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ABSTRACT

Automatic meter analysis aims to annotate a recording of
a metered piece of music with its metrical structure. This
analysis subsumes correct estimation of the type of meter,
the tempo, and the alignment of the metrical structure with
the music signal. Recently, Bayesian models have been
successfully applied to several of meter analysis tasks, but
depending on themusical context, meter analysis still poses
significant challenges. In this paper, we investigate if there
are benefits to automatic meter analysis from additional a
priori information about the metrical structure of music.
We explore informed automatic meter analysis, in which
varying levels of prior information about themetrical struc-
ture of the music piece is available to analysis algorithms.
We formulate different informed meter analysis tasks and
discuss their practical applications, with a focus on Indian
art music. We then adapt state of the art Bayesian meter
analysis methods to these tasks and evaluate them on cor-
pora of Indian art music. The experiments show that the
use of additional information aids meter analysis and im-
proves automatic meter analysis performance, with signif-
icant gains for analysis of downbeats.

1. INTRODUCTION

Automatic meter analysis of a music recording aims at
determining different components of its metrical struc-
ture such as the type of meter, the tempo, the beats and
downbeats. It is an important Music Information Re-
search (MIR) task that provides useful musically relevant
metadata not only for enriched listening, but also for pre-
processing of music for several higher level tasks such
as section segmentation, structural analysis and defining
rhythm similarity measures. Initial approaches to meter
analysis explored individual tasks of meter analysis, such
as tempo estimation [8,9], beat tracking [5,13], time signa-
ture estimation [15] and downbeat tracking [10,14]. Recent
approaches consider a joint estimation of several of these
components and have successfully applied Bayesian mod-
els to jointly estimate beat and downbeats using rhythmic
patterns learned from onset detection features [1, 11, 12].
Recent interest has also been to explore neural networks for
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beat and downbeat tracking with several musically inspired
features and network topologies [7]. Despite the recent suc-
cess, meter analysis still poses significant challenges de-
pending on the musical context [18, 20].

In this paper, we investigate the potential to improve
meter analysis methods by providing them with additional
prior information about the underlying metrical structure.
This is a research problem we define as informed meter
analysis, referring to a class of analysis tasks that utilize
some form of additional information about the underlying
metrical structure of the piece. Apart from building meter-
aware analysis methods, informed meter analysis is mo-
tivated by its potential applications and the need for im-
proved meter analysis performance. It is hypothesized that
information available asmetadata or obtainable from an ex-
pert user can be effectively utilized to significantly improve
meter analysis performance. Such informed approaches
can help to establish a focus in the space of possible solu-
tions by the incorporation of a priori information, support-
ingmeter analysis especially in the context of computation-
ally challenging samples. Some informed meter analysis
tasks have been studied before, such as the task of down-
beat tracking from a set of known beats [10]. However,
there has been no formal treatment of the problem, which
is the focus of this paper.

Carnatic and Hindustani music are Indian Art Music
(IAM) traditions from Southern and Northern parts of the
Indian subcontinent, respectively. Both these musics have
a long history of performance and continue to thrive in cur-
rent sociocultural contexts. While the two musics differ
in performance practices, they share similar melodic and
rhythmic concepts. The rhythmic framework is based on
cyclic metrical structures called the tāḷa in Carnatic mu-
sic (CM) or tāl in Hindustani music (HM), which provide
a broad structure for repetition of music phrases, motifs
and improvisations. A cycle of a tāḷa (or tāl) is divided
into isochronous beats (called the mātrā in HM), which are
grouped into possibly unequal length sections. The begin-
ning of a cycle (the downbeat) is referred to as sama (sam
in HM). Given the central importance of tāḷa in defining
rhythmic structures, meter analysis in the context of IAM
aims to time-align and tag a music recording with tāḷa re-
lated events and metadata. Clayton [3] and Sambamoor-
thy [16] provide an in depth discussion of rhythm in Hin-
dustani and Carnatic music, respectively.

With significant improvisation and expressive timing, a
wide range of tempo and cycles as long as a minute, IAM
has been shown to pose several challenges to automaticme-

679



ter analysis [20]. Further, large and continuously growing
archives of IAM are available with varying amounts of tāḷa
related metadata [17]. In this paper, we use corpora of IAM
as a challenging case to explore the potential of informed
meter analysis, and include a set of Ballroom dances to en-
able comparison with other styles.

2. INFORMEDMETER ANALYSIS

Different kinds of prior information about the underlying
metrical structure can be made available to analysis algo-
rithms. In the following subsections, we describe specific
informed analysis tasks and emphasize different practical
scenarios for each task. At the outset, we assume that some
basic information about the music piece is available for all
informed analysis tasks. We assume that the music tradi-
tion is known, and that the rhythm class (tāḷa) of the piece
is from a set of known (frommusicological literature) tāḷas.
Further, we assume we know the range of tempo generally
used in a music culture. A piece of IAM is performed in
a single tāḷa (rare exceptions exist, but outside the scope
of regular performance practice) and most commercial re-
leases are segmented so that an audio recording is a single
piece. However, there are cases when an entire concert or
parts of concert with multiple pieces (and hence possibly
different tāḷas) are stored in a single audio recording. We
assume that such a recording has been segmented into in-
dividual pieces of music with a single tāḷa. The case of
change of tāḷas within a recording is not addressed.

Finally, for better readability, we use the commonly used
terminology of tempo, beats and downbeats in the paper,
while we carefully note that the equivalence of these terms
across different music cultures cannot be assumed.

2.1 Meter Inference (Inference)

Meter inference aims for a complete meter analysis of a
recording starting with no prior information. Given an
audio music recording, meter inference task aims to esti-
mate the rhythm class (or meter type or tāḷa), time-varying
tempo, beats and downbeats. Meter inference in IAM
aims to recognize the tāḷa/tāl, estimate the time varying
tempo (measured as the inter beat interval), the beat and
the sama/sam (downbeat) locations. It is the least informed
and most difficult task owing to the large range of tempi
and different tāḷas. While meter inference is the only ap-
plicable task with unlabeled collections of music, it is often
the case that some tāḷa related information is available or
can be inferred, e.g. from the editorial metadata of a music
piece. Most of commercially released music in both Car-
natic and Hindustani music has the name of the tāḷa in ed-
itorial metadata. Even within a live concert, the musician
often announces the tāḷa of a piece and hence tāḷa recog-
nition is a redundant task. However, meter inference can
be used as a baseline task to understand the complexity of
uninformed meter analysis.

2.2 Meter Tracking (Track)

Given an audio music recording and its rhythm class (or
meter type or tāḷa), meter tracking aims to estimate the time

varying tempo, beat and downbeat locations. Meter track-
ing in IAM aims to track the time varying tempo, beats and
the sama from an audio music recording, given the tāḷa.
Assuming that the tāḷa, and hence the metrical structure is
known in advance is a fair and practical assumption mak-
ing meter tracking the most relevant meter analysis task for
IAM.

2.3 Informed Meter Tracking

Informed meter tracking is meter tracking in which some
additional information apart from the tāḷa is available. The
additional information could be in the form of a tempo
range, a few instances of beats and downbeats annotated,
or even partially tracked metrical cycles. The additional
metadata could come from manual annotation or as an out-
put of other automatic algorithms, e.g. the median tempo
of a piece can be obtained from a standalone tempo estima-
tion algorithm, or some melodic analysis algorithms might
output (with a high probability) some beats/downbeats as a
byproduct.

From a practical standpoint, while it is prohibitively
resource intensive to manually annotate all the beats and
downbeats of a large music collection, it might be possi-
ble to seed the meter tracking algorithms with the first few
beats and downbeats. For a musician or even an expert lis-
tener, it would be easy to tap some instances of the beat
and sama/downbeats, which could then be used to auto-
matically track meter in the whole recording. In specific,
we explore three variants of informed meter tracking, with
varying levels of available information:

Sama-informed meter tracking (SI-Track) task in
which a few instances of sama/downbeat of the piece are
provided as an additional input to the meter tracking algo-
rithm. An example downbeat is expected to help the algo-
rithm to better align the audio to the underlying meter. We
only explore the use of first downbeat of the piece, without
any knowledge of tempo.
Tempo-informed meter tracking (TI-Track) task in
which the median tempo (or a narrow range of tempi) of the
piece is provided as an additional input to the meter track-
ing algorithm. Providing themedian tempo is hypothesized
to help reduce metrical level errors - tracking the metri-
cal cycles at the correct metrical level instead of tracking
half and double cycles. The median tempo can be obtained
manually or through other automatic tempo estimation al-
gorithms [8, 22].
Sama-Tempo-informed meter tracking (STI-Track)
task in which the median tempo and a few downbeat lo-
cations in the excerpt are provided as additional inputs to
the meter tracking algorithm. We only explore the use of
median tempo value and the first downbeat of the music
piece provided to the meter tracking algorithm.

The informed meter tracking tasks formulated in this sec-
tion are relevant and designed to require minimal human
effort to provide the necessary additional information. In a
best case scenario, the most informed STI-Track task can
be applied to a music piece by listening to just the first few
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Figure 1: The bar pointer model for meter analysis. The
circles and squares denote continuous and discrete vari-
ables, respectively. Grey nodes and white nodes represent
observed and latent variables, respectively.

seconds of the piece and marking two consecutive down-
beats. An estimate of the initial tempo can be obtained
the two downbeats and used by the analysis algorithm. Fi-
nally, the various tasks were described using terminology
of IAM, but they are applicable to any music with hierar-
chical metrical structures that can be described with beats,
downbeats and rhythm patterns.

3. METER ANALYSIS MODEL

To compare different informed analysis tasks, we use and
adapt a state of the art Dynamic Bayesian Network (DBN).
Referred to as bar pointer model (BP-model) [23], has been
successfully applied for meter analysis in different music
cultures [11, 19]. We describe the model briefly while a
detailed description is presented in [12]. We then explain
how it can be adapted to the informed analysis tasks.

In a DBN, an observed sequence of features derived
from an audio signal y1:K = {y1, . . . , yK} is gener-
ated by a sequence of hidden (latent) variables x1:K =
{x1, . . . , xK}, where K is the length of the feature se-
quence (number of audio frames). The joint probability
distribution of hidden and observed variables factorizes as,

P (y1:K , x0:K) = P (x0) ·
K∏

k=1

P (xk | xk−1)P (yk | xk)

where, P (x0) is the initial state distribution, P (xk|xk−1)
is the transition model, and P (yk|xk) is the observation
model. The structure of the BP-model in Figure 1 shows
the conditional dependence relations between the vari-
ables.

3.1 Hidden Variables

At each audio frame k, the hidden variable vector xk
describes the state of a hypothetical bar pointer xk =
[ϕk ϕ̇k rk], representing the bar position, instantaneous
tempo and a rhythmic pattern indicator, respectively.

Rhythmic pattern indicator: The rhythmic pattern vari-
able r ∈ {1, . . . , R} is an indicator variable to select one of
theR observationmodels corresponding to each bar (cycle)
length rhythmic pattern of a rhythm class that are learned
from training data. Each pattern r corresponds to a rhythm
class (or meter type or tāḷa) and has an associated length of
cycleMr and number of beat (or mātrā) pulses Br.

Bar position: The bar position ϕ ∈ [0,Mr) variable
tracks the progression through the bar and indicates a po-
sition in the bar at any audio frame. The variable traverses
the whole bar and wraps around to zero at the end of the
bar to track the next bar.
Instantaneous tempo: Instantaneous tempo ϕ̇ is the rate
at which the bar position variable progresses through the
bar at each frame, measured in bar positions per time frame.

3.2 Transition and Observation Model

The initial state distribution P (x0) can be used to incor-
porate prior information about the metrical structure of the
music into the model. Given the conditional dependence
relations in Figure 1, the transition model factorizes as,

P (xk | xk−1) = P (ϕk | ϕk−1, ϕ̇k−1, rk−1)P (ϕ̇k | ϕ̇k−1)

P (rk | rk−1, ϕk, ϕk−1) (1)

The individual terms of the equation can be expanded as,
P (ϕk | ϕk−1, ϕ̇k−1, rk−1) = 1ϕ (2)

where 1ϕ is an indicator function that takes a value of one
if ϕk = (ϕk−1 + ϕ̇k−1)mod(Mrk−1

) and zero otherwise.
The tempo transition is given by,

P (ϕ̇k | ϕ̇k−1) ∝ N (ϕ̇k−1, σ
2
ϕ̇k
)× 1ϕ̇ (3)

where 1ϕ̇ is an indicator function that equals one if ϕ̇k ∈
[ϕ̇min, ϕ̇max] and zero otherwise, restricting the tempo to be
between a predefined range. N (µ, σ2) denotes a normal
distribution with meanµ and variance σ2. The value of σϕ̇k

depends on the value of tempo to allow for larger tempo
variations at higher tempi. We set σϕ̇k

= σn · ϕ̇k−1, where
σn (= 0.02) is a user parameter that controls the amount of
local tempo variations we allow in the music piece.

The transition probability of pattern indicator variable
P (rk | rk−1, ϕk, ϕk−1) is governed by A, a R × R time-
homogeneous transition matrix where A(i, j) is the transi-
tion probability from ri to rj . However, since the rhythmic
patterns are one bar (cycle) in length, pattern transitions are
allowed only at the end of the bar (ϕk < ϕk−1).

The observation model is identical to the one used in
[12], and depends only on the bar position and rhythmic
pattern variables, without any influence from tempo. To
model rhythm patterns, we compute spectral flux feature
from audio in two frequency bands (Low: ≤ 250 Hz, High:
> 250 Hz). Using beat and downbeat annotated training
data, the audio features are grouped into bar length patterns
on a bar discretized into 64th note cells. A k-means clus-
tering algorithm then assigns each bar of the dataset to one
of the R rhythmic patterns. All the features within the cell
of each pattern are collected and maximum likelihood esti-
mates of the parameters of a two component GaussianMix-
ture Model (GMM) are obtained. The observation proba-
bility within a 64th note cell is assumed to be constant and
is computed as,

P (y | x) = P (y | ϕ, r) =
2∑

i=1

πϕ,r,i N (y;µϕ,r,i,Σϕ,r,i)

where, N (y;µ,Σ) denotes a normal distribution of the
two dimensional feature y. For the mixture component i,
πϕ,r,i,µϕ,r,i and Σϕ,r,i are the component weight, mean
(2-dim.) and the covariance matrix (2× 2), respectively.
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3.3 Inference in BP-model

The goal of inference with the BP-model is to estimate a
hidden variable sequence x∗1:K that maximizes the posterior
probability P (x1:K | y1:K) given an observed sequence of
features y1:K . The sequence x∗1:K can then be translated
into a sequence of downbeat (sama) instants (t∗k | ϕ∗

k = 0),
beat instants (t∗k | ϕ∗

k = i · Mr∗/Br∗ , i = 1, . . . , Br), local
instantaneous tempo (ϕ̇∗

k) and rhythmic patterns (r∗).
In this paper, we use an approximate particle filter [6]

based inference scheme called the Auxiliary Mixture Par-
ticle Filter (AMPF), which has been shown to be effective
for meter analysis [12]. In a particle filter, the posterior is
estimated pointwise by approximating it using a weighted
set of points (known as particles) in the state space as,

P (x1:K | y1:K) ≈
Np∑
i=1

w
(i)
K δ(x1:K − x(i)1:K) (4)

Here, {x(i)1:K} is a set of points (particles) with associated
weights {w(i)

K }, i = 1, . . . , Np, x1:K is the set of all state
trajectories until frameK, δ(x) is the Dirac delta function,
and Np is the number of particles. The AMPF algorithm
includes several enhancements to make it suitable for in-
ference with the BP-model, a detailed description of which
has been presented in [12].

3.4 BP-model and AMPF for Informed Meter Analysis

The AMPF algorithm on the BP-model is generic and can
be adapted to be applicable to the informed meter analy-
sis tasks described in Section 2. For meter inference, the
rhythm class (tāḷa) can be estimated by allowing rhythmic
patterns of different lengths from different rhythm classes
to be present in the model, as used by [12]. For meter track-
ing tasks, we assume that the rhythm class is known and all
rhythm patterns belong to that class, i.e. Mr = M and
Br = B ∀ r.

The initial state distribution P (x0) and the initializa-
tion of the particle filter system are modified to suit the in-
formed meter tracking tasks. A uniform initialization over
all allowed states is used for Inference and Track tasks,
while a narrower informed initialization is done for in-
formedmeter tracking. For TI-Track task, we use theme-
dian ground truth tempo of the music piece being tracked
and initialize the tempo variable ϕ̇ within a tight bound
allowing for 10% variation in tempo around the median
value. This enables the tracking algorithm to restrict the
tempo variable within the tight tempo range and track the
correct tempo at the right metrical level. For SI-Track
task, the provided sama instance is used to initialize the
bar position variable ϕ to zero at the related time position.
For STI-Track task, both the tempo and bar position vari-
ables are initialized appropriately using the given informa-
tion. The tracking algorithm hence gets the tempo and the
beginning of the cycle in the piece, tracking the remaining
beats and downbeats.

4. EXPERIMENTS

The experiments aim to compare performance across dif-
ferent informed meter analysis tasks and investigate the

Dataset #Pieces #Ann. #Sama

CMR 118 28725 5560
HMRs 92 32731 2572
HMRl 59 3280 304

Total (IAM) 269 64736 8436

Table 1: The Carnatic (CMR) and Hindustani (HMRland
HMRs) music datasets showing the number of pieces, sama
and beat/mātrā annotations.

advantage of the additional prior information they utilize.
While the focus of experiments is on Indian music, we also
report the results on a collection of Ballroom dances to
evaluate the extensibility of the informed analysis tasks.
Furthermore, reproducibility will be ensured by providing
free access for research purposes to all code repositories
and datasets on the companion webpage, which also pro-
vides additional resources and music examples. 1

4.1 Music Datasets

For the experiments, we use rhythm annotated datasets of
Carnatic and Hindustani music (described in Table 1) that
have been previously used for evaluating automatic meter
analysis algorithms. The Carnatic music rhythm dataset
(CMR dataset) [19] includes 118 two minute long excerpts
of Carnatic music sampled from commercial releases. The
recordings span four commonly used tāḷas with different
number of beats in a cycle, with a total duration of 236
minutes. The dataset consists of audio, manually annotated
time-aligned markers indicating the progression through
the tāḷa cycle, and the associated tāḷa related metadata.

The Hindustani music rhythm dataset consists of 151
two minute long excerpts of Hindustani music sampled
from the CompMusic Hindustani music research cor-
pus [21], a curated collection of commercial audio releases
and metadata. The excerpts span four popular tāls of Hin-
dustani music that are structurally different and of different
lengths. For each audio excerpt, the annotations consist
of editorial metadata about the tāl, as well as time-aligned
metrical annotations of all beat and sam instances.

The dataset consists of excerpts with a wide tempo range
from 10 MPM (mātrās per minute) to 370 MPM. Hindus-
tani music divides tempo into three main tempo classes
(lay). Since no exact tempo ranges are defined for these
classes, we determined suitable ranges in correspondence
with a professional Hindustani musician as 10-60 MPM,
60-150 MPM, and >150 MPM for the slow (vilaṁbit),
medium (madhya), and fast (dr̥t) tempi, respectively. The
tempo class of a piece has a significant effect onmeter anal-
ysis due to the wide range of possible tempi. To study any
effects of the tempo class, the full Hindustani dataset is di-
vided into two other subsets - the long cycle duration subset
called the HMRl dataset consisting of vilaṁbit pieces and
the short cycle duration subset HMRs dataset with mad-
hya and the dr̥t lay pieces. The complete collection of Car-
natic and Hindustani music datasets together is called IAM
dataset.

1 http://compmusic.upf.edu/informed-meter-tracking
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In addition to Indian art music, we evaluate the tasks
on a set of Ballroom dances, which includes beat and bar
annotations of audio recordings of several dance styles
sourced from BallroomDancers.com [9, 11]. The ball-
room dataset contains eight different dance styles (Cha cha,
Jive, Quickstep, Rumba, Samba, Tango, Viennese Waltz,
and (slow) Waltz) and has been widely used for several
MIR tasks such as genre classification, tempo tracking,
beat and downbeat tracking [1, 9, 12]. It consists of 698
thirty second long audio excerpts and has tempo and dance
style annotations. The dataset contains two different me-
ters (3/4 and 4/4) and all pieces have constant meter.

4.2 Evaluation Measures

We evaluate the tasks through the relevant meter compo-
nents they estimate - meter type, tempo, beats and down-
beats. We evaluate only the applicable components that are
not assumed to be known a priori in an informed task (e.g.
meter type is known in Track task and hence only tempo,
beats and downbeats are evaluated).

A variety of measures are available for evaluating beat
and downbeat tracking [4]. We chose the f-measure (f) met-
ric that is widely used in beat tracking evaluation. Other
measures were applied in addition during the experiments,
but did not add further detail and hence are not reported. It
is a number between 0 and 1 computed from estimated and
ground truth annotation sequences as the harmonic mean of
the precision and recall measures. The definition extends to
tracking both the beat/mātrās (fb) and the downbeats/samas
(fs). For Inference and Track tasks, we additionally re-
port the results of median tempo estimation, comparing the
median estimated tempo and the median annotated ground
truth tempo with a 5% error margin. For Inference task,
the algorithms also detect the rhythm class (or tāḷa) and
hence the accuracy of this detection is also reported.

4.3 Experimental Setup

Experiments are done separately on each of the three IAM
datasets (CMR, HMRs, HMRl) and the Ballroom dataset.
To compute the f-measure in CMR, HMRs and Ballroom
datasets, an error tolerance window of 70 ms is used be-
tween the annotation and the estimated beat/sama. The
computation of f-measure with HMRl dataset is an excep-
tion, where a bigger margin window is allowed. Since cy-
cles are of long duration in HMRl dataset and current eval-
uation approaches were not designed with such long cycles
in mind, an error tolerance window of 70 ms is very tight.
To account for the length of the cycle in the error margin,
a 6.25% median inter annotation interval is used as the tol-
erance window, as used in many other beat tracking eval-
uations (e.g. by [10]). This choice of a larger allowance
window also corroborates well with the observation that
in vilaṁbit pieces of the HMRl dataset, there can be sig-
nificant freedom in pulsation and that larger timing devi-
ations go unnoticed since the pieces are not rhythmically
dense. It can be argued that the beat pulsation in vilaṁbit
pieces is beyond the duration of what is called the percep-
tual present [2], and can therefore not be considered to be-
long to metrical structure. However, it is to be noted that

Dataset CMR HMRs HMRl IAM Ballroom

Accuracy 68 63 27 57 89

Table 2: Tāḷa recognition accuracy (%) in Inference
task. Time signature recognition accuracy is reported for
Ballroom dataset.

the allowance used in this paper is a compromise and better
evaluation measures that can handle these complexities are
to be developed.

The tempo ranges for initialization of AMPF in In-
ference, Track and SI-Track tasks are learned from
training data of each fold and an additional 20% margin is
added to extend to unseen data. However, if the learned
ranges are beyond the minimum and maximum tempo lim-
its of each music culture, we set it to the minimum or the
maximum. We use one rhythmic pattern per tāḷa (or dance
style). Hence, we use R = 1 for meter tracking, when a
known meter is being tracked, while R = 4 (8 in Ball-
room dataset) is used for meter inference, with one pat-
tern per tāḷa/rhythm. We use the number of bar positions,
Mr = 1600 for the longest rhythmic pattern we encounter
in the dataset and scale all other pattern lengths accord-
ingly. For the AMPF algorithm, we use 1500 particles
per rhythm pattern, with other parameters identical to those
used in [12]. A hop size of 20 ms is used to compute the
two dimensional spectral flux feature.

4.4 Results and Discussion

The results in Table 2 and Figures 2-3 summarize the per-
formance across different datasets and informed analysis
tasks. All results are reported as the mean performance
over three runs in a 2-fold (equal size) cross validation ex-
periment on each dataset. The results are presented for
each dataset as an average over the pieces in all the tāḷas
(or rhythm classes). Table 2 shows the tāḷa recognition ac-
curacy for the Indian music datasets (and time signature es-
timation accuracy for Ballroom dataset) from the Infer-
ence task. Figure 3 shows the median tempo estimation
accuracy for different datasets in the Inference, Track,
and SI-Track tasks, where median tempo is not known
a priori. The beat and downbeat f-measure values are re-
ported for all the informed analysis tasks in Figure 2. We
use a paired-sample t-test to assess statistically significant
differences in beat and downbeat tracking performance by
pooling the results of Indian music datasets.

Table 2 shows a similar performance with the CMR and
HMRs datasets, but is significantly poor for the long cycle
subset of Hindustani music (HMRl dataset). Whereas in
the Carnatic and Hindustani music datasets, each tāḷa has
a distinct length, the eight rhythm classes in the Ballroom
data are assigned to only two time signatures reducing the
task to a classification task between 3/4 and 4/4 time signa-
tures. Ballroom dataset hence shows the best recognition
performance.

Tāḷa recognition accuracy affects tempo estimation, as
seen in Figure 3 with a poor tempo estimation performance
within the HMRl dataset. Median tempo estimation accu-
racy is similar for CMR and HMRs datasets. Tempo es-
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Figure 2: Beat and sama (downbeat) tracking results showing the f-measure as bar plots for different datasets and informed
analysis tasks. The matrix on the right shows the results of a significance test between analysis tasks (numbers 1-5 corre-
spond to tasks in the legend) for the IAM dataset. A box with numeral 1 indicates a statistically significant difference in a
paired-sample t-test (at p = 0.05) while numeral 0 indicates a difference that is not statistically significant.

Figure 3: Median tempo estimation accuracy in the In-
ference, Track and SI-Track tasks.

timation accuracy improves for Track task compared to
Inference task, showing the utility of knowing the me-
ter type in estimating the correct tempo. However, addi-
tional downbeat information in SI-Track task does not
add much to tempo estimation, with marginal or no further
improvement. Ballroom dataset shows the best tempo es-
timation performance except for Inference task, where
wrong estimations of the rhythm class leads to poorer
tempo estimation.

The beat f-measure (fb) results in Figure 2 across dif-
ferent informed analysis tasks shows a marginal improve-
ment with informed tracking tasks, but statistically signifi-
cant improvements are observed only with TI-Track and
STI-Track tasks for IAM datasets, when median tempo
is known a priori. This shows that the tempo informa-
tion is more relevant than tāḷa and sama information to im-
prove beat tracking performance for Indian art music. The
biggest gains in informedmeter analysis are seen in sama f-
measure (fs), with significant improvements achieved with
more informed analysis tasks. For the pooled IAM dataset,
startingwith a fs = 0.51with Inference task, STI-Track
task achieves fs = 0.82, showing the benefit and the util-
ity of both tempo and sama information in informed meter
analysis for a more difficult task of downbeat estimation.

For Ballroom dataset, compared to the Track task,
we observe that downbeat tracking performance for SI-
Track improves more over TI-Track task. This indicates
that downbeat information is more important than tempo

information. It is perhaps due to the fact that Ballroom
dances have a stable tempo and clear repeated rhythmic pat-
terns. Accurate tempo estimation is achieved even without
prior tempo information (Figure 3), and hence downbeat
information is more useful.

A comparison of performance across datasets shows that
CMR, HMRs and Ballroom datasets have similar trends of
improvement in both beat and sama (downbeat) tracking
with informed tracking tasks. The largest gains however
are obtained with the long cycle HMRl dataset, which im-
proves from a poor fs = 0.26 (Inference) to fs = 0.99
(STI-Track). While we note that a larger error margin and
fewer sama examples in the long cycle dataset contribute
to this high performance, the overall results considering all
datasets and tasks conclude that the use of tempo and sama
information enhances the capabilities of automatic meter
analysis algorithms to track downbeats.

5. CONCLUSIONS

Starting with a hypothesis that automatic meter analysis
performance can be improved by utilizing additional in-
formation about meter or tempo of a piece, we formu-
lated relevant informed meter analysis tasks that can incor-
porate varying levels of prior information about the me-
ter type, tempo and downbeat position. An evaluation on
corpora of Indian art music and Ballroom dances showed
the utility of prior information for automatic meter anal-
ysis, where tempo information is useful for beat tracking
and the tempo and downbeat information was shown to be
useful for downbeat tracking. We also showed that with
minimal effort by a potential user of an annotation sys-
tem, a high accuracy in tempo, beat and downbeat estima-
tion can be achieved through informed meter analysis algo-
rithms. Evaluation of informed analysis tasks in the paper
was done through individual components of meter (tempo,
beat, downbeat). In future work, we plan to develop unified
meter analysis evaluation measures that take into account
the hierarchical structure of musical meter.
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