Hepatitis C virus infection inhibits P-body granule formation in human livers

Gemma Pérez-Vilaró1+, Carlos Fernández-Carrillo2+, Laura Mensa2, Rosa Miquel3, Xavier Sanjuan4,5, Xavier Forns2, Sofía Pérez-del-Pulgar2*, Juana Diez1*

1Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain
2Liver Unit, Hospital Clinic, IDIBAPS, CIBERehd, Barcelona, Spain
3Pathology Department, Hospital Clinic, Barcelona, Spain
4Scientific and Technical Services, Universitat Pompeu Fabra, Barcelona, Spain
5Advanced Light Microscopy Unit, Center for Genomic Regulation, Barcelona, Spain

+Authors share co-first authorship
*Authors share co-senior authorship

To whom correspondence should be addressed:

Juana Diez, PhD
Molecular Virology Group
Department of Experimental and Health Sciences
Universitat Pompeu Fabra
Doctor Aiguader, 88, 08003 Barcelona, Spain
Phone. +34-933 160 862 / Fax. +34-933 160 901
E-mail: juana.diez@upf.edu

Sofía Pérez-del-Pulgar, PhD
Hospital Clinic, IDIBAPS, CIBERehd
Rossellón 149-153, 08036 Barcelona, Spain
Phone. +34 932275400 (2093) / Fax. +34 933129405
E-mail: sofiaapp@clinic.ub.es
Electronic word count: 4795 words including the abstract, references, tables and figure legends.

Number of figures and tables: 4 Figures, 1 Table

Abbreviations used in this paper: HCV, hepatitis C virus; P-bodies, processing bodies; HBV, hepatitis B virus.

Keywords: P-bodies; HCV; in vivo; liver

Conflicts of interest: The authors who have taken part in this study declared that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Financial support: JD and GPV were supported by a grant from the Spanish Ministry of Economy and Competitiveness (BFU2013-44629-R). XF received support in part by a grant from Instituto de Salud Carlos III (PI11/01907), Ministerio de Economía y Competitividad, co-funded by Fondo Europeo de Desarrollo Regional, Unión Europea, Una manera de hacer Europa. XF and SPP also received a grant from the Roche Organ Transplantation Research Foundation (ROTRF, CI: 442035057). The other authors were supported by grants from the following institutions: CFC from Asociación Española para el Estudio del Hígado and LM from Instituto de Salud Carlos III, Ministerio de Economía y Competitividad.

Author’s Contributions: GPV and CFC designed, performed experiments and analyzed data; CFC collected clinical data; CFC and LM set up conditions for the immunostaining of P-body components in formalin-fixed paraffin-embedded liver biopsies; XS provided technical assistance and acquired images for 3D reconstruction experiments; RM did the histopathological processing and diagnostic analysis of liver tissue samples; JD, SPP and XF supervised all aspects of this study, including design, execution, data analysis, interpretation and manuscript preparation; JD came up with the research idea; XF provided the patient cohort and the clinical samples; JD and GPV
wrote the manuscript; All authors contributed to the interpretation and discussion of the results, as well as to the revision of the manuscript.
Abstract

Background & Aims: Decoding the myriad of interactions that Hepatitis C virus (HCV) establishes with the infected cells is mandatory to obtain a complete understanding of HCV biology and its associated pathogenesis. We and others have previously identified in cell culture that HCV infection disrupts the formation of P-bodies. These are cytoplasmic RNA granules with key roles in post-transcriptional regulation of gene expression. Consequently, P-body disruption might have consequences beyond viral propagation. However, whether P-body disruption occurs also in vivo is unknown. Aim of this study was to address this important issue.

Methods: Formalin-fixed paraffin-embedded liver biopsies from 4 groups of patients (healthy donors, patients with non-virus related liver inflammation, HCV- and HBV-infected patients) were immunostained to detect DDX6 and Dcp1, two core P-body components. Changes in the localization of these proteins were assessed by confocal microscopy.

Results: HCV specifically inhibited P-body formation in hepatocytes from human livers regardless of viral genotype, inflammation grade or whether the infection was recent or long established. Importantly, this alteration was reversed once HCV is eliminated by therapy. Furthermore, in vivo an unexpected heterogeneity in P-body composition was observed that might reflect functional specializations.

Conclusions: This is the first comprehensive P-body analysis in vivo that links a pathogenic condition to P-body alterations. Given the role of P-bodies in cellular gene expression, their alteration should be considered to fully understand the complex HCV-associated pathologies.

Abstract word count: 229 words

Keywords: P-bodies; HCV; in vivo; liver
Introduction

Hepatitis C virus (HCV) remains a major threat for human health. Around 130-170 million people worldwide are chronically infected and at high risk to develop liver fibrosis, cirrhosis and hepatocellular carcinoma [1]. There is no vaccine against HCV and the recently approved treatments, although increasingly effective, are genotype specific, expensive, and present multiple side effects and contraindications [2, 3]. Thus, it is of interest to expand the therapy options against HCV. For this, it is necessary to gain a deeper knowledge of the HCV life cycle.

All steps of the HCV life cycle involve interactions between few HCV components and a myriad of host factors. Over the last years major advances have been made in the identification of such interactions using a robust HCV cell culture system that uses a virus strain isolated from a patient with fulminant hepatitis, a rare event in HCV infections [4], and Huh7 hepatoma cell lines [5]. However, although very useful, this is an artificial system that does not recapitulate the host environment that HCV faces in chronic infected livers. Moreover, Huh7 cells are transformed cells with an impaired innate antiviral response [6]. Consequently, in vivo studies in the infected human liver are essential to determine the relevance of identified host-HCV interactions.

Cell compartmentalization ensures the timely and quantitative provision of molecules in the cytoplasm of eukaryotic cells. These compartments include classical among others membrane organelles such as the endoplasmic reticulum and more recently identified membrane-less RNA granules named P-bodies. By using the HCV cell culture system we and others have shown that HCV not only manipulates host membranes but also P-bodies [7, 8]. P-bodies are involved in post-transcriptional regulation of gene expression. They are highly dynamic and contain translationally silent mRNAs together
with multiple proteins from the mRNA decay and silencing machineries [9, 10]. Once in
P-bodies, mRNAs can be either degraded or stored for a later return into translation [11-
13]. HCV hijacks the core P-body components PatL1, Lsm1-7 and DDX6 (also referred
as Rck/p54), that are required for P-body formation, to efficiently translate and replicate
its RNA genome [14]. This is associated with a significant reduction in the number of
P-bodies within infected cells, presumably by keeping the required components away
from participating in P-body formation since PatL1, Lsm1-7 and DDX6 expression is
not changed [7, 8]. Alterations in P-body components and P-body formation might have
consequences in vivo beyond HCV propagation. Indeed, such alterations not only have
been connected to other viral infections but also to stress conditions and to cancer [15-
19]. However, as for HCV, all these connections have been derived from indirect
evidences and cell culture studies.

Here we show that HCV specifically decreases P-body abundance in hepatocytes from
human livers. This is the first direct link in vivo between a pathogenic condition and P-
body alterations.

Materials and Methods

Patients

A total of 55 patients were selected for this study, all of them attending the Hospital
Clinic of Barcelona between 2002 and 2013. All patients provided written informed
consent to use their liver samples. Our study was approved by the Ethics Committee of
Hospital Clinic of Barcelona, in accordance with the guidelines set forth in the 1975
Declaration of Helsinki. Liver biopsies were performed from patients when clinically
indicated. Aiming to assess changes in P-bodies during HCV infection, we studied 19
HCV chronically-infected immunocompetent patients with a liver biopsy done before
antiviral treatment (Table 1). Most of these patients showed typical histological features of chronic hepatitis with variable degree of periportal and/or lobular necroinflammation.

As HCV-negative control group, 10 healthy donors for living donor liver transplantation (designated as healthy donors in the main text) were selected. To compare HCV infection with another viral hepatitis, we also enrolled 8 chronically HBV-infected immunocompetent patients with a liver biopsy performed before antiviral treatment. Most of the HBV-infected patients showed histological features of chronic hepatitis. In order to address a possible influence of inflammation per se on P-bodies, we selected 10 HCV- and HBV-negative liver transplant (LT) patients showing inflammatory changes at the liver biopsy due to non-viral causes, mainly transplant rejection. Most of the non-viral LT patients had portal lymphoid inflammatory infiltrates associated with variable lobular inflammation. The clinical and histological characteristics of the 3 control groups are summarized in Supplementary Table 1. To test the reversibility of P-body changes after HCV clearance, we also selected 3 patients who received antiviral treatment after LT and achieved a sustained virological response (demonstrated by negative PCR tests immediately after and at 6 months after treatment). In this group, liver biopsies were obtained before and after HCV clearance. To assess P-body changes in acute HCV infection we selected another 3 patients with hepatitis C recurrence after LT who were biopsied during acute phase hepatitis (0.5 and 6 months after LT). Colocalization studies with HCV core protein and DDX6 were performed in biopsies obtained from 2 patients with HCV recurrence after LT and very high viral load (7.7 and 8.0 log_{10} IU/mL, respectively).

Histopathological processing and diagnostic analysis of liver tissue samples

Tissue specimens were formalin-fixed, paraffin-embedded (FFPE) and stained with hematoxylin-eosin and Mason’s trichrome as routinely done for diagnostic purposes in
the Pathology Department at the Hospital Clinic of Barcelona. Samples were analyzed by an expert liver pathologist (RM). Chronic viral hepatitis was graded and staged by the METAVIR score system [20]. Routine methods and scoring systems were used to characterize histopathological findings according to other specific clinical conditions (Banff recommendations for rejection, etc.; Supplementary Table 1).

Indirect immunofluorescence

Five-micrometer sections were cut from paraffin blocks and mounted onto charged slides. The slides were heated overnight at 37°C and then subjected to antigen retrieval using the PT Link automated system (Dako, Glostrup, Denmark). Antigen retrieval conditions were high pH buffer, no preheat mode, target retrieval mode at 97°C for 20 minutes. The sections were afterwards blocked with phosphate-buffered saline (PBS) / 10% goat serum (Jackson ImmunoResearch, PA, USA) during 30 minutes. Incubation with primary antibodies was performed at room temperature during 120 minutes. The primary antibodies used were 5 μg/mL rabbit polyclonal anti-DDX6/rck (p54) (MBL, Nagoya, Japan), 1.3 μg/mL mouse monoclonal IgG1 anti-DDX6 3D2 (Sigma-Aldrich, MO, USA), 0.8 μg/mL mouse monoclonal IgG2a anti-Dcp1A 3G4 (Abnova, Taipei, Taiwan) and 1 μg/mL mouse monoclonal IgG1 anti-core C7-50 (Santa Cruz Biotechnology, CA, USA). After incubation with the primary antibodies, sections were washed three times with PBS (5 minutes each) and incubated with the secondary antibody for 1 hour at room temperature. The secondary antibodies used were 2 μg/mL Alexa Fluor® 647 goat anti-rabbit IgG and Alexa Fluor® 568 goat anti-mouse IgG (Invitrogen, CA, USA). After the second incubation, 3 additional washes with PBS were performed and the slides were incubated again for 5 minutes with 1 μg/mL DAPI (Sigma-Aldrich, MO, USA) followed by three final washes with PBS and once with
deionized water. Finally, the samples were mounted with ProLong® Gold Antifade
Reagent (Invitrogen, CA, USA).

Confocal imaging and data analysis
Images were acquired with a Leica TCS SP5 confocal microscope using a 63× 1.4-NA
PL APO objective (Leica Microsystems GmbH). For each liver biopsy 10 different non-
overlapping fields were analyzed. Portal spaces were systematically excluded, avoiding
areas of high lymphocyte concentration or poor DAPI quality staining. In total, more
than 200 hepatocytes were analyzed per biopsy. Image processing and analysis to obtain
the number and size of DDX6- and Dcp1-containing P-bodies was performed with Fiji
software [21]. Areas with liver sinusoids and/or lipofuscin aggregates were excluded
from the analysis by masking them. The resulting images were processed by using a
difference-of-Gaussians filter to enhance structures within the range of the two
Gaussians (sigma 0.5 and 2). Filtered images were subsequently thresholded for P-body
particles segmentation and counting. The number of hepatocytes per field was obtained
by counting nuclei within a specified range in size (500-5000 pixels) and circularity
(0.85-1.00) and final values for P-body counts per hepatocyte were obtained from
relating the number of P-bodies in each image to the number of hepatocytes. In the
indicated experiments, Z-stacks at the optimal Nyquist axial step size (0.13 µm) from at
least 30 randomly selected cells under each condition were collected. Stacks were
analyzed to obtain P-body numbers in a similar way as described above, yet using tools
to process, threshold and count volumes instead of areas. To perform 3D
reconstructions, Z-stacks were deconvolved using Huygens Essential 4.1 software
(Scientific Volume Imaging BV, Hilversum, The Netherlands) and visualized with
isosurfaces using Imaris 64X 7.6.4 software (Bitplane AG, Zurich, Switzerland).
Statistical analysis

Mann-Whitney U test was performed when comparing quantitative variables in unpaired groups. Wilcoxon signed-rank test was used to compare quantitative variables in paired groups. A two-tailed p-value of less than 0.05 was considered statistically significant. Data were analyzed with SPSS Statistics 20 (IBM) and Prism 5.01 (GraphPad) software.

Results

HCV infection specifically decreases P-body abundance in livers from chronically infected patients

We have previously reported that HCV utilizes P-body components to propagate and induce granule disruption in cell culture [7, 14]. These in vitro results encouraged us to investigate whether HCV infection affects P-body formation in the liver of chronically infected patients. For this, formalin-fixed paraffin-embedded liver biopsies from HCV-infected patients (n=19, Table 1) and healthy donors (n=10) were double immunostained to detect the two core P-body components DDX6 and Dcp1. P-body detection was assessed by confocal microscopy (Fig. 1A). Regardless of the infecting HCV genotype (1a, 1b, 2, 3 or 4) or the inflammation grade, the abundance of P-bodies containing DDX6 and Dcp1 were reduced by ~2- and ~10-fold, respectively, in hepatocytes from HCV-infected patients relative to hepatocytes from healthy donors (Fig. 1B). The number of Dcp1-positive P-bodies in the biopsies from healthy individuals exhibited a wide variation among samples that was narrowed down in the presence of HCV infection.

To determine whether the observed alterations were HCV-specific we included in our study liver biopsies from patients chronically infected with hepatitis B virus (HBV) (n=8) and from patients with non-virus related inflammatory changes (n=10). The first
group of patients allowed determining whether another virus infection that targets the liver could also lead to P-body disruption, while the second group allowed addressing the putative role of liver inflammation in P-body alterations. Importantly, no decrease in the number of P-bodies containing DDX6 was observed in liver biopsies from HBV-infected patients or with non-virus related inflammatory changes. Likewise, the values obtained for P-bodies containing Dcp1 in these patients were disperse and no significant differences were observed when compared to healthy donors (Fig1. B). Thus in vivo HCV infection specifically decreases P-body abundance.

The effect of HCV on P-body disruption occurs in both acute and chronic infections and is reversed once HCV is eliminated by therapy

To assess whether a reduced P-body abundance is reversibly linked to HCV infection, we longitudinally analysed P-bodies in liver biopsies from chronically infected patients before and after antiviral treatment (n=3), once a sustained virological response and thus viral clearance had been achieved. In all cases, the number of P-bodies per hepatocyte containing DDX6 or Dcp1 increased upon viral clearance, reaching levels comparable to the ones found in healthy donors (Fig. 2). Of note is that although the number of P-bodies per hepatocyte seemed patient specific, the ratio between P-body numbers obtained before and after antiviral treatment was similar among the three patients analysed.

To determine whether the HCV-induced changes in P-bodies from hepatocytes require a chronic state of the viral infection or also occurs in acute states, we analyzed biopsies from liver transplant patients with acute recurrent hepatitis C (n=3), which mimics the initial phase of the infection. In these biopsies the number of P-bodies that contained DDX6 or Dcp1 was similar to the ones found in chronically infected patients (Fig. 2).
Collectively, although the amount of samples was limited, these results support that HCV infection, acute or chronic, specifically decreases P-body abundance and that this decrease is reversed once HCV is eliminated by therapy.

In vivo, P-body granules in somatic cells are more heterogeneous than previously anticipated

The composition and formation of P-bodies in somatic cells in vivo is mostly unexplored since available studies have focused on cell culture systems [11, 12]. Interestingly, analyses of the liver images from confocal microscopy revealed unexpected peculiarities. There was no colocalization of DDX6 and Dcp1 in hepatocytes in vivo although such colocalization is commonly observed in hepatoma cell lines, like Huh 7.5, used to study HCV in vitro [7]. This lack of colocalization was hepatocyte-specific since parenchyma-infiltrating lymphocytes of the same individual showed a strong colocalization of DDX6 and Dcp1 (Fig. 3). Thus, in vivo, P-body granules seem to be more heterogeneous than previously anticipated in vitro and cell-type specific.

3D single cell analyses corroborates the P-body number decrease observed at a global level in HCV-infected livers

Confocal analysis allows the acquisition of single cell sections. To eliminate the possibility that the P-body changes in HCV chronically infected livers were due to alterations in P-body intracellular distribution, we carried out detailed single-cell 3D analyses. Liver biopsies from patients with severe HCV recurrence after liver transplantation were double immunostained for the HCV core protein and the P-body component DDX6. Double staining with the HCV core antigen ensured that only HCV-infected cells were analyzed. The use of biopsies from liver transplant patients with high
viral load and, therefore, high HCV antigen levels allowed overcoming the experimental
limitations of the low abundance of HCV antigens in infected cells and the unfavorable
imaging properties of the liver [22]. Z-stack images were obtained and P-body
abundance and intracellular localization was evaluated and compared with that in
hepatocytes from healthy donors. DDX6-containing P-bodies were reduced by ~2-fold
in core-positive hepatocytes from HCV-infected patients relative to hepatocytes from
healthy donors (Fig. 4A). This value parallels the one obtained with single stack
analyses where infected and non-infected hepatocytes are indistinguishable (Fig. 1B). In
line with this, when P-bodies were quantified in core-negative hepatocytes the average
amount of DDX6-containing P-bodies per cell area was similar to the one in core-
positive hepatocytes. In addition, as it has been observed previously [22], the 3D
reconstruction of HCV-infected hepatocytes showed HCV core proteins forming ring-
like structures that surround lipid droplets, the site of viral RNA encapsidation.
Opposite to studies in cell culture [8], DDX6 did not colocalize with HCV capsid
proteins (Fig. 4B).

Discussion

In vivo studies are essential to deeply understand the complex interaction of HCV with
the infected hepatocyte and the associated pathogenesis. In this manuscript we report
that HCV infection impairs P-body formation in hepatocytes from human livers
regardless of viral genotype, inflammation grade or whether the infection is recent or
long established. The observed alterations are HCV-specific since no significant P-body
reduction was observed in chronically HBV-infected patients or in patients with non-
viral related hepatic inflammatory changes. Furthermore, the number of P-bodies was
restored once the virus is eliminated by therapy strengthening the requirement of the
presence of HCV for P-body disruption to occur. Interestingly, the number of P-bodies
per hepatocyte was highly heterogeneous among individuals covering a wide range of values in healthy donors, HBV-infected, and non-viral related liver inflammation patients. Nonetheless, in HCV-infected patients this range was very narrow indicating that HCV is a decisive factor in P-body formation.

An unexpected observation in our study was the heterogeneous composition displayed by P-bodies in vivo. To our knowledge all previous P-body studies in somatic cells have been assessed in cell lines. In these studies DDX6 and Dcp1, two core P-body components widely-used to visualize P-bodies, colocalize [7]. However, in hepatocytes from both healthy donors and HCV-infected patients no colocalization was observed, while lymphocytes surrounding these hepatocytes showed clear colocalization patterns. The variable P-body composition among cell types might reflect different cell regulation requirements [23]. Currently, we do not know if this is a special feature of hepatocytes or is extended to other cell types. Another observation in conflict with previous cell culture data was the no colocalization of DDX6 with the viral core protein. Ariumi et al. determined that DDX6, among other P-body components, were hijacked to lipid droplets where they colocalize with the core protein from JFH1 HCV strain [8]. However, with Jc1 HCV strain we failed to observe this colocalization in cell culture [7]. These conflicting results might reflect differences in the dynamicity of core and DDX6 interactions. Finally, another interesting observation in hepatocytes is that DDX6-containing and Dcp1-containing P-bodies behave differently under certain conditions. In hepatocytes from HBV-infected patients the number of DDX6-containing P-bodies was significantly increased relative to hepatocytes from healthy donors. In contrast, hepatocytes from HBV-infected patients displayed a tendency to show lower Dcp1-containing P-body numbers when compared to healthy donors. Although the cause of these distinct behaviours remains unknown, they might reflect a specialization
in P-body granules. Together, the observed heterogeneity in P-body composition among
cell types and within a single cell opens a new level of complexity that might reflect
functional specializations and deserves further exploration.

The HCV-induced reduction in P-body numbers might have profound effects in the
biology of the cell. P-body components are in a dynamic equilibrium between their
granule and a soluble localization in the cytosol, thus a reduction in the number of P-
bodies results in an increase of cytosolic P-body components [24-26]. As P-body
components include multiple proteins that control decay and silencing of mRNAs, the
transcriptome and translatome is expected to be deregulated and consequently gene
expression altered. In chronic infections, HCV-induced reduction in P-body numbers
would result in a long-term alteration of gene expression that might contribute to HCV-
associated pathogenesis. In line with this, overexpression of the core P-body component
DDX6 has been observed in hepatocellular carcinomas [18]. This overexpression is
expected to alter the P-body numbers.

How and why HCV infection induces P-body disruption is not completely understood.
Our data in hepatoma cell lines support the hypothesis that HCV disrupts P-bodies by
hijacking or modifying core P-body components required for P-body formation [7, 8].
Lsm1-7, Pat1 and DDX6 are three core P-body components with a major role in
decapping and decay of cellular mRNAs [27]. HCV needs these factors and redirects
them for a role in the viral life cycle to promote HCV RNA translation and replication
[14, 28]. At the same time, the subsequent P-body disruption might also benefit viral
reproduction since P-bodies have been involved in innate immune responses [16].
Intriguingly, in vivo, the HCV-induced reduction in P-bodies was similar in core-
positive and core-negative cells (Fig. 4A). Consequently, either very low and
undetectable HCV replication is enough to cause P-body disruption or HCV-infected cells induce P-body disruption of surrounding cells by unknown mechanisms. Interestingly, perturbed metabolic zonation in HCV-infected livers has been recently related to this last scenario [29].

In summary, this is the first comprehensive analysis of P-body granules in vivo and a direct demonstration of a link between a pathogenic condition and P-body alterations. Incorporating P-bodies into the mechanistic framework of multifaceted disease traits adds another level of complexity that should be considered to fully understand the molecular events causing HCV-induced liver disease and other serious diseases.
Acknowledgements

We thank A. Meyerhans for critically reading the manuscript and for helpful discussions and T. Pengo for his advice in the design of scripts to analyze the confocal datasets.
References

Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. Wiley interdisciplinary reviews RNA 2013;4:317-331.

Figures and Tables

Figure 1. HCV infection specifically decreases the number of P-bodies compared with healthy donors. Hepatic tissue was stained with antibodies to detect DDX6 (red) and Dcp1 (green). Nuclei were visualized using DAPI (blue). (A) Representative pictures from healthy donors and HCV-infected patients. Scale bar, 10µm. (B) Quantification of DDX6- and Dcp1-containing P-bodies in healthy donors (Healthy, n=10), HCV-infected (HCV, n=19), HBV-infected (HBV, n=8), and HCV-negative patients with liver inflammation (Inflam., n=10). Dots indicate the median value per biopsy, horizontal red lines indicate the median for each group of patients and vertical red lines the interquartile range. Statistical significance was tested with Mann-Whitney U test. *P < 0.05; **P < 0.005; n.s., not significant.

Figure 2. P-body disruption occurs in acute and chronic HCV infections and is reversed once HCV is eliminated. Hepatic tissue was stained as described for Fig. 1A and DDX6- and Dcp1-containing P-bodies were quantified in three HCV-chronic infected patients (P1c, P2c and P3c) before (B) and after (A) antiviral treatment, as well as in three HCV-acute infected patients (P4a, P5a and P6a). Displayed are the median values for each patient, error bars indicate the standard error of the mean. Statistical significance was tested with Wilcoxon test. **P < 0.005.
Figure 3. Colocalization of DDX6 and Dcp1 in hepatocytes and parenchyma-infiltrating lymphocytes. Hepatic tissue was stained in healthy donors and HCV-infected patients with antibodies to detect DDX6 (red) and Dcp1 (green). Nuclei were visualized using DAPI (blue). Scale bar, 10µm. Indicated areas in the images are magnified in the central columns.

Figure 4. 3D single cell analysis validates DDX6-containing P-body decrease observed at a global level. Hepatic tissue was stained with antibodies to detect DDX6 (red) and the viral protein core (green). Nuclei were visualized using DAPI (blue). (A)
DDX6 P-body number was quantified at a single cell level along the Z-axis in healthy donors (Healthy, n=4) and in HCV core-positive (Core +) and core-negative (Core -) cells from HCV-infected patients (HCV, n=2). Horizontal red lines indicate the median for each group of patients and vertical red lines show interquartile range. (B) Z-stack images were 3D-segmented. Colocalization between both markers was assessed in HCV-infected patients. Statistical significance was tested with Mann-Whitney U test.

**P < 0.005; n.s., not significant. Scale bar, 3 µm.
Table 1. Baseline characteristics of immunocompetent patients with chronic hepatitis C. All patients (n= 19) were biopsied before treatment as clinically indicated in order to assess liver injury and fibrosis stage (METAVIR grade and stage, respectively). In this group, no specific association was found between P-bodies number and clinical parameters.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)</th>
<th>Gender (M/F)</th>
<th>HCV Genotype</th>
<th>Viral Load (log_{10} IU/mL)</th>
<th>AST/ALT (IU/mL)</th>
<th>METAVIR grade</th>
<th>METAVIR stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>35</td>
<td>M</td>
<td>4</td>
<td>5.22</td>
<td>71/155</td>
<td>A2</td>
<td>F2</td>
</tr>
<tr>
<td>P2</td>
<td>36</td>
<td>M</td>
<td>1b</td>
<td>5.97</td>
<td>33/48</td>
<td>A0</td>
<td>F0</td>
</tr>
<tr>
<td>P3</td>
<td>54</td>
<td>F</td>
<td>1a</td>
<td>5.24</td>
<td>71/54</td>
<td>A1</td>
<td>F2</td>
</tr>
<tr>
<td>P4</td>
<td>45</td>
<td>M</td>
<td>1b</td>
<td>5.01</td>
<td>30/36</td>
<td>A0</td>
<td>F0</td>
</tr>
<tr>
<td>P5</td>
<td>55</td>
<td>M</td>
<td>1b</td>
<td>5.05</td>
<td>152/203</td>
<td>A1</td>
<td>F4</td>
</tr>
<tr>
<td>P6</td>
<td>65</td>
<td>F</td>
<td>1b</td>
<td>5.79</td>
<td>73/94</td>
<td>A1</td>
<td>F2</td>
</tr>
<tr>
<td>P7</td>
<td>20</td>
<td>F</td>
<td>1b</td>
<td>4.40</td>
<td>66/158</td>
<td>A1</td>
<td>F2</td>
</tr>
<tr>
<td>P8</td>
<td>37</td>
<td>M</td>
<td>1b</td>
<td>6.04</td>
<td>114/262</td>
<td>A1</td>
<td>F2</td>
</tr>
<tr>
<td>P9</td>
<td>43</td>
<td>F</td>
<td>1b</td>
<td>5.18</td>
<td>67/138</td>
<td>A1</td>
<td>F1</td>
</tr>
<tr>
<td>P10</td>
<td>33</td>
<td>M</td>
<td>3</td>
<td>5.77</td>
<td>40/64</td>
<td>A2</td>
<td>F4</td>
</tr>
<tr>
<td>P11</td>
<td>55</td>
<td>F</td>
<td>1b</td>
<td>6.03</td>
<td>73/60</td>
<td>A1</td>
<td>F1</td>
</tr>
<tr>
<td>P12</td>
<td>23</td>
<td>F</td>
<td>1b</td>
<td>3.04</td>
<td>31/69</td>
<td>A1</td>
<td>F0</td>
</tr>
<tr>
<td>P13</td>
<td>51</td>
<td>M</td>
<td>1b</td>
<td>6.33</td>
<td>39/70</td>
<td>A0</td>
<td>F1</td>
</tr>
<tr>
<td>P14</td>
<td>66</td>
<td>M</td>
<td>1b</td>
<td>5.72</td>
<td>227/322</td>
<td>A2</td>
<td>F3</td>
</tr>
<tr>
<td>P15</td>
<td>55</td>
<td>M</td>
<td>1a</td>
<td>6.31</td>
<td>73/121</td>
<td>A2</td>
<td>F2</td>
</tr>
<tr>
<td>P16</td>
<td>29</td>
<td>M</td>
<td>4</td>
<td>5.17</td>
<td>39/45</td>
<td>A0</td>
<td>F0</td>
</tr>
<tr>
<td>P17</td>
<td>52</td>
<td>M</td>
<td>1b</td>
<td>6.72</td>
<td>144/196</td>
<td>A2</td>
<td>F4</td>
</tr>
<tr>
<td>P18</td>
<td>46</td>
<td>F</td>
<td>4</td>
<td>5.42</td>
<td>60</td>
<td>A1</td>
<td>F2</td>
</tr>
<tr>
<td>P19</td>
<td>47</td>
<td>M</td>
<td>2</td>
<td>2.33</td>
<td>45</td>
<td>A1</td>
<td>F2</td>
</tr>
</tbody>
</table>

M/F, male/female; AST, aspartate aminotransferase; ALT, alanine aminotransferase.
Supplementary Table 1. Clinical characteristics among the control groups: healthy donors, HBV-infected and HCV/HBV-negative LT patients with liver inflammation. All patients were biopsied as clinically indicated.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Control group</th>
<th>Age (years)</th>
<th>Gender (M/F)</th>
<th>IS</th>
<th>AST/ALT (IU/mL)</th>
<th>METAVIR stage</th>
<th>Histopathological diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>P20</td>
<td>Healthy donors (n=10)</td>
<td>30</td>
<td>M</td>
<td>-</td>
<td>28/50</td>
<td>F0</td>
<td>Mild hemosiderosis</td>
</tr>
<tr>
<td>P21</td>
<td></td>
<td>30</td>
<td>M</td>
<td>-</td>
<td>21/18</td>
<td>F0</td>
<td>Mild hemosiderosis</td>
</tr>
<tr>
<td>P22</td>
<td></td>
<td>53</td>
<td>M</td>
<td>-</td>
<td>28/38</td>
<td>F0</td>
<td>Moderate hemosiderosis</td>
</tr>
<tr>
<td>P23</td>
<td></td>
<td>43</td>
<td>F</td>
<td>-</td>
<td>NA</td>
<td>F0</td>
<td>NAD</td>
</tr>
<tr>
<td>P24</td>
<td></td>
<td>54</td>
<td>F</td>
<td>-</td>
<td>NA/26</td>
<td>F0</td>
<td>Mild steatosis</td>
</tr>
<tr>
<td>P25</td>
<td></td>
<td>46</td>
<td>F</td>
<td>-</td>
<td>12/15</td>
<td>F0</td>
<td>NAD</td>
</tr>
<tr>
<td>P26</td>
<td></td>
<td>36</td>
<td>M</td>
<td>-</td>
<td>31/26</td>
<td>F0</td>
<td>Mild steatosis</td>
</tr>
<tr>
<td>P27</td>
<td></td>
<td>22</td>
<td>M</td>
<td>-</td>
<td>27/23</td>
<td>F0</td>
<td>Minimal changes</td>
</tr>
<tr>
<td>P28</td>
<td></td>
<td>28</td>
<td>M</td>
<td>-</td>
<td>25/33</td>
<td>F0</td>
<td>Mild hemosiderosis</td>
</tr>
<tr>
<td>P29</td>
<td></td>
<td>43</td>
<td>F</td>
<td>-</td>
<td>14/8</td>
<td>F0</td>
<td>NAD</td>
</tr>
<tr>
<td>P30</td>
<td>HBV (n=8)</td>
<td>27</td>
<td>M</td>
<td>-</td>
<td>231/574</td>
<td>F2</td>
<td>Suggestive of HBV infection</td>
</tr>
<tr>
<td>P31</td>
<td></td>
<td>40</td>
<td>M</td>
<td>-</td>
<td>31/44</td>
<td>F1</td>
<td>Suggestive of HBV infection</td>
</tr>
<tr>
<td>P32</td>
<td></td>
<td>49</td>
<td>F</td>
<td>-</td>
<td>53/60</td>
<td>F3</td>
<td>Suggestive of HBV infection</td>
</tr>
<tr>
<td>P33</td>
<td></td>
<td>37</td>
<td>M</td>
<td>-</td>
<td>48/68</td>
<td>F2</td>
<td>Compatible with HBV</td>
</tr>
<tr>
<td>P34</td>
<td></td>
<td>44</td>
<td>M</td>
<td>-</td>
<td>69/70</td>
<td>F3</td>
<td>Suggestive of HBV infection</td>
</tr>
<tr>
<td>P35</td>
<td></td>
<td>33</td>
<td>M</td>
<td>-</td>
<td>55/85</td>
<td>F2</td>
<td>Suggestive of HBV infection</td>
</tr>
<tr>
<td>P36</td>
<td></td>
<td>48</td>
<td>M</td>
<td>-</td>
<td>93/97</td>
<td>F3</td>
<td>Suggestive of HBV infection</td>
</tr>
<tr>
<td>Patient</td>
<td>Gender</td>
<td>Age</td>
<td>Status</td>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P37</td>
<td>M</td>
<td>33</td>
<td>-</td>
<td>46/61 F1</td>
<td>Suggestive of HBV infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P38</td>
<td>M</td>
<td>69</td>
<td>Other</td>
<td>52/73 F0</td>
<td>Steatohepatitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT with inflammatory changes (n=10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gender</th>
<th>Age</th>
<th>Status</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>P39</td>
<td>M</td>
<td>61</td>
<td>FK</td>
<td>11/25 F0</td>
</tr>
<tr>
<td>P40</td>
<td>F</td>
<td>54</td>
<td>FK</td>
<td>22/20 F0</td>
</tr>
<tr>
<td>P41</td>
<td>F</td>
<td>31</td>
<td>CyS</td>
<td>55/215 F0</td>
</tr>
<tr>
<td>P42</td>
<td>M</td>
<td>54</td>
<td>CyS</td>
<td>64/168 F1</td>
</tr>
<tr>
<td>P43</td>
<td>M</td>
<td>59</td>
<td>FK</td>
<td>29/55 F0</td>
</tr>
<tr>
<td>P44</td>
<td>M</td>
<td>38</td>
<td>FK</td>
<td>213/317 F0</td>
</tr>
<tr>
<td>P45</td>
<td>M</td>
<td>69</td>
<td>FK</td>
<td>39/39 F0</td>
</tr>
<tr>
<td>P46</td>
<td>F</td>
<td>46</td>
<td>Other</td>
<td>43/53 F0</td>
</tr>
<tr>
<td>P47</td>
<td>M</td>
<td>67</td>
<td>CyS</td>
<td>100/88 F0</td>
</tr>
</tbody>
</table>

LT, liver transplant; M/F, male/female; AST, aspartate aminotransferase; ALT, alanine aminotransferase; IS, immunosuppression regimen; CyS, Cyclosporine A; FK, Tacrolimus; Other, mTOR inhibitor; PBC, primary biliary cirrhosis; NAD, nothing abnormal detected.