

De Haan Bosch, Lucas Enric

Curs 2015-2016

Director: MARIO CERESA

GRAU EN ENGINYERIA INFORMATICA

Biomimetics & the 3D Printed Arm

Treball de Fi de Grau

GRAU EN ENGINYERIA EN

xxxxxxxxxxxx

BIOMIMETICS AND THE 3D PRINTED ARM

LUCAS ENRIC DE HAAN BOSCH

END OF DEGREE PROJECT

BACHELOR’S DEGREE IN COMPUTER SCIENCE

UPF POLYTECHNIC SCHOOL

YEAR 2015-2016

PROJECT DIRECTOR

MARIO CERESA

i

Dedication: To my family.

ii

iii

Acknowledgements

I want to thank my family for keeping me centred on my work, and my friends for

distracting me when it was needed.

iv

v

Summary

This project aims to produce a Biomimetic software program capable of controlling the

InMoov Robot’s Right Arm, using inputs from EMG sensors placed around the upper

forearm of its controller.

The InMoov robot, designed by Gael Langevin, is an Open Source robot available to all. It

is built with an Arduino board, 3D printed pieces, and various other commercially available

materials from any hardware store. The 3D Printed pieces’ schematics can be downloaded

from the website.

Along with the actual construction there are the sensors that are used to read and transmit

the body’s signals. The sensors used will be the Myo Sensor from Thalmic Labs, a

Canadian firm who developed this bracelet of eight EMG sensors that is placed around the

forearm. To combine both sides together this project will be exploring various robot

interface environments to govern the interaction between the sensor, the computer and the

robot (via Arduino).

Sumario

Este proyecto tiene como objetivo producir un programa de software biomimético capaz de

controlar el brazo derecho del robot InMoov, utilizando entradas de sensores EMG

localizados alrededor del antebrazo superior del usuario.

El robot InMoov, diseñado por Gael Langevin, es un robot ‘Open Source’ al alcance de

todos. Está construido a base de un Arduino, piezas de impresión 3D y varios otros

materiales que están disponibles en cualquier ferretería. Los planes de las piezas 3D se

pueden descargar desde el sitio web.

Además de la propia construcción también hay sensores que son utilizados para leer y

transmitir las señales del cuerpo. Estos sensores forman parte del brazalete sensor Myo, de

Laboratorios Thalmic, una compañía canadiense que ha desarrollado este brazalete con

ocho sensores EMG que se ponen alrededor del antebrazo. Para combinar ambos aspectos

del proyecto explorare las diferentes interfaces robóticas para manejar la interacción entre

el sensor, el ordenador y el robot (vía Arduino).

vi

vii

Prologue

The aim of this project is to create a robotic arm capable of imitating the movements of a

hand, in particular the movements of the right hand’s fingers. With this in mind the project

tutor promoted the use of Gael Langevin’s InMoov Open Source Robot as the hardware

base.

The InMoov Robot is an ongoing project to create the world’s first fully available open

source robot, mostly as an educational tool for aspiring roboticists. The pieces are freely

available for download on the InMoov website, only requiring access to a 3D Printer and

easy to find hardware materials. In fact, the only piece that may pose some difficulty to find

is the Arduino board used to control the robot’s movement, which can be ordered via the

InMoov website itself or via other means. In this case the univsersity provided an Arduino

board.

The InMoov Robotics Arm project had been previously explored as an end of degree study

in the 2014-2015 term by another group of students. They centred on the construction and

correct function of the robot. In that particular instance, there were two main focuses: the

viability of the InMoov as a robotics learning tool, and the use of the 3D Printer beyond the

creation of spirometers and the occasional test statue.

This 2015-2016 term, the aim was to go beyond what the previous year’s group had

achieved and create actual software projects involving the robot. Concentrating,

particularly, on constructing a new right arm using the experience from the previous

iteration to avoid some of the shortcomings, such as the quality of the printed pieces and

the material used as the internal ligaments to control the movements of the hand.

This writing’s software project was aimed towards achieving a Biomimetic program

capable of imitating the movement of a person’s hand via EMG sensors strapped to the

forearm. This would be significant as it would allow control of the robotic hand based on

the movement of the muscles in the forearm useful for prosthetic substitution. Another way

to centre the study would be in the remote manipulation of objects via said robotic hand.

This in particular would be achieved through the use of the Myo Sensor, a relatively new

tool developed by the Canadian company Thalmic Labs. The Myo Sensor is a wireless set

of EMG sensors that transmits data between itself and the computer and comes with an on

board set of ready-made gesture commands.

Finally, the most important piece of this project will be uniting both the Robot Arm and the

Sensor Data into a congruent project, for this the project has explored the two distinct

environments to act as the interface between the various pieces. These environments are

My Robot Lab and the Robot Operating System, both systems function in a similar

programming paradigm with a distributed program architecture where a particular project

or robot will have more nodes added to it that allow it to do various different things, but the

differences will be explored further on.

Combining all these different components into a single functioning entity will be the final

objective of this project, and the process which had been undertaken to do this will be

explained in the following text.

viii

ix

Index
0.1 Dedication .. i
0.2 Acknowledgements .. iii
0.3 Summary .. v
0.4 Prologue .. vii
0.5 Index .. ix
1. INTRODUCTION ... 1

1.1 Motivation ... 1
1.2 Objectives.. 1
1.3 Structure of the Document ... 2

2. STATE OF THE ART .. 3
2.1 Introduction ... 3
2.2 Robotic Prosthetics & Control .. 3
2.3 About InMoov .. 4
2.4 Hand Anatomy ... 5
2.5 Electromyography .. 9
2.6 EMG as a HCI Tool .. 10
2.7 Robot Operating System (ROS) .. 10

3. MATERIALS & METHODS .. 13
3.1. InMoov Robot Arm.. 13

3.1.1 Building the Arm .. 13
3.1.2 Mistakes and Errors .. 20

3.2 Myo Sensor & EMG ... 21
3.2.1 Processing the EMG signals with the Myo Armband ... 21

3.3 MyRobotLab & ROS .. 25
3.3.1 MyRobotLab ... 25
3.3.2 ROS within the Project .. 27
3.3.3 Arduino IDE & Code .. 30
3.3.4 Mistakes & Errors .. 35

4. RESULTS ... 36
4.1 Testing .. 36
4.2 Observations on the tests ... 37
4.3 Comparison to Other Systems .. 38

5. CONCLUSIONS ... 40
5.1 Discussion ... 40

5.1.1 Benefits & Impacts ... 40
5.1.2 Limitations .. 40
5.1.3 Possible Future Projects .. 41

5.2 InMoov Construction .. 42
5.3 Myo Armband & Software... 42
5.4 Final Product & Testing .. 42

Bibliography ... 44

x

1

1. INTRODUCTION

1.1 Motivation

The reasons for engaging in this project are varied, but from a personal point of view an

interest in robotics, and in more recent years the area of person-machine interaction has

helped in deciding on the focus of the project. This interest stems from a young age and has

grown with the years, with the creation of more varied robots in the news and the advent of

interactive robotic toys, such as the old Lego Mindstorms or the original electronic Lego

sets, which allowed for a surprising amount of inventiveness.

From this basis it was natural to begin to look into various topics relating to the area. In

particular, looking into the various optional subjects available in the UPF Computer

Engineering degree, with a special interest in the subjects related to the interaction between

person and machine or world and machine as well as the offered introductory course in

Robotics.1 With this background it was natural while looking through the list of available

end of degree projects to gravitate towards this particular project offered by Mario Ceresa.

Apart from these personal reasons there are other justifications for realizing this project; the

endeavour of creating a successful person-machine interface is interesting and worthwhile

investment. In learning more about this area of study and thanks to the nature of the

resources used, which are easy to replicate in an educational capacity, as well as to develop

more advanced projects. In the experience I’ve had, the use of the InMoov robot as a

learning aid is particularly notable, especially as an introductory large project to building,

programming and wiring up a successful robot. 2

As a final reason, there are a wide range of applications for a biomimetic software designed

to function with a 3D-printed robotic arm within the realm of science and medicine. In the

scientific community, a more evolved version of program could be used for remote

manipulation of materials for a relatively low price. A similar argument can be made for its

possibilities within the world of medicine with cheaper prosthetics and new ways for

substituting for loss of motor flexibility.

1.2 Objectives

This section will describe how far exactly this projects hopes to take itself using the tools

that are available.

The overall objective of this project is the following:

 To create a robotic arm and associated software project capable of reading a

sensor and copy the movements of a hand in an acceptable manner.

To begin with the project must be defined more clearly in the sense of what exactly will be

built physically, since this project partially consists of building a robot and thus the

limitations must be correctly expressed. The robot itself will consist of the right forearm

and right hand of the InMoov Robot as designed by Gael Langevin which will have the

capacity to extend and contract each finger independently of each other. As well as

allowing the wrist to have a movement range of 180º degrees, where 90º degrees is having

2

the hand perpendicular to the ground. All of these should be controllable from a

microcontroller capable of connecting to the computer.

With this part clear the more detailed objectives can define the exact capacities of the

program. The program must be capable of:

 Translating the data from a sensor, in particular, the data from the Myo

Armband Sensor.

 Transmit said data into the arm

 Have the arm move accordingly, with relatively little delay between the hand

movement and the robot movement.

When these objectives are completed, the evaluation and analysis of the results can begin,

discussing the limitations and possible improvements to the project in future.

1.3 Structure of the Document

This project has a practical basis, therefore there will be a thorough description of how it

was carried out. However, firstly this writing will explain the context in which the project is

being realized, such as the various works and previous projects related to the use of

prosthetics and EMG as a basis to control them, as well as a brief overview of the tools

used.

Once this is done the actual progress of the Project will be described as well as the various

tools starting from the arm, passing through the Myo, with a brief dip into the anatomical

structures involved in the detection of EMG signals. With both pieces of hardware covered

the actual program and programming environment will be described. In each of these

sections, a brief final overview of difficulties and errors during the experience will

conclude the section. The final two chapters will be on the testing and evaluation of the

final product and the entire project, respectively.

3

2. STATE OF THE ART

2.1 Introduction

This section will be going over the previous works and various other contextual

information not directly related to the involved pieces of hardware, which are explained in

their respective sections. In particular, it shall endeavour to explain how the idea of EMG

controlled prosthetics has evolved over time, starting with the two ideas separately and then

as a unit.

2.2 Robotic Prosthetics & Control 3 4

Robotic prosthetics have existed within the human mind for a long time, although for many

the idea of a robotic prosthetic fills them with ideas of sleek, silver futuristic arms from

various sci-fi shows or in some cases, of brass coloured contraptions of clockwork and

steam.

In the beginning, a prosthetic was for the most part a fairly basic affair, with the traditional

hook. As time passed, more advanced forms of prosthetics began to appear over time. But

one of the principal problems with prosthetics is the social stigma associated with them,

along with the added long period of adjustment. The stigma has been stymied in recent

years with more aesthetic designs beginning to arise, although the long period of therapy

and the price of the actual prosthetic have made them prohibitive or impossible for various

users. As such, amongst the first things that people have focused on when trying to improve

bionic arm prosthetics is their availability to their target users.

Hands and generalised upper body prosthetics are a much harder problem for the scientific

community. The use of hands in a person’s day to day life is critical for many and is a

unique and useful tool for humanity. As such, many of the issues can be summarised in

trying to recreate the hand in an effective way. The first problem that arises in this is the

capacity for the hand to achieve a certain amount of fine motor control. The most basic

systems consist in a series of cables attached to harness which take advantage of the

residual arms movements to achieve a facsimile of action. Achieving more complex

gestures without turning the prosthetic into a hindrance is difficult but various ideas have

appeared over the years especially with the discovery and development of new lighter

materials to work with. Some propose using hydraulics as it would offer more precision but

for the most part the main component to achieve fine motor control is finding an effective

way for the person to interact with the prosthetic.

Nowadays, this is reflected by a rising interest in organic to digital signal transformation.

Apart from EMG other ideas have occurred, such as the innervation of the muscles. The

remaining nerve endings of the muscles are redistributed within the arm’s stump creating

multiple pairs of muscle-nerve endings, each of these, with extensive therapy, can be

trained to move independently from one another to a certain degree, increasing the number

of possible control points for a new arm.

Another option for control is the direct implantation of intra-muscle EMG probes. This is

supported by the idea of “Biomechatronic design” in which the design of the prosthetic is

heavily inspired by the actual hand. This emphasis on a more natural design would support

4

a more complete integration between machine and human. It might even allow for the

passing of information in both directions, machine to human and vice-versa. This is

particularly important for the second most important factor in prosthetic limb design, the

capacity of sensation. For the most part in the main idea for allowing a limited capacity for

sensation is substituting the sense of touch with something else, for example a sound,

although with the emphasis on biomechatronic design the possibility of creating artificial

touch sensation has begun to take some important strides.

Finally, there has been some exploration into non-standard limb substitution to allow for a

greater amount of flexibility or to simplify costs in certain aspects. For example, the use of

a robotic tentacle instead of a hand, inspired by how manoeuvrable octopi are, allows for a

fairly wide variety of movements.

2.3 About InMoov

The InMoov Robot, designed by Gael Langevin a French sculptor, it is the world’s first 3D

Printed Open Source Robot. Begun in January of 2012 the InMoov robot began in it’s

infancy as part of a job commissioned to build a futuristic prosthetic, the job itself was not

successful, but Langevin decided to release the design to the Internet, at that time consisting

of just an arm. The prosthetic became a hit within the Internet and grew in popularity with

positive responses and ideas flowing in. 5

Thanks to the community’s response Langevin decided to continue his work. With the

input of the community, the InMoov Project moved on forwards with the intervention of

new people and the added feedback coming from various individuals and groups building

the robot in their own workshops.

The first iteration of the robotic hand was originally created for a photo commercial and

commissioned to be able to make most of the human hand movements. From this empty but

mobile model Langevin began to experiment using cables or fishing line to move the

fingers. This first version of the hand was also the sculptor’s first time working with

Arduino and trying to control the servos from it.

Working from the hand and the forearm, the first designs for a shoulder were crude but

effective, capable of sustaining the weight of the entire forearm and also positioning them

in various angles. Notable about this iteration was the use of pistons in the movement of the

arm, which later on would be substituted by high torque servos and printed gears.

Once a stable base to work with had been achieved, Langevin began to work on making the

hand’s movements more realistic by adding wrist movement. This was achieved via a servo

motor added to hands wrist thanks to a pair of gears that would turn the hand one way or

another. Of particular importance for this part was allowing the finger controlling cables to

pass through the wrist without it impeding the hand’s movements. This was achieved via a

set of cable guiding pieces placed at various intervals along the new wrist piece.

From this point forward, there was a major change in the design by having the entire

Arduino board removed from the forearm to make space for five individual servomotors to

control each finger individually. The Arduino at this point would be moved up into the

Arm’s biceps.

5

Langevin began to experiment with both voice recognition and object recognition to move

and command the InMoov robot, at this moment consisting of two arms, the shoulders and

a base to hold both. All of these improvements were achieved during a period of six months

during which the robot’s most iconic and most built section was first designed, it’s arms.

By October of the same year, the InMoov robot began to have more advanced control

characteristics with the collaboration of GroG (pseudonym) creator of the MyRobotLab, a

multi-faceted interface based in java and python, who helped Langevin create a voice

recognition software. Along with this the first iteration of the robot’s head was created

consisting of the robot’s eyes (with incorporated cameras), ears (with microphones) and a

basic faceplate. This new head would allow for limited neck and eye movement. Later on a

jaw and the rest of the head would be added to the existing structure.

During the following year, the InMoov robot would gain an upsurge of popularity

appearing at various robotics expositions and fairs across Europe along with those versions

produced by other people following Langevin’s designs. During this timem progressive

minor improvements were made along with the expansion of the torso and added aesthetic

plastic plates. By the fall of 2014, the complete InMoov robot would consist of two arms, a

head including its neck, the upper torso with shoulders and the lower torso with waist

movement. By Spring of 2015, the beginning of two legs would be added.

2.4 Hand Anatomy6
The hands are a very important and versatile portion of the human body, allowing humans

to manipulate the world around them in ways that no other species found outside the order

of the primates can. A single human hand consists of 34 muscles to move the fingers and

the thumb, 29 major and minor bones, 48 named nerves and 30 named arteries. That is only

a small overview of what the hand and forearm contain, that allow them to move the hand

with incredible precision.

The objective in this is to imitate a very limited range of these movements. For this it will

use, as mentioned previously, the Myo Armband, which uses 8 EMG sensors and an

accelerometer, but before that there must first be an understanding of what is happening

beneath the skin.

The hand by itself consists of 27 bones: the carpal bones (which articulate it with the wrist),

the metacarpals and the phalanges (proximal, closest to the body, intermediate and distal,

farthest from the body). The muscles of the hand can be divided into extrinsic, located on

the forearm, and intrinsic muscles, located within the hand.

 The extrinsic muscles are divided into flexors, on the underside of the forearm, and the

extensors, on the upper side of the forearm.

o The fingers have two flexors: the deep flexor and the superficial flexor. There

are three extensor muscles: for the index finger (extensor indicis), for the little

finger (extensor digiti minimi), and the extensor digitorum communis, which

handles the proximal phalanges.

o The thumb has a long and a short extensor (extensor pollicis longus, extensor

pollicis brevis), a long flexor (flexor pollicis longus) and a long abductor

(abductor pollicis longus). This last one allows the thumb to move away from

the centre of the palm.

6

 The intrinsic muscles are divided into different groups: the thenar muscles (thumb),

hypothenar (little finger) and the interossei muscles and lumbrical muscles.

(Figure 1: Forearm Muscles, Surface plane, anterior side.)7

7

(Figure 2: Forearm Muscles, Surface plane, anterior side.)8

The movement of the hand’s fingers are linked to major nerves: the median, the ulnar and

the radial nerves. The median nerve runs from the shoulder to the hand, in the forearm, the

median nerve innervates the muscles on the underside of the forearm (ventral, anterior)

which are the flexors, mentioned above. The median continues innervates the thenar

muscles (mentioned above) and the first two lumbrical muscles (index and middle fingers).

The ulnar nerve innervates the hypothenar region (side of the hand opposite the

thenar/thumb side), and the last two lumbrical muscles (the ring finger and pinkie finger) as

well as the palm. The radial nerve innervates the dorsal or posterior muscles, which are

extensors.

These explanations are heavily simplified but they give a relatively clear picture of the

main nerves being dealt with in this project, although note that each of these nerves also

serves to transmit sensory data.

8

(Figure 3: View of the areas each nerve handles, pink is radial, blue is ulnar and yellow is median) 9

All these nerves are built atop the muscles of the hand, most of the ones that are dealt with

are called skeletal muscles as they are in charge of moving the hand.

Finally, the wrist will be explained, which in this case is not really worked on very

extensively due to the limitations of the Myo Armband but it is still important to know

about.

The wrist is a complex joint that bridges the hand and the forearm. The joint is a collection

of multiple bones: the distal, farthest from the body, ends of the radius and the ulna, the 8

carpal bones (scaphpoid, lunate, triquetral, pisiform, trapezium, trapezoid, capitate and

hamate) and the proximal, closest to the body, portions of the 5 metacarpal bones.

There are three main movements permitted by the wrist. Palmar and dorsal flexion (tilting

towards the palm and towards the back of the hand, respectively). This movement takes

place through an oblique axis, which results in an ulnar deviation with palmar flexion and a

radial deviation with the dorsal flexion. Abduction (radial deviation, moving towards the

thumb) and aduction (ulnar deviation, moving towards the little finger), these movements

take place along the dorsopalmar axis. The rotation of the whole wrist, which includes

pronation and supination, occur with the help of the elbow joint (radioulnar joint).

9

In order to understand the movement of the wrist and the function of the muscles, one has

to consider the two main axis of the joint: the transversal axis (palmar and dorsal flexion)

which will divide the muscles into flexor muscles (anterior, palmar side) and extensors

(posterior). The sagittal axis will divide the muscles into lateral and medial muscles, which

allow for radial and ulnar deviation, respectively.

The muscles of the forearm allow for these complex movements of the wrist. There are

different muscles of the forearm will allow for the movement of the different parts of the

hand.

2.5 Electromyography10

Electromyography (EMG) is a diagnostics technique used to evaluate the electrical activity

of the muscles responsible for movement, also known as skeletal muscles. This is done by

detecting the electrical potential generated when the cells are activated, either by electricity

or neurological activity. As such, this tool is capable of detecting and diagnosing various

forms of neural or muscular problems, from involuntary muscular spasms that might be

invisible to the naked eye, to various forms of nerve damage. One of the most common

problem forms of nerve damage comes in the form of Carpal Tunnel Syndrome, where the

median nerve is compressed by the wrist, either by the bones or muscles, a fairly common

occurrence for those that work with computers.

For this form of diagnostic there exists two type of EMG sensors: intramuscular and

superficial. In the case of the Myo Armband, the sensors are superficial, for ease of use and

installation. Before delving into the Myo armbands functions, a brief word on how

intramuscular EMG works.

In the case of intramuscular EMG, an electrode probe must be inserted into the muscle

itself, this probe can be a fine wire inserted via needle into the muscle or pairs of electrodes

systematically inserted into the muscle. In medicine, the most common form of electrode

probe is normally tough enough to penetrate skin and is insulated from outside interference,

apart from the tip. In a typical EMG medical test, the electrode probe is inserted into the

relaxed muscle at various points to evaluate the electrical activity during insertion, called

the insertional activity, abnormalities in this case are reflected by unusual potential

fluctuations lasting more than 100ms, indicative of neural damage. Afterwards the potential

is registered for the relaxed muscle, followed by a repeat of the process on various points.

Once these baseline records are registered the test follows up by having the patient slowly

contract the muscle to see the electrical fluctuations are recorded and judged, then the

needle is moved out a bit and test is repeated, sometimes as many as 10 to 20 times per

location. For an exact study of the muscle in question this must be repeated at various

points along the muscle due to how the internal structure differs. Afterwards, the data is

collected, filtered for noise and evaluated by a physician for possible abnormalities.

In the case of the superficial EMG, the method is widely different and much easier to do.

The superficial EMG measures the muscle activity from atop the skin, generally by using

pairs of electrodes to measure the potential difference between two points, this potential is

generated by neural activity involved in the activation and movement of the muscles.

10

For more complete EMG recordings, it is typical to use complex arrays of multiple

electrodes working in tandem. In the case of the Myo Armband it has 8 EMG sensor with

incorporated electrodes, measuring the muscle activity of the forearm. The results are much

more limited in their capacity to be used as a diagnostic tool, but have the advantage of

being non-invasive and before the invention of the armband, involved shaving the arm and

covering it in conductive gel.

2.6 EMG as a HCI Tool11 12 13

The use of Electromyography (EMG) within the realm of medicine is well documented,

with the first record of the phenomenon being from 1666 by Italian physician Francesco

Redi, who noted how the contraction of the muscles of an electric eel generated a spark of

electricity. Later on, the same was observed for the contraction of muscles, and throughout

most of the 20th century the use of electricity to treat various disorders and begin to make

some leeway into its use as a diagnostic tool. It was not until the 1980s when true progress

was made thanks to the advances in electrode sensitivity, amplification of signals and easier

level of manufacture. From then on, the understanding of EMG signals has been growing

over time and some of that understanding came in the fact that EMG could theoretically

translate the analogue nature of hand movement into digital, a very important step in

Human to Machine interaction. From these first ideas various others began to form on how

these signals should be read and interpreted.

In the interpretation of EMG signals into a readable there are two principal schools of

thought: on the one hand there is the idea of directly interpreting the data into movement.

This system, while useful in the fact that it can be used for just about every conceivable

combination of muscle movements in the hand, has the added cost that training such a

system for each specific user would be copious and largely impractical due to the fact that

EMG signals can vary wildly from one user to the next. The other more popular school of

thought is that of teaching a system to recognize a limited set of gestures, this allows for a

much wider range of potential users as these types of models generally expound on the

probabilistic nature of the muscle signals being related to one movement or another.

This last school of thought, more commonly known as gesture recognition, has various

ideas on how the translation of EMG into a detectable gesture could be used for Human-

Computer interaction. For this various different types of algorithms were designed trying to

take advantage of different probabilistic models ranging from Gaussian bell curve models

to various forms of neural networks. All in all, each of these models have one thing in

common which is their interest in allowing mobility disabled people to be more capable of

interacting with the world around them.

2.7 Robot Operating System (ROS)

Robot Operating System or ROS is described as a collection of software frameworks used

in robotic software development. This is a fairly accurate summary of its main functions.

The ROS environment allows one to develop software for a multitude of various robots and

other devices, providing a standardised base from which various services are provided.

Amongst them are Hardware Abstraction, allowing the program to simulate or emulate

other system and their limitations, device control, such as driver and interfaces allowing for

some level of globalised common control of a myriad of devices, message-passing between

11

process, a very important aspect in the project since various programs working in tandem

are needed.

The ROS environment was first created as a response to the ongoing phenomenon where

various forms of software projects based on previous work or thesis had to remake the

entire program from scratch as the documentation and code were not published, was left

uncommented or was impossible to work with. In response to the ROS project was begun

as a standardised development environment by Stanford Artificial Intelligence Laboratory.

Its objective was to unify the, until then, fragmented approach towards the development of

AI development by incorporating the concepts of machine learning, vision, navigation,

planning, logic, reasoning and natural language processing. All these areas had been

previously explored within AI but often as separate projects within this larger area of study,

a tendency that was noted by the creators of ROS to have been the norm for the previous 30

years of study.

A ROS project functions in a distributed node design, with a central Core node handling the

communicating environment. A ROS project begins within a workspace, this workspace

contains the code and protocols to create and manage each individual node that is activated.

A node in ROS is the working unit for the environment, it is a self-contained program or

executable which functions within the ROS-core central node. Said nodes can be

implemented to do a great variety of actions, allowing them to interface with hardware,

make complicated operation, subscribe to data-streams, publish data into the

communication environment so that other nodes may subscribe to them, imitate network

and various other options. Generally speaking, a node is implemented by calling a ROS

package.

A ROS package is the container for the code and configuration for the building and

execution of nodes. These packages are installed within the ROS project workspace either

by creating a new package from scratch or downloading said package from somewhere

else. Distinguishing a package from other workspace folder is the fact that within there is a

file called package.xml which defined the configuration of the package, including the

available node programs, their dependencies, the build order and optionally the package

author information. Once a package is included within a workspace the package itself must

be built into the workspace so that ROS recognizes the nodes that is adds. The method for

this varies depending on which ROS-distribution is used, but in the case of ROS JADE the

command is ‘catkin_make’ followed by ‘catkin_make install’.

Once the package is installed the nodes within can be called with a simple command, which

varies depending on which version of the ROS environment is used, but these will only

function if the ROS-core Node is activated first.

ROS is designed to work with three different programming languages, C++, Python and

LISP, as such most packages are written with said programs sometimes even both C++ and

Python. This is possible thanks to the fact that a ROS environment workspace during

creation includes the installation of both the ‘ros.h’ and the ‘rospy’ dependencies. As such

the entire environment functions with these languages, although other languages can be

implemented into the ROS system.

12

The most important factor in the use of ROS within C++ and Python is its capacity to

publish and subscribe topics from various nodes. For a node to be able to do this it must

first contain an instantiated node handler object. The node handler is what turns a normal

executable into a ROS node. Once a node handler is instantiated it can be used to do

various actions. In the case of this project, the node handler is used to handle the

subscription and publication of topics, as explained previously.

In the case of publishing data towards a topic, a Publisher object must be defined and filled

in using the advertise function. The advertise function takes a string, as the name of the

topic, and an integer which defines the queue, how much data it saves up to publish

afterwards. With the publisher defined it can also optionally be defined as a Rate object

which manages how often a new piece of data is published on the topic. Once this is done, a

loop must be created which will run for as long as the ROS node is functioning (it can be

system interrupted). Within the loop, the entered data that will be published, transform it

into a suitable datatype and pass it into publisher via the publish method. Then the previous

Rate object will be called to manage the loop rate.

For subscriptions the basic setup is similar, defining a node handler, having a loop,

instantiating a ROS object. In this case the subscription object is instantiated with three

parameters, the name of the subscribed topic, the amount of data that will queue up to be

processed and most importantly the call back function. The call back function will execute

every time a new piece of data from the topic is received by the node, the function is

defined like a regular function but must take as a parameter the datatype that the topic is

publishing. The function then executes. To make sure that the subscription renews its data

and executes the call back function it can either call the spin() function, which will imitate

the loop from the publisher in one function, or include the function spinOnce() within an

existing loop to make the subscriber renew its data and execute the call back function once.

Both of these types of nodes can be implemented in both Python and C++, and can also be

combined into a single node, for example the ‘talker.py’ within the ‘imu_ros’ package.

13

3. MATERIALS & METHODS
The following figure describes the basic functioning of the actual system. Starting from the

armband, it communicates with the computer. Within the computer the ROS Environment

is running. Within this environment the myo-RawNode.py program communicates with the

Myo Armband’s systems and translates them into a series of published topics, ‘myo_gest’

and ‘myo_imu’. The latter is read by the talker.py program and is transformed into a

number between 0 to 180º corresponding to the armbands relative roll position and is

published as ‘roll’. The former, contains what gesture the Myo Armband has recognized.

The last node within the environment is serial_node.py which works as an interface

between the ROS environment and the Arduino.

The Arduino IDE is loaded with the corresponding code, seen later on in this chapter, and

then uploaded into the Arduino board. From here the Arduino board communicates with the

serial_node.py to read the afore mentioned topics. Using these topics, it controls the arm

servos which in turn control the movement in the arm. Unfortunately, due to issues with the

data format of the topic transmission the control of the wrist with the roll topic is flawed

and causes stability issues, thus the wrist servo is disconnected.

(Figure 4: System Control Diagram)

3.1 InMoov Robot Arm

In this chapterthe nature of the first piece of hardware that was used and worked on will be

explored; the InMoov Hand. Throughout this chapter the writing will endeavour to give a

contextual description of the InMoov Robot Project as well as how it’s construction went

for the participants.

To note this section of the project was done with fellow student Laia Mas de Xaxars, both

participants would be using the hand for their own individual software projects.

3.1.1 Building the Arm14

During this part of the project,t the work was done with the help of Laia Mas de Xaxars.

This was decided due to the fact that both participants expressed interest on the project

proposed by the project tutor, Mario Ceresa, thus each of them would work on the same

14

piece of hardware while realizing two distinct software projects later on, thus cutting down

the building time.

The InMoov is built almost exclusively from 3D printed pieces downloaded from the

InMoov website, as such most of the time was dedicated to printing these pieces. To

achieve this, the UPF gave us access to a WitBox 3D Printer on campus. Said printer was

used for several weeks to print out the pieces of the hand and forearm, with the occasional

failure due to errors during the printing process.

During this period, some experimentation was done with 3D printing, with the help of staff

member, Genis Caminal Villodres. He explained and recommended how to use the models

downloaded from the website and edit the printer settings to try and get a relatively smooth

but solidly printed piece.

The Printing process is as follows:

1. Download the desired piece from the InMoov website, do this for as many pieces as

desired. It was found that depending on the size of the pieces it could fit up to four

schematics but the ideal is two to three.

2. Once downloaded open the Cura 3D Printing Slicing Software by Ultimaker,

formatted for your chosen 3D printer, in this case a WitBox.

3. The program will show a virtualization of the printer’s tray.

4. Go to File and Load Model, a file browser will open, add your chosen schematics.

5. These schematics should automatically load evenly distributed on the tray

virtualization. Now edit the printing characteristics according to the InMoov

instructions by changing the shell thickness and the interior density, check any

warnings given by the program. This will affect the printing time accordingly.

6. Change the default temperature setting, ideally it was found that 210ºC was the

ideal temperature to avoid malformations and excess of filaments during the

printing process. This may vary with other printers.

7. Go to File and Save G-code, a file browser will open, save the G-code with a

recognizable name to the media that will connect to the printer.

8. Prepare the printer for printing by having the tray sprayed with commercial lacquer

or some other protective non-flammable spray.

9. Connect the chosen media to the printer and execute the G-code. Wait for the

printer to finish, this could take anywhere from half an hour to the majority of the

day.

10. Using a spatula or similar, separate the newly printed piece from the tray.

11. Repeat for as many pieces that are needed.

Once a significant portion of the necessary pieces were printed, the process of sanding and

polishing off any surface defects from the pieces must be done to assure a correct fit. This

was a critical step as some of the pieces have interior supports that must be removed to

allow the piece to properly form without collapsing on itself. Also due to errors in the

temperature control various pieces had to be sanded off excessively to remove a lot of

plastic filaments that form during the printing.

Once the pieces were corrected, the process of putting them together could begin. Starting

with the main structural pieces, the forearm casing. The forearm casing contains the

servomotors and the cables that would lead to each individual finger. It consists of two

15

pairs of pieces which are glued together into the back and front of the forearm, within one

of these the servomotor bed is attached via glue and screws, while the other functions as

both an aesthetic and structural cover. Also important is guiding the cables so that they all

exit via the non-hand side of the forearm.

(Figure 5: Servo bed from above, note the cable positioning)

(Figure 6: Servo-bed from the hand side of the forearm. Note the cable guide holes)

From this base the construction progressed towards the hand, leaving the wrist for later.

The hand consists of the palm, the back-hand plates, five sets of six fingers pieces, the palm

base of the pinkie and ring fingers and a series of plastic bolts. All of these pieces, besides

the plastic bolts, have a series of holes running through to allow the control cables to pass

through.

16

The first thing that had to be done to build the hand was assembling the finger piece sets,

the finger sets could be glued together to form sets of three pieces; the finger-tip, the mid-

finger and the finger base. Each of these has the space for two cables to pass through and be

capped off at the finger-tip.

Once the fingers were done assemblage could be moved to the palm, where the first

difficulties were found. The palm itself was a very solidly printed piece but it had the

problem of having three sets of loops through which bolts had to be driven through. As

such finding a way to make the loops larger without breaking them or the bolts proved

difficult. This fact brought up the construction time significantly and broke a lot of printed

bolts until the solution was found. Finally used a hand drill and some lubricant to ease the

bolts in the palm was finished. Once the bolts were attached the preliminary build could

begin, starting by attaching the fingers and wrist joint to the hand.

After checking that the hand itself could be assembled without trouble, the structure was

disassembled and prepared to install the cables. Before this could be done, the wrist had to

be finished. The wrist consists of three large pieces, two small gears and a servo-motor. The

wrist must be constructed before installing the cables as they must pass through it.

(Figure7: The top of the wrist with a gear)

17

(Figure 8: The bottom of the wrist, the servo-motor, the cable guide piece and a gear covered in lubricant)

Constructing both the bottom and top wrist pieces with their respective gear pieces the

construction can proceed on to the more complicated piece of the construction. The

Installation of the control cables, there are a total of five pairs of cables, each of them

associated to one finger and one servo motor. Each pair must pass through the two wrist

pieces (the guide and the larger of the gears), through the wrist joint, go through their

respective holes in the palm, go through their respective fingers and reach the finger tips

without getting twisted. Each of these begins from the servo on the servo bed and is put

through each of the aforementioned pieces.

Starting from the servo the cable must be first attached to the specially printed servo-rotors

to the end of each cable. These circular rotors hold one end of the cable and will later be

used to tighten the cable to allow for fluid and exact movement. The cable then is passed

along the guide holes on the servo bed and into the wrist, where it passes first through the

guide pieces and through one of the holes found on the larger of the two gears, pictured

previously. Having passed through the forearm it must go through one of the three holes

next to the wrist joint and into the corresponding finger. This must be done twice per finger

making sure that they do not get twisted. Once a finger has both cables added the servo-

rotor is attached to a servo-motor put at the 90º position, this will be described as the

neutral position, via the program provided by InMoov. Once the cables have been put

through all five fingers, the hand was reassembled with the bolts and the finger joints.

18

(Figure 9: Cables put through the wrist joint)

(Figure 10: The cables installed and the hand reconstructed)

19

(Figure 11: A Servo-rotor wheel fully tightened and attached to the servo-motor, all attached to the servo-

bed.)

Once the servo-rotor is attached to the motor, the rotors must be turned to 0 degrees and the

cable tightened. This has to be done until the finger is at its maximum position for that side,

then the same must be done 180 degrees. Afterwards the same is done for the other four

fingers. Afterward just test that the servos all work individually and then find a way to

power both the Arduino and the servos at the same time, this is done via a AA-size DC

battery power pack from an old battery powered toy.

(Figure 12: Finished Hand with tightened cables, note neutral position)

20

3.1.2 Mistakes and Errors

During the process of printing and building the hand there were several notable setbacks to

the project, most of them related to the process of installing the cable control system and

with the printed bolts.

The cable control system is a tricky installation involving most of the pieces found in the

arm, as such that complications should arise were inevitable, luckily by consulting with the

previous year’s project group the most obvious error of using an unsuitable cable material

was avoided. The previous group recommended the use fishing line instead of any other

threaded or easily snapping material. Unfortunately, even with the other groups warnings

there were still problems with the hand.

One particularly noteworthy problem was in capping off the cables once they passed

through the hand. They had to be tied up at the end of the fingertip without slipping or

letting it unravel. This proved complicated due to the size of the knots involved and the

somewhat brittle nature of the fingertips material.

Other issues found, was the fact that the instructions were rather unclear on how the

servomotors had to be positioned when the cable had to be tensed to their maximum and

minimum positions. This was eventually figured out through trial and error. A final

difficulty was the final tightening as the servo-rotors required the use of two screws to

tighten the cables and could if not done carefully cut the cable with their edge.

21

3.2 Myo Sensor & EMG15 16

In this chapter the writing will be explaining the physiology of the hand and the use of

EMG sensors in detecting its movements, along with the explanation for the tool being

used, the Myo Sensor by Thalmic Labs. Unlike the InMoov section from here onwards the

work is individual.

3.2.1 Processing the EMG signals with the Myo Armband
It is important to note that this project does not include the processing of the signal itself

within the code, beyond that of the accelerometer’s roll, instead the system is using the

Myo’s own incorporated system to identify which gestures are being detected. The Myo

armband’s firmware by itself, without computer support, can identify a series of pre-set

gestures via the 8 EMG sensors it carries, this data is compacted into a readable Bluetooth

signal for the computer. To get the raw EMG data, the option must be activated from the

computer itself manually as it does consume much more battery life. The EMG signal is

processed within the armband itself.

(Figure 13: Myo Armband System, not pictured Bluetooth USB Dongle)

From the activity detected by the EMG the extrapolation of what parts of the forearm’s

muscles are being detected to make the gesture recognitions can eb done. The Myo

armband’s instructions of use recommend putting the armband around the widest section of

the forearm and that it has a tight or snug fit around it.

Below are the raw EMG signals detected by the Myo Armband for the gestures, as well as

the default rest position, the only changes done to the data is the fact that it’s been

amplified for better visualization. Using the following graphs it is possible to see how the

EMG process the signal to some degree, mainly by comparing the comparative signals

between each of the sensors and from there extrapolate which gesture is the most probable

to create said signals.

22

(Figure 14: EMG signals during rest, first user)

(Figure 15: EMG signals during rest, second user)

The above graphs represent the Myo sensors output while it is at rest, as can be seen the

fluctuations are minimal and hardly noticeable. In the next one on the other hand the signals

are very distinct and clearly has an effect on all the sensors.

23

(Figure 16: EMG signals detected during fist gesture, first user)

(Figure 17: EMG signals detected during fist gesture, second user)

24

(Figure 18: EMG signals detected during extended fingers gesture, first user)

(Figure 19: EMG signals detected during extended fingers gesture, second user)

Unlike the previous fist diagram these sets of graphs have a more prolonged period of

action before detection, although half the sensors note a markedly reduced amount of

activity detected.

25

(Figure 20: EMG signals detected during wave in gesture, first user)

(Figure 21: EMG signals detected during wave in gesture, second user)

26

Similar in scope to the extended fingers gesture it can be remarked that the signals intensity

are the reverses of each other, approximately in the cases of the wave in and wave out

gestures.

(Figure 22: EMG signals detected during wave out gesture, first user)

(Figure 23: EMG signals detected during wave out gesture, first user)

27

(Figure 24: EMG signals detected during double tap gesture, first user)

(Figure 25: EMG signals detected during double tap gesture, second user)

28

Finally, the double tap gesture is notable due to the difficulty in its detection, due to its

similarity to the rest position and only having two peaks more or less uniformly distributed

throughout all the sensors.

3.3 MyRobotLab & ROS

In this section of the project the writing will be talking about the robotic interface that was

used to transmit and control the InMoov arm. In particular, the paper will be talking about

the interface offered by the InMoov creator, the MyRobotLab and the one recommended by

the project tutor, the Robot OS (ROS). Along with this it will also explain about the control

mechanisms put into action within the Arduino board used to control the InMoov servo

movements.

For the project itself it was decided that the use of the ROS was preferable due to the more

comprehensive program and interface distribution as well as the clarity of their tutorials and

wikis.

3.3.1 MyRobotLab

The MyRobotLab interface is the environment proposed by the creator of the InMoov to

control it and develop programs on. The MyRobotLab itself was initially created by user

‘GroG’ (Pseudonym, unknown actual name), it is a Java service based framework

specialised for Robotics and various forms of machine control. This includes various other

robots along with the InMoov, along with various tools to interface with various plugins

and programs. These tools range speech recognition, machine vision/image processing,

servo control, motor control, graphic interfaces and various form of microcontroller

communication services (such as Arduino, Raspberry Pi and others).

The MyRobotLab controls robots and other systems via either being installed on the robot

itself. In the case that it carries an on-board computer the MRL (MyRobotLab) can be

installed straight on. Otherwise it can be controlled via Microcontrollers allowing

communication by cable, radio as found in most RC toys, Infrared, Bluetooth or wirelessly

via TCP/IP.

In the case of Arduino, instead of just loading an action code to the Arduino it turns it into a

pure I/O machine between the computer and the robot. Said code to implement this can be

converted to other microcontrollers fairly easily, and is already done for several others.

Other capacities are the capacity for two computers with MRL installed with different

services implemented can connect to each other, showing what services are being used on

both sides. This lets various computers be they on-board or just controllers to work in

tandem with one another.

Finally, there is an ongoing project from the creator (GroG) to implement a future purely

graphic interface allowing for simple plug and control use of the interface, although more

complex projects would require programming said behaviour. It would also allow web page

applets to be created.

29

 Turning back to the topic of the InMoov robot, within the list of various tools there already

existed a control packet for the InMoov. In fact, there are various different service packets

for the distinct sections of the robot, from the arms to the head, torso, and arms. These also

came with the software example which allows for voice command control of the InMoov,

allowing for the robot to be commanded to make various pre-programmed gestures. From

the simple start of this service the system can control the various servos to set them at

certain angles in near real-time. This first requires loading the I/O Arduino code into the

InMoov board but it is very useful in making the first adjustments in controlling the robot.

Along with the InMoov services, their also came an in-program Myo device listener, but

unfortunately this system had issues interfacing with the current Myo firmware and thus

was never successfully used or tested within the project.

Other tools that could be used by the interface was a graphic interface that allows one to see

the various connections between the different services and see what exactly is happening

between the various pieces, customising it to some degree.

30

3.3.2 ROS within the Project

To achieve the project’s objectives, the first task is to research what tools were available

within the ROS system. In particular, the main issues that were had with ROS were three-

fold, how to access the information from the Myo sensor from the ROS environment, how

to interpret the information of the Myo sensor and how to transmit the data so that the arm

may move.

The first of these problems was examined starting from the Myo website which offered a

Myo app market, which had various examples of Myo used to interface with various

devices. In particular, exploring the use of the Myo Arduino app and several others that

involved the communication with various robots. Unfortunately, most of these applets

functioned separate from ROS or were impossible to execute outside of a Visual Studio

environment making them untenable for the project. In the end, an exploration was taken on

the ROS community to see if there had been any previous work with the Myo and ROS. In

this case there was more successful finding the ‘ros_myo’ package, which implemented a

ROS node which takes the raw EMG data from the Myo and publishes four ros-topics:

 ‘myo_arm’, which publishes two unsigned 8-Byte integers, the first of which says

on which arm the armband is on and the second says if the direction of the x-axis

(used in positioning) is facing the elbow or wrist.

 ‘myo_emg’, the eight raw EMG data values stored within an array of 16-Byte

integers. This data can be used to directly interpret the data of Myo from ROS. (In

this project this was not done due to time constraints, but the process was studied

previously in Chapter 2.)

 ‘myo_gest’, an unsigned 8-byte integer which identifies a series of predetermined

gestures from the armband, in particular: the rest position, making a fist, waving

inwards, waving outwards and tapping the thumb with another finger (the middle

finger or the pinkie work best).

 ‘myo_imu’, this topic publishes an Inertial Measurement Unit as defined by the

ROS sensor_msgs dependency. This contains the orientation, angular velocity and

linear acceleration that the armband is undergoing.

Using the ‘ros_myo’ package the system could find the gestures that a hand was doing, as

well as approximate the current roll position and transform it into an angle for the wrist

movement. Thus solving both the first and second problem.

Although in the case of the wrist movement a new had to be made own package called

‘imu_ros’. This package implemented a node (in python) which would subscribe to the

‘myo_imu’ topic, read the IMU object, extract the quaternion data. Using Euler

transformation to get an angle between 0 and 180, it then publishes a new topic called ‘roll’

which contains said number.

31

(Figure 26: talker.py code from ‘imu_ros’ package)

Now it comes to the third and most important problem which is communication with the

arm. As mentioned previously the InMoov arm is controlled via Arduino, which in turn

controls the servo motors, which govern the movement of the fingers and wrist. To do this

the various options must be explored, again. Principally the serial Arduino communication

that exists within the normal Arduino code, but this was insufficient for what the system

required since it lacked a good way to interface with the ROS node system, but it served

well to know what was needed. Once again, looking through the ROS community for

previous work with Arduino Serial communication and the ‘rosserial’ package was found.

32

The package consists of two parts; the ROS package itself to be installed within the

workspace and the ‘rosserial’ extension to be installed within the Arduino environment.

Once the new package was installed and functioning the control code could be uploaded nto

the arm’s Arduino and begin to test out the movement of the servos and the general

sturdiness of the arm. The Arduino’s particularities will be mentioned further on.

Once all three pieces of the packages were installed and found to be functioning the system

could begin to make the arm move according to what the Myo armband said. To do this the

following had to be done.

1. Open a new terminal

2. Use the sourcing code to allow ROS commands to run from terminal.

source ~/biomime/devel/setup.bash

3. Use the following command to start the ros core node, note: this is an obligatory

step as it sets up the ROS environment on which the rest of the nodes work.

roscore

4. Open a new terminal, use the previous source command from step 2.

5. Activate the Myo armband sensor reading node by typing the following command:

rosrun ros_myo myo-rawNode.py

6. Open a new terminal, use the source command again.

7. Activate the IMU reader and translator to govern the wrist movement with the

following command.

rosrun imu_ros talker.py

8. Open the Arduino IDE and connect the arm’s Arduino to the computer, compile and

upload the file: ‘arduinoInMoovControl.ino’. Note the port where the arm is

connected.

9. Open a new terminal, use the source command again.

10. Activate the ROS to Arduino communication serial by using the following

command, where [SerialPORT] should be the port that has been noted previously.

rosrun rosserial_python serial_node.py [SerialPORT]

11. Everything should be active and the arm should move, check the position of the

Myo armband and do a wave out motion until it vibrates, (this indicates that it has

synchronized.)

33

3.3.3 Arduino IDE & Code

As mentioned in the previous section the Arduino is a necessary to control the hand as it

handles the movement of the servo motors which cause the hand to move. To be able to

interact with the Board it first has to be connected to the computer and interface with it.

This is done with the Arduino IDE which is used to configure the connection between

board and computer; define the communication port, load example code, update firmware,

etc.

Once the Arduino IDE is installed on the computer (by downloading it from the Arduino

website) the system can begin to work on the Arduino and the physical movement of the

arm. At first, to check the correct functioning of the arm (and at the time of construction)

the code from the InMoov website is used to make the servo-motors move, as well as test

out the viability of the different gestures that the arm will be doing.17

With the movement and initial setup fully completed the actual Myo to InMoov biomimetic

interaction can be looked into. The code uploaded in this case includes the previous one’s

gesture functions along with the code to read two topics from the ROS environment

‘myo_gest’ and ‘roll’. Respectively, it will extract the gesture recognized by the ‘myo-

rawNode.py’ node from the ‘ros_myo’ package for the former and in the latter case it will

get the roll translated into an angle between 0 and 180 from the talker.py from the

‘imu_ros’ package. This is possible thanks to the afore mentioned rosserial package

installed on the Arduino IDE, as well as the different ‘msgs’ or message types that are

associated with said package, they define the different datatype formats that a topic can be

published in. In the case of the Arduino, for every type of message that will be received by

the Arduino via the ‘rosserial’, the corresponding header for that datatype must be included

to allow it to know what it’s working with.

Once the message headers are added to the existing code along with the ROS header, the

node handler must be added along with its initialization code. The node handler object is

defined in the same way as the servo objects from before only in this case the object comes

from the ROS header and must be defined before all other objects after the headers.

Afterwards within the setup function the node handler must be initialized.

With the preliminary setup done the subscriptions can be defined. To define the

subscriptions, the Subscription object must be called from the ROS header, along with the

datatype that they will be operating within the definition. The object constructor function

must contain thus, the topic to which the Arduino will listen to and the function it must call

when it receives new data from said topic. In this case the topics will call ‘messageCb’ for

the ‘myo_gest’ topic and ‘wristCb’ for the ‘roll’ topic. Each of these will operate with the

data it has received.

In the case of ‘messageCb’ it will take the gesture identified and execute the associated

gesture function. In the case of the ‘wristCb’ it will receive the angle and put the wrist

servo at that angle. With both of these functions defined the subscriptions only need to be

defined within the node handler within the setup function and then afterwards said node

handler will spin once to read for said topics using the ‘spinOnce()’ function in the loop

function.

34

(Figure 27: myoInMoovControl.ino, part 1)

35

(Figure 28: myoInMoovControl.ino, part 2)

36

(Figure 29: myoInMoovControl.ino, part 3)

With the entire section of software related to the Arduino explained, the physical aspects

related to the Arduino board itself can be explained. In this project the Arduino board used

was the Arduino Mega 2560. The connection between the Arduino board and the computer

is done via a USB port, which provides both the upload code and the initial electricity to

power the Arduino. This is the basic part that would allow us to power one servo without

burning out the board, but in this project six servos must be powered and processed by the

37

board as such an external power source was needed. In this case an old DC battery rack

from an old toy was used to power the Arduino and the servos, through a breadboard.

The breadboard is a long board of input connectors which in this case, using it to power the

servos, bypassing the Arduino circuit to avoid burning it out. As such the connection is

structured in the following way. Each servo has three cables, a control cable, a positive

cable and a negative cable. The control cable (yellow) is attached to a control pin on the

Arduino board. The positive and negative cables (red and black respectively) are attached

to the breadboard along the sides, where there’s two columns of connectors, one with a +

and the other with a -. This is done for each servo motor and in the end the distribution

looks like this.

(Figure 30: Photo of InMoov arm connected to Arduino Board, with all cable connections and power source.)

As pictured the power source is attached to the breadboard and thus the entire setup is

powered up. An important note is that the Arduino board must also be connected to the

breadboard via a grounding cable so as to also avoid burning out either board.

38

3.3.4 Mistakes & Errors

This particular area is slightly more difficult to evaluate the errors or mistakes due to the

more subjective nature of programming, but there were some areas that were clearly more

difficult to get right.

Beginning with the ROS environment there were several issues when it came to using the

environment and setting up the executable files for each package, in particular there were

several pathing issues. When calling a node function the command ‘rosrun’ must be used

with it. Sometimes the command would search for the executables within the wrong section

of the environment and changing the path proved complicated or prone to self-editing

(changes were overwritten almost immediately). To solve this, the system’s environment

had to be remade from the beginning and the packages had to be copied over from the old

environment.

Within the Arduino IDE, the problems arose due to problems with the data format of the

topics subscribed as well as the fact that the Arduino was subscribing to two topics, ‘roll’

and ‘myo_gest’. There were problems with the transmission of data through the rosserial

node.

On the case of the hardware itself, the main issues arose with the amount of cables involved

and how easy it was to confuse which cable went into the correct PIN. As well as the usual

issues of strange behaviour when there was low battery.

39

4. RESULTS

In this section the writing shall be testing the final resulting product by testing the program

and arm on various users and trying to see how well the system performs in completing the

objectives. This will allow the quantification of how well the actual system performs as

well as make observations on how well various users take to using it.

4.1 Testing

In this section the testing of the system will describe with the aim of checking the correct

functioning of the entire product as such. This will do double duty as a stress test for the

robot and a functionality test allowing for any defect were to be. The system was tested on

10 users. Each user would have to realize the gesture put forward and then the resulting

gesture would be noted down, thus checking how well the system translated the movement

to the arm.

The following instructions will describe the testing methodology for the project.

Aim:

 To find the Systems effectiveness in recognizing the gestures given.

Material required:

 The InMoov Arm with functioning computer connection

 The Biomimetic software project

 A set of 25 flashcards or similar containing 5 sets of 5 cards each with one of the

recognized gestures.

The test will function as follows:

1. The user must put on the Myo Armband and allow the program to synchronize.

2. The tester must shuffle the set of cards randomly.

3. The tester extract one card from the top of the deck of cards and show it to the

user, the tester must take note of what gesture it is.

4. The user must make the gesture on the card once from a relaxed state and then

return to a relaxed state.

5. Repeat until there are no more cards left in the deck.

Another possible test was the evaluation of the EMG signals themselves but after carefully

looking through the Thalmic labs raw EMG display system it can be concluded that this test

would not serve any productive function at this point in time, due to the fact that the EMG

signals vary wildly depending on the user.

40

4.2 Observations on the tests

The test was run ten times on ten different subjects. Several users were noted to have very

thin forearms which was in the past noted to affect some of the possible results of the Myo

Armband. Using this data, it can be seen how well each type of gesture has been recognized

as well as the associated standard deviation and error, visualized in the following bar

graphs.

(Graph 1: Average Success rate for gesture recognition, per gesture)

Nº of Fists
Nº of

Extended
fingers

Nº of Wave ins
Nºof Wave

Out
Nº of Double

Taps

Average Success per Gesture 96,00% 82,00% 70,00% 66,00% 6,00%

Standard Deviation 8,43% 11,35% 27,08% 32,73% 18,97%

Standard Error 2,67% 3,59% 8,56% 10,35% 6,00%

-20,00%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

41

(Graph 2: Average Success rate for Gesture Recognition, per user)

From these results it can be said that the gesture recognition software works on average, at

a rate of 64% chance of correctly making the correct gesture on the arm, with a standard

deviation of 34,47% and an error of 15,41%, this results are not ideal and are heavily biased

due to the difficulty in performing the double tap gesture in a detectable manner. This is

further corroborated by the fact that the double tap gesture was only recognized for one

user, Eloi, who had previous experience with the Myo Armband.

These results could be further improved on by a more in-depth study on how the actual

EMG is processed by the Myo Armband, but sadly the system functions as a black box on

the actual recognition software it uses.

4.3 Comparison to Other Systems

This section will give a brief overview of how the system performs to other similar projects

and biomimetic systems. In particular, centred on those that use the same tools, the Myo

Armband, ROS, Arduino and InMoov robot. In the last case it is possible to observe the

various experiments that Gael Langevin, the creator of the InMoov, has realized to further

tests the robot’s capabilities, as well as his endeavours towards a new version of the robot.

Gael Langevin’s new experimental robot consists currently of a completetly redesigned

hand with a self-contained set of controllers (they are contained within the hand itself

instead of the forearm like in the version used in this project), as well as a more lifelike and

ergonomic design. Unlike the design in the project this system uses the MyRobotLab

environment and runs the InMoov packets found within. From there it interfaces similarly

with an Arduino Board (an Arduino Nano), which is in fact incorporated within the

Laia Neus Isaac Marta Irene Miquel Arnau Jordi Eloi Guillem

Average success per user 62,40% 76,80% 86,40% 86,40% 86,40% 76,80% 86,40% 62,40% 79,20% 62,40%

Standard Deviation 38,99% 43,36% 41,47% 41,47% 41,47% 38,47% 41,47% 41,47% 22,80% 48,17%

Standard Error 17,44% 19,39% 18,55% 18,55% 18,55% 17,20% 18,55% 18,55% 10,20% 21,54%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

42

structure. Like the current system it is also controlled by the Myo Armband from Thalmic

Labs. Although the current amount of gestures possible with the MyRobotLab Myo

interface is slightly more limited and reliant on more overt gesture to generate a response,

the author notes that it has shown some promise and has proposed an idea to incorporate a

Bluetooth component to the new InMoov hand design to allow for more direct

communication between both systems. To date there hasn’t been more reports in this new

system’s development, with the last news coming from February 2015.18 Reportedly there

had been some issues with the latency between the Myo and the Hand’s movement.19

Notably the new InMoov Hand 2 is a purely prosthetic type project instead of the more

educational design of the original, hence the more compact control system.

One of the earliest projects realized with the InMoov robot, and largely used as an example

in using the MyRobotLab based control of the robot is a program that allows the InMoov to

move according to voice commands. The MyRobotLab system contains a microphone

system and also loads a controller code into the Arduino and depending on the voice

commands it can recreate a number of different custom gestures or movements. The

limitations to this system exist mainly in the form of the systems latency and the fact that it

can only do pre-programmed actions, similar to this projects’ system, as well as the natural

problems in audio recognition programs (noise, distortion etc.).

43

5. CONCLUSIONS

In this section will evaluate the final resulting product of the project as a whole, to see if the

objectives that was set was accomplished. As such it will be evaluating each separate piece

of the project independently and then as a whole. Also the difficulties and errors that

occurred during will be explored.

5.1 Discussion

In this section the benefits, impacts and future perspectives that are possible with the

current project as well as the current limitations (beyond those already explained) that may

be improved on later on. This section exists as an expose on different possible ideas on

future expansions of the current project.

5.1.1 Benefits & Impacts

This project has provided a fairly positive experience in the use of a large variety of tools

and design paradigms when it came to creating project. The mixture of such different tools

like the ROS environment or in the case of hardware, the use of 3D printed pieces and the

printer was a very notable novelty. Other possible benefits that this project con give, not

related to the project experience, is the following.

The exploration of the Myo Armband as a possible project piece has been explored and its

viability of it interfacing with other robots has been explored, at the very least in an

introductory capacity. This means that more projects could be introduced into the end of

degree ideas relating to the world of Machine-Person Interaction.

The use of the InMoov as an end of degree project has been proved before, but it’s function

within the ROS environment was not documented or was not available to work with. Using

the InMoov within the ROS environment is a great step forward towards its use as an

education tool and a great testbed for different projects relating to it.

Finally, the benefits it offers for the medical community pertaining to the use as cheap, easy

to repair prosthesis for those in need of them. Pairing said prosthesis with a Myo armband

would also allow for a wide variety of possible solutions to mobility problems. For

example, in the case of the loss of the forearm downwards the program could be adapted to

mirror the movements of the opposite remaining arm.

5.1.2 Limitations

This section will describe in what ways the scope of the project has limited the project’s

capacities and how they could be remedied. Most of these limitations relate to the actual

hardware that the system was working on. The InMoov hand and forearm offers a great

base to begin to build a complex robot, but it has some very notable limits when it comes to

functionality. The first problem is that it’s just the hand and forearm without including the

elbow, limiting the possible movements to just this area.

Without a way to move the entire forearm its capacity to interact with the surrounding

world is limited to where it can move it physically and even then its grip is fairly loose due

44

to the lack of any form of grip pads. To both of these issues the InMoov website offers

specific solutions. To help with its interaction problem it can either attach the hand to a

stand of some kind or build the rest of the arm, at least up to the shoulder. Having studied

the instructions of these section its complexity is not that much greater than the hand and

forearm’s. Albeit the pieces are notably larger and their printing must be made carefully so

as to avoid imperfections that may cause structural deficiencies, since most of the weight

will be held by this structure. To the problem of the grip the option is to gain access to a

high friction grip pads, cut them into appropriately sized pieces and attach them to the palm

side of the hand and fingers.

Other limitations come from the actual Myo Armband. The Myo Armband was designed by

Thalmic Labs to be capable of processing the EMG signals from the arm and translate them

into gestures directly from within the armband. Unfortunately, the methods by which this is

done has not been released to the project, but it does allow the option for accessing the raw

EMG data of the eight sensor with an additional energy cost. With these limitations I’ve

had to cut the project back to only use the existing gestures that are recognized by the

armband, but given more time and a more profound understanding of EMG patterns it

could be possible to create a more comprehensive database of recognizable gestures or

directly turning the EMG into finger movements, but in the latter case its viability for use

with more users might be more complex or impossible. This is due to the fact that the Myo

Armband learns to recognize gestures by using a wide variety of different user data-

sources, thus allowing it to process data for a large variety of arm types, mainly by having a

user-data report opt-in policy for the armband. If a new gesture was wanted the same would

have to be done for said gesture, with a large amount of tests and permutations of the same

movement.

A final limitation the hand had is that the test while useful for a preliminary report on the

effectiveness of the system, does have some problems in some areas. For one the bias on

the recognition of the double tap gesture: Consistently the gesture failed to be registered

correctly on the system, except for one case. This user reportedly had previous experience

with the Myo Armband and found it much simpler to make said gesture. As such future

tests could be implemented with a preliminary training of the user for the Myo, a basic

rundown of the gestures and how to successfully make them. Also a larger pool of users

could remedy some of the deviation and error found on the testing.

5.1.3 Possible Future Projects

Working from the above limitations and benefits, possible future projects stemming from

this can be devised. The most obvious one is expanding on the robot’s build, by adding

shoulders and maybe the other arm. With these new structures more developed projects

could be arranged for example using two Myo Armbands simultaneously along with the

included accelerometers could allow for a limited movement of the arms.

Other possible projects that could be explored with a basis on this one could be ones

involving the use of the Myo Armband. They are a rather interesting and easy to use

medical tool with a wide range of possibilities, also they are relatively cheap to purchase

compared to other similar sensors.

45

5.2 InMoov Construction

The construction of the robotic arm went rather well but there were some rather notable

problems in time management. The time it took for the pieces to be printed did slow down

the progress done in the building, as well as the subsequent sanding and preparation of

them before the build, but for the most part there was little trouble during the process.

The main issues that were found were due to the nature of several joints and tubes that

formed important moving parts. These multiple problems due to the fact that the plastic

used expands afterwards and thus fitting both of these types of pieces together was difficult

to do without breaking them. In the end a solution was found by using a handheld drill to

make the holes larger. Other issues arose but they had more to do with the quality of the

screws used in fixating the pieces together and were promptly substituted.

The final problem arose in the cables used to move the fingers. It was a very finicky

process of carefully threading the fishing line through multiple holes and affixing it to the

ends of the fingers via knots. After several tries the best method to do this was found to be

threading the fishing line from the fingers towards the servos, instead of the other way

around.

5.3 Myo Armband & Software

Experimentation with the Myo armband was rather simple due to the ease of installation of

the base software, making it interface with the computer was decidedly a more complex

endeavour. ROS does not have an official release of a EMG sensing package, only a user

created interface specific for the armband, which is what was used in this project. Before

finding it, however, various experiments were realized with various ideas using visual

studio or other tools. In the end the package proved to be most useful. Other issues that

arose are the transformation of the roll via the new package, where consulting some basic

trigonometry formulas was needed to achieve the transformation of the roll into degrees.

5.4 Final Product & Testing

The final complete product resulted in a person to machine interface capable of recognizing

several types of hand movements and imitate them to a certain degree with the connected

robot. This was thoroughly tested with the five recognizable gestures of the Myo Armband,

problems did arise when it tried to move its wrist at the same time, the problem is believed

to be caused by low battery and difference in latency between processing the Gestures and

the Wrist angle movements. As a whole it was found that the final product reaches the

objectives it set out to do and that there is still room for improvement, but it’s capacity to

recognize gestures and reproduce said gestures on the robot arm has been proved.

To conclude it is good to revisit the original objective of the project as relayed at the start:

 To create a robotic arm and associated software project capable of reading a

sensor and copy the movements of a hand in an acceptable manner.

This is the generalised objective to encompass the entire project and it has been completed

to the fullest extent of the project. The robot arm has been created, the software project has

46

been proven to sense and translate the gestures of the hand into the robotic arm. By testing

the robot arm with various types of users the results prove that it has been able to see that

it’s capable of sensing gestures fairly reliably, except for one gesture, the double tap

gesture, which is difficult to do even for the base Myo program.

47

Bibliography

1 Mataríc, Maja J. (2007). The Robotics Primer. Cambridge, Massachusetts; The MIT Press

2 Gael Langevin. (2016). InMoov | open-source 3D printed life-size robot. Accessed on

12/June/2016, http://inmoov.fr/

3 R.G.E. Clement, K.E. Bugler, C.W. Oliver. (2011). Bionic prosthetic hands: A review of

present technology and future aspirations. The Surgeon, 9, 336-340.

4Todd A. Kuiken, Guanglin Li, Blair A. Lock, Robert D. Lipschutz, Laura A. Miller, Kathy

A. Stubblefield, Kevin B. Englehart. (2009). Targeted Muscle Reinnervation for Real-time

Myoelectric Control of Multifunction Artificial Arms. JAMA, February 11, 2009—Vol

301, No. 6.

5 Gael Langevin. (2012-2016). InMoov. Accessed on 12/June/2016,

http://inmoov.blogspot.com

6 Shünke, Michael. Schulte, F.J. (2011). PROMETHEUS. TEXTO Y ATLAS DE

ANATOMIA. TOMO 1: ANATOMIA GENERAL Y APARATO LOCOMOTOR (2ª ED.). (pg.

332-347) España, Madrid: Editorial Medica panamerican.

7 Netter, Frank H. (2015). Atlas de anatomía humana [Recurs electrònic] / Frank H. Netter.

(pg. 430) Barcelona: Elsevier

8 Netter, Frank H. (2015). Atlas de anatomía humana [Recurs electrònic] / Frank H. Netter.

(pg. 432) Barcelona: Elsevier

9 Netter, Frank H. (2015). Atlas de anatomía humana [Recurs electrònic] / Frank H. Netter.

(pg. 459) Barcelona: Elsevier

10 Todd A. Kuiken, Guanglin Li, Blair A. Lock, Robert D. Lipschutz, Laura A. Miller,

Kathy A. Stubblefield, Kevin B. Englehart. (2009). Targeted Muscle Reinnervation for

Real-time Myoelectric Control of Multifunction Artificial Arms. JAMA, February 11,

2009—Vol 301, No. 6.

11 Md. Rezwanul Ahsan, Muhammad Ibrahimy, Othman O. Khalifa. (2009). EMG Signal

Classification for Human Computer-Interaction A Review. European Journal of Scientific

Research, January, 2009.

12 Sebastian Bitzer. Patrick van der Smagt (2006). Learning EMG control of a robotic

hand: Towards Active Prostheses. Proceedings of the 2006 IEEE International Conference

on Robotics and Automation, May, 2006. Orlando, Florida.

13 George N. Saridis, Thomas P. Gootee (1982). EMG Pattern Analysis and classification

for a Prosthetic Arm. IEEE Transactions on Biomedical Engineering, Vol, BME-29, no. 6,

June 1982

14 Gael Langevin. (2013). Hand and Forearm. Accessed on 12/June/2016,

http://inmoov.fr/hand-and-forarm/

http://inmoov.fr/
http://inmoov.blogspot.com/
http://inmoov.fr/hand-and-forarm/

48

15 Thalmic Labs Inc. (2013-2016). Myo™. Accessed on 12/June/2016,

https://www.myo.com/

16 Thalmic Labs Inc. (2014-2016). Myo™Developer. Accessed on 12/June/2016,

https://developer.thalmic.com/

17 Gael Langevin. (2013). Sketch servo zero, rest, max, 90. Accessed on 12/June/2016,

http://inmoov.fr/sketch-servo-zero-rest-max/

18 Gael Langevin. (2012-2016). InMoov. Accessed on 05/July/2016,

http://inmoov.blogspot.com.es/2015/02/january-with-lots-of-progress.html

19 Gael Langevin. (2015). InMoov 2 Hand + Myo Thalmic first control 3D printed

prosthesis. Accessed on 05/July/2016, Published 10/February/2015

https://www.youtube.com/watch?v=WNhZKFth9EM

https://www.myo.com/
https://developer.thalmic.com/
http://inmoov.fr/sketch-servo-zero-rest-max/
http://inmoov.blogspot.com.es/2015/02/january-with-lots-of-progress.html
https://www.youtube.com/watch?v=WNhZKFth9EM

