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Abstract 

Most computational methods used for the prediction of toxicity endpoints are based on the 

assumption that similar compounds have similar biological properties. This principle can be exploited 

using computational methods like read-across or quantitative structure-activity relationships. 

However, there is no general agreement about which method is the most appropriate for quantifying 

compound similarity neither for exploiting the similarity principle in order to obtain reliable 

estimations of the compound properties. Moreover, optimal similarity metrics and modeling methods 

might depend on the characteristics of the endpoints and training series used in each case. This study 

describes a comparative analysis of the predictive performance of diverse similarity metrics and 

modeling methods in toxicological applications. A collection of two quantitative (n=660, n=1114) and 

three qualitative (n=447, n=905, n=1220) datasets representing very different endpoints of interest in 

drug safety evaluation and rigorous methods were used to estimate the external predictive ability in 

each case. The results confirm that no single approach produces the best results in all instances and 

the best predictions were obtained using different tools in different situations. The trends observed in 

this study were exploited to propose a unifying strategy allowing the use of the most suitable method 

for every compound. A comparison of the quality of the predictions obtained by the unifying strategy 

with those obtained by standard prediction methods confirmed the usefulness of the proposed 

approach. 
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Introduction 

Obtaining novel active ingredients in the pharmaceutical, agrochemical and cosmetic industry 

requires the use of diverse methods for ascertain their biological properties and assessing potential 

toxic liabilities at different development stages. Experimental methods have the inconvenient of 

consuming existing product and might have associated significant costs in terms of money and time. 

In vivo experimental methods are particularly costly and in some cases they can be ethically 

unjustifiable or not legally allowed (EC 2015). For these reasons, computational (in silico) methods are 

a very attractive alternative: they are fast, cheap, consume no compound and can be carried out even 

before the compound is synthesized. In silico methods have been in use in areas of toxicology, like 

ecotoxicology, for a long while (Andersson et al. 2002; Könemann 1980; Könemann and Musch 1981; 

Perkins et al. 2003) but their application for drug safety assessment is more recent (Muster et al. 

2008; Raunio 2011; Ekins 2014). 

 

The latest strategies for efficient risk assessment of chemicals propose the replacement of animal 

models by integrated approaches that incorporate a combination of in vitro and in silico methods, 

including quantitative structure-activity relationships (QSAR) modeling, physiologically based 

biokinetics (PBPK) and biodynamics (PBBD) modeling as well as information on the compound 

absorption, distribution, metabolism and excretion (Wilk-Zasadna et al. 2015; Yoon et al. 2015) . This 

change of paradigm will probably show the way to go in toxicological assessment for the next decades 

(NRC 2007). However, its routine application in drug development pipeline is still in its early stage of 

development (Kramer et al. 2015). In the present work we will focus only in the hazard 

characterization of new drug candidates at early stages of development. Traditionally, this was carried 

out evaluating the concentration-effect relationship (or any point in this relation, e.g. a point-of-

departure concentration) using in vitro methods. Structure-based in silico methods used in this area 

can be seen as a direct replacement of such in vitro methodologies, and the prediction results as an 

estimate of the hazard expressed either in term of the concentration-effect (predicted IC50 or Kd) or in 

categorical terms (positive, negative). 
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From a methodological perspective, most applications of structure-based in silico methods in drug 

safety assessment fall in one of the following categories: read across (RA) methods or quantitative 

structure-activity relationships (so called QSAR). RA methods aim to define chemical classes around 

previously characterized compounds assuming that any compound belonging to the same class will 

likely share the same biological properties (Schultz et al. 2015). QSAR methods go one step further 

and analyze the association between chemical structure differences and biological property 

differences for a collection or previously studied compounds (training series), building a mathematical 

model that describes this relationship (Tropsha 2010). It must be noted that both categories, in spite 

of their many differences, are based on the concept of bioisosterism or similar property principle 

(Eckert and Bajorath 2007), which states that compounds with the same chemical structure should 

have similar biological properties. However, this apparently simple principle is very difficult to capture 

(Maggiora et al. 2014) and there are many examples where it does not hold (Kubinyi 1998; Nikolova 

and Jaworska 2003; Roy et al. 2012; Guha 2012; Medina-Franco 2013; Golbraikh et al. 2014; Bajorath 

2014). Structure-activity landscapes might have smooth domains, sets of similar compounds both in 

terms of structure and biological properties, where the principle holds and rough domains where it 

does not, often called activity cliffs (Maggiora 2006).  

 

The structure-activity landscape smoothness depends of the biological property studied and of the 

structural description used to assess the compound similarity. It can be hypothesized that the use of 

biologically-relevant structural descriptors will help to produce smoother landscapes, but in practice 

the complexity of the biology involved (e.g. different ligand binding modes, diverse mechanisms or 

the influence of pharmacokinetics) makes almost impossible finding a single method that is optimal in 

all cases. Figure 1 shows three examples representing extreme situations. All compounds in series A 

behave in a homogeneous way and the biological property (represented in the Y axis) correlates well 

with the structural description (represented in the X axis). Here, a single QSAR model can produce 

good predictions. On the contrary, the compounds in the series B belong to diverse classes. For some 

classes the biological property could be modeled using local QSAR models, even if the functions 

describing the association between the structure and biological property are different for each of 

them. Moreover, for some of these classes the value of the biological property is nearly constant for 

all the compounds and no QSAR model is actually required; the average value of the class members 

could provide a good estimation. The biological property of compounds in series C does not show any 
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correlation with the structure but very similar compounds exhibit the same values and therefore RA 

methods could still be applied. These examples do not represent only theoretical scenarios and 

similar situations have been described in toxicology (Martin 1981; Bajorath et al. 2009; Medina-

Franco 2012; Dimova and Bajorath 2014), where good QSAR models for predicting complex endpoints 

are uncommon and RA methods have been proposed to be more adequate (Sheridan 2014; Schultz et 

al. 2015). This observation can be explained by the limitations of in silico methods (Bajorath 2012; 

Cherkasov et al. 2014), in particular when in silico methods are applied to model the complex 

biological phenomena involved in toxicological endpoints like organ toxicity (Liebler and Guengerich 

2005; Treinen-Moslen and Kanz 2006; Curigliano et al. 2010; Leise et al. 2014) or NOAEL/LOAEL (FDA 

2005; Park and Cho 2011; Muller and Milton 2012). Observable outcomes are the result of the 

compound hazard and exposure and might involve an unknown number of mechanisms, justifying the 

presence of rough structure-activity landscapes (like cases B and C in figure 1) where the 

bioisosterism principle is applicable only for closely related compounds. These examples serve to 

illustrate the central hypothesis of this work: the smoothness of the landscape conditions the 

applicability of diverse methodologies (global QSAR, local QSAR and RA) that can be seen as 

alternative and complementary approaches for exploiting the structure-activity principle.  As a 

consequence, the selection of the most appropriate approach based on the characteristics of the 

structure-activity landscape will produce the best predictions. 

 

 

In this article we will test the validity of the hypothesis presented above, particularly for the 

prediction of toxicological endpoints, and propose an integrated strategy for taking advantage of the 

best approach for each particular situation. First, we will compare the performance of diverse 

molecular similarity metrics and study the roughness of the respective structure-activity landscapes. 

Then, we will build RA, global and local QSAR models on a collection of datasets annotated for 

endpoints of diverse complexity. The analysis of the model performance in these examples will 

identify trends useful for selecting the best similarity metrics and predictive methods.  
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Fig. 1 Diverse extreme situations describing the relationship between the compound structures and 

activities: (A) there is a clear and smooth correlation between both; (B) the structure and the activity 

shows a clear association, but this is different for diverse classes of compounds with different 

structure; (C) there is no clear association, even if some structurally similar compounds have similar 

biological properties. 

 

Methods 

Data sets 

Datasets were selected to represent endpoints commonly used in early drug development and drug 

safety assessment studies and to cover a wide range of complexity; from relatively simple to very 

complex ones. All datasets are large (min 447 compound) and structurally diverse. The collection 

contains five examples of quantitative and qualitative endpoints: aqueous solubility (SOLU), 

potassium channel hERG blocking (hERG), P-glycoprotein inhibition (ABCB1), drug-induced 
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phospholipidosis (DILI) and drug-induced liver Injury (DILI). The dataset characteristics are 

summarized in Tables 1 and 2. 

 

The SOLU dataset contains 1144 water solubility values for low molecular weight organic compounds 

(Delaney 2004). The solubility values range from -11.60 to 1.58 units with a mean of -3.06 and a 

standard deviation of 2.10. Oral bioavailability of drugs critically depends on their water solubility. 

Also, poor water solubility has been associated with safety concerns and undesirable side effects 

(Alelyunas et al. 2010). Accurate in silico prediction of water solubility is difficult (Hua et al. 2007). 

Paradoxically, this endpoint represents the lowest extreme in the scale of the complexity of the 

studied endpoints, since it can be assumed that the physicochemical mechanisms involved in the 

solvation are rather similar for all the compounds and comparatively simpler than the mixture of 

molecular and physiological mechanisms involved in the rest of endpoints described here. 

 

The hERG dataset contains 750 pIC50 values for hERG potassium channel blockade obtained from 

(Obiol-Pardo et al. 2011) and (Li et al. 2008). Activities range from 2 to 9 units, with a mean of 5.51 

and a standard deviation 1.2. Blockade of the hERG channel plays a major role in drug-induced QT 

prolongation which is associated to an increase in risk of sudden cardiac arrest (Hancox et al. 2008) 

and is a classical liability that needs to be tested at early development stages for any drug candidate. 

Ligands blocking this channel typically bind at the pore domain lining the central ion conduction 

pathway. This region contains several binding positions and differentiated states (Vandenberg et al. 

2012). Indeed, hERG channel is a good example of polyspecific biomolecule able to interact with many 

classes of compounds (Thai et al. 2010a), making challenging the development of in silico predictive 

models. Many structure-based, pharmacophore and QSAR models, aiming to understand the 

structure-activity relationships that govern hERG-drug interactions have been published (Aronov 

2008). The development of such models is further hampered by the low quality of training data 

extracted from bibliographic sources, due to the large disparity of the experimental conditions (e.g. 

cell line, temperature, pH) used in the original experiments. 

 

The ABCB1 dataset (Broccatelli et al. 2012) contains 562 inhibitors and 515 non-inhibitors of ABCB1. 

ABCB1, also known as P-glycoprotein, is a membrane protein member of the ATP-binding cassette 

(ABC) transporters superfamily, which transports a variety of compounds through the membrane 
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against a concentration gradient (Choudhuri and Klaassen 2006). ABCB1 is of interest due to its duality 

as therapeutic target and antitarget (Juliano and Ling 1976; Borst and Elferink 2002; Aller et al. 2009; 

Broccatelli et al. 2010; Klepsch and Ecker 2010). Modeling transporter binding is difficult due to their 

intrinsic ligand promiscuity, since these biomolecules have evolved to transport numerous structurally 

and functionally unrelated compounds (Szakács et al. 2006). The case of ABCB1 is further complicated 

by the existence of diverse ligand binding modes (Benet 2009). The overall assumption is that ABCB1 

possesses a huge binding pocket with at least two distinct binding sites (Loo and Clarke 2002). 

 

The DIPL data set was curated by (Przybylak et al. 2014) from two US FDA data sets (Kruhlak et al. 

2008; Orogo et al. 2012) and contains 215 phospholipidosis inducers and 232 non-inducers. The 

quality of these data is limited by the disparity of the species and tissue types used in the 

experiments. Typically, the ability of a compound to produce phospholipidosis is assessed using 

experimental methods that detect the accumulation of phospholipids within the cells of different 

tissues. Sometimes this is only observable when the compound is administered at high doses, 

therefore producing an unknown number of false negatives in the training series (Reasor et al. 2006). 

Furthermore, there are several possible mechanisms by which drugs can induce phospholipidosis 

(Sawada et al. 2005). In the original article SMARTS patterns that can be used as structural alerts for 

phospholipidosis were also provided. 

 

The DILI data set contains 525 drug-induced liver injury (DILI) inducers and 234 non-inducers collected 

by a data mining study (Fourches et al. 2010). The original data set collected drug liver effects in 

different species, comprising humans, rodents, and non-rodents, but in the present work only human 

data was used. Compounds with lack of reported effects were classified as non-inducers. Drug-

induced liver injury (DILI) is one of the main causes of attrition both for candidate and marketed drugs 

(Fung et al. 2001). Liver injury can be produced by a large number of mechanisms. Moreover, liver 

injury might be produced by a metabolic product rather than the parent drug. Hence, for all the 

aforementioned reasons, this dataset is on the top position in the scale of endpoint complexity and 

no accurate prediction can be expected. (Hewitt et al. 2013) provided SMARTS patterns that can be 

used as structural alerts for non-inducers and inducers. 
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Table 1. Characteristics of the quantitative datasets. a Number of compounds (n). b Mean, standard 

deviation (SD), and range of the studied property. 

dataset Endpoint na meanb SDb rangeb Units source 

hERG Functional inhibition 

measured in patch 

clamp experiments 

660 5.41 1.17 2 to 9 pIC50 (Li et al. 2008; 

Obiol-Pardo et al. 

2011) 

SOLU Water solubility 1114 –3.06 2.10 –11.60 

to 1.58 

log10 (mol/L) (Delaney 2004) 

 

Table 2. Characteristics of the qualitative datasets, after data curation 

dataset Endpoint negative/positive source 

DILI Drug-induced liver injury  289/616 (Fourches et al. 2010) 

DIPL Drug-induced phospholipidosis 232/ 215 (Przybylak et al. 2014) 

ABCB1  P-glycoprotein inhibition  567/653 (Broccatelli et al. 2011) 

 

For all datasets, the compound structures provided as SMILES in the original sources were converted 

first to Mol format using RDKit (Landrum). The presence of duplicate parent structures was tested by 

obtaining the compounds InChIkey with RDKit and comparing all string pairs. Whenever duplicated 

entries were detected they were merged into a single compound and the average of their biological 

properties was used. The ionization status of all structures was adjusted to pH 7.4 using Moka 1.1.0-

RC3 (Milletti et al. 2007; Milletti et al. 2009). When necessary, 3D structures were generated using 

CORINA 2.4 (Sadowski and Gasteiger 1993; Sadowski et al. 1994). Compounds that failed to pass this 

curation protocol for any reason were discarded. The values reported in Tables 1 and 2 make 

reference to the final datasets obtained after the curation process.  

 

Molecular Descriptors  
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Molecular weight (MW), MACCS Fingerprints (Accelrys), MORGAN Fingerprints with radius 2 (Morgan 

1965; Rogers and Hahn 2010) and Murcko scaffolds (Bemis and Murcko 1996) were generated with 

RDKit. GRid INdependent Descriptors of second generation (GRIND-2) (Pastor et al. 2000; Pastor 2006) 

were generated using Pentacle version 1.06 (Durán et al. 2008; Durán and Pastor 2010) with default 

parameters and used without scaling, as recommended by the authors. 

 

QSAR and RA models 

Global QSAR models were built using PLS regression (PLS-R) (Martens 2001), Random Forest 

regression (RF-R) (Breiman 2001) and Support Vector Machine regression (SVM-R) (Cortes and Vapnik 

1995) for quantitative endpoints and PLS discriminant analysis (PLS-DA), RF classifier (RF-C) and SVM 

classifier (SVM-C) for qualitative endpoints. SVM used the radial kernel. SVM gamma value and PLS 

number of latent variables were tuned to obtain best cross-validation results. Random Forest number 

of trees was set to 500. 

 

Local models were built using the metrics shown in Table 3 to define domains of similar compounds. 

Query compounds were assigned to the closer domain. When it contains more than five compounds, 

a PLS model (PLS-R or PLS-DA for quantitative and qualitative endpoints, respectively) with a number 

of latent variables maximizing cross-validation results is built and used to predict the query compound 

property, otherwise the mean (for quantitative endpoints) or majority voting (for qualitative 

endpoints) of the activities in the chemical domain was used as prediction. 

 

RA models were built using either MS or MORGAN metrics. For RA-MS, all compounds with the same 

Murcko scaffold were assigned to the same category. RA based on MORGAN space was applied as 

described by (Enoch et al. 2009) in two alternative ways: RA fix nn uses the 10 nearest compounds to 

form a category while RA fix th uses the compounds with Tanimoto distance less than 0.6 to form a 

category. In all cases, the predictions obtained from RA correspond to the median (for quantitative 

endpoints) or majority voting (for qualitative endpoints) of the class activities. 

 

The model building and validation was carried out using R scripts that make use of the pls (Mevik and 

Wehrens 2007), e1071(Meyer et al. 2014), class (Venables and Ripley 2002) and randomForest (Liaw 
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and Wiener 2002) R packages. Structural alerts were implemented using an in-house developed R 

script that makes use of RDKit.  

 

Molecular similarity metrics 

Different metrics were used to calculate pair wise compound similarities and to build chemical classes 

encompassing similar compounds. Selected metrics are representative of the current state-of-the-art 

methods used to assess chemical similarity (Guha et al. 2006; Hua et al. 2007; Helgee et al. 2010). 

Some metrics rely on simple properties, like molecular weight, while others make use of molecular 

descriptors or fingerprints, as those described above. It is useful to distinguish between activity 

unbiased and activity biased metrics. Activity unbiased metrics are based only on the compound 

structure while activity biased includes somehow the values of the biological properties of the 

training series for defining the metric space. In the MW metric the distance between two compounds 

is defined by the absolute value of the difference between their molecular weights. MACCS and 

MORGAN metric spaces are defined using MACCS fingerprints and MORGAN fingerprints, respectively 

for computing 1-Tanimoto distance (Willett et al. 1998). MS metric is based on Murcko scaffolds: the 

distance between two compounds is 0 if they share the same Murcko scaffold and 1 otherwise. 

Pentacle-PCA and Pentacle-PLS metrics is based on Euclidean distances in the PCA and PLS scores 

space of GRIND-2 molecular descriptors, calculated as described above. The number of principal 

components and latent values was set to 2, which explained more than 50% of the variance in all 

instances. The main characteristics of the metrics used in this article are summarized in Table 3. 

 

Table 3. Similarity metrics used in this article 

Name Molecular descriptors Distance definition Activity-biased 

MW Molecular Weight |MWi -MWj| No 

MACCS MACCS Fingerprints 1-Tanimoto No 

MORGAN Morgan Fingerprints 1-Tanimoto No 

MS Murcko Scaffolds 0 if compounds share scaffold, 1 

otherwise 

No 
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Pentacle-PCA GRIND-2 Euclidean in the PCA scores space No 

Pentacle-PLS GRIND-2 Euclidean in the PLS scores space Yes 

 

Metric performance was assessed in terms of the internal validity of the bioisosterism principle in the 

space defined by this metric for a given set of compounds. The procedure is described in detail the 

next section. 

 

Chemical domains  

The so called "chemical domains" describe a collection of similar compounds, grouped according to a 

certain similarity criterion. Chemical domains were built as follows: for a give metric (see Table 3) the 

distance matrix between all compounds in the training series was computed. Then, hierarchical 

clustering with complete linkage method was used to build the similarity tree using the hclust 

function from R base package. Complete linkage was chosen since it helped to keep low distances 

among members in the cluster. Then we used a similarity threshold to define clusters containing only 

compounds with internal similarity under this given value (see Figure 2). Threshold values were 

selected based on the quantiles 0.05, 0.1, 0.2, 0.4 of distance pairs. For example, a threshold of 0.05 

defines clusters whose maximal distance between cluster members is lower than the 5 percent of all 

distance pairs. In order to avoid chemical domains containing highly diverse compounds, the standard 

deviation of the biological property within each cluster was computed and compared with the 

standard deviation of the dataset. Domains for which this value was much larger (1.5 fold) were 

discarded. Test compounds were assigned to the chemical domain with the closest centroid, but if the 

distance between the closest centroid and the query compound was greater than the maximal 

distance among domain members the domain assignment was rejected. 
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Fig. 2 Hierarchical clustering example with different similarity threshold values.  

 

In this work, chemical domains were used both to assess the quality of different similarity metrics and 

to build local models on top of them. The metric quality was assessed by defining chemical domains 

with this similarity metric and representing them side by side, ordered by the median of the 

compound biological property. If the bioisosterism principle holds for this particular metric and 

dataset, the values of the biological property will exhibit very low dispersion within the domains 

(similar compounds will have similar biological properties). Conversely, the median values of the 

biological properties obtained for the different chemical domains will exhibit a large dispersion and 

therefore, if represented side-by-side (as in Figure 3) there will be a clear growing tendency from left 

to right (diverse compounds will have diverse biological properties).  

 

Predictive quality assessment  

The quality of all models was evaluated by comparing the model predictions with the experimental 

values for a set of external test compounds, not used for building the model. All the studied datasets 

were split randomly 10 times in training and test series containing 80% and 20% of the compounds, 

respectively. The final prediction scoring aggregates the results of these 10 training-test set splits. For 

quantitative endpoints (hERG and SOLU) the mean Standard Deviation Error of the Prediction (SDEP) 

was used. For qualitative endpoints (ABCB1, DILI and DIPL) it was used the mean Accuracy, calculated 

as: 
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 Accuracy = TP+TN/(TP+FP+TN+FN) 

where TP means True Positive; TN means True Negatives; FP means False Positives and FN means 

False negatives . 

 

The source code of all the scripts used in this work for computing the chemical domains, the models 

and the predictive quality estimation is available as Supplementary Information.  

 

Results and Discussion 

In this section we will compare the performance of diverse molecular similarity metrics and analyze 

the roughness of the respective structure-activity landscapes. Then, we will build RA, global and local 

QSAR models, comparing their predictive performance. From these analyses we aim to identify the 

best metrics and modeling methods and if these choices have universal validity or if they depend on 

the datasets characteristics. 

 

Performance of molecular similarity metrics 

As stated in the introduction, the adequacy of molecular similarity metrics for biological applications 

can be judged by the roughness of the structure-activity landscape they generate. When using a good 

metric, structurally similar compounds will have similar biological properties (Martin et al. 2002). This 

property was assessed in our study by clustering all the datasets listed in Tables 1 and 2 using the 

metrics listed in Table 3, as described in the Methods section, using a threshold of 0.4. The grouping 

obtained for the quantitative datasets (SOLU and hERG), was represented in Figure 3 as a series of 

box plots side by side, one for each cluster, ordered from lower to higher median property value. 

Ideally, all the compounds belonging to the same cluster must have similar biological properties. The 

intra-cluster dispersion represents how smooth or rough the structure-activity surface is: the greater 

the dispersion, the rougher the surface and the less adequate the metric. Also, the mean activity of 

the diverse clusters must be different from left to right. Indeed, the comparison of the inter-cluster 

and the intra-cluster dispersion in these graphics gives a good idea of how much the activity can be 

explained in terms of molecular similarity for the different metrics and endpoints. Different metrics 

produce different number of clusters. MW metric produces fewer clusters since it is a very simple 

metric based in a single criteria while, on the opposite side, MORGAN and MACCS yield many 
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different clusters based on a much rich description of the structures. Metrics based on GRIND-2 are 

located in the middle.  

 

The inspection of Figure 3 shows that the boxes width is highly variable for fingerprint metrics 

(MACCS, MORGAN) with many narrow or wide boxes. This variability is less pronounced for MW and 

Pentacle metrics, where the boxes width is more homogeneous. MW produces a few chemical classes 

of very similar compounds, something that can be explained by the fact that the small compounds 

tend to have low hERG blockade (Recanatini et al. 2008). For GRIND-2, the activity biased metric 

(Pentacle-PLS) explains better the activity differences that the non activity biased (Pentacle-PCA), 

particularly in the case of hERG, as can be seen by the largest differences of the chemical classes 

median values. The comparison of the two quantitative endpoints indicates that SOLU is slightly 

better explained than the hERG with larger inter-cluster differences and smaller oscillation of the 

intra-cluster dispersion (see for example the MACCS or Pentacle-PLS metrics). This can be justified by 

the lower complexity of the phenomenon explained (water solubility vs. hERG receptor blockade) and 

the higher accuracy of the experimental measurements. 

 

Fig. 3 Distribution of the biological property (activity) values of the compounds in the chemical 

domains obtained using diverse similarity metrics, for datasets hERG and SOLU. The chemical domains 

were ordered according to their median activity value, from left to right. See text for details. 
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Figure 4 shows the result of an equivalent analysis for the datasets representing qualitative endpoints 

(ABCB1, DIPL, DILI). In this graphic, each bar represents a cluster. Bar sizes describe the proportion of 

positives compounds within each cluster. Ideally, clusters must represent only positive or negative 

compounds. When many bars show intermediate values the metric is unable to cluster together 

compounds with the same biological properties. Regarding the number of clusters (bars), we can see 

the same influence of the metrics on the final number of clusters obtained.  

 

Fig. 4 Proportion of positive compounds in the chemical domains obtained using diverse similarity 

metrics, for datasets ABCB1, DIPL and DILI. The chemical domains were ordered according to their 

proportion of positive, from left to right. See text for details. 

 

The metric comparison shows how fingerprint metrics (MACCS and MORGAN), producing the smaller 

clusters, are able to identify many chemical classes containing only negative compounds (wide empty 

areas on the left of the graphics). Conversely, they are not so good for obtaining clusters containing 

only positive compounds. MW produces fewer clusters and separates rather well positive from 

negative for some endpoints (ABCB1) and nearly not at all in some others (DILI). Pentacle metrics 
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produce worse results than fingerprints, particularly for clustering negative compounds but is slightly 

better than fingerprints for clustering the positives. As observed for quantitative endpoints, the 

activity biased variant (Pentacle-PLS) outperforms the non activity biased one (Pentacle-PCA).  

 

The comparison of the endpoints clearly shows DILI as the most difficult endpoint. All metrics produce 

some clusters of positive compounds, but only Pentacle generates clusters of negatives. In some cases 

(MW) the graphic is mostly flat, indicating nearly random proportions of positive-negatives. At the 

opposite side is ABCB1 for which most metrics can cluster inactive compounds. Even a metric as 

simple as MW produces clusters enriched in negative and positive compounds corresponding 

respectively to small and large molecules, as can be expected by the geometry and function of this 

transporter (Broccatelli et al. 2011). DIPL represents an intermediate situation. Fingerprint metrics 

and particularly MACCS, produce many clusters of negative compounds and some of positive 

compounds. MW and Pentacle perform poorly in DIPL, with nearly no cluster of negative and many 

clusters containing the same proportions of positive and negative. 

 

All in all, the results of this analysis indicate that the bioisosterism principle holds remarkably well in 

some cases. Some of the chemical classes contain compounds with homogeneous biological 

properties for both for quantitative and qualitative endpoints. Unfortunately, this is not a constant 

behavior. There are differences that can be attributed to the adequacy of the metrics, the complexity 

of the endpoint but also some random variability, even in the more stable situations. A general trend 

observed is that the more complex or difficult the endpoint is, the more difficult is to obtain 

homogeneous chemical domains (e.g. compare MACCS-hERG with MACCS-SOLU). Another general 

observation is that in nearly no case we can expect to obtain chemical domains with the same level of 

biological homogeneity for the entire activity spectrum. Some metric-endpoint combinations define 

better the domains of positive/active compounds (e.g. Pentacle-PLS-ABCB1), others favor the 

negative (e.g. MACCS-ABCB1) and in other cases there are high random variations (e.g. MACCS-hERG). 

Finally, as a general trend, the activity biased version of the Pentacle metric shows a clear advantage 

over the non activity biased one and for this reason the later will be removed from the analysis from 

now on.  

 

Models performance 
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The predictive quality of the models obtained using RA and global QSAR models was estimated as 

described in the Methods section. The results are summarized in Table 4. For quantitative endpoints, 

a lower SDEP describes a better model while, for the qualitative endpoints (ABCB1, DILI and DIPL) 

higher Accuracy values describe better models. 

 

Table 4. Quality metrics of the predictions obtained by read across (RA), structural alerts (SA) and 

global models. 

  SDEP (lower is better) Accuracy (higher is better) 
  hERG SOLU ABCB1 DILI DIPL 

Read across 
 

fix nn 1.33 2.67 0.82 0.64 0.63 
fix th 0.57 (32%) 1.56 (21%) 0.95 (39%) na2 0.75 (4%) 
MS 0.77 (43%) 0.94 (75%) 0.87 (52%) 0.77 (23%) 0.64 (21%) 
SA na1 na1 na1 0.62 0.36 

Global models PLS 1.00 1.02 0.81 0.53 0.61 
 SVM 1.13 1.39 0.62 0.67 0.56 
 RF 0.91 0.92 0.85 0.66 0.64 

1 Structural alerts not available. 2 Too few compounds within the classes. The best method for each 

dataset is highlighted in bold 

 

Read Across and Structural Alerts 

Before comparing the results, it must be stressed that the conditions imposed to define chemical 

categories by the RA-MS and RA-fix th do not guarantee obtaining predictions for all compounds. The 

values shown in parenthesis in Table 4 for these methods indicate the percentage of compounds for 

which a prediction was obtained. Focusing only on the results obtained for these compounds, Table 4 

shows that the quality of the predictions given by some RA methods is impressive and yields the best 

results for all datasets with the only exception of SOLU. This is particularly true for RA-fix th, even if 

the percentage of results is the lowest. RA-MS also produced good results for all datasets. RA-fix nn 

has the advantage of producing predictions for all compounds, but the prediction quality was not 

brilliant and in some cases (e.g. hERG, SOLU) they were surprisingly poor.  

 

The performance of structural alerts is not high. However, they were obtained after human analysis of 

the datasets (Hewitt et al. 2013; Przybylak et al. 2014) and the value of the mechanistic insight gained 

in this exercise is difficult to reflect in a quantitative index. 
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Global Models 

The results shown in Table 4 indicate that global models perform rather well and in some cases their 

performance are comparable with those obtained using RA methods. In addition, they have the 

advantage of providing a prediction for any query compound, unlike the RA approaches. The best 

results were obtained with RF, with the only exception of DILI and DIPL but in either case the 

differences were very small. It must be noted that the global models obtained with RF use indeed a 

local model strategy, since the results produced by this method can be seen as a weighted sum of a 

subset of activities, where the weights are defined according to the similarity to the query compound 

(Lin and Jeon 2006). The only drawback of this method is the need of adjusting internal parameters 

(see the Methods Section). The second best method was PLS, showing predictive quality indexes 

nearly similar to RF's in all endpoints, with the only exception of DILI. In fact all DILI models have poor 

performance, as can be expected after the analysis of the previous section. 

 

Local Models based on Metrics 

Local models were built as described in the Methods section, for all the datasets. The analysis of the 

results is rather complicated, due to the use of four metrics and four threshold values. Note that 

threshold values have a large effect on the definition of the chemical domains since smaller values 

produced smaller domains, as can be seen in Figure 2. 

 

A preliminary analysis based on the comparison of the average quality metrics obtained after the ten 

random splitting did not show relevant differences. A deeper analysis showed that the training-test 

splitting has a significant effect on the prediction results (some splits are more difficult to predict than 

the others) and that more information could be obtained if we compare global (PLS global) and local 

models for each individual split. The results of this analysis are represented in Figure 5 (for 

quantitative endpoints) and 6 (for qualitative endpoints). The performance of each modeling 

condition for every split is shown as a grey dot, while the global model is shown for comparison as a 

black dot on the right hand side. When local models perform better (in average) than the global 

model the graphic shows lines linking the best local model with the global model. In Figure 5, lines 

pointing upwards (SDEP lower for local than for global models) indicate that the local models 

performed better and vice versa. Conversely, in Figure 6 the lines pointing downwards (accuracy 

higher for local than for global models) indicate that the local models performed better. 
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For quantitative endpoints we only observed improvements in the case of hERG. For the SOLU 

endpoint all local models had lower predictive ability than the global model. This can be justified by 

the homogeneity of the mechanism: if the compound properties affecting their solubility are similar 

for all compounds, there is no advantage in building separate models for diverse chemical classes. 

Indeed, in the analysis of metric performance for this dataset the intra-cluster dispersion was 

relatively large, with few clusters of highly similar compounds. For the hERG endpoints, local models 

obtained with MACCS-0.05, Morgan-0.2 and MW-0.4 yielded better average results than the global 

model. Such results are particularly significant for MW. These results can be justified by the nature of 

the hERG receptor, with a large binding pocket that could accommodate ligands of very different size 

(Thai et al. 2010b). Therefore, local models built for compounds of similar MW are likely to be more 

stable and predictive than the global models.  

 

For qualitative endpoints, the best local models were obtained using fingerprint based metrics, even if 

the improvement with respect to global models were not large. For ABCB1, local models using MACCS 

and MORGAN fingerprints with any threshold produce better results than global models, but the best 

results were obtained for the threshold value producing smallest domains (0.05). MW and Pentacle 

metrics produce local models performing worse than the global one for all threshold values. A rather 

similar situation is observed for DIPL, and for some splits we observe a slight improvement for local 

models using MACC-0.1 and MORGAN-0.1 over the global models. No improvement was obtained 

with MW and Pentacle metrics. DILI is a particular case. We obtained better results for local models 

using fingerprint metrics with low thresholds, but in this dataset the improvements obtained in some 

splits were large, (see Figure 6) obtaining differences in accuracy of nearly 0.2 units (0.51 for 

MORGAN 0.05 vs 0.31 Global). Also, only in the dataset we obtained local models based on non-

fingerprint metrics that outperform the global models, in particular Pentacle-0.01.  

 

Summarizing, the local models obtained with low (0.05-0.2) thresholds and fingerprint metrics have 

slightly better overall predictive performance than global models, but the effect depends on the 

dataset. It can be negligible for models describing rather general properties like the water solubility or 

rather significant for complex properties (e.g. DILI). Moreover, the effect of local model can also 

depend on the split and for the same dataset we observed either an increase or a decrease of the 
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predictive performance. Some metrics can produce good results when the chemical classes 

discriminate between compounds which use different mechanisms, as it was the case of MW metric 

for hERG, where low and high MW compounds bind different regions of the binding pocket. 

 

 

Fig. 5 Comparison of SDEP obtained with local models using diverse similarity thresholds and global 

models. For every condition the figure represents the values obtained for the ten random training-

test set splits. When the average SDEP of the local models is lower than the obtained for the global 

model, the SDEP values for every split were linked by a line. Pointing up lines indicates that the local 

model were better than the global model and vice versa. 
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Fig. 6 Comparison of the accuracy of local models using diverse similarity thresholds and PLS global 

models. For every condition the figure represents the values obtained for the ten random training-

test set splits. When the average accuracy of the local models is lower than those obtained for the 

global model, the accuracy values for every split were linked by a line. Pointing down lines indicate 

that the local model were better than the global model and vice versa (the opposite than in Figure 5). 

  

 

Strategy 

The results of this study, reported in the previous section clearly show the difficulties of selecting the 

best modeling method for any given dataset. Some method predict very well, but only for a small 

percentage of the compounds, and not in all datasets. The analysis of the molecular similarity metrics 

(Figure 3 and 4) shows the different performance of the methods but also the variation observed 

within a dataset for different ranges of the biological property. The presence of this variability has 

been further confirmed by the differences observed in the models predictive performance for 

different training-test set splits. Referring back to the Figure 1, it looks like the situations depicted 

there can co-exist within the same dataset for different regions of the chemical space and their 

relative weight can be affected by the addition or removal of a few compounds. 
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This observation leaded us to propose an alternative strategy, based on the selection of the best 

modeling method for every query compound. We consider this a "unifying strategy" because we 

assume that RA, local and global QSAR models are equally valid approaches and the choice of one or 

the other can be made on an individual, per compound basis. The rationale of this strategy is that the 

information content of the chemical space is not homogeneous. When the query compound is within 

an information-rich region, due to the presence of structurally similar compounds of known 

properties, this information can be exploited to our advantage. The workflow in Figure 7 illustrates 

the proposed strategy: first, the query compound is evaluated using a read across method, which 

looks for the presence of highly similar compounds. If these are found, the prediction will be based on 

their properties and no further steps are done. Since the similarity criterion is rather strict, it can be 

expected that in many cases the RA will yield no results. In these cases, the query compound is 

assigned to a chemical domain of the training set, using the similarity metrics described above, and 

predicted using a local model built within. When no suitable chemical domain can be found, a global 

model based on random forest was used as a fallback.  

 

This strategy was applied to the five data sets of Table 1-2 and the quality of the predictions obtained 

was analyzed and compared with those obtained using global models. For all studied endpoints the 

average results show a clear but modest quality improvement. However we wanted to investigate 

more in deep if the improvement was observed in all instances or only in some cases. Figure 8 

illustrates the results for each dataset split, quantified as SDEP (for quantitative endpoints) or 

accuracy (for qualitative endpoints) and compared with the global model prediction. For quantitative 

endpoints (hERG and SOLU), the advantages were clear: in hERG it always produced better results. In 

SOLU, only one of the splits out of ten produced worse results and another was not significantly 

improved. For the qualitative endpoints, the results were even better. For ABCB1 and DILI the 

strategy produce very relevant improvements in 9 out of 10 splits and in the remaining case, the 

differences were very small. In the most favorable case, the improvement means a jump from 0.31 to 

0.70. For the DIPL endpoint the strategy did not produce so consistent improvements and failed in 3 

out of 10 cases.  

 

In order to further illustrate the obtained results we show in Table 5 three compounds of the hERG 

dataset, selected to represent extreme situations. For all compounds, we show the 2D structure of 
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the query compound, the structure of the most similar compound and the predictions obtained using 

the different methods described in the present paper. The prediction selected by our proposed 

strategy is highlighted in bold and in all instances it was coincident with the best option. For the first 

compound, the RA prediction matched exactly the experimental value, due to the presence in the 

dataset of a very similar structure. Local and global models also yield reasonable predictions with 

differences of 0.08 and 0.25 log units vs. the experimental value, respectively. For the second 

compounds, the presence of a diastereoisomer with similar biological properties also produced a 

perfect match when using RA. Conversely, the predictions produced by the QSAR models fail by more 

than 2 log units. For the third structure, no similar structure was found and hence the RA method 

produced no result, even though the structure and biological property of the closer compound are 

shown as a reference. In this case, the global models produced the best result and the predicted value 

fall within 0.69 log units of the experimental value. All in all, the compounds represented in Table 5 

illustrate well how no single method produces the best results in all instances and how large the 

errors could be if we do so. 

 

 

Table 5: Predictions obtained with RA, LM and GM for a few representatives of the hERG data set. The 

table contains the activity values of the closest compound if the RA and LM do not provide 

predictions. The predictions selected by the proposed strategy are highlighted in bold. 

2D structure Predictions Experimental 

Query compound RA/Closest compound RA  LM  GM   

  

6.19 6.27 5.94 6.19 
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8 5.4 5.71 8 

  

5.44* 4.1 3.71 3.02 

(* RA provided no prediction. The activity of the closest compound measured with Tanimoto and 

MORGAN fingerprints is shown) 

 

The same ability to select the best method, illustrated for diverse compounds of the same series in 

the above table, can also be observed across diverse datasets. The proposed strategy can be seen as a 

universal tool, applicable in highly diverse datasets, making optimal use of their heterogeneous 

information content. The chart at the bottom left corner of Figure 8 shows the proportion of 

prediction carried out using the different modeling methods (RA, local and global QSAR) for the 

different datasets, further illustrating the large diversity of the datasets and the advantages of using a 

flexible strategy, over more rigid approaches. 
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Fig. 7 Workflow of the proposed unifying strategy for the prediction 

 

 

 

Fig. 8 Comparison of the predictive quality of the proposed strategy (see text) and of global models 

quantified as SDEP for quantitative endpoints (hERG and SOLU) and accuracy (ABCB1, DIPL and DILI). 

For every dataset we represent the results obtained for ten random training-test set splits. Green 
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lines indicate that the results obtained using the proposed strategy were better than the results 

obtained using the global model. Red lines indicate the opposite. The column chart at the bottom 

right corner represents the average number of predictions obtained by the different modeling 

methods, according to the proposed strategy, in each of the datasets. 

 

Conclusion 

The large diversity of endpoints studied in drug safety assessment makes difficult to develop a "fit for 

all" modeling solution. This idea was confirmed by the disparity of the predictive performance results 

obtained for the sample of datasets studied here. Beyond predictive quality, the choice of the best 

predictive method will be often imposed by practical considerations, like the lack of compounds for 

obtaining a truly global model or the need of predicting the properties for which no suitable chemical 

category can be assigned. 

 

For these reasons, we proposed here a unifying strategy where the use of a whole spectrum of 

methods is considered; from structural alerts to global QSAR models, including read across and local 

models, in which the final decision is taken in a per-compound basis. The advantages of using such 

approach were illustrated above for a sample of representative datasets. However, it must be 

emphasized that its application in real-world situations can have additional benefits. First, in 

pharmaceutical research it is very common to generate clusters of closely related structures produced 

by chemical derivatization of candidate compounds. These situations are ideal for the application or 

RA or local models and can lead to much better predictions than approaches based on global models. 

Also, the chemical space of interest should not be seen as something static. During the life of a 

predictive model, new compounds can be studied and incorporated to the model training series thus 

changing their characteristics. The use of a flexible strategy allows adopting the most suitable method 

after any enrichment of the training series, thus making optimal use of all available information.   

 

As indicated in the title, we do not claim to have the best possible solution and we consider our 

proposed strategy as a first step towards a new generation of predictive methodologies, better 

adapted to the characteristics of the structure-activity landscape where they need to operate. The 

examples presented here can therefore be seen as a proof of concept, the value of which needs to be 

confirmed by the application of this methods to a richer dataset collection. The strategy described in 
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the present work and illustrated in Figure 8 has been implemented as a semi-automatic procedure 

based on command mode scripts, which are distributed as Supplementary Information under Open 

Source (GNU GPL-3) license of use. Currently our group is working in the development of automatic 

software tools allowing to apply unifying strategies like the ones presented here without human 

intervention and integrate them in toxicity predictions tools like eTOXlab (Carrió et al. 2015; Sanz et 

al. 2015). 
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