The myxobacterial metabolite Soraphen A inhibits HIV-1 by reducing virus production and altering virion composition.

Eric Fleta-Soriano¹*, Katarína Smutná¹*, Javier P. Martinez¹#, Cristina Lorca Oró², S. Kashif Sadiq¹, Gilles Mirambeau², Carmen Lopez-Iglesias³, Marta Bosch⁴, Albert Pol⁴,⁷, Mark Brönstrup⁵, Juana Diez⁶ and Andreas Meyerhans¹,⁷#

Infection Biology Group, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain¹; AIDS Research group, IDIBAPS, Barcelona, Spain²; Cryo-Electron Microscopy Unit, CCiTUB, Universitat de Barcelona, Barcelona, Spain³; Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain⁴; Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany⁵; Molecular Virology Group, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain⁶; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain⁷.

Running Head: Soraphen A-mediated HIV inhibition

Address correspondence to Andreas Meyerhans, andreas.meyerhans@upf.edu; and Javier P. Martinez, javier.martinez@upf.edu

* E.F.S and K.S. contributed equally to this work

Keywords
Soraphen A, HIV, fatty acid synthesis, host factor, broad-spectrum antiviral
ABSTRACT

Soraphen A is a myxobacterial metabolite that blocks the acetyl-CoA carboxylase of the host, and was previously identified as a novel HIV inhibitor. Here we report that Soraphen A acts by reducing virus production and altering the gp120 virion content, impacting entry capacity and infectivity. These effects are partially reversed by addition of palmitic acid, suggesting inhibition of HIV Env palmitoylation as one of the mechanisms of antiviral action.
Cellular lipids play an important role in the propagation of diverse viruses (1). A key pathway in the lipid metabolism is *de novo* fatty acid synthesis mediated by the acetyl-CoA carboxylase (ACC) and the multifunctional fatty acid synthase (FAS). Blocking these enzymes by small molecules leads to broad-spectrum inhibition of several viruses including hepatitis C virus (HCV), West Nile virus (WNV), Dengue virus (DENV), yellow fever virus (YFV), rotavirus (RV), human cytomegalovirus (HCMV), vesicular stomatitis virus (VSV) and influenza virus (2-7). A highly potent inhibitor of ACC is Soraphen A (SorA), a myxobacterial secondary metabolite we have previously identified as an HIV inhibitor in an antiviral screening assay (8) and recently shown to efficiently inhibit HCV with a large therapeutic window (9). Here we sought to further determine the anti-HIV properties of SorA.

To analyze the antiviral potency of SorA, TZM-bl cells or primary peripheral blood mononuclear cells (PBMC) were infected with HIV_{LAI} and HIV_{Bal} wild-type strains and with a primary HIV isolate from clade A under increasing SorA concentrations (Figure 1A-D). The production of infectious virus was then tested by titrating the culture supernatants on TZM-bl cells with a luciferase read-out (10, 11). The effect of SorA on cell viability was assessed in parallel by a commercial ATP assay. SorA reduced infectious virus production in a dose-dependent manner. The calculated effective concentration 50 (EC_{50}) ranged from about 0.2 µM to 2 µM depending on the cells and virus used. No SorA-mediated toxicity was detected up to the 50 µM concentration tested.

The inhibitory effect of SorA was verified by p24 intracellular immunostaining of lymphoid MT-2 cells infected with HIV-1_{LAI} in the presence or absence of SorA or the
ACC inhibitor 5-(Tetradecyloxy)-2-furoic acid (TOFA) as control, (Figure 1E-H). SorA reduced p24 production compared with the DMSO control but did not completely abolish it (Figure 1G, left panel). No p24 was detected when fresh cells were incubated with supernatants from SorA-treated infected cells, thus confirming that the inhibitory effect occurs mainly on late processes in the HIV-1 life cycle (Figure 1G, right panel). These results are consistent with our prior work, which first demonstrated the anti-HIV effect of SorA (8).

An altered lipid content of cells may change membrane composition and fluidity that, in turn, could interfere with the reorganization of HIV structural proteins during viral maturation (12, 13). To test this, cholesterol content and fluidity of SorA-treated Jurkat T cell membranes and PBMC membranes were analyzed by flow cytometry using the cholesterol-binding antibiotic filipin (14, 15), and the fluorescent membrane-partitioning dye di-4-ANEPPDHQ, respectively. In the latter, the fluorescence emission is sensitive to the membrane order of its local molecular environment (16, 17) (see Supplemental Material for details). For both assays, cyclodextrin, which leads to cholesterol depletion and increased fluidity of membranes, was used as positive control. Neither the cholesterol content (Supp. Fig. 1A) nor the membrane fluidity (Supp. Fig. 1B and C) changed significantly after SorA treatment. To test if maturation of HIV particles is inhibited by SorA, latently HIV-1-infected ACH2 cells cultured in the presence of the drug were activated with the HDAC inhibitor Vorinostat (VOR) to produce virus. 48h after activation, cells were fixed with glutaraldehyde, stained with osmium tetroxide and analyzed by transmission electron microscopy (TEM). More than 500 viral particles per condition were counted by TEM and classified as mature, immature or undetermined (Figures 2A-D). The HIV protease inhibitor Lopinavir (LPN) was used as a positive control. As shown in Figure 2E, around 90% of viruses were mature in SorA-treated
samples, a number similar to the DMSO control. In contrast, around 90% of viral particles were immature in the LPN control.

As the SorA effect occurs at late steps of the HIV replication cycle but is not influencing maturation, we next analyzed the CD4 receptor binding and membrane fusion capacity of viruses produced from SorA-treated cells. For the first experiment we made use of the property of HIV particles to bind CD4 but not fuse nor enter when exposed to target cells at 4°C (18). Briefly, TZM-bl cells were spinoculated for 30 min at 4°C with 10 ng p24-containing supernatants obtained from activated ACH2 cells in the presence or absence of SorA. Cells were then washed, lysed and viral p24 quantified by ELISA. As shown in Figure 2F, CD4 binding of viruses produced from ACH2 cells in the presence of SorA was reduced by 50%. To determine the capacity of viruses to fuse to the target cells, we used an enzyme-based HIV-1 fusion assay (19). Jurkat cells were infected with equal p24 amounts of HIV pseudoparticles containing a Vpr-BlaM fusion protein produced in the presence of SorA or LPN. Samples were incubated at 37°C to allow viral fusion and loaded with CCF2-AM, the substrate for β-lactamase. The fusion inhibitor Enfuvirtide (T20) was used as positive control. Samples were incubated overnight, analyzed by flow cytometry and used to estimate fusion capacity as described (19). As shown in Figure 2G (and supplemental Figure 2) we observed a >60% membrane fusion reduction of HIV particles generated in the presence of SorA. Given that the effect of SorA in reducing virus entry was not due to a defect in maturation, we next determined the relative amounts of p24 and gp120 in viral particles produced in the presence of the drug. For this, p24 and gp120 amounts in virus-containing supernatants from activated ACH2 cells and from PBMC infected with HIV_{LAI} in the presence or absence of SorA or DMSO as control were quantified by ELISA. As shown in Figure 2H, SorA reduced the content of both proteins related to the DMSO control. For p24, the relative reduction was
around 50%. The effect was more pronounced for gp120, with 80% and 60% reduction respectively. To exclude a SorA-mediated effect on global HIV transcription, we next performed qPCR in both SorA-treated infected cells and in virus-containing supernatants. Compared to DMSO control, SorA treatment reduced HIV RNA in virus-containing supernatants but not in infected cells (Supplemental Figure 3). Together, these results suggest an overall drug-induced alteration in virion composition that results in loss of infectivity.

Inhibition of de novo fatty acid synthesis leads to a reduction of palmitic acid (PA), which is the end product of this pathway (2, 20). As the HIV-1 envelope (Env) is commonly palmitoylated at the cysteine amino acids C764 and C837 in the C-terminal tail of gp41 (21), we hypothesized that PA addition to the culture medium would recover the infectivity of viruses produced from SorA-treated cells. To test this, several HIV-1 pseudoviruses (HIVpp) with variations in the number of palmitoylation sites in Env were generated in HEK 293T cells in the presence or absence of SorA with or without the addition of PA. The HIV NL4.3-derived backbone plasmid pNLE-ΔEnv (22) was co-transfected together with HIV-1Env expression plasmids carrying two palmitoylation sites (pHXB2 and pW61D_TCLA.71), one (pWITO4160 and pSS1196.1) or no palmitoylation sites (pBal.26 and pMN.3). 48 h after transfection, supernatants were clarified by centrifugation and pelleted in a sucrose buffer as described (23) to minimize the presence of non-particle associated antigens. Virus-containing pellets were analyzed for p24 and gp120 content by Western Blot and for infectivity in TZM-bl cells. The relative values with respect to the produced HIVpp without SorA addition are given in Figure 3. SorA inhibited the infectivity (Fig. 3A) and reduced both the p24 (Fig. 3B) and gp120 (Fig. 3C) content in all virus-containing samples. Addition of PA partially restored the inhibitory effect of SorA (Fig. 3A-C, black bars). The recovery in infectivity (Fig.
3D) and gp120 levels (Fig. 3F) seems to be dependent on the number of palmitoylation sites, being highest when 2 such sites were present in Env. For p24 the recovery effect was less evident (Fig. 3E). Although in the conditions tested the values obtained did not reach statistical significance, the observed tendency suggest that the SorA-mediated reduction in virus infectivity is mechanistically linked to a defect in Env palmitoylation.

The role of palmitoylation in HIV infectivity remains controversial. While Rousso and co-workers defined Env palmitoylation as critical for HIV infectivity (24) and Bhattacharya et al. showed a 60-90% infectivity reduction of virus mutants that cannot be palmitoylated (25), data by Chan et al. suggest that palmitoylation does not affect HIV-1 infectivity (26). The explanation for this discrepancy is likely within the experimental details of the different test systems and virus constructs used that may directly affect Env densities on viral particles and thus virus infectivity and palmitoylation dependency. The cytoplasmic tail of gp41 that harbours the palmitoylation sites and the Gag matrix domain within Gag plus several host cell components are important players in Env incorporation into the virion (27, 28). Env density then can affect virus infectivity (29), however this is predicted to vary between HIV strains that exhibit different entry stoichiometries requiring between 1 to 7 Env trimers to complete the infection process (30). Thus a number of effects may mask a reduction of infectivity due to lack of Env-palmitoylation. Nonetheless, the HIV-1 Env palmitoylation sites are highly conserved among different virus strains suggesting their functional importance for HIV-1 propagation. The data presented here seems to reinforce this notion.

In summary, SorA exhibits multiple inhibitory effects on the HIV life cycle at low micromolar concentrations. Its ability to inhibit with a high potency a key element of the \textit{de novo} fatty acid synthesis pathway (31) that is critical for the efficient expansion of many different viruses, and its low toxicity for eukaryotic cells makes SorA an attractive
starting point for the development of a broad-spectrum antiviral drug. Further studies
with SorA derivatives are envisioned.

Financial support:
The authors are supported by grants FPI grant number BES-2011-048569 (to EFS),
SAF2013-46077-R and SAF2016-75505-R (to JM and AM), BFU2016-80039-R (to JD),
all from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER
(AEI/MINEICO/FEDER, UE), the “Maria de Maeztu” Programme for Units of
Excellence in R&D (MDM-2014- 0370), and from the German Centre for Infection
Research (DZIF, to MB). The funders had no role in study design, data collection and
interpretation, or the decision to submit the work for publication.

Literature cited

Legend to figures

Figure 1. Soraphen A inhibits infectious HIV production. TZM-bl cells or PBMC were seeded in 96-well plates and treated with increasing concentrations of SorA in triplicate. TZM-bl cells (A) or PBMC (B to D) were infected with HIV-1_{LAI} (A, n = 5 and B, n = 4), HIV-1_{BAL} (C; n=5) or a primary isolate of HIV-1 KER2018 (D; n=3) at a multiplicity of infection (MOI) of 0.5. Supernatants were used to re-infect new TZM-bl cells. A representative curve is shown in every case. Infection (triangles) and cell viability (squares) are marked. The mean relative light units (RLU) are plotted as % relative to DMSO control (vehicle). Error bars: standard error of the mean (SEM). (E-H) MT-2 cells were spinoculated with HIV_{LAI} and treated with SorA or TOFA as control. 48h after infection, supernatants were collected and used to infect new MT-2 cells, while
cells were fixed and stained for HIV-p24 protein (green signals) and with DAPI (blue signals) (left panels). Newly infected MT-2 cells were then analysed alike (right panels). Non-infected MT-2 cells (E) and infected but untreated MT-2 cells (F) were used as negative and positive controls, respectively.

Figure 2. Soraphen A does not impair virion maturation but affects binding to CD4 and membrane fusion to target cells. (A-D) ACH2 cells were activated with Vorinostat (Vor) and treated with SorA (10µM), Lopinavir (10µM, LPN) or DMSO (mock). 48h after infection cells were fixed and processed for transmission electron microscopy (TEM). TEM pictures were taken of untreated ACH2 cells (A), as well as Vor+DMSO (B), Vor+SorA (C) and Vor+Lopinavir (D) treated cells. (E) The number of mature (white), immature (black) and unclassified (grey) viral particles is presented. (F) Normalized CD4 binding is represented (n=2). Mock-treated activated ACH2 cells and non-activated ACH2 cells were used as controls. (G) HIV pseudoparticles containing a Vpr-BlaM fusion protein were produced from transfected 293T cells in the presence of SorA (10µM), LPN (10µM) or DMSO (mock) and used to infect Jurkat cells by spinoculation. Normalized HIV fusion values are shown (n=5; *, p<0.05; **, p<0.01). (H) Levels of p24 and gp120 relative to DMSO control (set to 1) are shown. The dotted line highlights the half relative levels. Single concentrations of compounds were chosen based on inhibitory extent and lack of toxicity.

Figure 3. Palmitic acid restores the Soraphen A-mediated inhibition of infectious HIV production (A-F) Effect of SorA on produced HIVpp infectivity (A), p24 content (B) and gp120 content (C), and its reversion by palmitic acid addition. HIVpp with Env proteins that carry mutations in the gp41 palmitoylation sites Cys764/Cys837 were
produced from 293T cells in the presence of 10µM SorA or DMSO control (vehicle) and tested for infectivity, p24 and gp120 content. Reductions as well as recovery levels by palmitic acid addition are shown as normalized values relative to the DMSO or DMSO plus PA controls, respectively. The Env proteins of the HIVpp differ in the number of their palmitoylation sites at residues 764/837 and have the following features: Cys764/Cys837 in HXB2 and W61D, Cys764/no Cys837 in WITO, no Cys764/Cys837 in SS1196 and no Cys764/no Cys837 in Bal and MN.3. The recovery was calculated subtracting the mean infectivity (from three independent experiments), p24 or gp120 values of samples not treated with PA from the values of the samples treated with PA for each virus (D-F). The % PA-mediated recovery of virus infectivity (D), p24 (E) and gp120 (F) related to the number of palmitoylation sites is given. The dotted lines highlight the half relative levels. Values for B and C are derived from Western Blot quantification of p24 and gp120, respectively. Single concentrations of compounds were chosen based on inhibitory extent and lack of toxicity.
Figure 1. **Soraphen A inhibits infectious HIV production.** TZM-bl cells or PBMC were seeded in 96-well plates and treated with increasing concentrations of SorA in triplicate. TZM-bl cells (A) or PBMC (B to D) were infected with HIV-1\textsubscript{LAI} (A, n = 5 and B, n = 4), HIV-1\textsubscript{BAL} (C; n=5) or a primary isolate of HIV-1 KER2018 (D; n=3) at a multiplicity of infection (MOI) of 0.5. Supernatants were used to re-infect new TZM-bl cells. A representative curve is shown in every case. Infection (triangles) and cell viability (squares) are marked. The mean relative light units (RLU) are plotted as % relative to DMSO control (vehicle). Error bars: standard error of the mean (SEM). (E-H) MT-2 cells were spinoculated with HIV\textsubscript{LAI} and treated with SorA or TOFA as control. 48h after infection, supernatants were collected and used to infect new MT-2 cells, while cells were fixed and stained for HIV-p24 protein (green signals) and with DAPI (blue signals) (left panels). Newly-infected MT-2 cells were then analysed alike (right panels). Non-infected MT-2 cells (E) and infected but untreated MT-2 cells (F) were used as negative and positive controls, respectively.
Figure 2. Soraphen A does not impaire virion maturation but affects binding to CD4 and membrane fusion to target cells. (A-D) ACH2 cells were activated with Vorinostat (Vor) and treated with SorA (10µM), Lopinavir (10µM, LPN) or DMSO (mock). 48h after infection cells were fixed and processed for transmission electron microscopy (TEM). TEM pictures were taken of untreated ACH2 cells (A), as well as Vor+DMSO (B), Vor+SorA (C) and Vor+Lopinavir (D) treated cells. (E) The number of mature (white), immature (black) and unclassified (grey) viral particles is presented. (F) Normalized CD4 binding is represented (n=2). Mock-treated activated ACH2 cells and non-activated ACH2 cells were used as controls. (G) HIV pseudoparticles containing a Vpr-BlaM fusion protein were produced from transfected 293T cells in the presence of SorA (10µM), LPN (10µM) or DMSO (mock) and used to infect Jurkat cells by spinoculation. Normalized HIV fusion values are shown (n=5; *, p<0.05; **, p<0.01). (H) Levels of p24 and gp120 relative to DMSO control (set to 1) are shown. The dotted line highlights the half relative levels. Single concentrations of compounds were chosen based on inhibitory extent and lack of toxicity.
Figure 3. Palmitic acid restores the Soraphen A-mediated inhibition of infectious HIV production (A-F) Effect of SorA on produced HIVpp infectivity (A), p24 content (B) and gp120 content (C), and its reversion by palmitic acid addition. HIVpp with Env proteins that carry mutations in the gp41 palmitoylation sites Cys764/Cys837 were produced from 293T cells in the presence of 10μM SorA or DMSO control (vehicle) and tested for infectivity, p24 and gp120 content. Reductions as well as recovery levels by palmitic acid addition are shown as normalized values relative to the DMSO or DMSO plus PA controls, respectively. The Env proteins of the HIVpp differ in the number of their palmitoylation sites at residues 764/837 and have the following features: Cys764/Cys837 in HXB2 and W61D, Cys764/no Cys837 in WITO, no Cys764/Cys837 in SS1196 and no Cys764/no Cys837 in Bal and MN.3. The recovery was calculated subtracting the mean infectivity (from three independent experiments), p24 or gp120 values of samples not treated with PA from the values of the samples treated with PA for each virus (D-F). The % PA-mediated recovery of virus infectivity (D), p24 (E) and gp120 (F) related to the number of palmitoylation sites is given. The dotted lines highlight the half relative levels. Values for B and C are derived from Western Blot quantification of p24 and gp120, respectively. Single concentrations of compounds were chosen based on inhibitory extent and lack of toxicity.
Online Supplement

Supplemental Materials and Methods

Cell culture: TZM-bl cells (NIH AIDS Reagent Program, catalogue number: 8129) were maintained with DMEM medium (Gibco, Paisley, UK) supplemented with 10% heat-inactivated fetal calf serum (FCS), HEPES 25mM and 0.5% Gentamycin. HEK293T cells (ATCC, CRL-11268) were maintained in DMEM supplemented with 10% heat-inactivated FCS and 1% penicillin-streptomycin (P/S). Lymphoid MT-2 cells, Jurkat cells and PM1 cells, as well as HIV-1 latently infected ACH2 cells (NIH AIDS Reagent Program, catalogue numbers: 237, 177, 3038 and 349, respectively) and isolated human peripheral blood mononuclear cells (PBMC) from anonymous healthy blood donors were cultured with RPMI medium (Gibco) supplemented with 10% heat-inactivated FCS and 1% of P/S. PBMC were activated with 5 μg/ml of PHA during 3 days prior to infection. All cell types were incubated at 37ºC and 5% CO$_2$.

Plasmids: pGag-EGFP (NIH AIDS Reagent Program, catalogue number: 11468) expresses HIV-1 Gag fused to EGFP. pNLE-ΔEnv (a kind gift from Yasuko Tsunetsugu-Yokota, Tokyo University of Technology, National Institute of Infectious Diseases, Tokyo, Japan) expresses HIV-1 with a mutation in Env. It was used to pseudo-type HIV-1 with several envelope proteins. pHXB2-env (provided by Prof. Dr. Christian Jassoy, Institute for Virology, University of Leipzig, Lepizig, Germany) expresses HIV-1 Lai envelope. Plasmids pW61D_TCLA.71, pWITO4160, pSS1196.1, pBal.26 and pMN.3 (a kind gift from Kelli Green, Duke University Medical Center, Durham, USA) express different HIV-1 envelope proteins. pMM310 (a kind gift from Yasuko Tsunetsugu-Yokota) expresses E. coli β-lactamase fused to the amino terminus of HIV-Vpr. Transfections in HEK 293T and TZM-bl cells were performed with Lipofectamine 2000 (Invitrogen, Paisley, UK) or JetPEI, respectively, according to the manufacturer’s manual.
Drugs and lipids: Soraphen A (SorA) is part of the library of myxobacterial secondary metabolites belonging to the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany. The ACC inhibitor 5-(Tetradecyloxy)-2-furoic acid (TOFA) (Cayman Chemical company, Michigan, USA) was used as a control drug. The HIV protease inhibitor Lopinavir (LPN, Sigma, Missouri, USA), the non-nucleoside reverse transcriptase inhibitor Nevirapine (Sigma) and the entry inhibitor enfuvirtide (Fuzeon, Roche, Basel, Switzerland) were used as controls in several assays. The histone deacetylase inhibitor Vorinostat and the fatty acid palmitic acid were obtained from Sigma.

Virus stocks: HIV-1 viral stocks were produced by transfecting HEK293T cells with the HIV molecular clone pNL4.3 (NIH AIDS Reagent Program, catalogue number: 114) or via propagation of HIV_{LAI} in PM1 cells or PBMC. The viruses were titrated in TZM-bl cells and stored at -80°C. HIV pseudoparticles carrying different envelope proteins (see above) were produced by transfection of HEK293T cells.

Dose-response assays: TZM-bl cells were seeded (10⁴ cells/well) in 96-well flat-bottom plates and PBMC were seeded (50000 cells/well) in 96-well V-bottom plates. Unless state otherwise, cells were incubated for 1h with the drug or the vehicle control (DMSO) prior to infection. Five 10-fold dilutions of the drug were tested in triplicate. After incubation, the plates were washed with medium and infected with HIV_{LAI} at MOI=0.5. Fresh drug was added to maintain the drug concentration. After incubation for 48h (TZM-bl) or 72h (PBMC) at 37°C 5% CO₂, supernatant from infected cells was used to re-infect fresh TZM-bl cells. 48h after TZM-bl cell re-infection, the luciferase activity was measured using Britelite PlusTM (PerkinElmer, Waltham, USA). In parallel, the cytotoxicity of the compounds were assessed using the commercial ATP-based system CellTiter-Glo® Lu-
minescent Cell Viability Assay (Promega, Madison, USA). Mean luciferase values were normalized to untreated controls and Effective Concentration 50 (EC$_{50}$) and Cytotoxic Concentration 50 (CC$_{50}$) were calculated in GraphPad Prism (GraphPad Software, San Diego, CA, USA) by analyzing the log of the drug concentration vs. the normalized response.

Immunofluorescence: MT-2 cells were treated with SorA 10 µM, TOFA 10 µM or vehicle control (DMSO). After 1h incubation, cells were spinoculated 75 min 1200g 4°C with HIV$_{LAI}$ at MOI=0.5. 48h after spinoculation, cells were incubated 1h on poly-L-lysine-coated microscopy glass slides (Thermoscientific) and the supernatant was added to fresh MT-2 cells and incubated 48h further. Samples were fixed (30 minutes in PBS containing 4% paraformaldehyde (PFA)), permeabilized (20 minutes in 0.2% Triton X-100; Sigma) and blocked (30 minutes with FCS 10%). Samples were stained for 1h with the anti-HIV p24 antibody ARP3243.3 clone 05-009 provided by the Centre for AIDS Reagents, NIBSC (UK), and a secondary anti-mouse IgG antibody labelled with Alexa Fluor 647 (Invitrogen) for 45 minutes in the dark, followed by a 15 minutes nuclear staining with 4,6-diamidino-2-phenylindole (DAPI). Glasses were placed in microscopy slides with Mowiol (Sigma) and images were acquired on the Leica TCS SP5 at 63x.

TZM-bl infectivity assay and Immunoassay: Infectivity of supernatants from PBMC, ACH2 cells, and transfected 293T was determined with the TZM-bl assay. Clarified cell culture supernatants were added to fresh TZM-bl cells. 48h after supernatant addition luciferase activity was measured. HIV p24 and gp120 proteins were detected using the ELISA kits INNOTEST® HIV Antigen mAb to detect p24 (Fujirebio, Gent, Belgium) and the HIV-1 gp120 antigen capture assay (ABL, Rockville, USA). To obtain cell lysates, treated (±10 µM SorA and ±50 µM palmitic acid) and transfected 293T cells pro-
ducing HIVpp were washed with PBS and lysed with passive lysis buffer 10min at 4°C. Lysates were centrifuged (14000g 5´ 4°C) to remove cell debris.

Transmission electron microscopy: ACH2 cells were treated with 10 μM SorA, 10 μM Lopinavir or DMSO (vehicle). After 1h incubation, HIV production was activated with 10 μM Vorinostat. 48h after activation, cells were fix with 2.5% glutaraldehyde in 0.1 M phosphate buffer incubating 2x 30 minutes at RT. After washing, samples were incubated with 1.1% osmium tetroxide + 0.8% potassium ferricyanide in phosphate buffer 1-2h at 4°C. Samples were dehydrated and embedded in the resine Eponate 12 as previously described (1). Pictures were taken with a transmission electron microscope (TEM) JEM 1010 100 kV (JEOL, Tokyo, Japan) with CCD Megaview 1kx1k at 80 kV and analysed with Imagej software (National Institutes of Health, NIH).

CD4 binding and fusion assay: TZM-bl cells were spinoculated (2095xg 4°C 30 min) with 10 ng p24-containing supernatant from SorA- or vehicle (DMSO)- treated ACH2 cells that were previously activated with Vorinostat. Cells were washed with PBS and lysed with M-PER for 10 min at 4°C. p24 was detected with the ELISA kit INNOTEST® HIV Antigen mAb. Cells were maintained at 4°C throughout the assay to prevent virus-cell fusion. The fusion assay was performed as in (2). Briefly, HIVpp containing β-lactamase activity were produced by transfection in the presence of SorA, Lopinavir or DMSO. Jurkat cells (2.5x10^5 cells/condition) were spinoculated (1200xg, 25°C, 2h) with 50 ng or 200 ng p24 of HIVpp. Cells were incubated 2h at 37°C 5% CO₂. After washing, cells were loaded with the substrate for β-lactamase (CCF2-AM) at 1 μM. After 1h at room temperature in the dark, cells were washed, re-suspended in CO₂ independent medium (Gibco) containing 5% heat-inactivated FCS and incubated overnight at room temperature in the dark. Cells were washed, stained with propidium iodide (0.5 μg/ml) and
analyzed with a LSR Fortessa cytometer (BD bioscience). Data were analyzed with FlowJo software (Tree Star).

qPCR. 10 µM Soraphen A was added to SAHA-activated ACH2 cells, 293T cells co-transfected with the plasmids HIV pNLE-Env and pHXB2-Env, and to HIV\textsubscript{LAI}-infected PBMC. 48 h after treatment, cell culture supernatants were clarified by centrifugation and filtered and cells were washed three times in PBS. RNA from virus-containing supernatants and from cells was extracted with QIAmp Viral RNA Mini Kit (Qiagen, Hilden, Germany) and the Rneasy Micro Kit (Qiagen), respectively. HIV cDNA was generated with the SuperScript First-Strand Synthesis System (Invitrogen) using an HIV-specific primer spanning the U3 region of the HIV LTR and tagged with an unique nucleotide sequence: 5´-CTGATCTAGAGGTACCGGATCCAAAGCTCGATGTCAGTCTT-3´. qPCR was performed with SYBR-Green Select Master Mix (Applied Biosystems, Foster City, California, USA) using the primers: Fw 5´-GCCGCCTAGCATTTTCATCAC-3´ and Tag: 5´-CTGATCTAGAGGTACCGGATCC-3´ in the QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems). Standard curves were generated with serial dilutions of amplicons using the same primers. qPCR was analysed with the ExpressionSuite Software (Applied Biosystems).

Western Blots. Viral supernatants were clarified, pelleted and aliquoted at -80°C. Standard curves for quantification were produced with serial dilutions of the recombinant HIV proteins p24 (Abcam, ab127888) and gp120 (Abcam, ab73769). Samples were mixed with Laemmlli buffer, heated at 97°C for 5 minutes and transferred to nitrocellulose membrane by western blotting. Mouse monoclonal antibody for p24 was purchased from Centre for AIDS Reagents (Ref.: ARP3243.3) and diluted 1:5000 in 5% BSA with TBS-T buffer. For gp120, a rabbit polyclonal antibody (Abcam, ab106578) diluted 1:1000 in...
the same solution was used. For detection we used horseradish peroxidase (HRP)-conjugated secondary antibodies (Amersham ECL Anti-Rabbit IgG, Horseradish Peroxidase-Linked Species-Specific Whole Antibody, Ref.: NA934). Protein bands were developed using West Femto Maximum or ECL Plus Western Blotting Substrate (Thermo Scientific). Protein quantification and analysis were performed using J-Image software (Bi-oRad).

Membrane fluidity assay and cholesterol amount determination: Membrane fluidity was determined as described in (3). Briefly, Jurkat cells or PHA-activated PBMC (1.5x10^5 cells/condition) were incubated 48h with SorA at 0.1, 1 and 5 μM or DMSO (mock). Cells were stained with 1 μg/ml of di-4-ANEPPDHQ (30min, 4°C) that changes its fluorescence emission depending on the fluidity of the membrane. Cells were excited at 488nm and emissions at 530/30nm and 670LPnm were simultaneously recorded with a LSR Fortessa. Intensities were converted into a general polarization index (GP) using the equation GP = (I530/30 – I670LP) / (I530/30 + I670LP). GP values range from +1 (more condensed) to -1 (more fluid). To detect changes in cholesterol content, Jurkat cells were similarly incubated with SorA and stained with 0.05 mg/ml of filipin (30min at RT). The intensity of the staining is proportional to the amount of cholesterol in the cell membrane and was determined using a LSR Fortessa. Cyclodextrine (1 and 5 mM, 1h 37°C before staining) was used in both assays as a positive control because it depletes cholesterol resulting in increased membrane fluidity.
Supplemental figure 1. Soraphen A does not change the membrane fluidity or the cholesterol content of Jurkat cells or PBMC. (A) Jurkat cells were incubated with different concentrations of SorA for 48h. Cells were then stained with filipin and analyzed for changes in cholesterol content by flow cytometry. (B) Jurkat cells and (C) PBMC were incubated with different concentrations of SorA for 48h. Cells were then stained with di-4-ANEPPDHQ to detect changes in membrane fluidity by flow cytometry. Cyclodextrin (CDX) was used as a positive control in both assays. Generalized polarization index (GP) values for membrane fluidity and relative cholesterol content are shown. Error bars: standard deviation (SD). (*, p<0.05; **, p<0.01).
Supplemental figure 2. Reduced target cell fusion activity of HIV particles produced in the presence of Soraphen A. Representative flow cytometry plots of the fusion assay (see figure 3C) are shown. The proportion of cells fused with HIVpp with respect to CCF2-loaded cells in SorA-, LPN-, mock- and mock plus T20-treated samples is given.
Supplemental figure 3. SorA reduces HIV RNA in virus-containing supernatants but not in infected cells. Bars depict HIV RNA levels in SorA-treated samples relative to DMSO control (Set to 1). Left: SAHA-activated ACH2 cells, Middle: 293T cells co-transfected with HIV pNLE-Env and pHXB2-Env, Right: in HIV_{LAI}-infected PBMC. Error bars are ±SEM of the mean of three independent replicates.

Supplemental References

