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Abstract. We present a registration framework that combines both
tissue Doppler and B-mode echocardiographic sequences. The estimated
spatiotemporal transform is diffeomorphic, and calculated by modeling
its corresponding velocity field using continuous B-splines. A new cost
function using both B-mode image voxel intensities and Doppler veloc-
ities is also proposed. Registration accuracy was evaluated on synthetic
data with known ground truth. Results showed that our method allows
quantifying wall motion with higher accuracy than when using a single
modality. On patient data, both displacement and velocity curves were
compared with the ones obtained from widely used commercial software
using either B-mode images or TDI. Our method demostrated to be more
robust to image noise while being independent from the beam angle.

1 Introduction

Ultrasound imaging (US) is one of the preferred modalities to assess myocardial
motion and deformation in clinical routine, due to its non-invasiveness, cost-
effectiveness, and high temporal resolution (around 30 fps for 3D and up to
more than 100 fps for 2D). The presence of local speckles facilitates the use of
tracking algorithms to estimate motion and deformation locally, but may suffer
from image quality. Complementarily, Tissue Doppler Imaging (TDI) allows the
quantification of myocardial velocities with a higher temporal resolution and
better signal-to-noise ratio, although with lower spatial resolution and angle
dependency. However, the integration of such results remains difficult, but highly
desired to overcome the disadvantages of using each technique separately.

The objective of this paper is to use both B-mode and TDI sequences to
estimate a single displacement field, taking advantage of the spatial resolution
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of B-mode images and the temporal resolution of TDI. In particular, we propose
a new cost function including a term that measures the agreement between
the estimated velocity projected on the beam direction and the velocity values
obtained from TDI.

Integration of multiple US cardiac images in one single image to be used for a 
quantitative analysis was proposed in [1] and [2]. In addition, methods to perform 
an integrated analysis of different US images were also proposed in [3] and [4]. All 
of these methods integrate different images from the same modality. In [5], TDI 
was used for motion tracking along the beam direction and B-mode images were 
used for tracking in the transversal direction. In [6] a combined analysis of B-
mode sequences and TDI was proposed, using an optical flow-based registration 
method with a spatial affine velocity model and a coarse-to-fine multi-scale 
approach. With this method, registration was performed pairwise, so the 
temporal coherence was not guaranteed. Moreover, B-mode and TDI frames 
needed to be evaluated at exactly the same time instant.

In our approach the velocity field was modeled continuously using B-spline
kernels. All frames were registered simultaneously by estimating one single spa-
tiotemporal transform to preserve both spatial and temporal consistency. To
estimate this transform, the agreement between the velocity field estimated pro-
jected on the beam direction and the velocities obtained from TDI is measured,
in addition to a more classical voxel intensity-based similarity metric between the
registered images and a reference. In our implementation, the estimated trans-
form is diffeomorphic, thus being smooth, invertible and with smooth inverse at
every spatiotemporal location.

2 Methodology

The proposed algorithm is based on the Temporal Diffeomorphic Free Form 
Deformation (TDFFD) registration method presented in [7] and improves it by 
taking into account tissue velocities obtained from TDI. A summary of the 
proposed registration framework is illustrated in Fig. 1.

2.1 Velocity field and transform

The TDFFD algorithm models a continuous velocity field as a sum of spatiotem-
poral B-spline kernels, where the B-spline coefficents (velocities at each control
point) are concatenated in a parameters vector p:
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where x = {x, y} are the spatial coordinates of the point whose velocity is
evaluated, β(·) is a cubic B-Spline kernel function, Q =

{
qi, qj , qk

}
represents

the grid of control points and ∆ = {∆i, ∆j , ∆k} is the spacing between control
points. To map a point at coordinate x = {x, y} from time t = 0 to time t = T ,
the velocity field has to be integrated:
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Fig. 1. Registration scheme. The optimizer finds the optimal parameters of the TDFFD
transform by combining a voxel intensity based cost function and a metric that mea-
sures the similarity between the estimated velocities projected on the beam direction
and the ones obtained from TDI.

ϕ0(x, T ; p) = x +

∫ T
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)
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Equation 2 can be discretized using a forward Euler integration scheme,
converting the continuous t in a sequence of discrete tk. Thus, the transform at
t = tn can be re-written as:

ϕ0(x, tn; p) = x +

n−1∑
k=0

v
(
ϕ0(x, tk; p), tk; p

)
∆tk (3)

where ∆tk = tk+1 − tk.
Note that the temporal sampling has to be small enough to get an accurate 

approximation of the trajectory with Eq. 3. In this work, we are using images 
from two modalities with different temporal resolution. To exploit the higher 
temporal resolution of TDI, the initial temporal sampling of the transform was 
set to the average temporal spacing between TDI frames. As proposed in [7], 
to ensure invertibility, the Jacobian of the transform with respect the spatial 
coordinates is evaluated at every sampled point. If a point with non-positive 
determinant of the Jacobian is detected, the time step is reduced by a factor 
of 2 until a positive determinant is found (which is a neccessary condition for 
invertibility).

2.2 Cost function

Unlike the case of B-mode US image registration, not only image voxel intensities
will be considered but also tissue velocities. Therefore, the cost function proposed
will take into account two different terms, one for each information channel
considered:

C(p) = J(p) + λD(p) (4)



where J represents a similarity metric applied on the B-mode image sequence, D 
is the similarity metric applied on the TDI data and λ is a weight balancing the 
two terms. For the first term, a squared difference of pixel intensities between the 
reference frame and the remaining frames is used as proposed in [7]. For the 
second term, a comparison between the projection of the velocity field estimated 
on the beam direction and the Doppler velocities is proposed. Unlike in [7], no 
incompressibility term was used. Thus:

C(p) =
N∑
n=0

∑
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(
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)2
+

λ
M∑
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(
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where In represents a B-mode US frame at t = tn, b is a unitary vector in
the beam direction, v represents the velocity estimated, V is the velocity value
provided by TDI, N+1 and M+1 are the number of B-mode and tissue Doppler
frames, and ΩI and ΩV correspond to the spatial domain of the B-mode and
tissue Doppler images respectively.

2.3 Optimizer and metric derivation

Since the number of transform parameters is high, a L-BFGS-B optimizer [8] was 
preferred for registration. This algorithm uses the derivative of the cost function 
with respect to the parameters to find the optimal value of p. Optimizer bounds 
were set to ±20cm/s. The total derivative of the cost function is:
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where ∇I represents the gradient of the image. For simplicity, ϕ0(x, tn;p) was written

as xn0 . The steps for the computation of
dxn

0
dp

can be found in [7]. Note that the calcu-

lation of dv
dp

corresponds to the derivative of the B-spline used to model the velocity
field.

3 Experiments and results

To validate the proposed algorithm, synthetic B-mode images and TDI data were used.
The method was also applied to one healthy volunteer and the results were compared
with the ones obtained from widely used commercial software.

For all the experiments, the B-spline grid used to model the velocity field had a
size of 8×8×N control points, where N is the number of frames in the B-mode image
sequence.



3.1 Validation with synthetic data

The US synthetic dataset created in the second Cardiac Motion Analysis Challenge 
at STACOM-MICCAI 2012 6 was used to evaluate the accuracy of the myocardial 
motion estimated with the proposed method. This dataset was generated using heart 
segmentations from magnetic resonance images as input for the Bestel-Clement-Sorine 
electro-mechanical model [9][10]. The model was then used to simulate acute ischemia 
and dyssynchrony. For each simulated case, ground truth for displacement at every 
point was available. A US model (COLE, [11]) was used to generate synthetic 3D US 
images from the output of the electro-mechanical model. The simulated images consisted 
of 107 × 80 lines in azimuth and elevation direction over an angle of 80 × 80 degrees, 
resulting in a frame rate of 30 Hz due to the use of parallel beam forming. After mapping 
to a Cartesian coordinate system, the final data sets consisted of 500×400×500 isotropic 
voxels with a voxel size of 0.46 mm. The dataset comprised eight different cases: two 
normal cases, four ischemic and two cases with dyssynchrony.

A 2D longitudinal plane was extracted from every 3D US image, simulating B-
mode US images in a 4-chambers view. In addition, velocities were calculated from the
ground truth meshes and projected on the beam direction to simulate TDI data. White
noise was also added to the velocities [12], so that the signal-to-noise ratio was 12 dB.
Image regions without velocity information were set as random values below 1.6 cm/s
(which was used as Nyquist velocity).

The value of λ (Eq. 4) was determined by heuristic testing on one of the normal
cases. The average displacement error value during the whole cardiac cycle was calcu-
lated in the left ventricle for different values of λ. Results are reported in Fig. 2. Based
on these results, a value of λ = 30 was taken for all the experiments.

Fig. 3 shows the mean and standard deviation of the displacement error (considering
both longitudinal and transversal components) along one cardiac cycle for each case
when using only B-mode images and when using both B-mode images and TDI. As it
can be observed, the error was reduced in all cases by using B-mode images together
with tissue Doppler velocities.

3.2 Application to clinical case

Experiments with one healthy volunteer (age 40, male) were also performed and results
were compared with commercial software that is widely used in the clinical environ-
ment (EchoPAC, GE Healthcare, Milwaukee, WI, USA). Longitudinal velocities and
displacements were calculated separately from B-mode images and from TDI with this
software at 4 points of the myocardium and compared with the ones estimated using
our approach (see Fig. 5). These points were located at basal- and mid-levels of the
left ventricle, for both septal and lateral walls, as illustrated in Fig. 4. Only points
at basal- and mid-levels were analysed because the beam is roughly aligned with the
longitudinal direction at these locations. The algorithm that EchoPAC uses for motion
tracking from B-mode images is based on speckle tracking, while motion from TDI is
computed by temporally integrating the recorded velocities. No drift correction was
performed because it may hide the propagation of errors.

Displacement curves obtained with the different methods had similar and realistic
shapes, although the maximum displacements presented variations depending on the
method considered. The maximum displacement estimated by the commercial software

6 http://www.physense.org/stacom2012/
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Fig. 2. Mean displacement
error estimated during one
cardiac cycle for different
values of λ in a normal case
(Normal1).
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Fig. 3. Mean error (circles) and standard deviation
(lines) calculated from registration results using only
B-mode images (blue) and using both B-mode and
TDI data (red) for every simulated case.

from B-mode images was higher in general. However, this increment in the magnitude
could be due to the drift. In addition, if one region of the image has poor quality,
tracking based only in B-mode sequences may fail, as it is the case of Point 1.

Displacements estimated with the commercial software from TDI and with our
approach were very similar and presented a low drift compared to the results from B-
mode images. However, since the displacement estimated from TDI data is calculated
by temporally integrating the recorded velocities, the white noise that is present in the
velocity signals may lead to errors in the estimation of the displacement. In addition,
the limitation of using only TDI is that it only measures velocity on the beam direction.
Our approach is more robust to errors by taking information from two sources.

The velocity curves estimated were very similar in shape and magnitude among
the different approaches (with the exception of Point 1 for the estimation from B-mode
images), while the velocity estimated with our approach is temporally smoother, this
being due to its intrinsic definition through the TDFFD method.
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Fig. 4. Location of the points at which the comparison of Fig. 5 was performed.
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Fig. 5. Longitudinal displacements and velocities estimated during one cardiac cycle
with: our approach (red), EchoPac using Doppler velocities (blue) and EchoPac using
B-mode images (green).

4 Conclusions

We presented a registration framework with improved accuracy with respect to classical
motion estimation from grayscale images, by combining B-mode echocardiographic
sequences with the velocity information from tissue Doppler sequences. This approach
allows increasing the temporal resolution of the estimated displacement field, while
being independent from the beam angle. This could be very helpful to detect subtle
differences in mechanics that are not visible when processing B-mode images or TDI
separately. In addition, it is possible to control the influence of each information source
by changing the value of the weighting parameter λ. Experiments on synthetic datasets
demonstrated the higher accuracy reached by this approach. Moreover, experiments
with one clinical case showed that the proposed method gave realistic results.
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