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Abstract

Background: Chimeric transcripts are commonly defined as transcripts linking two or more different genes in the
genome, and can be explained by various biological mechanisms such as genomic rearrangement, read-through or
trans-splicing, but also by technical or biological artefacts. Several studies have shown their importance in cancer, cell
pluripotency and motility. Many programs have recently been developed to identify chimeras from Illumina RNA-seq
data (mostly fusion genes in cancer). However outputs of different programs on the same dataset can be widely
inconsistent, and tend to include many false positives. Other issues relate to simulated datasets restricted to fusion
genes, real datasets with limited numbers of validated cases, result inconsistencies between simulated and real
datasets, and gene rather than junction level assessment.

Results: Here we present ChimPipe, a modular and easy-to-use method to reliably identify fusion genes and
transcription-induced chimeras from paired-end Illumina RNA-seq data. We have also produced realistic simulated
datasets for three different read lengths, and enhanced two gold-standard cancer datasets by associating exact
junction points to validated gene fusions. Benchmarking ChimPipe together with four other state-of-the-art tools on
this data showed ChimPipe to be the top program at identifying exact junction coordinates for both kinds of datasets,
and the one showing the best trade-off between sensitivity and precision. Applied to 106 ENCODE human RNA-seq
datasets, ChimPipe identified 137 high confidence chimeras connecting the protein coding sequence of their parent
genes. In subsequent experiments, three out of four predicted chimeras, two of which recurrently expressed in a large
majority of the samples, could be validated. Cloning and sequencing of the three cases revealed several new chimeric
transcript structures, 3 of which with the potential to encode a chimeric protein for which we hypothesized a new
role. Applying ChimPipe to human and mouse ENCODE RNA-seq data led to the identification of 131 recurrent
chimeras common to both species, and therefore potentially conserved.

Conclusions: ChimPipe combines discordant paired-end reads and split-reads to detect any kind of chimeras,
including those originating from polymerase read-through, and shows an excellent trade-off between sensitivity and
precision. The chimeras found by ChimPipe can be validated in-vitro with high accuracy.
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Background
Chimeric transcripts or chimeras are transcripts whose
sequence originates from two or more different genes in
the genome [1], and can be explained by several different
biological mechanisms at the genomic or the transcrip-
tional level. For its historical relation to cancer, the most
well known mechanism is genomic rearrangement. This
process brings two genes that are far apart in the germline
genome close to each other, and in the same direction,
in the cancer genome. The fusion gene thus created can
have a deleterious role, either as a protein or as a tran-
script [1, 2]. Aside from chimeras that are important for
their known role in cancer, there are other functional
transcriptional mechanisms that can also explain the for-
mation of chimeras in normal or tumour cells: polymerase
read-through and trans-splicing [1].
As indicated by its name, polymerase read-through

occurs when the polymerase reads through one gene into
the next, therefore creating a chimera between two adja-
cent genes. Initially thought to be an exception, this mech-
anism was found to be widespread in mammals when
large collections of ESTs (Expressed Sequence Tags) and
cDNAs (complementary DNA) became available and were
mapped to the genome [3–5], and when the ENCODE
(ENCyclopedia Of DNA Elements) consortium system-
atically surveyed the transcriptome associated to anno-
tated protein coding genes [6–9]. Read-throughs occur
between annotated exons of adjacent genes, preferen-
tially between the penultimate exon of the upstream (5’)
gene and the second exon of the downstream (3’) gene
[3], resulting in new proteins containing domains from
the two parent genes, therefore increasing the diversity
of a species proteome [1, 3, 4, 10, 11]. They are also
largely conserved across vertebrates [11, 12], and could
be a way to regulate the expression of one or both parent
genes [12].
Trans-splicing is a splicing mechanism that, unlike the

well known cis-splicing, occurs between two different
pre-messenger RNA (pre-mRNA) molecules close in the
three dimensional (3D) space of the nucleus and thought
to belong to the same ‘transcription factory’. If the two
pre-mRNAs come from two different genes, a transcrip-
tional chimera is generated [1, 13–16]. The two connected
genes can therefore be located distally from each other
in the genome, however the chimeric junction must have
canonical splice sites. Initially thought to be restricted
to trypanosomatidae, this mechanism has gained inter-
est in human research since several studies have found
chimeras between genes on different chromosomes or
strands, without evidence of underlying genomic rear-
rangements [13, 14, 16]. One hypothesis is that such
trans-spliced transcripts occurring in normal cells would
trigger a genomic rearrangement, which will in turn pro-
duce a higher quantity of these transcripts (although

through a different mechanism), eventually leading to
tumorigenesis [13].
But chimeras can also be non-functional, either because

they are biological noise from the transcriptional machin-
ery, or because they are technical artefacts from Reverse
Transcriptase polymerase chain reaction (RT-PCR) based
assays. A biological source of artefactual chimeras is poly-
merase transcriptional slippage through short homolo-
gous sequences (SHS), where the polymerase switches
template (or pre-mRNA), in the presence of a short
sequence with high similarity to the one it is currently
transcribing, in another gene close in the 3D space
[17]. This mechanism is reminiscent of the reverse tran-
scriptase (RT) template switching, which can also pro-
duce artefactual chimeras in RT-PCR- based experiments
[18, 19]. Note that in both cases the chimeric junctions
will harbor SHS and non canonical splice sites, however
those are not sufficient conditions for a chimera to be
an artefact, since RNAse protection assay experiments,
which are not RT-PCR-based, have confirmed a number
of them [9].
The importance of chimeras lies in their ability to cre-

ate novel transcripts and proteins, therefore potentially
altering the phenotype of cells, individuals or groups of
individuals [1, 3, 4, 10, 20]. In the field of cancer, some
fusion genes are cancer driver events and can be used
as biomarkers or even lead to effective treatment - for
instance BCR-ABL1 in chronic myeloid leukemia (CML)
[21] or TMPRSS2-ERG in prostate cancer [22, 23]. How-
ever not all cancer related chimeras result from genomic
rearrangements, since some of them can originate from
read-through [24–28], and this mechanism could also be
the most prevalent one for certain cancer types, such
as CLL [29]. Although chimeras’ function have mostly
been investigated in relation to cancer, chimeras can also
be functionally important in other fields. For instance a
chimera produced by trans-splicing, TsRMST, has been
shown to interact with pluripotency related transcrip-
tion factors to control cells’ pluripotency [15], and the
knock-down of two widely expressed chimeras, CTBS-
GNG5 and CTNNBIP1-CLSTN1, in non-neoplastic cell
lines, resulted in significant reduction in cell growth and
motility [30].
These events were previously detected by RT-PCR-

based methods such as EST alignment to the genome
[5, 12], or RACEarray followed by RT-PCR, cloning and
sequencing [7, 9], however RNA-seq has been shown
to be both a more precise and a more sensitive detec-
tion method [24]. A growing number of bioinformatic
methods have been created to detect chimeras amongst
such datasets [31–39].
These state-of-the art programs usually include 3 steps:

(1) mapping and filtering for chimeric reads, (2) chimeric
junction detection, and (3) chimera assembly and filtering
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[40]. They rely heavily on an underlying mapper to map
the reads to the genome (and optionally to the tran-
scriptome), and make use of two kinds of reads for
chimera detection: (1) discordant paired-end (PE) reads,
i.e. paired-end reads where the two mates map in a way
that is not consistent with annotated gene structure, e.g.
on different chromosomes, and (2) ‘split’ reads, i.e. reads
that do not map contiguously to the genome but have to
be split or fragmented into several blocks (usually two)
to map to the genome (Fig. 1). In addition, the use of
one or two kinds of reads for chimeric junction detec-
tion allows one to define 3 classes of approaches: (1)
the whole paired-end approach, (2) the direct fragmen-
tation approach, and (3) the paired-end + fragmentation
approach [41].
Benchmarking of these programs has shown a high false

positive rate and a poor intersection between their out-
puts on the same dataset [42, 43]. On the other hand
these programs are usually developed to detect fusion
genes in human cancer, and are therefore not always able
to detect read-through events and to work on species
other than human. In addition, these programs are not
always able to predict multiple isoforms per gene pair,
and more importantly to provide base pair resolution,
preventing their downstream functional validation. To
address these problems we present ChimPipe, a modu-
lar method which uses the paired-end + fragmentation
approach and a set of stringent filters, to reliably detect
both transcriptional chimeras and fusion genes from Illu-
mina paired-end RNA-seq data from both normal and
tumor samples, in any eukaryotic species with a genome
and an annotation available. The advantage of the paired-
end + fragmentation approach is the complementarity
of the two types of reads used, with the first ones rela-
tively easy to find but only providing a rough indication
of the connected regions, and the second ones more error
prone but providing the exact chimeric junction coordi-
nates. The biggest difference betweenChimPipe and other

tools of the field is its independent generation of split-
reads and discordant paired-end reads. Programs using
the paired-end + fragmentation approach usually first find
discordant paired-end reads, then make an exon-exon
junction database from them, and finally map the yet
unmapped reads to this database. They are therefore not
able to find split-reads that do not have associated dis-
cordant PE reads. Contrary to these programs, ChimPipe
finds split-reads and discordant paired-end reads inde-
pendently, defines chimeric junctions based on the first
ones (known to be more sensitive) and uses the second
ones as a way to reduce the false positive rate (although
their use is not compulsory). The second biggest dif-
ference with other tools is the fact that ChimPipe uses
mapping tools (GEMtools RNA-seq pipeline and GEM
RNA mapper) that guarantee an exhaustive mapping
search given the input parameters, which again allows
for a higher initial sensitivity. Our combination of fil-
ters may also be more complete than for other tools
since it is based on chimera expression, gene annota-
tion, mitochondrial read removal, and homology between
connected genes. In practice it allows ChimPipe’s false
positive rate to be rather low, but not at the expense of
sensitivity. ChimPipe represents an advance inmethods to
quickly and reliably detect chimeric transcripts amongst
the rapidly increasing volume of short read transcriptome
data.

Methods, results and discussion
In this section, we first present the ChimPipe method,
then the ChimPipe benchmark, then the RT-PCR vali-
dation of ChimPipe predicted chimeras, and finally the
application of ChimPipe to the search for common recur-
rent chimeras between human and mouse.

The ChimPipe method
The ChimPipe method is depicted in Fig. 2 and includes 4
consecutive steps:

Fig. 1 Two types of RNA-seq reads for chimera detection. This picture shows a chimeric transcript (bottom) made from exons of two genes, A and B,
depicted in blue and red respectively (top). This chimeric transcript is supported by two types of reads: a split-read and a discordant paired-end read,
that we depict aligned both on the genome (middle-top) and on the transcriptome (middle-bottom). The chimeric junction position on the
transcriptome is highlighted by a yellow star both in the split-read and in the chimeric transcript
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Fig. 2 The ChimPipe method. a RNA-seq reads are first mapped to the genome and transcriptome using the GEMtools RNA-seq pipeline, and the
reads that do not map this way are passed to the GEM RNA-mapper to get reads that split map to different chromosomes or strands. b The split-
reads from these two mapping steps are then gathered and passed on to the ChimSplicemodule which derives consensus junctions associated to
their expression calculated as the number of staggered split-reads supporting them. The ChimPE module can then associate each chimeric junction
found by ChimSplice to their discordant PE reads, splitting them into the ones consistent and the ones inconsistent with the junction. c The ChimFilter
module then applies a series of filters to the chimeric junctions obtained until this point in order to discard false positives, leading to d a set of reliable
chimeric junctions to which it associates several pieces of information such as a category (readthrough, intrachromosomal, inverted, interstand, or
interchromosomal), and the supporting evidence in terms of number of staggered split-reads and number of consistent PE reads, among others

(i) Exhaustive paired-end and split read mapping with
GEM. The paired-end reads are initially mapped in 3
ways with the GEMtools RNA-seq pipeline (http://
gemtools.github.io/docs/rna_pipeline.html): to the

genome, to the transcriptome and de novo. Firstly,
the reads are mapped to the genome with GEM [44],
allowing up to 4% mismatches and indels. Secondly,
the reads are mapped to the transcriptome with the

http://gemtools.github.io/docs/rna_pipeline.html
http://gemtools.github.io/docs/rna_pipeline.html
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same mapping parameters, the transcriptome being
composed of all biologically valid combinations of
exons within each gene (therefore also including
annotated splice junctions). This transcriptome is
built from the gene annotation and allows mapping
of reads spanning exon to exon junctions that would
not match to the reference genome due to the
presence of introns. Thirdly, the reads are
split-mapped to the genome with the GEM RNA
mapper (http://algorithms.cnag.cat/wiki/The_GEM_
library) to identify de novo splice junctions from
unannotated transcripts. More precisely, reads are
split into two segments of at least 15 base pair (bp)
length, which are mapped independently to the
genome. To reduce the amount of false positive
mappings, only split-mappings with less than 4%
mismatches or indels and harbouring extended
consensus splice sites are further considered (GT+AG,
GC+AG, ATATC+A. and GTATC+AT, with .meaning
any nucleotide). To increase the mapping sensitivity,
a second attempt is made by eroding a maximum of
two bp towards the ends of each segment if no result
is found. At this stage, segments can map to distant
positions, but not to different chromosomes,
different strands or reverse order. After that, genome,
transcriptome and de novo mappings are merged
and paired and those pairs mapping to more than 10
positions are set as unmapped. Finally, unmapped
reads are remapped in a second de novo mapping
with the GEM split-mapper (or RNA mapper). Reads
are split-mapped to identify bona fide splice
junctions connecting loci on different chromosomes,
different strands and reverse order. Since this read
split-mapping step is likely to generate more false
positives than the initial ’normal’ read mapping step
done with GEMtools, we decided to do the former in
a more stringent way than the latter by not
attempting to trim and remap the reads that did not
map with the default parameters. Note that we chose
GEM-based methods for mapping because these
programs guarantee that all possible mappings of a
read are reported given the input parameters.

(ii) ChimSplice. Read mapping is followed by candidate
chimeric splice junction detection from split-
mappings. The split-mapped reads are organized into
clusters of reads spanning the same splice junction.
The donor and acceptor splice sites are considered
when building the clusters to guarantee that all of
them are in the 5’ to 3’ orientation. This is very
important to determine which are the upstream and
downstream parent genes, and is particularly useful
in case of unstranded RNA-seq data. Once the
clusters have been generated, ChimSplice produces a
consensus splice junction defined by the exact

junction coordinates, the upstream coordinates of the
upstream cluster, and the downstream coordinates of
the downstream cluster. Additionally, each
consensus junction is associated with the number of
supporting split-reads and staggered split-reads. The
term staggered split-reads refers to those reads
spanning the same junction but mapping to different
external positions and, as a consequence, producing a
characteristic ladder-like pattern of reads across the
junction (see Fig. 2b). This pattern has been suggested
to be specific to genuine chimeric transcripts, while
false positives usually lack it [45]. This information is
recorded and can be used to distinguish real from
artefactual chimeras. Then, the consensus junctions
are annotated. Each junction is compared to the
annotated exons in order to determine its two parent
genes. In case a junction side overlaps several exons
from different genes, the one with a higher overlap is
selected. Finally, splice junctions connecting exons
from two different genes (chimeric junctions) are
selected for downstream analyses.

(iii) ChimPE. Once chimeric junction candidates have
been found using ChimSplice, ChimPE looks for
further paired-end support for them (Fig. 2b).
Genome, transcriptome and de novo mappings are
filtered to select only those PE reads with both mates
mapped. Those PE reads are compared to annotated
exons in the same way as described in (ii), and reads
with both mates mapping to exons from different
genes are identified (discordant PE reads). For each
chimeric junction, discordant PE reads connecting
their parent genes are then selected and their relative
mapping position to the chimeric junction is
evaluated. This is done in order to know whether the
discordant PE reads support the existence of the
chimeric junction (consistent PE) or if, on the other
hand, they are incompatible with the chimeric
junction (inconsistent PE). Inconsistent PE can be
due to different reasons: they may come from a
different chimeric RNA isoform than the one
highlighted by ChimSplice, or from PE read
misalignment, but they could also indicate a
ChimSplice false positive. Finally, each chimeric
junction is associated to the number of consistent
and inconsistent PE reads, which can be used in the
downstream ChimFilter filtering module to filter out
artefactual chimeras.

(iv) ChimFilter. Chimeric junction candidates are filtered
to produce a final set of more reliable chimeras.
Firstly, based on the principle that false positives due
to read misalignment would not be supported by
both sources of evidence, ChimPipe requires a
candidate chimera to be supported by both
split-reads and consistent PE reads. Two different

http://algorithms.cnag.cat/wiki/The_GEM_library
http://algorithms.cnag.cat/wiki/The_GEM_library
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support based filtering schemes are applied
depending on whether the chimeric junction involves
annotated or novel splice sites. By default, chimeric
junctions with annotated splice sites must be
supported by at least one consistent PE read, one
split-read and three total (consistent PE + split)
reads, while those with novel splice sites have to be
supported by at least three consistent PE reads, three
split-reads and six total reads. Secondly, chimeric
junctions involving genes either located on the
mitochondrial chromosome or pseudogenic are
filtered out as likely false positives due to mapping
errors. Finally, chimeras between genes that share
high exonic sequence similarity (at least 30 bp and
90% sequence identity) are also filtered out since their
supporting reads are more prone to mis-alignments
(Fig. 2c). All these filtering parameters can be tuned.

The main ChimPipe output is a tabulated text file
with header including the set of chimeric junctions
after filtering, in which the first column is the junc-
tion identifier in ChimPipe format (donchr_donpos
_donstr:accchr_accpos_accstr), and the other
34 columns are valuable pieces of information about it,
such as its support in terms of number of staggered split-
reads and consistent discordant paired-end reads, its type
(readthrough (resp. intrachromosomal) if the two parts are
on the same chromosome, same strand, expected genomic
order and closer (resp. more distant) than 100 kilobase
(kb), inverted if the two parts are on the same chro-
mosome, same strand and unexpected genomic order,
interstrand if the two parts are on the same chromo-
some but different strands and interchromosomal if the
two parts are on different chromosomes), its two parent
genes, its length and the list of its supporting reads (see
Additional file 1: Table S1 for more details). ChimPipe
also outputs a file with chimeric junctions before the
filtering, and a file with the junctions that have been
filtered out with information about the reason for this
filtering (see ChimPipe user’s manual at http://chimpipe.
readthedocs.io/en/latest/manual.html for more informa-
tion). It has to be noted that ChimPipe can also start from
already aligned reads (bam file) provided they include evi-
dence of intra-chromosomal chimeric junctions, and that
ChimPipe does not only output chimeric junctions but
also a standard bam file (from step (i) of the pipeline) that
can be used for more standard RNA-seq analyses such as
differential gene expression or transcript reconstruction.
Finally ChimPipe has been designed to require minimal
information about the PE RNA-seq dataset on which it
is run, since it guesses the Illumina quality offset, the
strandedness, and the mate configuration in case of direc-
tional data. Note that ChimPipe’s documentation includes
a tutorial and an example.

Benchmark on simulated and cancer data
We evaluated ChimPipe and other state-of-the-art
chimera detection tools, using two kinds of evaluation
data: simulated data that we generated and real data from
melanoma and breast cancer. The main advantages of
simulated data are the inclusion of all kinds of chimeras
(not only fusion genes) and the control over the chimeras
expected to be found, therefore allowing a precise eval-
uation of the programs. Its main drawback, however, is
the uncertainty about whether it captures the underlying
complexity of real data. The drawback of real data, on the
other hand, is its very limited number of validated cases,
and the fact that most of them are fusion genes. Indeed
neither does it allow to assess the programs’ precision, nor
to extrapolate their results to non cancer data.
We developed ChimSim, a program to simulate

chimeric transcripts from a gene annotation, a genome,
and numbers of read-through, intra-chromosomal,
inverted, interstrand and interchromosomal chimeric
transcripts to create from the gene annotation (see
Additional data section and Additional file 1: Supple-
mentary methods). Using ChimSim on the the Gencode
v19 protein-coding genes [46] and the hg19 genome, we
generated a simulated dataset of 250 chimeric transcripts
homogeneously distributed in the 5 chimera classes (50
from each class) (Additional file 2). Knowing that about
60% of transcripts from protein coding (pc) and long
non-coding RNA (lncRNA) genes are usually expressed
in a given condition [47], we sampled 60% of transcripts
from Gencode v19 pc and lncRNA gene transcripts,
totalling 101,961 transcripts (Additional file 2). Knowing
that when a chimera is expressed, its parent genes are
often also expressed [10], we added the parent transcripts
of the 250 chimeras to the sampled transcripts, totalling
102,149 non chimeric transcripts (Additional file 2).
The 102,399 transcripts resulting from the union of the

250 chimeric transcripts and the 102,149 non-chimeric
transcripts, were then passed on to the art_illumina
program of the ART suite (version 2.3.7, [48]), to simu-
late Illumina non directional paired-end RNA-seq reads
of 3 different lengths: 50bp, 76bp and 101bp, called
PE50, PE76 and PE101 respectively. Several parame-
ters were used in addition to read length and paired-
endness, to make our simulated chimera data closer to
real RNA-seq data, including insert size mean and stan-
dard deviation, read coverage and sequencing quality pro-
file (see Additional file 1: Supplementary methods for
details). The sequencing quality profile was learnt from
real Illumina PE data of the same read length using the
art_profiler_illumina program of the ART suite
(version 2.3.7, Additional file 2 and Additional file 1:
Supplementary methods). Using these parameters, ART
generated 32.3, 21.1 and 15.7 million PE reads for the
PE50, PE76 and PE101 respectively (Additional file 2 and

http://chimpipe.readthedocs.io/en/latest/manual.html
http://chimpipe.readthedocs.io/en/latest/manual.html
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Additional file 1: Supplementary methods). The bench-
mark was done for each read length separately.
For real data with experimentally validated chimeras,

we used two previously published datasets: the
leukemia/melanoma cancer study from Berger et al. ([25],
that we call the Berger set), and the breast cancer study
from Edgren et al. ([45], that we call the Edgren set). The
Berger set was composed of the K562 chronic myeloge-
nous leukemia cell line associated to two different insert
size ranges, 300-400 bp and 400-600 bp, of the 501Mel
melanoma cell line and of 5 melanoma patient-derived
short-term cultures, and came with 14 RT-PCR validated
fusion genes (Table 1). The Edgren set was composed of
4 breast cancer cell lines (of which two were associated
to two different median insert sizes, 100bp and 200bp),
and came with 27 RT-PCR validated fusion genes. For
the Edgren set we used an additional 13 fusion genes that
were found and RT-PCR-validated by a re-analysis of the
Edgren et al. data by Kangaspeska et al. [49], totalling 40
fusion genes (Table 1). The benchmark was done for each
library separately, but is provided for the pool of libraries
of each dataset, for clarity reasons. Since the chimeras
specifically targeted by the Berger and the Edgren studies
were only fusion genes, the read-through events were
removed from all programs’ predictions before running
the benchmark.
Since we wanted to do the evaluation both at the gene

pair level and at the junction level, and since an RT-PCR

validated fusion gene is merely a gene pair together with
the cDNA sequence corresponding to its junction, we
used the blat program [50] to align the cDNA sequences
to the hg19 human genome, and further manually curated
these alignments to obtain the exact chimeric junction
coordinates for each fusion gene (see Additional file 1:
Supplementary methods). This procedure resulted in 16
and 42 chimeric junctions for the Berger and Edgren sets
respectively, indicating the presence of two different iso-
forms for one gene pair in each set (Additional file 1:
Table S2).
The chimera detection programs that we chose to

benchmark together with ChimPipe (version 0.9.3) were
the following:

• FusionMap (version 8.0.2.32, [33])
• PRADA (version 1.2, [38])
• Chimerascan (version 0.4.5, [34])
• TopHatFusion (version 2.0.12, [32]).

We chose these programs because their method was
published and for one of the following three reasons: (1)
they were shown to have good results in several inde-
pendent studies (for example FusionMap and Chimeras-
can) or (2) they were used in studies associated with
gold-standard chimera RNA-seq datasets (for example
PRADA in [25] and Chimerascan in [24]) or (3) they
were extensively used by the community (for example

Table 1 Cancer RNA-seq datasets used for benchmarking

Cancer dataset Cell line Tumor type Number of validated Number of validated Number of different SRAa accession
fusion genes fusion junctions libraries codes

Berger K-562 Leukemia 3 3 2 SRR018268,
SRR0182689

501 Mel Melanoma 4 5 1 SRR018266

M000216 1 1 1 SRR018259

M000921 2 3 1 SRR018267

M010403 1 1 1 SRR018265

M980409 1 1 1 SRR018261

M990802 2 2 1 SRR018260

All All 14 16 - -

Edgren KPL-4 Breast cancer 3 3 1 SRR064287

MCF-7 6 8 1 SRR064286

BT-474 21 25 2 SRR064438,
SRR064439

SK-BR-3 10 10 2 SRR064440,
SRR064441

All 40 46 1 -

This table indicates for each cancer dataset, its associated set of cell lines and corresponding tumor types, together with the number of RT-PCR validated fusion genes and
junctions. Some fusion genes are associated to several fusion junctions
aSRA: Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra)

http://www.ncbi.nlm.nih.gov/sra
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TopHatFusion). Since these programs are optimized for
human and for cancer, we used them with their default
parameters for real data, and we adjusted their parame-
ters to allow read-through detection for simulated data,
when it was possible (see Additional file 1: Supplementary
methods).
The evaluation measures used are the standard sensi-

tivity and precision for simulated data, and the sensitivity
and total number of predictions for real data. In addition,
the evaluation was done at two levels: the gene pair level
and the junction level (Additional file 1: Figure S1). For
each of these two objects, gene pair and junction, we have
a reference set (the objects to be predicted), and a pre-
dicted set for each program (the objects actually predicted
by the program). We then define a true positive (TP) as
an object present both in the reference and in the pre-
dicted set, a false positive (FP) as an object present in the
predicted set but not in the reference set, and a false neg-
ative (FN) as an object present in the reference set but not
in the predicted set. The sensitivity (Sn) is then the frac-
tion of the reference objects that are correctly predicted,
while the precision (Pr) is the fraction of the predicted
objects that are correctly predicted. Since a high Sn can
be easily obtained at the expense of a low Pr, and recip-
rocally, we use the F1score, which is the harmonic mean
between Sn and Pr, as an additional measure. Note that
in order for a predicted chimeric junction to be a TP, its
coordinates must exactly match the coordinates of a ref-
erence chimeric junction (Additional file 1: Figure S1 and
Supplementary methods).
The results at both the gene pair level and at the junc-

tion level for both the PE76 simulated data and the real
data, are shown on Fig. 3 and Additional file 1: Table S3-S5
(similar results were observed for PE50 and PE101 except
for FusionMap which is clearly better on PE76, see Addi-
tional file 1: Figure S2). At the gene pair level the top
program on the simulated data is Chimerascan followed
by ChimPipe, FusionMap, PRADA and finally TopHatFu-
sion, with a generally quite high Pr for all programs but
a Sn above 0.75 only for Chimerascan and ChimPipe. For
real data, Chimerascan is still the top program in terms
of Sn followed by ChimPipe, however its number of pre-
dicted gene pairs is 1 to 2 orders of magnitude higher than
the one of ChimPipe. The trend for Sn on real data is simi-
lar to the one of simulated data, but the Edgren gene pairs
seem to be easier to predict than the Berger gene pairs,
with a higher Sn of the programs for the former. Note that
PRADA is a program that also has a good compromise
between Sn and number of predicted gene pairs on real
data.
At the junction level, ChimPipe achieves the best results

on both the simulated and the real data with a Sn around
0.8 and a Pr close to 1, and with a quite reasonable num-
ber of predicted junctions for real data (around 60). It is

followed by PRADA and FusionMap, with PRADA behav-
ing clearly better on real data. The performances of both
Chimerascan and TopHatFusion are quite poor at the
junction level, with TopHatFusion junctions most often
shifted by 1 bp on each side (as if its coordinates were
0-based instead of 1-based), and Chimerascan junctions
most often shifted by 1 bp on one or both sides, compared
to true junctions. The fact that these programs do predict
some junctions correctly (see Fig. 4b-c), means that the
incorrect junctions they predict cannot only be due to a
different coordinate system.
Since some of the evaluated programs are not able to

predict read-through events (PRADA), or happened to
not detect any of them on simulated data (FusionMap
and TopHatFusion), we also made an evaluation without
read-through events on simulated data (Additional file 1:
Figure S3). The effect was an overall improvement of the
programs’ performances (except ChimPipe) but did not
change the overall message above.
Since some programs have a quite different behaviour at

the gene pair and at the junction level, we also computed
for each program and each evaluation set, the average
and standard deviation of the distance between the pre-
dicted and the true junction in case the gene pair was
correctly predicted (Fig. 4 and Additional file 1: Table S6).
It showed that ChimPipe, FusionMap and PRADA almost
always provide the exact junction coordinates on simu-
lated data and the Berger real set, while this is not the
case for Chimerascan and TopHatFusion, with a worse
behaviour for the latter on the simulated data and for
the former on the Berger set. One can note that for
simulated data, the distance between Chimerascan pre-
dicted and true junction tends to increase with read length
(Additional file 1: Figure S4). Although the Edgren gene
pairs seem easier to predict than the Berger gene pairs
(as stated above), the junctions from the correctly pre-
dicted gene pairs seem more difficult to predict for the
Edgren set than for the Berger set, since all the programs
show a quite important average distance between pre-
dicted and true junction for the Edgren set (Fig. 4 and
Additional file 1: Table S6). ChimPipe is second after
FusionMap on the Edgren set but also has many more
true positives on this set. Since when ChimPipe detects
the correct gene pair it also detects the correct junction
both for the simulated data and for the Berger cancer data,
we think that the most likely explanation for this diffi-
culty in finding the true junction for some Edgren cases
is the fact that the mRNA isoform represented by the RT-
PCR sequence is not the same as the one sequenced with
RNA-seq.
Although real data does not allow to compute precision

or false positive rate, we expect the number of programs
predicting a given chimera to be correlated to the like-
lihood of this chimera to be a TP. We computed the
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a b

c d

Fig. 3 Benchmark results for 5 chimera detection programs on simulated (left) and on real (right) data. The sets of barplots on the top a, b indicate
the programs’ performances at the gene pair level, while the sets of barplots at the bottom c, d indicate the programs’ performances at the junction
level. For simulated data the provided measures are sensitivity (in red), precision (in blue), and F1score (in green), while for the two real datasets
(Berger in red and Edgren in blue), the only provided measures are sensitivity (bars) and the total number of predictions (at the top of each bar). Here
we show the results on PE76 simulated data, for the 250 simulated chimeric junctions (i.e. including read-through events). For the benchmark on
real data, read-through events, i.e. junctions with a length smaller than 100kb when on the same chromosome, same strand and expected genomic
order, were removed from the output of each program before the evaluation

intersection between the gene pairs predicted by each
program on each of the two real sets (Berger and Edgren)
(Fig. 5), and saw that PRADA, ChimPipe and FusionMap
predicted fewer unique gene pairs, while TopHatFusion
and Chimerascan predicted many unique gene pairs, con-
sistent with the previous benchmark results (Fig. 3). We
also confirmed that a gene pair predicted by at least 2
programs was more likely to be real since 26% (respec-
tively 65%) of the gene pairs predicted by 2 programs
on the Berger (resp. Edgren) set are TP (i.e. validated
by RT-PCR), while only 0% (respectively 1%) of the ones
predicted by 1 program are TP.
Regarding implementation, while some programs

require a single step to predict chimeras (apart from the
genome and/or transcriptome indexing), which is the
case for ChimPipe, FusionMap and Chimerascan, some

other programs require many different successive steps
to obtain them, making the whole process more cumber-
some. This is the case for PRADA which requires 3 steps
(mapping script making + mapping + chimera prediction)
and for TopHatFusion which requires 2 steps (mapping +
filtering). The maximum virtual memory and wallclock
time needed by each program (run with 4 threads) on
the PE76 simulated data are provided in Table 2. The
program that clearly needs the least resources is Fusion-
Map with 11.7 Gb of RAM and less than half an hour of
running time, followed by Chimerascan with 4.8 Gb of
RAM and 8.2 h of running time, then PRADA with 35.5
Gb of RAM and 4.5 h of running time, then ChimPipe
with 34.5 Gb of RAM and 10.1 h of running time, and
finally TopHatFusion which requires 62.2 Gb of RAM and
18 h of running time.
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a

c

b

Fig. 4 Distance between predicted and true junction. For the PE76 simulated set a, the Berger cancer dataset b and the Edgren cancer dataset
c, and for each chimera detection program, the distance between the reference/true junction and the junction predicted by the program is plotted
in log scale and using a pseudocount of 1 to avoid zero values. The distance between two junctions is defined as the sum of the distance between
their donor/upstream/5’ splice sites and the distance between their acceptor/downstream/3’ splice sites

Fig. 5 Chimeric gene pairs predicted by the 5 programs on the two real datasets. Intersection between chimeric gene pairs predicted by the 5
programs on the Berger set a and on the Edgren set b are represented as Venn diagrams. In general gene pairs predicted by all 5 programs are few
compared to the gene pairs predicted by a single program, and we expect that the higher the number of programs predicting a gene pair the more
reliable the gene pair. Chimerascan and TophaFusion are the programs that predict more gene pairs predicted by no other program, while PRADA,
Chimpipe and FusionMap are the programs with less such gene pairs. CP: ChimPipe, FM: FusionMap, PR: PRADA, CS: Chimerascan, THF: TopHatFusion
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Table 2 Resources needed by the programs run with 4 threads

Program Maximum RAM
used (in Gb)

Cumulative
wallclock time
(in hours)

Number of commands
to execute

ChimPipe 34.5 10.1 1

FusionMap 11.7 0.4 1

PRADA 35.5 4.5 3 (make mapping
script, mapping,
compute fusion)

Chimerascan 4.8 8.2 1

TophatFusion 62.2 18a 2 (mapping, filtering)

This table indicates the computing resources needed by each program to process
the PE76 simulated data, as well as the number of commands needed to produce
the final result
a9 h for mapping and 9 h for filtering (27.5 h for the 3 simulated sets (50bp, 76bp
and 101bp) at the same time)

Detection and validation of novel chimeras
In order to survey the human chimera landscape more
extensively, ChimPipe was run on 106 ENCODECSHL PE
RNA-seq experiments from 15 human cell lines, 3 RNA
fractions (polyadenylated, non-polyadenylated, total) and
6 cell compartments (whole cell, cytosol, nucleus, chro-
matin, nucleolus, nucleoplasm) ([47] and Additional file 1:
Table S7). At stringent settings (10 supporting staggered
split-reads and 5 discordant paired-end reads in at least
one experiment), we found a total of 1195 chimeric junc-
tions over all experiments. Of these, 525 had each of their
two ends falling in a unique different protein coding gene,
and 142 were either expressed recurrently (at least 1 sup-
porting read in at least 11 out of the 15 cell lines) or very
highly and specifically (at least 100 total reads in a single
cell line). We then only considered the 137 read-through
and intrachromosomal chimeric junctions from this set
(Additional file 3).
Four of these chimeric junctions were chosen for RT-

PCR plus Sanger sequencing validation. Two of themwere
selected from the recurrently expressed class (RPL38-
TTYH2 and UBA2-WTIP), and two of them from the
very highly and specifically expressed class (PICALM-
SYTL2 and C16orf62-IQCK) (Table 3). Primers were
designed to perform RT-PCR on cDNA (to test for
the RNA chimera) as well as PCR on genomic DNA,
to assess whether the chimeras could originate from
genomic rearrangements (Additional file 1: Figure S5
and Tables S8-S9). Out of those 4 cases, all showed
evidence of the two parent gene mRNAs (except one,
SYTL2, but this could be due to a low expression
level of this gene), and 3 showed the additional pres-
ence of the chimeric RNA (Additional file 1: Figure S6
and Supplementary methods). These 3 chimeric junc-
tions present at the RNA level, were not present at
the DNA level and therefore cannot originate from
genomic rearrangements (Additional file 1: Figure S7

and Supplementary methods). We cloned and sequenced
these 3 chimeras (UBA2-WTIP, PICALM-SYTL2 and
RPL38-TTYH2) (Additional file 1: Figure S8, Additional
file 4, Fig. 6b for UBA2-WTIP, and Additional file 1: Sup-
plementary methods). Given that the genes they connect
are on the same chromosome, strand and close to each
other, these 3 chimeras are likely to originate from read-
through events (even if trans-splicing cannot be totally
excluded).
It has been suggested that the generation of chimeric

transcripts and their translation into chimeric proteins
may serve to generate novel proteins with altered func-
tions [1, 10]. Therefore, we assessed the protein-coding
potential of the 3 validated chimeric junctions. For
each chimeric junction, we reconstructed the theoretical
chimeric transcript structures by combining the RefSeq
reference mRNAs for the 5’ and 3’ parent genes com-
patible with the junction and searched for Open Reading
Frames (ORFs) in the six possible translational frames
with the NCBI ORF Finder (http://www.ncbi.nlm.nih.gov/
gorf/gorf.html). One case out of the 3 (UBA2-WTIP),
which has already been reported [20], maintained the
frame of the two parent genes, UBA2 and WTIP, while
the other two, PICALM-SYTL2 and RPL38-TTYH2, did
not. Interestingly, this chimera is recurrently expressed
in 72 out of the 106 experiments, which include the
15 cell lines, the 3 RNA fractions and 5 out of the 6
cell compartments (cell, cytosol, nucleus, nucleoplasm
and chromatin) (Table 3 and Additional file 3). Addi-
tional RT-PCR and Sanger sequencing was therefore
performed on UBA2-WTIP, giving rise to 3 novel com-
plete transcript structures (Fig. 6a, Additional file 5),
of which the longest one (Q1), was more deeply anal-
ysed here. This complete chimeric transcript has an ORF
from UBA2 to WTIP annotated start and stop codon
respectively (Fig. 6c). Thus, if translated it would give
rise to a chimeric protein including the two most N-
terminal domains of the 5’ parent protein UBA2 (ThiF
and UAE_Ubl domains) and the three most C-terminal
domains of the 3’ parent protein WTIP (LIM domains),
therefore only skipping the UBA2_C domain of the
UBA2 protein and the proline-rich N-terminal domain
of the WTIP protein (Fig. 6d). Finally, Phyre2 struc-
tural prediction analysis [51] of this chimera is able
to model 97% of its residues at more than 90% confi-
dence. This analysis suggests that the chimeric protein
part derived from UBA2 can fold into a 3D structure
with 100% confidence and 96% identity to UBA2 wild-
type fold. On the other hand, the WTIP protein part can
fold with 99% confidence and 29% identity to LDB1, a
member of the same family of LIM domain-containing
proteins as WTIP. These data are consistent with the
hypothesis that the UBA2-WTIP protein may at least
partially retain the biochemical activity of both parent

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
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a

b

c

c

e

Fig. 6 UBA2-WTIP chimeric transcript isoforms. a Experimentally validated UBA2-WTIP chimeric transcript isoforms. (Top) UBA2 and WTIP parent
transcripts according to RefSeq version 74. Coding and UTR exonic sequences are displayed as thick and thin boxes, respectively, and introns as
lines. The genomic strand of the transcripts is represented as an arrow on the 5’ end (Bottom) Chimeric RNAs with chimeric splice junctions are
depicted as yellow dashed lines. On the left, list of cancer cell lines where each isoform was validated b UBA2-WTIP chimeric splice junction validation
(Left) Primer design for validating the chimeric junction through RT-PCR plus Sanger sequencing. (Right) Chimeric junction validation in 4 different
cell lines. The 72 bp amplicons proving the expression of the chimeric RNAs are highlighted in red. c UBA2-WTIP Q1 isoform protein coding
potential. (Top) UBA2 and WTIP annotated start and stop codons represented over the transcript sequence. (Bottom) ORFs in the six possible frames.
The selected ORF from the UBA2 annotated start codon to the WTIP annotated stop codon is highlighted in dark yellow. d Putative chimeric protein
encoded by the UBA2-WTIP Q1 isoform. (Top) UBA2 and WTIP wild-type proteins. The exact position of the two protein breakpoints is indicated by
yellow stars. Protein domains are depicted as boxes and triangles over the protein sequences. Thin boxes on the WTIP protein sequence correspond
to low complexity regions. The x axis shows the amino acid position along the protein sequence. (Bottom) Putative UBA2-WTIP chimeric protein.
Full-length domains are represented over the protein sequence. e The predicted 3D structure of the UBA2-WTIP chimeric protein as modelled by
Phyre2 [51]. The chimeric protein part derived from UBA2 is depicted in blue and the one derived from WTIP in red

proteins, leading to a protein with an altered function
(Fig. 6e).
We further investigated the putative role of this

chimeric protein containing the combination of domains
fromUBA2 andWTIP wild-type proteins. UBA2 is part of
the SUMOylation machinery, which post-translationally
modifies and regulates a large number of proteins with
important roles in diverse cellular processes, includ-
ing regulation of transcription, chromatin structure,
and DNA repair [52]. More precisely, it associates
with the Aos1 protein to produce the SUMO-activating
enzyme (E1), a heterodimer that mediates the activation

of ubiquitin-related modifier (SUMO) molecules and
their transference to the SUMO-conjugating enzyme
(E2), which post-translationally modifies a target protein
through the binding of SUMO [53]. On the other hand,
WTIP belongs to a subset of LIM-domain containing
proteins, which are involved in focal and cell-cell adhe-
sion. These interact with other proteins through their
LIM domains, whose sequence specifies a double zinc-
finger structure capable of high-affinity binding to a wide
variety of protein targets [54]. Based on this, we hypothe-
size that the combination of UBA2 SUMOylation domain
and WTIP protein binding LIM domains could lead to
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a chimeric protein with altered SUMOylation activity.
This protein may induce the SUMOylation machinery to
post-translationallymodify and regulate novel targets, due
to the interaction of its LIM-domains with novel proteins.
Finally, each one of the two other validated chimeras,

PICALM-SYTL2 and RPL38-TTYH2, gave rise to one
novel (although incompletely identified) transcript struc-
ture with a premature stop codon before the last splice
junction, leading us to hypothesize that they are degraded
through nonsense-mediated mRNA decay [55]. However,
it is important to note that these chimeric junctions are
supported by a very high number of reads (Table 3), sug-
gesting that the chimeric transcripts are highly expressed,
and possibly functional.

Common recurrent chimeras between human andmouse
In order to find common, and therefore potentially
evolutionary conserved, chimeras between human and
mouse, we applied ChimPipe to human and mouse
ENCODE RNA-seq data [56]. These data consist of 2
bioreplicates of 18 human cell lines and 30 mouse tissues,
from which long polyadenylated RNA was extracted
and deeply sequenced (at least 100 million PE reads).
We applied ChimPipe to each bioreplicate separately,
and asked each reported junction to be supported by
at least one split-read and one discordant PE read (see
Additional file 1: Supplementary methods). We then
gathered all reported junctions within each species,
and found a total of 9339 chimeric junctions in human
and 6447 chimeric junctions in mouse. In order to dis-
card chimeras derived from genomic rearrangements,
we also required the chimeras to be recurrent, i.e.
detected in at least 2 samples (see Additional file 1:
Supplementary methods). This filtering reduced the
number of chimeras to 3567 in human and 3284 in mouse,
corresponding to 2572 and 2372 gene pairs respectively.
A common chimera between human and mouse was
then defined by the combined presence of a chimera
connecting genes A and B in human, and of a chimera
connecting the ortholog of gene A and the ortholog
of gene B in mouse. Requiring the connected genes to
belong to the set of 15,736 one-to-one human-mouse
orthologs [57], we obtained 1596 chimeras in human
and 1610 chimeras in mouse, corresponding to 1119 and
1096 gene pairs respectively, and the subset of those that
were common between the 2 species were 211 junctions
in human and 197 junctions in mouse, corresponding to
131 gene pairs (Additional file 6). The large majority of
these common chimeras connected genes on the same
chromosome, same strand, expected genomic order and
relatively close to each other (median distance: 10kb),
pointing to read-through as the main underlying mech-
anism. We also found that many tens of such chimeras
were detected in more than 10 samples in one species or

the other, confirming the existence and wide expression
of read-through chimeras in non cancerous cells
[3, 4, 12, 20, 30]. We also found that not only the gene
pairs were common between human and mouse, but also
the chimeric junctions. Indeed from the 131 common
gene pairs, 40 were supported by at least one chimeric
junction where the 2 splice sites both in human and in
mouse were in our set of orthologous splice sites [56], of
which 31 (78%) were supported by at least one chimeric
junction connecting orthologous splice sites in the 2
species. The cell lines and tissues with more chimeric
junctions in the 2 species were related to brain (SK-N-
SN and SK-N-SN_RA in human and embryonic central
nervous system in mouse) (Additional file 6).

Conclusions
We have presented ChimPipe, a novel method for the
accurate detection of chimeras from PE RNA-seq data,
based on the independent use of discordant PE reads and
split-reads. In addition to fusion genes and trans-splicing
events, ChimPipe is able to detect read-through events,
which is now recognized as themost prevalent class of real
chimeras in both normal and tumour tissues [20, 29, 30].
ChimPipe is general enough to be able to work on any
eukaryotic species with a genome and an annotation
available. This allows to study chimera evolution but
also to investigate the impact of chimeras on individu-
als from species on which we have more control than
human (for example livestock). ChimPipe can also pre-
dict several isoforms per gene pair and the exact chimeric
junction coordinates, which are essential for chimeric
transcript reconstruction and downstream biological
validation.
ChimPipe is easy to run since it only requires a genome,

a gene annotation and a pair of RNA-seq fastq files (once
the indexing of the genome and transcriptome have been
done), and guesses many other things such as the direc-
tionality, the mate configuration and the Illumina offset
quality. For advanced users, many parameters, such as
expression threshold or parent gene sequence similar-
ity threshold, can be tuned. ChimPipe provides both a
complete and a filtered set of chimeric junctions, with
additional information about them, such as chimera cate-
gory, expression support and the list of reads supporting
the junction (Additional file 1: Table S1). In addition to
chimeric junctions, ChimPipe provides a standard bam
file obtained from the GEMtools RNA pipeline (step
(i) of Fig. 2), that can be used for downstream anal-
yses such as differential gene expression or transcript
reconstruction.
Benchmarking of ChimPipe together with four state-of-

the art chimera detection tools on both simulated and
real data, showed ChimPipe to have a very good preci-
sion (close to 1), and to be the second most sensitive
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program (Sn of ≈ 0.8), therefore showing a very good
balance between sensitivity and precision. Additionally
ChimPipe’s performances on simulated and real data are
comparable, and not much impacted by read length.
ChimPipe’s performances are also similar at the gene pair
and at the junction level, which is not the case for all pro-
grams since they tend to predict gene pairs better than
junctions (see Fig. 3). It has to be noted that ChimPipe
needs non negligible computer resources to achieve these
results, since it requires≈ 30 Gb of RAM and half a day to
run with 4 threads, on the PE76 simulated data (21 million
PE reads).
The application of ChimPipe to 106 ENCODE PE RNA-

seq samples allowed the detection of 137 highly reliable
chimeras, of which 4 were chosen for RT-PCR validation,
and of which 3 were indeed validated and further cloned
and sequenced. The UBA2-WTIP chimera additionally
preserved the frame of the 2 parent genes UBA2 and
WTIP, and was therefore completely sequenced, leading
to 3 completely novel transcript structures. If translated
these 3 novel transcripts would lead to a chimeric protein
with the ThiF and the UAE-Ubf domains from the UBA2
protein and with the 3 LIM domains from the WTIP pro-
tein. We hypothesize that this protein may induce the
SUMOylation machinery to post-translationally modify
and regulate novel targets, due to the interaction of its
LIM-domains with novel proteins.
The application of ChimPipe to 36 human and 60mouse

ENCODE PE RNA-seq experiments also allowed the iden-
tification of 131 recurrent chimeras common to both
species, and therefore potentially conserved. Although
their large majority connect adjacent genes and should
originate from read-through events, some cases are also
distant or located on different chromosomes. Tens of
them are detected in more than 10 samples.
Despite these advantages, ChimPipe could be improved

in at least 2 aspects: (1) it could provide all the chimeric
transcripts compatible with the chimeric junction (mod-
ule for which we already have a tested code) as additional
information, (2) it could be made more robust by being
reimplemented in a pipeline specific language such as
nextflow (http://www.nextflow.io/).
Finally it has to be noted that our contribution

goes beyond the ChimPipe program, since we pro-
vide two additional programs: (1) a chimera simulator
program, called ChimSim (https://github.com/Chimera-
tools/ChimSim), and (2) a chimera benchmark program,
called ChimBench (https://github.com/Chimera-tools/
ChimBench). We also provide new realistic simulated
data, as well as junction coordinates for validated fusion
genes from 2 extensively used gold-standard chimera
datasets [25, 45]. We think that, in addition to ChimPipe,
both these programs and these data can be very useful in
future chimera detection assessments.
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