones become the training set. To assess if the
difference in the performance between any two methods is
statistically significant, we use McNemar’s test [19] with
p < 0.01. To compensate for multiple comparisons, we ap-
ply the Holm-Bonferroni method [14]. Besides accuracy,
and for a more detailed error analysis, we also compute the
confusion matrix over the predicted classes.

In the case ofM, a test recording is assigned the major-
ity class of its k-nearest neighbors obtained from the train-
ing set and, in case of a tie, one of the majority classes is
selected randomly. Because we conjecture that none of the
parameters we consider is critical to obtain a good perfor-
mance, we initially make an educated guess and intuitively
set our parameters to a specific combination. We later
study the influence of every parameter starting from that
combination. We initially use τ = 0.3 s, α = 0.75, σ = 2,
and k = 1, and later consider τ ∈ {0.2, 0.3, 0.5, 1, 1.5} s,
α ∈ {0.1, 0.25, 0.5, 0.75, 1}, σ ∈ {−1, 1, 2, 3}, and k ∈
{1, 3, 5} (recall that σ = −1 corresponds to no smoothing;
Section 2.1.4).

4. RESULTS AND DISCUSSION

In Table 1, we show the results for all the variants of the
proposed methodMF,MKL andMB, and the two state-
of-the-art methods EPCD and EVSM, using HMD and CMD
data sets. We see that the highest accuracy obtained on
HMD is 97.7% byMKL andMB. This accuracy is con-
siderably higher than the 91.7% obtained by EPCD, and the
difference is found to be statistically significant. We also
see that EPCD performs significantly better than EVSM. Re-
garding the proposed variants, we see that, in HMD,MKL

andMB perform better thanMF, with a statistically sig-
nificant difference.

In Table 1, we see that the trend in the performance for
CMD across different methods is similar to that for HMD.
The variantsMKL andMB achieve the highest accuracy
of 86.7%, followed by EPCD with 73.1%. The difference

Data set MF MKL MB EPCD EVSM

HMD 91.3 97.7 97.7 91.7 83.0
CMD 81.5 86.7 86.7 73.1 68.1

Table 1. Accuracy (%) of the three proposed variants,
MF,MKL andMBC, and the two existing state-of-the-art
methods EPCD and EVSM (see text). The random baseline
for this task is 3.3% for HMD and 2.5% for CMD.
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Figure 3. Accuracy of MKL as a function of parameter
values. State-of-the-art approaches E and random base-
lines B are also reported for comparison.

betweenMKL (MB) and EPCD is found to be statistically
significant. For CMD, alsoMKL andMB perform better
thanMF, with a statistically significant difference.

In general, we notice that, for every method, the accu-
racy is higher on HMD compared to CMD. This, as ex-
pected, can be largely attributed to the difference in the
number of classes in HMD (30 rāgas) and CMD (40 rāgas).
A higher number of classes makes the task of rāga recog-
nition more challenging for CMD, compared to HMD. In
addition to that, another factor that can cause this differ-
ence could be the length of the audio recordings, which for
HMD are significantly longer than the ones in CMD.

As mentioned earlier, the system parameters corre-
sponding to the results in Table 1 were set intuitively, with-
out any parameter tuning. Since TDMSs are used here for
the first time, we want to carefully analyze the influence
that each of the parameters has on the final rāga recog-
nition accuracy, and ultimately perform a quantitative as-
sessment of their importance. In Figure 3, we show the
accuracy ofMKL for different values of these parameters.
In each case, only one parameter is varied and the rest are
set to the initial values mentioned above.

In Figure 3 (a), we observe that the performance of the
method is quite invariant to the choice of τ , except for
the extreme delay values of 1 and 1.5 s for CMD. This
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ōj
i

R
28

-Ś
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yā
n .i

R
30

-S
ām

a
R

31
-N
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bō

ji
R

34
-D

ēv
ag

ān
dh

ār
i

R
35

-K
ēd
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Figure 4. Confusion matrix of the predicted rāga labels
obtained byMKL on CMD. Shades of grey are mapped to
the number of audio recordings.

can be attributed to the melodic characteristics of Car-
natic music, which presents a higher degree of oscilla-
tory melody movements and shorter stationary svara re-
gions, as compared to Hindustani music. In Figure 3 (b),
we see that compression with α < 1 slightly improves
the performance of the method for both data sets. How-
ever, the performance degrades for α < 0.75 for CMD and
α < 0.25 for HMD. This again appears to be correlated
with the long steady nature of the svaras in Hindustani
music melodies. Because the dynamic range of Š is high,
TDMS features require a lower value for the compression
factor α to accentuate the surface values corresponding to
the transitory regions in the melodies of Hindustani mu-
sic. In Figure 3 (c), we observe that Gaussian smoothing
significantly improves the performance of the method, and
that such performance is invariant across the chosen values
of σ. Finally, in Figure 3 (d), we notice that the accuracy
decreases with increasing k. This is also expected due to
the relatively small number of samples per class in our data
sets [20]. Overall, the method appears to be invariant to
different parameter values to a large extent, which implies
that it is easier to extend and tune it to other data sets.

From the results reported in Figure 3, we see that there
exist a number of parameter combinations that could po-
tentially yield a better accuracy than the one reported in
Table 1. For instance, using τ = 0.3 s, α = 0.5, σ = 2,
and k = 1, we are able to reach 97.0% forMF and 98.0%
for bothMKL andMB on HMD. These accuracies are ad-
hoc, optimizing the parameters on the testing set. However,
and doing things more properly, we could learn the opti-

mal parameters in training, through a standard grid search,
cross-validated procedure over the training set [20]. As our
primary goal here is not to obtain the best possible results,
but to show the usefulness and superiority of TDMSs, we
do not perform such an exhaustive parameter tuning and
leave it for future research.

To conclude, we proceed to analyze the errors made by
the best performing variantMKL. For CMD, we show the
confusion matrix of the predicted rāga labels in Figure 4.
In general, we see that the confusions have a musical ex-
planation. The majority of them are between the rāgas in
the sets {Bhairavi, Mukhāri}, {Harikāmbhōji, Kāmbhōji},
{Madhyamvatī, At.āna, Śrī}, and {Kāpi, Ānandabhairavi}.
Rāgas within each of these sets are allied rāgas [29], i.e.,
they share a common set of svaras and similar phrases.
For HMD, there are only 7 incorrectly classified record-
ings (confusion matrix omitted for space reasons). Rāga
Alhaiyā bilāwal and rāga Dēś is confused with rāga Gaud.
Malhār, which is musically explicable as these rāgas share
exactly the same set of svaras. Rāga Rāgēśhrī is con-
fused with Bāgēśhrī, which differ in only one svara. In all
these cases, the rāgas which are confused also have simi-
lar melodic phrases. For two specific cases of confusions,
that of rāga Khamāj with Bāgēśhrī, and rāga Darbārī with
Bhūp, we find that the error lies in the estimation of the
tonic pitch.

5. CONCLUSION

In this paper, we proposed a novel melody representation
for rāga recognition, the TDMS, which is inspired by the
concept of delay coordinates and Poicaré maps. A TDMS
captures both the tonal and the short-time temporal char-
acteristics of a melody. They are derived from the tonic-
normalized pitch of the predominant melodic source in the
audio. To demonstrate the capabilities of TDMSs in cap-
turing rāga characteristics, we classified audio recordings
according to their rāga labels. For this, we used sizable
collections of Hindustani and Carnatic music with over
250 hours of duration. Using a k-nearest neighbor clas-
sifier, the proposed feature outperformed state-of-the-art
systems in rāga recognition. We also studied the influ-
ence of different parameters on the accuracy obtained by
TDMSs, and found that it is largely invariant to different
parameter values. An analysis of the classification errors
revealed that the confusions occur between musically sim-
ilar rāgas that share a common set of svaras and have sim-
ilar melodic phrases. In the future, we plan to investigate
if PCD-based, phrase-based, and TDMSs can be success-
fully combined to improve rāga recognition. In addition,
we would like to investigate the minimum duration of the
audio recording needed to successfully recognize its rāga.
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[13] S. Gulati, J. Serrà, and X. Serra. An evaluation of
methodologies for melodic similarity in audio record-
ings of Indian art music. In IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), pages
678–682, 2015.

[14] S. Holm. A simple sequentially rejective multiple test
procedure. Scandinavian journal of statistics, 6(2):65–
70, 1979.

[15] H. Kantz and T. Schreiber. Nonlinear time series anal-
ysis. Cambridge University Press, Cambridge, UK,
2004.

[16] G. K. Koduri, V. Ishwar, J. Serrà, and X. Serra. Into-
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