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The role of alternative splicing in cancer
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ABSTRACT
The functional capacity of cells is defined by the transcriptome. Many recent studies have identified
variations in the transcriptome of tumors due to alternative splicing changes, as well as mutations
in splicing factors and regulatory signals in most tumor types. Some of these alterations have been
linked to tumor progression, metastasis, therapy resistance, and other oncogenic processes. Here,
we describe the different mechanisms that drive splicing changes in tumors and their impact in
cancer. Motivated by the current evidence, we propose a model whereby a subset of the splicing
patterns contributes to the definition of specific tumor phenotypes, and may hold potential for the
development of novel clinical biomarkers and therapeutic approaches.
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Introduction

Cancer arises from genetic and epigenetic alterations that
interfere with essential mechanisms of the normal life
cycle of cells such as DNA repair, replication control, and
cell death.1,2 For example, DNA mutations occurring at
genes and regulatory sites may cause the activation or
suppression of crucial functions that lead to uncontrolled
proliferation. These alterations also impact the transcrip-
tome, which in turn can induce and sustain multiple
mechanisms related to the progression of the tumor. In
fact, genetic and epigenetic alterations could impair RNA
processing before their effect is even visible at protein
level, thereby defining the functional capacity of the cells.
Accordingly, identifying the alterations of the transcrip-
tome becomes relevant to advance our understanding of
tumor biology.

Among all the steps during gene expression, alterna-
tive splicing (AS) provides perhaps the largest potential
for molecular diversity and controlled regulation in the
cell.3 Genes are transcribed into pre-mRNA molecules
that require extensive processing. For most genes, this
processing involves the removal of introns through the
process of splicing. Multiple molecular complexes, com-
posed of RNA-binding proteins (RBPs), structural
RNAs, and other protein factors, bind to the pre-mRNA

at various locations (RNA-binding motifs) and mediate
the splicing process. On the other hand, different mature
RNA molecules can be produced from the same pre-
mRNA through the mechanism of AS. AS takes place
through the controlled changes in the expression and
activity of the complexes acting on the regulatory sequen-
ces on the pre-mRNA or as a consequence of the altera-
tions in these complexes and motifs. AS is therefore, a
critical mechanism not only in normal physiological pro-
cesses, but also inmultiple pathologies, including cancer.4

Splicing alterations in cancer

Multiple AS changes have been described that essen-
tially recapitulate cancer-associated phenotypes. A
large body of work has been devoted to determine the
different alterations that lead to these AS splicing
changes observed in cancer. We describe below some
of them (Fig. 1).

Expression changes in splicing regulators

Multiple splicing regulatory factors have been
observed to trigger tumorigenic properties in cells
when overexpressed or downregulated, and have been
characterized as oncogenes or tumor-suppressors,

CONTACT Eduardo Eyras eduardo.eyras@upf.edu Pompeu Fabra University, PRBB. Dr. Aiguader 88, E08003 Barcelona, Spain.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ktrn.
© 2017 Babita Singh and Eduardo Eyras. Published with license by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.

TRANSCRIPTION
2017, VOL. 8, NO. 2, 91–98
http://dx.doi.org/10.1080/21541264.2016.1268245

http://www.tandfonline.com/ktrn
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1080/21541264.2016.1268245


respectively, through the changes they induce in AS.5,6

Some factors recapitulate this role across multiple
tumor types, whereas others show a context-depen-
dent expression pattern that may reflect the tissue of
origin.7 The expression alteration of splicing regula-
tors may have different origins, like copy number
alterations7 or through changes in post-transcriptional
modifications that are under the control of cell signal-
ing pathways, which are frequently deregulated in
tumors.2 Additionally, multiple splicing factors are
transcriptionally controlled by the oncogene MYC,
which is frequently overexpressed in tumors and leads
to multiple oncogenic splicing changes through the
upregulation of splicing factors.6,8 The expression
changes in splicing factors is also linked to the meta-
bolic transformations associated to tumors, often trig-
gered by specific cellular microenvironments, which
lead to AS changes in genes involved in metabolic pro-
cesses.9 The link between MYC, splicing, and cancer

has been further emphasized recently. Components of
the spliceosome appear to be essential for the activity
of MYC as oncogene, which underscores the central
role of splicing in cancer.10,11

It has been further observed that gene expression
alterations in cancer appear to recapitulate partially
or extensively physiological pathways. For instance,
breast tumors show a pattern in the expression of
splicing factors and splicing events that resemble
that of undifferentiated cells, including the downre-
gulation of MBNL1 and a splicing change in NUMB.7

Similarly, AS analysis during metastatic coloniza-
tion12 shows extensive overlap with the changes that
occur during epithelial-to-mesenchymal transition.13

However, it is not yet clear whether such cellular pro-
grams are fully recapitulated or whether they co-exist
with other alterations that appear in tumors, thereby
providing tumor cells with a variety of molecular
repertoires.

Figure 1. Alterations that lead to alternative splicing changes in cancer and their implication for the development of the disease and
possible therapeutic strategies. Alterations include expression changes in splicing factors, mutations in splicing factors and splicing regu-
latory sequences, alterations in the transcription and chromatin state, and DNA damage. These alterations can lead to alternative splic-
ing changes in tumors, which may recapitulate cancer hallmarks, like cell proliferation, disruption of apoptosis, cell motility and
invasion, angiogenesis, and limitless replicative potential. Splicing patterns provide predictive signatures for tumor subtypes and clinical
properties, and may be indicative of therapy resistance. Finally, some splicing changes are emerging as direct targets of therapy, and the
splicing properties of a tumor, as well as the mutational status of splicing factors, can be informative for selection of specific therapies.
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Mutations in splicing regulators

Access to the genome sequence from multiple tumors
has uncovered recurrent mutations in core and auxil-
iary components of the spliceosome in various tumor
types. They occur predominantly in hematological
malignancies and often involve the factors SF3B1,
U2AF1, SRSF2, and ZRSR2 (reviewed in ref.5).
Although generally at lower rate, splicing factors also
appear mutated in solid tumors, including SF3B1 in
breast cancer and melanoma,14,15 U2AF1 and RBM10
in non-small cell lung tumors,16 and HNRNPL in
colon tumors.7 An analysis of genes coding for known
and putative RBPs has shown that mutations in
known and putative regulators of splicing is mostly
limited to these cases in solid tumors.7 Additionally,
expression changes in splicing factors appear to pro-
duce more splicing changes in the events, compared
with those related with mutations in splicing factors7

or regulatory regions,17,18 and both types of alterations
do not seem to produce the same splicing changes.
For instance, modulating the expression of SF3B1 in
cells does not recapitulate the changes observed when
SF3B1 is mutated.19 The identification of the splicing
changes related to mutations in splicing factors is
instrumental to understand their relevance for cancer
development and therapy and is currently an active
area of research.14,19-21

Mutations on splicing regulatory sequences

Somatic mutations that disrupt splicing regulatory
motifs can also be a source of splicing changes in can-
cer. For instance, mutations at the exon–intron
boundaries have been associated with intron retention
in tumor suppressors such as TP53, ARID1A, PTEN,
CHD1, MLL2, and PTCH1.22 Similarly, mutations on
synonymous sites on coding exons appear enriched in
oncogenes and have been proposed to disrupt the
splicing of cancer drivers such as ITK, ALK, IDH1,
and BCL6.22 Since splicing regulatory sequences on
exons span 4–6 nucleotides, hence possibly covering
multiple codons, it is likely that mutations on non-
synonymous sites also lead to splicing changes in can-
cer drivers.23 Intronic mutations also appear to play a
crucial role in cancer such as therapy resistance. For
instance, a point mutation 51nt upstream of the 30

splice-site of intron 8 of BRAF promotes a splice vari-
ant that confers resistance to Vemurafenib treat-
ment.24 However, in contrast to exonic mutations, not

many recurrent intronic mutations have been
described so far beyond the exon–intron boundaries,
despite the fact that a significant fraction of the splic-
ing regulation is controlled by intronic regulatory
sequences, either through the branch-point and poly-
pyrimidine tract sequences, or through intronic splic-
ing enhancers and silencers.25 This could be due to the
fact that intronic regulatory motifs often present posi-
tional variability with respect to the exon–intron
boundaries and are, therefore, less straightforward to
identify. Although deep intronic mutations may be
harder to characterize, they could also affect splicing.
For instance, a considerable number of introns harbor
distant branch-points located further than 50nt
upstream of the 30 splice-site,26 and the structure of
the RNA plays a role in its processing and may bring
together distant regions.27 By harnessing the power of
characterizing the relevant intronic regulatory regions,
we will be able to gain further insights into the disrup-
tion of splicing in cancer.

Chromatin and transcription dependent effects

Most of the mechanisms related to gene expression
take place in a coordinated way that couples transcrip-
tion with pre-mRNA processing. Co-transcriptional
splicing seems to be quite prevalent and advantageous
for the efficiency of splicing.28 There is also plenty of
evidence showing that splicing regulation depends on
the coupling with the dynamics of RNA polymerase II
(RNAPII). This is controlled by, among other ele-
ments, the activity of promoters and transcriptional
enhancers, the chromatin state, and the recruitment of
splicing factors by RNAPII or to the chromatin con-
text.28,29 Accordingly, alterations in cancer that affect
transcription or chromatin may also impact splicing.
For instance, the Histone methyltransferase SETD2
appears frequently mutated in kidney tumors, which
has been related to alterations in RNA processing and
splicing.30,31 It is thus conceivable that many of the
splicing changes observed in tumors are direct or indi-
rect effects due to global or local somatic alterations of
transcription and chromatin.

DNA damage

DNA damage through the exposure to either radiation
or toxic chemicals has been shown to induce AS in
genes involved in cellular processes such as apoptosis,
cell-cycle control, and DNA repair.32,33 The splicing
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response to DNA damage comes through various
modulations such as the post-transcriptional modifi-
cation of splicing factors that affect protein interac-
tions with other splicing factors or with RNA. For
example, dephosphorylation of SRSF10 through DNA
damage prevents the interaction with hnRNP F/H,
favoring a splicing change in BCL2L1 to enhance the
production of its pro-apoptotic isoform.33 On the
other hand, stable formation of ribonucleoprotein
complexes prevents the appearance of RNA:DNA
duplexes, which would otherwise promote mutations
and genome instability.32 For instance, the disruption
of a complex of BRCA1 with RNA has been found to
be related to defective DNA damage repair.34 As the
functional control of splicing emerges as essential for
DNA damage repair, splicing-related alterations may
contribute to a genome instability phenotype and to
the accumulation of mutations.

Functional impact of the splicing alterations in
cancer

The analyses of transcriptomes from multiple patient
tumor samples have highlighted frequent splicing
changes during tumor progression and metastasis
transformation,12,35 as well as in association to somatic
alterations.14,19,20 However, the functional impact of
these AS changes and their significance in cancer is
only starting to be elucidated.

Alternative splicing recapitulates hallmarks of
cancer

Several AS events have been shown to recapitulate
cancer-associated phenotypes. For instance, an exon
inclusion change in NUMB has been shown to pro-
mote cell proliferation.36 Similarly, an exon-skipping
event in MST1R has been related to the acquisition of
cell motility during cancer cell invasion.37 Moreover,
the modulation of these events can recapitulate the
tumor phenotype or revert to a normal phenotype.36,38

Therefore, understanding the general functional
effects of AS potentially leads to the discovery of novel
oncogenic mechanisms and therapeutic targets.

AS changes have been proposed to remodel the net-
work of protein–protein interactions in a tissue-spe-
cific manner.39,40 It is, therefore, possible that splicing
changes in cancer also impact the network of protein–
protein interactions, but in a disruptive, non-regulated
way. In this direction, a recent study shows that an AS

change in NFE2L2 that occurs in various tumor types
leads to the loss of a protein interaction with its nega-
tive regulator KEAP1, thereby providing an alternative
way to activate the Nrf2 pathway.41 This may in fact
be a general mechanism whereby splicing alterations
disrupt protein–protein interactions of cancer drivers
and related pathways, providing other means to
impact cell function that are equivalent to classical
somatic mutations in drivers. Additionally, AS may
also induce degradation of the transcripts through
non-sense mediated decay,42 a mechanism that was
associated to somatic mutations on the splice-sites
that induce intron-retention in tumor suppressors.18

Alternative splicing as biomarkers

Despite the abundance of splicing changes observed in
tumors, only few cases have been characterized for
their functional impact. It is possible that the majority
of the splicing changes in tumors are passengers,
merely reflecting upstream genetic mechanisms and
the deregulation of splicing fidelity mechanisms. Yet,
they may provide tale-tell signs of specific tumor char-
acteristics. In this context, splicing changes have been
shown to separate tumor types and subtypes17 and
have been related to tumor stage and patient sur-
vival,35,43 so they have the potential to be used as bio-
markers for specific clinical conditions. This could be
relevant for cases for which a known prognostic
marker is either not present in the sample or does not
exist, as for pediatric tumors.44

Alternative splicing and therapy resistance

Alterations in AS also appear essential for understand-
ing drug resistance.21 For instance, a considerable pro-
portion of patients that do not respond to targeted
treatment against BRAF mutations express a BRAF
isoform lacking exons 4–8, which encompass the
RAS-binding domain.45 Interestingly, small-molecule
modulators of pre-mRNA splicing are capable of
restoring the original BRAF splicing and reduce
growth of therapy-resistant cells.24 Similarly, AS also
impacts immunotherapy in leukemia due to the dis-
rupted activity of the splicing factor SRSF3.46 These
results highlight the importance of characterizing the
transcriptome for therapy and suggest that specific
splicing alterations may provide a selective advantage
to tumors.
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Alternative splicing as target of therapy

There is a growing interest to search for splicing-
related alterations for which specific therapies could
be developed. One of the strategies being tested at the
moment consists in the synthetic design of antisense
oligonucleotides (AONs) that target-specific splicing
events. AONs are able to revert AS events to restore
normal cellular phenotypes36,38 and have reached
already clinical trial stage for some splicing-related
disorders.50 Another promising strategy for cancer
therapeutics is the use of small molecule compounds
that modulate the activity of splicing factors.21,51

These therapies have a wide range of effects depending
on the tumor type or the mutational status of the tar-
geted splicing factor. Thus, it becomes essential to
know which patients may benefit from splicing-related
therapies. One such possible class includes patients
with overexpressed MYC in tumors, which are more
dependent on the activity of the spliceosome.10,11

AS events are also emerging as direct actionable
alterations for targeted therapies. This is the case of
the skipping of MET exon 14 observed in some lung
cancer patients, resulting in a deletion of the protein
region that inhibits its kinase catalytic activity.47

Importantly, the skipping of this exon is sufficient for
MET activation and tumors that harbor the event
respond to MET-targeted therapies.48,49 Although this
splicing change in MET has been explained so far as a
result of somatic mutations on exon 14 or on its
splice-sites, it is conceivable that the same splicing
change could occur due to other mechanisms yet to be
discovered. These results raise the interesting possibil-
ity that an AS event could be used as direct target of
therapy. Thus, either as direct targets or as a means to
characterize the tumor, the splicing properties may
become fundamental to identify therapeutic vulner-
abilities and potential resistance. This may be particu-
larly relevant for tumors lacking somatic mutations in
genes with known targeted therapy, as these patients
cannot benefit from currently available therapies.

Combinatorial control of RNA splicing and
possible implications for cancer

AS changes that characterize and contribute to the
pathophysiology of cancer are triggered by alterations
in a complex network of different mechanisms. These
combinatorial effects have some interesting implica-
tions. Different alterations in tumors may in turn

impact RNA processing and splicing in similar ways.
For instance, mutations in RBM10 or downregulation
of QKI lead to the same splicing change in NUMB
that promotes cell proliferation.36,52 This suggests that
the splicing alterations observed in tumors may be
indicative of a phenotypic advantage, and some may
even phenocopy somatic mutations in cancer drivers
to induce similar functional impacts. Accordingly, a
subset of the splicing changes in cancer may play an
important role in the neoplastic process independently
of or in conjunction with the already characterized
genetic alterations.

It is not clear yet whether a single splicing change
may be sufficient to induce an oncogenic transforma-
tion in a normal tissue context, or even whether splic-
ing events can be considered cancer drivers. It is
possible that the splicing-related effects are additive,
contributing to, and maintaining specific properties or
favoring certain cellular environments that modulate
the oncogenic impact of somatic mutations. Consis-
tent with this, there is a relation between specific
tumor microenvironments and AS.53 Additionally,
somatic mutations in splicing factors are generally
heterozygous and appear to require a normal func-
tional splicing machinery to exert their oncogenic
function.21,54 For example, the ratio of both mutant
and wild-type U2AF1 splicing factor influences the
splice-site selection in lung adenocarcinomas, ques-
tioning the functional significance of the mutant
U2AF1 cells.54 This suggests a context-dependent
effect, by which somatic alterations may become rele-
vant in the presence of certain splicing-related signa-
tures. This is further supported by recent findings
showing that tumors with overexpressed MYC are
highly dependent on the splicing machinery for sur-
vival and may be more sensitive to splicing-related
therapies.10,11

In conclusion, as selection on the tumor clones is
exerted on the phenotype rather than on the geno-
type, we propose that the splicing patterns may
define relevant molecular phenotypes in tumors,
despite their genetic heterogeneity. The characteriza-
tion of tumor transcriptomes – with respect to splic-
ing – thus becomes essential to understand their
clinical properties and to select appropriate therapeu-
tic strategies.
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