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Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of

synchronous and asynchronous motion. While chimera states were initially discovered in

mathematical model systems, there is growing experimental and conceptual evidence that they

manifest themselves also in natural and man-made networks. In real-world systems, however, syn-

chronization and desynchronization are not only important within individual networks but also

across different interacting networks. It is therefore essential to investigate if chimera states can be

synchronized across networks. To address this open problem, we use the classical setting of ring

networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response cou-

plings between pairs of such networks that individually show chimera states when there is no cou-

pling between them. The drive and response networks are either identical or they differ by a

variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the

coherent domain of the response network aligns its position to the one of the driver networks. For

identical networks, a sufficiently strong coupling leads to identical synchronization between the

drive and response. For non-identical networks, we use the auxiliary system approach to demon-

strate that generalized synchronization is established instead. In this case, the response network

continues to show a chimera dynamics which however remains distinct from the one of the driver.

Hence, segregated synchronized and desynchronized domains in individual networks congregate in

generalized synchronization across networks. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4983841]

Notwithstanding their simple structure, networks of

coupled oscillators can show intriguingly complex

dynamics. In a classical setting,
1

identical phase oscilla-

tors are arranged on a ring and are connected by a non-

local coupling, which has the same form for all oscilla-

tors. Despite this translational symmetry of the network,

the oscillators can spontaneously form two complemen-

tary groups. While a group of oscillators rotates coher-

ently, the remaining oscillators perform an erratic

motion. This surprising co-existence of synchronous and

asynchronous motion in a system of identical oscillators

was named chimera state2 and was subsequently found

for a rich variety of different network topologies, oscilla-

tor types, and coupling schemes.
3,4

So far, most work has

focussed on chimera states in isolated networks. Real-

world networks, however, are typically not isolated but

connected to other networks. It is therefore essential to

investigate the interplay of chimera states across separate

networks. We here demonstrate that a simple coupling of

oscillators across networks allows one to induce different

types of synchronization between the networks. In partic-

ular, this includes generalized synchronization, where the

state of a driving network fully determines the state of a

response network, while both networks still show chi-

mera states with distinct spatiotemporal dynamics.

Hence, our results show that the co-existence of synchro-

nous and asynchronous motion, which is the essence of

chimera states, is not limited to individual networks but

can spread across interacting networks. Our work can

therefore lead to a broader applicability of the concept of

chimera states to real-world phenomena.

I. INTRODUCTION

In the past few years, many reports on the experimental

observation of chimera states were published.5–16

Furthermore, an increasing number of conceptual links have

been established between chimera states and a broad variety

of natural and man-made dynamics. From early on this con-

cerned neuronal dynamics (e.g., Ref. 17). Subsequently,

links were drawn to unihemispheric sleep,18–20 information

processing in biological networks,21 molecular cell biology

dynamics,22 epileptic seizures,23,24 social dynamics of cross

cultural interactions,25 dynamics of ecosystems,26 evolution-

ary dynamics in biological, social, and ecological sys-

tems,27,28 spin torque nano-oscillators,29 and quorum sensing

mechanisms.30 Little is known however about the interplay

of chimera states across separate networks. Recent studies

showed that bidirectional couplings between networks can

suppress31,32 or induce30–32 chimera states in individual net-

works, and coupling delays were found to play an important

role in this multiplexing setting.30,32 Co-existing chimeras

were reported to be either identical or non-identical across

networks.31 However, from these studies30–32 one cannot

1054-1500/2017/27(5)/053114/6/$30.00 Published by AIP Publishing.27, 053114-1

CHAOS 27, 053114 (2017)

http://dx.doi.org/10.1063/1.4983841
http://dx.doi.org/10.1063/1.4983841
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4983841&domain=pdf&date_stamp=2017-05-23


conclude if chimera states can be synchronized across net-

works. We aim to close this gap by demonstrating general-

ized synchronization between chimera states.

The discovery of generalized synchronization33 and

phase synchronization34 set milestones in the applicability of

dynamical systems theory to real-world dynamics. It led

beyond preceding studies35,36 by showing that synchroniza-

tion between chaotic dynamics is not restricted to identical

synchronization between identical dynamics. Instead syn-

chronization can be attained between dynamics that differ in

their parameters or even have different governing equations.

A further major step extending the scope of these concepts

was to proceed from pairs of dynamics33,34,36–38 to pairs of

networks of dynamics.39–42 In drive-response network pairs,

the node dynamics in each network are coupled to other

nodes within their own network. Moreover, nodes in the

driver network are coupled unidirectionally to nodes in the

response network. Pioneering work showed that identical

synchronization between all nodes in the driver network and

their counterpart nodes in the response network can be

attained between two identical networks39 and between net-

works that are identical except for the coupling topology

within networks.39,40 The term outer synchronization was

coined to distinguish such synchronization between networks

from inner synchronization within networks.39 Subsequent

work introduced further differences between the drive and

response networks. Apart from differing network topologies,

studies dealt with nodes that obeyed differing governing

equations41,42 including dynamics of differing dimensional-

ity.41 Furthermore, networks comprised by unequal numbers

of nodes for the drive and response were analyzed.42 While

in these cases identical synchronization is impossible, con-

trol schemes of the drive-response coupling still allow

achieving generalized synchronization.41,42

A priori it is not clear whether these findings carry over

to networks that individually show chimera states when there

is no coupling between them. Networks capable of showing

chimera states are often multi-stable, and chimera states can

switch between co-existing attractors. In finite-size networks

chimera states are known to eventually collapse to a fully

coherent state,43 and thus there might not be enough time to

reach a synchronized motion prior to this collapse.

Furthermore, across network coupling can suppress chimera

states.31,32 The input from the driver network might therefore

destabilize the chimera state in the response network, poten-

tially making generalized synchronization impossible. This

work shows that this does not have to be the case and that

generalized synchronization can be established, with the

response network continuing to exhibit chimera states. This

interplay between synchronization and persistent desynchroni-

zation within networks along with synchronization across net-

works does not require any elaborated control scheme but can

be achieved with a simple diffusive drive-response coupling.

II. METHODS

Consider that the mx-dimensional dynamics X drives the

my-dimensional dynamics Y via a unidirectional coupling of

strength e

_xðtÞ ¼ FðxðtÞÞ; (1)

_yðtÞ ¼ GðyðtÞ; xðtÞ; eÞ: (2)

Here, xðtÞ 2 Rmx and yðtÞ 2 Rmy are the dynamical variables

in the state spaces of X and Y. One says that generalized

synchronization is established if a transformation H : X
! Y exists such that yðtÞ ¼ HðxðtÞÞ.33,37,38 In general,

according to Eq. (2), the state of the response dynamics

y(t) is determined by the initial conditions x(t0) and y(t0). If

the coupling e induces generalized synchronization, the

existence of H implies that y(t) is fully determined by the

state of the driver dynamics x(t) and thereby by the initial

conditions x(t0) only. Accordingly, for generalized synchro-

nization y(t) is independent from its own initial conditions

y(t0). This observation leads to a straightforward way to

numerically test the generalized synchronization, the auxil-

iary system approach.37,38,42 One introduces a replica y0ðtÞ
of the response dynamics y(t), the so-called auxiliary

system _y0ðtÞ ¼ Gðy0ðtÞ; xðtÞ; eÞ and starts it with different

initial conditions y0ðt0Þ 6¼ yðt0Þ. Once generalized synchro-

nization is established between the drive and the two

identical responses, both the y0ðtÞ and y(t) are uniquely

determined by x(t). Therefore they must coincide, i.e., y0ðtÞ
¼ yðtÞ. Generalized synchronization between the drive and

response can therefore be detected by identical synchroni-

zation between the two identical response dynamics. The

detection of this identical synchronization is numerically

straightforward, while the direct detection of the existence

of H would be much more involved.

We use the auxiliary system approach to detect general-

ized synchronization between two rings of each N identical

phase oscillators. In the framework sketched above this cor-

responds to mx¼my¼N. Within each ring, the nodes are

coupled via a rectangular kernel with broadness 2b. The

phases /jðtÞ of the driving network U are governed by

_/j tð Þ ¼ x� 1

2b

Xjþb

k¼j�b

sin /j tð Þ � /k tð Þ þ aD

� �
: (3)

Here, x is the natural frequency, and aD is the phase lag

parameter of the driving network. Throughout this text,

j¼ 1, …, N, and according to the ring architecture, sums and

differences of oscillator indices are to be understood as mod-

ulo N.44 We use N¼ 50, b¼ 18, and aD ¼ 1.46. We took this

particular value of the phase lag parameter and the ratio

N/b� 0.35 from previous work,43,45 thereby avoiding the

risk of tuning these parameters with regard to our results.

At these parameters U shows chimera states, it segregates

into two distinct groups. In the high-coherence group all

nodes are locked to a narrow range of phases and jointly

oscillate at an almost constant phase velocity. All remaining

nodes form the low-coherence group. For these oscillators

the phases are dispersed and evolve irregularly. That means

the spatial symmetry of the network structure is broken by

its dynamics.

The response network W has the same core structure

like the driving network U. In addition to its connections

within W, however, each individual oscillator j receives a
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unidirectional coupling with strength e from oscillator j in U.

The phases of W are thus determined by

_wj tð Þ ¼ x� e sin wj tð Þ � /j tð Þ
� �

� 1

2b

Xjþb

k¼j�b

sin wj tð Þ � wk tð Þ þ aR

� �
: (4)

The natural frequency is the same for both networks and

can be set to x¼ 0. The symmetry between the driving and

response networks is only broken by using aR ¼ aD þDa.

The auxiliary response network W0 is a replica of W. It is

obtained from a second realization of Eq. (4), starting from

different initial conditions but driven by the same /jðtÞ. The

inter-network coupling between individual oscillators indu-

ces a correspondence between oscillators with the same indi-

ces across the networks. We quantify the instantaneous

differences between these oscillators by

d/jwj
tð Þ ¼ sin

wj tð Þ � /j tð Þ
2

� ������
�����; (5)

where j � j denotes the absolute value.46 One can show that

the expected value of Eq. (5) for phase differences drawn

at random from (0, 2p) is 2/p. The instantaneous difference

between the overall network dynamics is naturally defined

from the average difference between corresponding

oscillators

d/w tð Þ ¼ 1

N

XN

j¼1

d/jwj
tð Þ: (6)

The quantities d/jw
0
j
ðtÞ; d/w0 ðtÞ; dwjw

0
j
ðtÞ; dww0 ðtÞ are defined

analogously. Generalized synchronization between the drive

U and response W can be detected from dww0 ðtÞ ¼ 0, and iden-

tical synchronization is reflected in d/wðtÞ ¼ d/w0 ðtÞ ¼ 0.

Recall that the two response networks differ from the

driver network only in their phase lag parameter via aR

¼ aDþDa. We show results for identical (Da¼ 0), almost

identical networks (Da! 0) and substantially different

networks (0.01� D a � 0.08). Given their parameters, the

uncoupled response systems show no clear chimera states

for Da> 0.08. For almost identical networks we used Da
¼ 10�c, with c¼ 3, 4, …, 15. Even smaller differences

cannot be studied. This is because in the common IEEE

standard 754 for double precision,47 aDþDa becomes

numerically indistinguishable from aD for Da� 10�16. For

each Da, we varied the coupling strength within 0� e� 1.

We generated ten independent realizations of the

dynamics for each combination of Da and e. For each reali-

zation, we started the networks U, W, and W0 with random

initial phases uniformly distributed in (0, 2p). We integrated

the dynamics using a fourth-order Runge–Kutta scheme with

a fixed sampling time of dt¼ 0.01 for a total of 5� 106 sam-

pling times, corresponding to 5� 104 dimensionless time

units. During the first 104 time units, we kept the coupling

turned off (e¼ 0). The transient from random initial phases

to the formation of a chimera state in uncoupled networks

always took less than 103 time units. Accordingly, during the

first 104 time units, all three networks could settle to a chi-

mera state not being influenced by any other dynamics. At

104 time units the coupling was turned on for both U ! W
and U! W0. The time period of 4� 104 time units between

the onset of the coupling and the end of the simulation was

found to be sufficiently long to test reliably whether or not

the networks settled to a synchronized motion.

For our finite-size ring of phase oscillators, chimera

states can suddenly collapse to a fully coherent state43 in

which the phases of all nodes become locked and oscillate at

a constant phase velocity. Furthermore, after the initializa-

tion with random phases, the network can directly go to

this fully coherent state without ever forming a chimera

state. While chimera state collapses were studied in Refs. 24

and 43, we exclude them from the present study. Whenever

either of the networks went to the fully coherent state, the

realization was discarded and a new realization was started

with new random initial conditions. This had to be done only

occasionally, since at the parameters we use the mean life-

time of chimera states is on the order of 106 dimensionless

time units.24,43 Accordingly, this lifetime is much higher

than the time span of our simulation of 5� 104 dimension-

less time units.

III. RESULTS

We start by inspecting the network dynamics with the

coupling turned off e¼ 0 and Da¼ 0.05 [Figs. 1(a)–1(c)].

All networks are settled to a chimera state. The spatio-

temporal phase pattern [Fig. 1(a)] reveals the division of the

networks into their high- and low-coherence groups. The

high-coherence groups can be recognized by vertical stripes,

reflecting the joint oscillation of their nodes. In contrast,

the low-coherence groups show an irregular spatio-temporal

phase dynamics. Since the networks are uncoupled, there is

no correspondence between oscillators across networks and

their instantaneous differences d/jwj
ðtÞ; d/jw

0
j
ðtÞ, and dwjw

0
j
ðtÞ

are random [Fig. 1(b)]. Accordingly, d/wðtÞ and dww0 ðtÞ
fluctuate around their expected value for random phase

differences 2/p [Fig. 1(c)]. The quantity d/w0 ðtÞ behaves

analogously to d/wðtÞ and is not shown to allow for a better

distinction between d/wðtÞ and dww0 ðtÞ. The slow variation

in dww0 ðtÞ is caused by the drifting of the two complementary

groups45 in both networks resulting in the transient overlap

of their high coherence groups. A faster variation is found

for d/wðtÞ since the networks’ mean fields get alternately

in-phase and out-of-phase due to their distinct mean

frequencies. Both variations are also reflected in patterns in

Fig. 1(b).

We now use a coupling strength e¼ 0.2 and keep

Da¼ 0.05 [Figs. 1(d)–1(f)]. First we note that the positions

of the high-coherence groups of the response networks W
and W0 align to the one in the driver network U [Fig. 1(d)].

As a consequence, the spatio-temporal plots of these differ-

ences themselves resemble chimera states, in the sense of

being segregated in a regular and irregular region. While

d/jwj
ðtÞ; d/jw

0
j
ðtÞ, and dwjw

0
j
ðtÞ still cover their full range from

0 to 1 [Fig. 1(e)], the averaged measures d/wðtÞ and, in
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particular, dww0 ðtÞ drops to lower values directly after the

onset of the coupling [Fig. 1(f)]. However, none of them

reaches zero throughout the simulation. Hence, there is still

no synchronization between either pair of the networks.

This changes for a higher coupling strength e¼ 0.35,

with Da¼ 0.05 kept fixed [Figs. 1(g)–1(i)]. The differences

d/jwj
ðtÞ and d/jw

0
j
ðtÞ are lower on average but remain non-

zero. In contrast, dwjw
0
j
ðtÞ is zero across time and all oscilla-

tors [Fig. 1(h)], and therefore d/jwj
ðtÞ and d/jw

0
j
ðtÞ are identi-

cal. The profile of dww0 ðtÞ shows that the drop to zero takes

place shortly after the coupling is turned on [Fig. 1(i)]. In

contrast, d/wðtÞ again decreases with regard to the level prior

to the coupling, but it never takes zero values. This means

that the driven networks W and W0 are synchronized identi-

cally, but both remain different from the driver network U.

The coupling received from U causes both W and W0 to for-

get their mutually different initial conditions; their state is

fully determined by the state of U. Hence, there exists a

function H such that W ¼ W0 ¼ HðUÞ, and this function H is

not the identity. Accordingly, there is generalized synchroni-

zation, but not identical synchronization, between the driver

network and the response networks. Both W and W0 continue

to exhibit a chimera state despite being synchronized to U.

Since H is not the identity function, their chimera state is not

simply a replica of the one of U. Importantly, the time it

takes the response network to synchronize to the driver net-

work is short compared to the duration of our simulation

[Fig. 1(i)] and thereby even shorter as compared to the mean

lifetime of the chimera states of our network.

We proceed by calculating the temporal averages of

d/w0 ðtÞ and dww0 ðtÞ across the last 20 000 sampling times prior

to the end of the simulation. We denote them by hd/w0 ðtÞi and

hdww0 ðtÞi and show their dependence on e and Da in Fig. 2.

For zero couplings we find hd/w0 ðtÞi � hdww0 ðtÞi � 2=p, i.e.,

the value expected for independent networks. For nonzero

couplings, both hd/w0 ðtÞi and hdww0 ðtÞi decrease with increas-

ing e. In both cases this decrease becomes faster and more

pronounced for smaller Da values. However, as long as the

driver and response networks are nonidentical (Da> 0), only

hdww0 ðtÞi reaches zero at a sufficient coupling. That means

again that the two driven networks W and W0 synchronize

identically, but there is no identical synchronization between

the drive U and the response W. Hence, there is generalized

synchronization between U and W. Even if the systems

are almost identical with Da approaching the limit of the

numerical precision, hd/w0 ðtÞi remains nonzero. We did not

find a single realization for which Da> 0 but hd/w0 ðtÞi ¼ 0.

Identical synchronization between U and W was obtained

only for identical systems.

IV. DISCUSSION

In closing, we recall that at couplings which do not lead

to generalized synchronization, the high coherence group of

the response network aligns to the one of the driver network.

This by itself is worth noting and adds to recent work on the

control of chimeras. This control concerns the posi-

tions21,48–50 or relative size20 of the complementary groups

forming chimera states, the stabilization of chimera states or

their generation from the fully synchronous state.24,48,49,51,52

In particular, Bick and Martens envisioned that feedback

control used to align chimeras across networks could be

applied in hypothetical chimera computers.21 In our case no

feedback control is needed to achieve this alignment

FIG. 1. For zero coupling [e¼ 0 (a)–(c)] and weak coupling [e¼ 0.2 (d)–(f)] all three networks remain unsynchronized. For strong coupling [e¼ 0.35 (g)–(i)]

the two response networks show identical synchronization, reflecting generalized synchronization between the driver and response networks. Temporal evolu-

tion of phases (a), (d), and (g) and instantaneous differences between individual oscillators (b), (e), and (h) for the last 200 dimensionless time units prior to the

end of the simulation. The instantaneous differences between overall networks dynamics (c), (f), and (i) are shown for the entire duration of the simulation

[black: d/wðtÞ; green: dww0 ðtÞ]. The coupling was turned on at 10 000 dimensionless time units. In panel (i) the vertical dashed line marks the time when dww0 ðtÞ
becomes numerically indistinguishable from zero.
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synchronization. Our main findings on generalized synchro-

nization add an intriguing level to the chimera dynamics. We

show that a network can maintain its inner segregation into

synchronized and desynchronized domains and at the same

time synchronize as a whole to another network, without

simply replicating its dynamics. These theoretical findings

may have a practical impact. Despite the ample experimental

work,5–16 evidence for chimera states outside of such labora-

tory settings is still missing.3 Interacting networks are ubiq-

uitous in nature, and synchronization is used to transmit

information across networks. Therefore, while our setting is

more complex than chimera states in individual networks, it

might actually be the key in the search for real-world

chimeras.
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