Communicating epistemic stance: How speech and gesture patterns reflect epistemicity and evidentiality

Paolo Roseano,1,2 Montserrat González,2 Joan Borràs-Comes,2 and Pilar Prieto 3,2

1 Universitat de Barcelona, 2 Universitat Pompeu Fabra, 3 Institució Catalana de Recerca i Estudis Avançats

Leading author’s email: paolo.roseano@ub.edu
Running title: Communicating epistemic stance
Communicating epistemic stance:
How speech and gesture patterns reflect epistemicity and evidentiality*

Abstract

Traditional studies on epistemicity and evidentiality have focused predominantly on how languages use morphosyntactic and discourse features to communicate epistemic stance. The present study investigates (a) how epistemic stance surfaces in face-to-face oral communication when language is regarded as comprised by speech and gesture, and (b) how speech and gesture information affects how listeners assess epistemic stance. Two experimental studies were conducted with these two goals in mind. The first study consisted of a production task in which 15 pairs of participants performed oral opinion reports after reading two short articles on a topic that would elicit different degrees of certainty, i.e., a controversial issue (the properties and effects of acupuncture) and a less controversial issue (the properties and effects of aspirin). The videotaped opinion reports were transcribed semantically (for evidentiality and epistemicity features), gesturally, and prosodically. Overall, results showed that speakers communicate epistemic stance both verbally and non-verbally, and that specific prosodic and gestural patterns are frequently used to express a range of epistemic and evidential meanings. Interestingly, the number of gestural and prosodic epistemic markers in our corpus almost doubled the markers found at the textual level (and frequently they appeared independently from lexical marking), something which indicates the important amount of epistemic information encoded by prosody and gesture in discourse. The second study consisted of a rating task in which 12 independent listeners rated the degree of certainty expressed by the opinion reports which had been videotaped in the first experiment. Results showed that even though the integration of lexical, prosodic, and gestural markers was useful to convey a speaker’s epistemic stance, the number of gestural high certainty markers used by a speaker when expressing an opinion was a particularly good predictor of the perception of epistemic high certainty. We thus suggest that prosodic and gestural features can be regarded as conventional markers of epistemicity and evidentiality across languages, being especially effective in the communication of epistemic stance.

* A preliminary version of this paper was presented at The Nature of Evidentiality 2012 (Leiden, June 13-15, 2012), and Modality, Corpus, Discourse (Lund, June 7-8, 2012). We would like to thank participants at those meetings, especially Johan Rooryk, Monica Lau, Margaret Speas, Eric Melac, Carita Paradis, and Jan Nuyts, for their helpful comments. We also acknowledge the assistance given by Maria Dolores Cañada in using the Atlas.ti procedure to code our data and by Núria Esteve Gibert for her participation in the interreliability test. This research has been supported by the Spanish Ministerio de Economía y Competitividad (research grants BFU2012-31995 and FFI2011-25755) and by the Generalitat de Catalunya (research grants 2014 SGR-925 and 2014 SGR-985).
1. Introduction
One of the key aspects of human interaction lies not only in the expression of propositional content in the form of spoken words, but also in the expression of the commitments and feelings of the interlocutors with respect to those propositions, i.e., what has been called the epistemic stance. Human languages have developed a varied set of linguistic markers that are specialized in the expression of epistemic stance. A good amount of research has been carried out on the linguistic marking of epistemicity across languages (Chafe 1986; de Haan 2001, 2005; Nuyts 2001; Aikhenvald 2004; and others). According to de Haan’s (2001:201) classic distinction between evidentiality and epistemicity, while evidentiality (sometimes referred to as epistemic modality) refers to “the marking of the source of the information of the statement”, epistemicity refers to “the degree of confidence the speaker has in his or her statement”. In other words, epistemicity refers to the degree of commitment that a speaker has in the truth-value of a proposition, while evidentiality refers to the linguistic encoding of the source of the information that the speaker uses. The relationship between evidentiality and epistemicity has been approached differently by the various authors who have analyzed it, and most researchers nowadays support an in-between approach whereby the epistemic and evidential categories are interrelated and overlap to a certain extent in the construction of the speakers’ epistemic stance, yet are neither completely conflated nor may be treated totally separately. During the past decades, linguists have focused largely on languages which encode epistemicity and evidentiality by means of specific morphemes, offering ‘morphocentric’ perspective on the grammatical expression of these categories, and especially evidentiality (see Chafe & Nichols 1986, Aikhenvald 2004, and de Haan 2001, for an extensive bibliography on languages with morphological marking of these features). For example, the descriptions of the Tibetan evidential system distinguish three categories of evidential, namely direct, ego, and indirect evidentials (Speas et al. 2011; Garrett 2001; Denwood 1999). In this language, the direct evidentials ‘dug and song (the latter being used for past tense) are used when the speaker has witnessed a situation with his own eyes, as well as to report internal states of the speaker himself. For example, Speas et al. (2011) offer the following case of direct evidential marking (1).

(1) Kha sang khong ‘khrom la slebs ‘dug.
yesterday he market (LOC) arrived ‘DUG
‘Yesterday he arrived at the market (and the speaker witnessed the event).’

On the other hand, indirect evidentials (yod sa red and yod kyi red) are used to mark that the speaker has not witnessed the event (s)he is reporting, which is based on mediated knowledge or inferences. The so-called ‘ego evidentials’ (yin, yod, and sometimes ‘dug)
are used when a speaker is reporting a state of his/her own mind or body that is accessible to him/her alone.

Researchers have also explored language systems where epistemicity and evidentiality are encoded by means lexical marking (e.g., modal particles, sentential adverbs, etc.) (see, among others, Bross 2012 for a review of the literature about modal particles, with special attention to German, and Cornillie 2010 for epistemic and evidential adverbs in Spanish). German has a rich set of modal particles, among which there is *wohl*. *Wohl* is used to mark that the speaker is uncertain about the proposition (see the example in 2, taken from Thurmair 1989:142):

(2) *Der Typ da drüben, der hat sie wohl nicht mehr alle!*
 The guy there over he has her WOHL not more all
 ‘This guy over there, he’s probably crazy.’

Other languages, such as Manado Malay, use both epistemic and evidential particles, as in the examples offered by Stoel (1995) and reported in (3).

(3) *So mo ujang sto.*
 ‘it is probably going to rain’
 So mo ujang no.
 ‘it is definitely going to rain’
 So mo ujang kata.
 ‘someone said it is going to rain’
 So mo ujang kote.
 ‘I sense that it is going to rain (I felt the first raindrops)’

Yet, although some languages have specific morphosyntactic markers of epistemicity and evidentiality, most languages do not. While earlier investigations on evidentiality and epistemicity focused on the morphosyntactic and lexical marking of epistemicity and evidentiality, in the last few decade growing attention has been paid to other aspects and perspectives. Researchers working within the framework of Conversational Analysis have investigated epistemicity in spontaneous social interactions, thus going beyond the description of the “grammatical resources for evidential marking in different languages” (Hanks 2012: 169). Some of these researchers have pointed out that the expression of epistemicity and evidentiality in naturally occurring interactions is also constrained by a set of sociopragmatic aspects. For example, participants in a conversation have epistemic ‘rights’ because of their social status or social relationship (see Enfield 2011, Raymond & Heritage 2005, Raymond & Heritage 2006, and others). This can be seen in patient-doctor conversations, where there is usually an implicit agreement that the doctor, because of his/her social role, has a higher epistemic ‘authority’ (see Enfield 2011). Another suggestion made by conversation analysts which is particularly relevant for this research is that epistemic stance can be also conveyed by intonation (Heritage 2013: 565-569, Heritage 2012: 23-24, who refers to the findings by Stivers & Rossano 2010). These authors claim that the relation between epistemicity and intonation is a very general one: in English a rising intonation—whether in a question or in an unfinished statement—is used to mobilize a response. As Heritage (2013: 569) puts it, “If final rise as a practice has an underlying ‘semantics’, it must be to mobilize response. In this capacity, it can contribute an urgency to whatever interactional project is ‘in play’, and what the project is will be grasped, at least in part,
by reference to the epistemics that are also in play at the moment” (Heritage 2013: 569). Heritage (2013: 3) nevertheless claims that the role of intonation is limited, insofar as in a conversation “when there is consensus about who has primary access to a targeted element of knowledge or information, that is, who has primary epistemic status, then this takes precedence over morphosyntax and intonation as resources for determining whether a turn at talk conveys or requests information”.

Even though studies like Heritage (2013) have pointed to the link between prosody and epistemic stance (e.g., the final rise in English, little is known about how epistemic stance is encoded through speech and gestural patterns in face-to-face communication. Recent studies within the audiovisual prosody perspective have shown that gestural and prosodic patterns can act as conveyors of several different pragmatic meanings, among which we find the degree of certainty of the speaker (Swerts & Krahmer 2005, Dijkstra, Krahmer & Swerts 2006, Borràs-Comes et al. 2011). Some of the first insights into the issue of the audiovisual marking of the speaker’s degree of certainty (i.e. his/her epistemic positioning) were provided by Swerts and Krahmer (2005). This study showed that the speakers’ epistemic positioning (or, as they call it, his/her ‘feeling of knowing’) is cued by a number of visual and verbal properties and that importantly human observers can distinguish responses with high feeling of knowing from responses with low feeling of knowing, especially when stimuli are presented bimodally (i.e., audiovisually). Borràs-Comes et al. (2011) showed that although lexical choice is important for conveying degrees of certainty (by the use of epistemic adverbials such as surely, probably, or perhaps), the lexical meaning can be easily overridden by prosodic and gestural patterns. Moreover, when gesture and prosody are in conflict, gesture seems to be a more salient and powerful cue. The study demonstrated that Catalan speakers encode degrees of certainty by means of specific prosodic and gestural patterns. Uncertainty statements are typically produced with a slow speech rate and a L+H* !H% nuclear pitch configuration involving a mid final boundary tone (see also Vanrell et al. 2011). On the other hand, head nods typically encode a higher degree of certainty than shoulder shrugs and downward stretched mouth, which encode a low degree of certainty. Figure 1 contains two sets of still images corresponding to two productions of the same sentence La Marina ‘Marina’. The still images in the upper panel show the production of a high certainty utterance (characterized by confident nodding), while the still images in the lower panel show the production of a low certainty utterance (characterized by shoulder shrugging and downward stretched mouth). It is important to point out that in the examples in Figure 1 the epistemic stance is conveyed only by means of gestural patterns because there is no differential textual marking of epistemicity.

2 Other pragmatic meanings that gestural and prosodic patterns have been found to convey include contrastive focus (e.g., Krahmer et al. 2002, Swerts & Krahmer 2004, 2008, Dohen & Loevenbruck 2009), interrogativity (Swerts & Krahmer 2004, 2005, 2008, Srinivasan & Massaro 2003, House 2002, Borràs-Comes & Prieto 2011), and mirativity (Crespo-Sendra et al. 2013).
These studies have provided important evidence that speakers use prosody and gesture to convey degrees of certainty. Yet this research has focused almost exclusively on the marking of uncertainty in isolated utterances in the laboratory. Further insights can be gained from studying the audiovisual marking of epistemic stance in face-to-face discourse. First, though previous research has assessed how speakers convey epistemicity, to our knowledge there has been no attempt to investigate epistemic stance as a whole, or to determine whether evidentiality is also reflected in oral discourse by means of prosodic or gestural strategies. As far as the gestural marking of evidentiality is concerned, since this category is deictic in nature, insofar as it points at the source of evidence (Häßler 2010:227; Mushin 2001: 33-34), we would expect that deictic gestures (i.e., pointing) might be used by speakers with an evidential meaning.

The main goal of the present study is to investigate how epistemic stance is communicated (and understood) in discourse when we regard utterances as being made up of speech and gesture. The main goal of Experiment 1 was to assess the marking of epistemic stance in spontaneous oral opinion reports in Catalan. Experiment 1 consisted of a production experiment in which 30 Catalan participants were asked to give two oral opinion reports to his or her conversational partner. Experimentally, two conditions were created by using one issue under discussion which was potentially controversial (the properties and effects of acupuncture) and another one that was less controversial (the properties and effects of aspirin). These two conditions were created to elicit two distinct epistemic stance conditions which would in turn generate different types of discourse strategies. The goal of the study is to assess the information contained in speech and gesture relating to epistemicity and evidentiality in the two experimental conditions.

Catalan, like other Romance languages, does not use specific morphemes of epistemicity and evidentiality, but rather uses lexical and discourse marking strategies. Some previous studies have dealt with the marking of evidentiality in this language and how it is encoded by means of lexical markers like adverbs, verbal periphrasis
(González 2005, 2011, González & Ribes 2008), and modal particles (Torrent 2011). For example, the Catalan verbal periphrasis \textit{es veu que} (literally ‘it is seen that’) encodes indirect evidence (González 2011: 154), as in (4).

(4) \textit{S’han quedat sense llum, a Girona. \textit{Es veu que} hi ha nevat.}
Self have remained without light in Girona ES VEU QUE there has snowed
The electricity has gone off in Girona. Presumably there has been lots of snow.

At the textual level, Catalan encodes epistemicity by means of lexical items like epistemic adverbials and also verbal constructions like \textit{crec que} ‘I think that’, \textit{estic segur que} ‘I’m sure that’, or \textit{és clar que} ‘it is clear that’ (González 2004), like in (5) (González 2011: 154). Experiment 1 will assess the textual as well as the prosodic and gestural strategies Catalan speakers use to communicate epistemic stance at the discourse level.

(5) \textit{És clar que \textit{aniré} a la teva festa!}
ES CLAR QUE go(FUT) to the your party
Of course I will go to your party!

The goal of Experiment 2 was to empirically test whether the relative density of lexical vs. gestural markers plays an important role in the perception and assessment of epistemic stance by Catalan listeners. The experiment consisted of a perception task in which participants were asked to rate by means of a 7-point Likert scale the speaker’s degree of certainty as expressed in each of the 30 opinion reports from the first experiment. Afterwards, these independent perception ratings were correlated with the number of textual and gestural markers observed in each opinion report.

The central question of this investigation is to test how epistemicity and evidentiality are conveyed by means of non-textual channels (i.e., prosody and gesture) and what is the relative importance of prosodic and gestural encoding in the assessment of epistemic stance. This general question will be addressed in each of the two experiments described below. Experiment 1 will test the following four hypotheses: (a) we expect speakers to convey their epistemic stance not only by means of textual elements, but also by means of prosody and gesture; (b) semantic marking of epistemicity will be more abundant at the multimodal level than at the textual level, which means that prosody and gesture convey information that is not present at the textual level; (c) epistemic markers will be more abundant in the reports about debatable issues, as it has been shown that (inter)subjective assessment plays a major role in discourses about a debatable issue (Martin & White 2005), while evidential markers (especially those implying high certainty) will prevail in the reports about nondebatable issues; and (d) specific intonational and gestural patterns will be used to convey epistemic and evidential meanings. Experiment 2 will test the following hypothesis: we expect that the number of gestural and prosodic high certainty or low certainty markers used by a speaker in offering an opinion will be good predictors of the perception of epistemic stance on the part of an independent observer/listener.

2. EXPERIMENT 1

2.1. Methodology
The present study used a within-subjects design with two conditions: the *debatable text* condition and the *nondebatable text* condition. As we will see in 2.2. below, the stimulus materials consisted of two texts that dealt with a nondebatable issue (the properties and effects of aspirin) and a debatable issue (the properties and effects of acupuncture). In each condition, the participant first explained the content of an informational text to a conversational partner, and then expressed orally his/her opinion about the topic of the text. The opinion reports produced by participants in this experimental context can be described as semi-spontaneous discourse, insofar as they are more spontaneous than laboratory speech or even the type of speech analyzed in previous studies, like McNeill (1992), in which the speakers were asked to describe video clips they had previously watched. By controlling the content issue under discussion (debatable vs. nondebatable issue) in the experimental materials, we will be able to investigate the encoding of epistemicity and evidentiality in two distinct epistemological positionings.

2.1.1. Participants and materials

Thirty students (23 female and 7 male) aged between 19 and 29 (mean = 21.9 years) from the Universitat Pompeu Fabra in Barcelona participated in the experiment. Since we wanted the participants to feel at ease so that they would produce natural discourse, they were asked to volunteer in pairs of friends. The fact that all participants in the experiment were students of the same age, social status and academic background helps to avoid the potential effects of interlocutors having unequal epistemic ‘rights’ in the expression of epistemic stance (Raymond & Heritage 2006) and ‘authority’ (Enfield 2011).

All participants were native speakers of Catalan and, when asked to declare their own linguistic dominance, said that they used it as the main language of their daily life (on average, they reported using Catalan during 66.2% of their daily activities, while in the remaining 33.8% they used Spanish or other languages). All of them received a small payment of 10 euros for their participation.

The stimulus materials consisted of two texts about medical issues taken from the Catalan version of Wikipedia. The two texts were approximately one page in length and both were written in an objective encyclopedic style (i.e., neither of the texts included ethical judgments on the medical procedure in question and both offered the same type of evidential argumentation in its favor). Whereas one text contained information about an issue that, in the cultural context of early 21st century Catalonia, is somewhat controversial (the effectiveness of acupuncture, Figure 2, left panel), the other text contained information about what is at this point a completely non-controversial matter (the properties and effects of aspirin, Figure 2, right panel). An English translation of both texts is contained in the Appendix.

3 Participants gave their informed consent to participate in accordance with EU regulations, Spanish law, and the regulations of the host university.
In order to test the suitability of the target materials, a pilot procedure was carried out with 4 independent participants, who were also undergraduate students. They were asked to read each text and then rate the effectiveness of the procedure described. The pilot results confirmed the suitability of the materials chosen for the experiment, insofar as all participants declared they were unsure about the effectiveness of acupuncture, selecting the third (“I think it works”) and fourth (“I don’t know whether it works”) options on a 7-point Likert scale, while all of them were sure about the efficiency of aspirin, choosing the first (“I know it works”) and second (“I’m sure it works”) options on a 7-point Likert scale.

2.1.2. Experimental procedure

The experiment took place in a quiet room at the Universitat Pompeu Fabra where there was sufficient space for the two participants to stand facing each other.

Upon their arrival at the experiment site, we informed the two participants that the goal of the experiment was to analyze the way people exchange information in a communicative context (however, nonverbal communication was not mentioned). To this end, they were told that they had to assume different conversational roles: while one of them would speak, the other would listen. Each pair of participants then decided between themselves who would assume each role. That done, the listener was asked to wait outside the room where the interaction would take place. At this point, participants were given specific instructions separately such that each was ignorant of the instructions the other had received. The speaker was given a text to read for five minutes and was told that he/she would have to convey the contents of the text verbally, offering as much detail as possible but without looking at the text again. For his/her part, the listener waiting outside was told what to expect on return to the
room and instructed to listen in silence while his/her partner was describing the text contents, confining him/herself to offering positive nonverbal feedback by nodding. After the description report, the listener was instructed to ask the speaker the following question: “I tu, què en penses, de l’acupuntura/aspirina?” ‘And what is YOUR opinion about acupuncture/aspirin?’, and again instructed to listen in silence and show positive feedback by nodding. Thus for each pair of participants, the speaker performed orally (a) a description of the contents of one of the articles, and (b) an opinion report about those contents. Only one member of each pair read the texts. Both the oral description and the opinion report were videotaped with a Panasonic HD AVCCAM camera connected to a Røde NTG-2 microphone. The camera faced the speaker, focusing on his/her upper body.

In order to test whether the assumed distinction between debatable vs. nondebatable topic (i.e., the idea that in 21st century Catalan society aspirin is considered effective while acupuncture is still regarded as controversial) was working, we collected confidence ratings from all participants in the experiment. After they had finished the experimental procedure for one of the two texts, each pair of participants (speaker and listener) independently rated on a 7-point Likert scale in Catalan their degree of confidence in the medical treatment described. Slightly different versions of the Likert scale were used for speaker and listener, and the text of the scale also made reference to either acupuncture or aspirin depending on the text that had been described. Table 1 shows the speaker’s version of the scale used for the text on acupuncture along with an English translation.

Table 1. 7-point Likert scale options given to participants in Catalan (left-hand column) with the English translation (right-hand column)

<table>
<thead>
<tr>
<th>Escull l’opció que descriu millor la teva opinió.</th>
<th>Choose the option that best reflects your opinion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>En relació a l’acupuntura:</td>
<td>With regard to acupuncture:</td>
</tr>
<tr>
<td>3. Sé que funciona.</td>
<td>3. I know it works.</td>
</tr>
<tr>
<td>2. Estic convencut/da que funciona.</td>
<td>2. I’m quite sure it works.</td>
</tr>
<tr>
<td>1. Crec que funciona.</td>
<td>1. I suspect that it works.</td>
</tr>
<tr>
<td>0. No sé si funciona o no.</td>
<td>0. I don’t know whether it works.</td>
</tr>
<tr>
<td>-1. Dubto que funcioni.</td>
<td>-1. I suspect it doesn’t work.</td>
</tr>
<tr>
<td>-2. Estic convencut/da que no funciona.</td>
<td>-2. I’m quite sure it doesn’t work.</td>
</tr>
<tr>
<td>-3. Sé que no funciona.</td>
<td>-3. I know it doesn’t work.</td>
</tr>
</tbody>
</table>

The whole procedure was repeated twice for each pair of participants, first using the text on aspirin, then using the text on acupuncture, or vice versa, but as noted the speaker/listener roles remained constant. Counterbalancing was achieved by presenting

4 Admittedly, having given the listener instructions not to intervene verbally while listening to the opinion report indeed reduced the spontaneity of the communication, but on the other hand this offered the methodological advantage of reducing the number of factors to be taken into consideration in the latter analysis. Crucially, it controlled for the potential effects of turn-taking, whose importance is well known in the Conversation Analysis literature.

5 The only difference between the listener and the speaker versions of the Likert scales was that whereas in the speaker’s scale sentences referred to the speaker him/herself (e.g. *I think it works*), in the listener’s scale the sentences referred to the speaker (e.g. *He/she thinks it works*).
the two texts in different orders. Pairs of participants whom the researchers had assigned even numbers (e.g., Pair 2, Pair 4, Pair 6, etc.) started with the text about acupuncture and later dealt with the text about aspirin. Pairs of participants who had been assigned uneven numbers (Pair 1, Pair 3, Pair 5, etc.) started with the text about aspirin and later dealt with the text about acupuncture. A total of 30 opinion reports were obtained (for a total of 3,643 words, corresponding to 21:39 minutes). These opinion reports oral constitute the acupuncture and aspirin oral opinion data which we analyze in this study.

The average duration of the full experimental procedure for each pair of participants was approximately 40 minutes, including briefing, the two oral reports for the two target texts, answering the Likert questionnaires, and carrying out administrative paperwork.

2.1.3. Data coding

The audiovisual recordings of the opinion reports were orthographically transcribed and labeled for their prosodic, gestural and semantic information by means of Elan (Lausberg & Sloetjes 2009). Given the fact that the semantic coding of the data related to epistemicity and evidentiality might be influenced by prosody and gesture, we decided to perform the semantic coding at two levels, namely, what we will call textual semantic labeling and multimodal semantic labeling (see subsection on semantic coding). Textual semantic labeling was carried out by the second author of the article by means of Atlas.ti and was later imported into Elan. The general audiovisual coding of the data (orthographic, prosodic, gestural, and multimodal semantic) was carried out by the first author of the paper using Elan. Praat (Boersma & Weenink 2013) served as a helpful tool for the prosodic transcription, which was imported into Elan. Importantly, multimodal semantic labeling and textual semantic labeling were carried out independently and by different researchers, in order to control for potential influences between textual only and multimodal semantic codings. Data were then exported from Elan to SPSS for statistical analysis.

Figure 3 shows a snapshot of the coding performed with Elan after the prosodic labeling and the textual semantic labeling was imported. The leftmost column shows the 13 tiers representing the orthographic transcription (‘Words’ tier), the prosodic transcription (‘ToBI’ tier), the gestural transcription (‘Gest_detail_head’, ‘Gest_detail_mouth’, ‘Gest_detail_shoulders’, ‘Gest_detail_hand’, ‘Manual_function’, ‘Meaning’, and ‘Pointed’ tiers), as well as the textual and multimodal semantic coding (‘Text-Epistemicity’, ‘Text-Evidentiality’, ‘Multimodal-Epistemicity’, and ‘Multimodal-Evidentiality’ tiers). These tiers will be explained in the subsequent subsections.
Figure 3. Screenshot of data coding with Elan. The column on the left of the screen contains the 13 tiers used for annotation.

Semantic coding

As mentioned above, one of the goals of the study is to assess how epistemic stance is manifested when we consider semi-spontaneous discourse as containing both speech and gesture. Since we want to assess the contribution of textual vs. multimodal marking to epistemic assessment, the data were labeled textually and multimodally. As noted, the textual semantic labeling of the oral texts was performed by the third author of this paper on the orthographic transcription of the oral opinion reports, without access to the video recordings, and was later imported to Elan. The coding of the audiovisual data was performed independently by the first author by means of Elan. Two main semantic categories were taken into account, namely epistemicity and evidentiality.

The semantic coding of epistemicity was based on, among others, Palmer (2001), van der Auwera and Plungian (1998), and Marín-Arrese (2004, 2011). These authors propose three levels of certainty, as represented in Table 7. At the textual level, high certainty (henceforth HC) utterances were, for example, *El prendria sense cap dubte que em faria l’efecte que jo vull o necessito* ‘I’d take it without the slightest doubt that it would have the effect that I want or need’ [Aspirin; speaker 1]; *Si tens mal de cap i te’n pres una si que funciona* ‘If you have a headache and you take one, it DOES work’ [Aspirin; speaker 2]; *En principi, sé que funciona* ‘In general, I know it works’ [Aspirin; speaker 4]. One should note that HC is not only present in the traditional opinion verbs like *believe* or *know* but can also be expressed by means of more complex
discourse strategies, like in Bueno, clar, jo prenc aspirines ‘Well, as a matter of fact, I take aspirin’ [Aspirin; speaker 7]. Medium certainty (henceforth MC) was expressed by utterances such as Jo crec que funciona. ‘I think it works’ [Acupuncture; speaker 3] and Estic bastant convençuda que funciona ‘I’m pretty sure it works’ [Aspirin; speaker 1]. Of course MC need not only be expressed by means of opinion verbs like think or be rather sure that; it can also be expressed by means of more complex discourse strategies, like in Pot tenir molts pros però també pot tenir molt contres ‘Aspirin may have lots of pros but it may also have lots of cons’ [Aspirin; speaker 8]. Low certainty (henceforth LC) was expressed by utterances like Potser funciona. ‘Maybe it works’ [Acupuncture; speaker 2]; I llavors també tinc… els meus dubtes… per segons leyendas urbanas que diuen que l’aspirina fa… espesseix la sang ‘And I also have some… doubts…’cause according to some urban legends aspirin thickens your blood’ [Aspirin; speaker 7]; No tinc ni idea de si funciona o no ‘I have no idea whether it works or not’ [Acupuncture; speaker 1]. As with HC (High Certainty) and MC (Mid Certainty), LC too can be conveyed not only by means of explicit opinion verbs like doubt but also by means of more articulated discourse strategies like in Igual hi ha gent que ho ha provat i li funciona ‘It’s possible that some people have tried it and it has worked for them’ [Aspirin; speaker 4].

<table>
<thead>
<tr>
<th>EPISTEMICITY</th>
<th>high certainty (HC)</th>
<th>medium certainty (MC)</th>
<th>low certainty (LC)</th>
</tr>
</thead>
</table>

Our semantic coding of evidential marking is based on Plungian’s (2001: 352-354) classification and is represented in Table 6. An example of direct evidentiality is the sentence A mi m’ha funcionat. ‘I have tried it and it has worked for me’ [Acupuncture; speaker 3]. The utterance Deu ser que és força efecte placebo ‘It must be pretty much a placebo effect’ [Acupuncture; speaker 9] is an example of reflected (inferred) evidence. Mediated scientific evidence emerges in sentences like Hi ha unes evidències científiques ‘There is scientific evidence’ [Aspirin; speaker 1]. Mediated evidence with explicit reference to tradition is present in sentences like És un sistema per... de curació, mmm mil·lenari i... tradicional ‘It’s a system for... to cure, mmm, that is a thousand years old and traditional’ [Acupuncture; speaker 14]. Common knowledge sometimes serves as the basis for mediated evidence, as in L’aspirina ho cura tot ‘Aspirin is good for everything’ [Acupuncture; speaker 16]. Finally, anecdotal evidence emerges in statements like Conec gent que l’ha fet servir, i ells diuen que funciona ‘I know people who have used it, and they say it works’ [Acupuncture; speaker 4].

Table 3. Coding of semantic evidentiality (adapted from Plungian 2001: 352-354)

<table>
<thead>
<tr>
<th>EVIDENTIALITY</th>
<th>DIRECT</th>
<th>INDIRECT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REFLECTED</td>
<td>MEDIATED</td>
</tr>
<tr>
<td></td>
<td>(inferentials + presumptives)</td>
<td>scientific</td>
</tr>
</tbody>
</table>
Prosodic coding

The oral data was prosodically labeled following the Cat_ToBI system (Prieto et al. 2013, Escudero et al. 2012). According to this system, pitch accents in Catalan have seven categories (namely L*, H*, L+H*, L+¡H*, L*+H, L+>H*, and H+L*), and boundary tones have eight categories (namely L%, H%, ¡H%, HL%, LH%, L!H%, HH%, and LHL%). Only nuclear configurations were labeled, since this part of the contour is the one that typically conveys the pragmatic meaning of the utterance (see Ladd 1996, among others). Figure 4 exemplifies the prosodic annotation of two nuclear pitch configurations which, as we shall see later, are related to the epistemic stance of the speaker, namely categorical (i.e., high certainty) statements (characterized by falling H+L* L% nuclear pitch configurations) and uncertainty statements (characterized by a pitch movement that raises from low to high and then falls to a mid boundary tone, annotated L+H* !H%; see Borràs-Comes et al. 2011). The upper panel contains a high certainty statement, whose nuclear configuration is H+L* L%, i.e., there is a sharp F0 fall from the pretonic syllable fun- to the tonic syllable -cio of the word funciona, and then F0 remains at a low level till the end of the utterance. The lower panel, on the other hand, contains an utterance characterized by the nuclear configuration L+H* !H%, i.e., there is a sharp F0 rise in the last tonic syllable -ri- of the word funcionaria, and then F0 falls to a mid level in the posttonic syllable.
Figure 4. Spectrogram, orthographic transcription, and prosodic annotation of the categorical statement Estic bastant convencuda que funciona ‘I’m pretty sure it works’ [Aspirin; speaker 1] (upper panel) and the uncertainty statement Potser amb mi sí que em funcionaria... ‘It might work for me’ [Acupuncture; speaker 1] (lower panel)

Gesture coding

Based on McNeill (1992: 78-89, 377-380), manual gestures were labeled for their function and shape (see Table 4). The codes used for labeling the shape of manual gestures refer to the following features: (a) specific hand used (LH = left hand, RH = right hand, 2SH = both hands doing the same thing, and 2DH = each hand doing different things); (b) the handshape (for the purposes of our research, we used only four labels: A = closed hand, B = open hand, G = index finger extended, and X = unclear handshape, the latter not included in McNeill’s inventory); (c) the orientation of the palm (P) or finger (F) (PTU/FTU = palm/finger toward up, PTD/FTD = palm/finger toward down, PTC/FTC = palm/finger toward center, PAB/FAB = palm/finger away from body (outward), PTB/FTB = palm/finger toward body (inward), and PAC/FAC = palm/finger away from center (left or right)); and (d) gestural motion.6

Table 4. Labeling of manual gestures following McNeill (1992), with examples in the right column

6 We decided to abide strictly by McNeill’s (1992) labeling rules. We therefore labeled motion, too. According McNeill’s labeling system, motion is described in two dimensions: direction of motion, and location in the space where motion is articulated. The description of motion, especially direction, turned out to be the most difficult to label, because movements can have several and complex trajectories. The location in space where the movement is articulated is defined according to McNeill (1992: 378) along the center/periphery, left/right, inner/outer, or upper/lower dimensions. Subsequent analyses demonstrated that this aspect of gesture was not especially meaningful in the expression of epistemic stance.
We followed Allwood et al. (2005) for head and shoulder gestures (see Tables 5 and 6, respectively) and Nonhebel et al. (2004) for mouth gestures (see Table 7).

Table 5. Labeling and definitions of head gestures, based on Allwood et al. (2005)

<table>
<thead>
<tr>
<th>Shape</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOD</td>
<td>lowering and raising one's head slightly and briefly</td>
</tr>
<tr>
<td>HEADSHAKE</td>
<td>turning the head from left to right (or vice versa) and back again, often</td>
</tr>
<tr>
<td></td>
<td>repeated</td>
</tr>
<tr>
<td>TURN</td>
<td>turning the head to the left or to the right, and maintaining it in that</td>
</tr>
<tr>
<td>TILT</td>
<td>moving the head laterally into a sloping position</td>
</tr>
</tbody>
</table>

Table 6. Labeling and definitions of shoulder gestures, based on Allwood et al. (2005)

<table>
<thead>
<tr>
<th>Shape</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHRUG</td>
<td>raising one’s shoulders</td>
</tr>
<tr>
<td>SWING</td>
<td>moving repeatedly from side to side</td>
</tr>
</tbody>
</table>

Table 7. Labeling and definitions of mouth gestures, based on Nonhebel et al. (2004)

<table>
<thead>
<tr>
<th>Shape</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOUTH STRETCHED DOWN</td>
<td>lips are stretched and the corners of the mouth are pulled downwards</td>
</tr>
<tr>
<td>Gesture</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>MOUTH STRETCHED</td>
<td>lips are stretched and the corners of the mouth are pulled toward the sides of the face</td>
</tr>
<tr>
<td>LOWER LIP FORWARD</td>
<td>lower lip is pushed forward</td>
</tr>
<tr>
<td>CORNERS UP</td>
<td>corners of the mouth are pulled up</td>
</tr>
</tbody>
</table>

The four panels of Figure 5 illustrate a selection of the four types of gesture (head nod, shoulder shrug, mouth stretched down, and manual pointing) that are significant in the analysis presented in the Results section.

Figure 5. Four series of still images illustrating a selection of four types of annotated gestures, namely head nod, shoulder shrug, mouth stretched down, and manual pointing (see definitions in corresponding Tables)

2.1.4. Reliability test
As it is generally advisable when a labeling system is first implemented, an inter-rater reliability test was carried out to test the effectiveness and the reliability of the system\(^7\). The abovementioned prosodic, gestural, and semantic labeling systems were therefore submitted to an intertranscriber agreement test. Twenty percent of the opinion reports (a total of 6 audiovisual recordings) were randomly selected from the database by the first author, taking into account that they were uniformly represented across speakers and conditions (debatable and nondebatable texts). Three researchers (namely the third and fourth authors of this paper, in addition to another member of the Group of Prosodic Studies at the Universitat Pompeu Fabra) were trained during 2 4-hour sessions to use the labeling systems described in the previous sections. After training, they were asked to independently annotate the subset of 6 audiovisual recordings.

Results revealed a good consistency rate for all variables. The percentages of agreement among transcribers was high for gestural coding (93% for head gestures, 96% for mouth gestures, 95% for shoulder gestures, 77% for manual function and, for pointing gestures only, 92% for the object that was pointed at. The percentage of inter-transcriber agreement for the semantic labeling was almost as high (79% in the case of lexical markers of epistemicity, 80% for audiovisual marking of epistemicity, 82% for lexical markers of evidentiality, and 84% for multimodal marking of evidentiality). Regarding intonation, the percentage of overall agreement for nuclear configurations was 67%, which rises to 85% if one considers only final boundary tones.

The Online Kappa Calculator (Randolph 2008) was used to calculate the Fleiss kappa statistical measure (Yoon et al. 2004). This tool provides two variations of kappa: fixed marginal multirater kappa and Randolph’s free marginal multirater kappa (Randolph 2005, Warrens 2010). Since raters did not know previously about the presence of any intonational, audiovisual, or semantic event for each sentence, free marginal kappa was used. For gestures, free marginal kappa ranged from 0.71 to 0.95 (0.89 for head gestures, 0.95 for mouth gestures, 0.90 for shoulder gestures, 0.71 for manual function and, for pointing gestures only, 0.92 for the object pointed at). For semantic labeling, kappa was equally high (0.72 in the case of lexical marking of epistemicity, 0.72 for multimodal marking of epistemicity, 0.80 for lexical marking of evidentiality, and 0.81 for multimodal marking of evidentiality). The free marginal kappa statistic obtained for intonation was the lowest (0.60 for nuclear configurations and 0.78 for boundary tones).

In sum, free marginal kappa values were in all cases but one ≥ 0.70, a good level of agreement, which indicates that the labeling system was reliable.

2.1.5. Data extraction and statistical analyses

The two parts of the corpus (i.e., debatable vs. nondebatable text conditions) have different lengths, in terms of both total minutes of duration and total number of words. The aspirin opinion reports altogether lasted 9:50 minutes and contain 1,689 words in total, whereas the acupuncture opinion reports lasted a total of 11:49 minutes and contain 1,954 words. Since the length in number of words of the two subcorpora is different, the tokens of epistemic and evidential markers were normalized on a 10,000-

\(^7\) As it is common in studies about prosody and/or gesture, the aim of the reliability test is not to assess the reliability of a single transcriber, but of the transcription system in general (Breen et al. 2012, Escudero et al. 2011, Yoon et al. 2004, Syrdal & McGory 2000, Jun et al. 2000, Grice et al. 1996, Petrelli et al. 1994).
word basis. Normalization to 10,000 is commonly used in corpus linguistics (see Römer & Wulff 2010, among many others).

The data were submitted to SPSS for further statistical analyses. The dependent variable in many of our analyses is the number of epistemic and evidential markers found in our databases, which has a Poisson distribution. A Generalized Linear Model (GzLM) allows for the analysis of this sort of data, which does not exhibit a normal distribution (Crawley 2007).

2.2. Results

2.2.1. Debatability and epistemic stance

As noted, in order to check whether the debatable vs. nondebatable variable played the expected role in our study, we asked both speakers and listeners to rate their degree of belief in the effectiveness of the procedures by means of a 7-degree Likert scale (see section 2.1.3). Figure 6 shows the distribution of the number of participants according to their judgments on the Likert confidence scale of the debatable (acupuncture) and nondebatable (aspirin) texts. The results confirm that the debatability issue triggered different degrees of confidence, that is, while 14 out of 15 participants rated the effectiveness of acupuncture as “not sure whether it works” (a combination of –1, 0, and 1 ratings on the Likert scale), 12 out of 15 participants rated aspirin as “very or quite sure it works” (a combination of the 2 and 3 ratings on the Likert scale).

![Figure 6](image)

Figure 6. Distribution of the number of participants according to their judgments on the Likert confidence scale of acupuncture (debatable issue) and aspirin (nondebatable issue).

2.2.2. Number of epistemic and evidential marking at the textual and multimodal levels
Figure 7 shows the mean number of epistemic and evidential markers (per recording) at the textual and multimodal levels, separated by the factor issue under discussion (see section 2.1.3, on the how textual semantic labeling and multimodal semantic labeling were performed). The results in Figure 7 show that the number of epistemic markers at the multimodal level almost doubles the markers at the textual level, which indicates the important amount of nonverbal information contained in multimodal discourse.

A GLMM analysis was conducted with the number of markers as the dependent variable (Gamma distribution, log link) and DEBATABILITY (two levels: debatable vs. nondebatable), SEMANTICCATEGORY (two levels: evidential vs. epistemic marking), MODALITY (two levels: textual vs. multimodal marking), and all their possible combinations as fixed factors. SUBJECT PAIR was set as random factor. A main effect was found for both SEMANTICCATEGORY ($F(1, 88) = 47.505, p < .001$) and MODALITY ($F(1, 86) = 14.319, p < .001$), but not for DEBATABILITY ($F(1, 87) = 0.099, p = .754$). A significant interaction was found for SEMANTICCATEGORY × MODALITY ($F(1, 86) = 14.319, p < .001$), which confirmed our second hypotheses, i.e., that the multimodal level provided more epistemic markers than the textual level (while the number of evidential markers was similar in the two levels). Another significant interaction was found for DEBATABILITY × SEMANTICCATEGORY ($F(1, 87) = 7.785, p = .006$), which indicated that epistemic markers were more abundant in the reports about a debatable issue, which in turn confirmed our third hypothesis, i.e., that debatable issues would trigger a higher number of epistemic markers than nondebatable ones. The three-way interaction between DEBATABILITY, SEMANTICCATEGORY and MODALITY was not significant ($F(1, 86) = 0.045, p = .833$).

![Figure 7](image-url)

Figure 7. Mean number of epistemic and evidential markers found in the debatable (acupuncture) and nondebatable (aspirin) reports, at the textual (left panel) and multimodal levels (right panel).
The following two subsections contain a closer examination of the speech and gesture information found in utterances which were coded as containing evidential and epistemic meanings.

2.2.2.1. Multimodal marking of evidentiality

With respect to the non-verbal marking of evidentiality, the results in the previous sections revealed that the semantic labelings related to evidentiality were the same at the textual and multimodal levels, in both the debatable and the nondebatable reports (see Figure 7). This means that in our data we found no occurrences of gesture-only marking of evidentiality. Rather, we found a few occurrences of non-verbal marking of evidentiality, which always occurred with evidential utterances.

Our data show that pointing gestures occur together with evidential utterances. Two kinds of pointing gestures were found in the opinion reports, depending on the direction of pointing, namely pointing to self and pointing to an absent referent. Figure 8 contains an example of each kind. Whereas in the left panel the speaker points to herself while saying *Jo personalment no m’hi he tractat mai* ‘I’ve never tried it personally’ (classified as a direct evidential), in the right panel the same participant points at an abstract referent when saying *Tota la gent al meu voltant sempre s’ha pres aspirines* ‘Everybody around me has always taken aspirin’ (classified as a mediated evidential).

![Image](image.png)

Figure 8. Examples of evidential pointing from the corpus

If we consider the simultaneous occurrence of the two kinds of pointing (pointing to self vs. pointing to an absent referent) with the kind of textual evidence (mediated, inferred, and direct evidential), we observe that pointing to self gestures occurred with utterances expressing direct personal evidence. In other words, speakers point to themselves when

8 A total of five instances of simultaneous gestural and textual markers of evidentiality were found in our database. Because of this low number of occurrences, we were not able to carry out a GLMM analysis to test for the significance of these patterns.
talking about their personal experience. On the other hand, pointings to an absent referent occurred with utterances expressing mediated evidence. In short, our data shows that pointing gestures often accompany and reinforce the textual marking of the source of evidence (be it direct or mediated). As it has been pointed out in the introduction, as far as the gestural marking of evidentiality is concerned, since this category is deictic in nature, insofar as it points at the source of evidence (Haßler 2010:227; Mushin 2001: 33-34), we expected that deictic gestures (i.e., pointing) might be used by speakers with an evidential meaning. The data of our corpus seem to confirm this hypothesis and, to our knowledge, this constitutes the first observation of a gestural correlate of evidentiality. Nevertheless, the low occurrence of this kind of data in our corpus requires further specific research.

2.2.2.2. Multimodal marking of epistemicity

A crucial aspect of the opinion data that emerges from our results is the fact that epistemic multimodal marking is approximately twice as abundant as verbal-only epistemic marking (see Figure 7 above). In total, 1079 instances of multimodal marking of epistemicity were found in normalized terms (599 in the acupuncture texts, 480 in the aspirin texts). Figure 9 presents a frequency distribution of the textual and gestural correlates of multimodal epistemic marking, depending on their occurrence patterns with verbal information (text only, gesture only, text and gesture, neither text nor gesture), as a function of debatability (debatable vs. nondebatable). Since manual gestures occur with epistemic marking very seldom, only nonmanual gestures were included in the analysis. The results show that semantic epistemic markings at the multimodal level have the following correlates: (a) in approximately 30% of the data, only textual features appear (e.g., see left and right panels of Figure 9); Figure 10 shows an example of textual-only marking of epistemicity, where no accompanying gestures were found; (b) second, in approximately 25% of cases nonmanual gestures are the only correlate of epistemicity; (c) manual gestures and text occur simultaneously in another 25% of cases; and (d) finally, in the remaining 19% of cases, epistemic marking is conveyed by neither text nor gesture, i.e., it is probably conveyed by means of prosody (we shall return to the subject of intonation and epistemicity in the last part of this section). These results are important, insofar as they confirm that (a) epistemicity can be encoded non-verbally, and (b) non-verbal marking of epistemicity does not need to occur with verbal correlates of epistemicity. Thus the results show that even though speakers show some degree of semantic overlap between epistemic gestures and their corresponding speech, in at least 25% of cases epistemic gestures are used independently of the semantics of the corresponding text. This point will be further developed in section 2.2.4.
Figure 9. Frequency distribution of the textual and gestural correlates of multimodal epistemic marking, depending on their occurrence patterns with verbal information (text only, gesture only, text and gesture, neither text nor gesture), as a function of debatability (left panel = debatable, right panel = nondebatable).

Figure 10 consists of sequences of stills showing speakers producing three different utterances. The upper panel shows textual-only marking of epistemicity, while the lower two show non-textual marking only. In the upper panel, the utterance was classified as conveying High Certainty ("Jo sí crec que funciona de veritat ‘I for one believe it really works’) and was produced without simultaneous specific gestures. Textual-only encodings of epistemicity exemplified like this represented about 30% of the total number of utterances conveying epistemic meanings. The central and the lower panels of the figure show a minimal pair: during the recordings the same subject pronounced twice the sentence "Diuen que funciona ‘They say it works’, which does not contain any explicit epistemic marking. In the first case (central panel) the sentence was labeled as HC at the multimodal level (note that the speaker is nodding), whereas in the second case (lower panel) it was labeled as LC (note that the speaker is stretching his mouth downwards).

9 As suggested by one of the reviewers, if one were to rely exclusively on textual marking, this sentence might be interpreted as conveying LC because the speaker might be implying that “they” (i.e., someone else, not me) says it works. It could thus easily communicate LC to a hearer because the speaker is setting up a “me/them” situation in which the speaker is distancing him/herself from the assertion about the efficacy of aspirin/acupuncture. Nevertheless, the examples presented in Figure 13 show that a similar sentence from a textual perspective can be interpreted either as LC or as HC, depending on the gestural and prosodic realization of the sentences (see also Figure 1 for an example of a similar minimal pair).
Figure 10. Three series of still images corresponding the production of the target sentence *Jo sí crec que funciona de veritat* ‘I for one believe it really works’ uttered without noteworthy facial gestures (top panel), *Diuen que funciona* ‘They say it works’ uttered with HC facial gestures (central panel), and *Diuen que funciona* ‘They say it works’ uttered with LC facial gestures (bottom panel).

Another goal of the study was to assess the types of gestures found in the opinion reports and see whether they co-occurred with specific epistemic meanings. To this end, we examined the correlation between different types of non-manual gestures and specific epistemic values in the multimodal transcription. Figure 11 shows the distribution of three types of nonmanual gestures (head nod, shoulder shrug, and mouth stretched downwards; see section 2.1.3 for examples of each kind) as a function of the epistemic value assigned to the utterance (LC, MC, and HC). Other types of nonmanual gestures were excluded from the analysis because they showed a very low frequency of occurrence. The results in Figure 11 show that shoulder shrugs, and to a lesser degree mouth stretched downwards, co-occurred more frequently with utterances classified as LC utterances, whereas head nodding co-occurred more frequently with utterances classified as HC.
Figure 11. Mean number of head, shoulder, and mouth gestures co-occurring with LC, MC, and HC multimodal epistemic coding.

Three GLMM analyses were conducted with the number of epistemic gestures found in our recordings as the dependent variable (Gamma distribution, log link), one for each type of gesture (head nod, shoulder shrug, and mouth stretched down). CERTAINTY (three levels: HC, MC, and LC) was set as fixed factor. A main effect was found for CERTAINTY in all analyses, with different directions of the effects in each one: head nod ($F(1, 15) = 3.798, p = .046; \text{HC} > \text{LC}$), shoulder shrug ($F(1, 24) = 5.964, p = .008; \text{LC} > \text{MC}$), and mouth stretched down ($F(1, 16) = 6.874, p = .018; \text{LC} > \text{HC}$). Therefore we can conclude that while nodding is most frequently associated with high certainty utterances, shoulder shrugging and mouth stretched down are gestural correlates of uncertainty.

At this juncture, it is important to also consider the role of intonation and its relationship with epistemic marking. Remember that in 19% of the utterances epistemic marking was conveyed by neither textual nor gestural features (see Figure 9). We thus suspect that prosody was also playing an important role in the assessment of epistemicity. Figure 12 shows the distribution of nuclear configurations as a function of the semantic epistemic value of the corresponding utterance (namely, low, medium, and high certainty). The results in the graph show that while the L+H* !H% nuclear configuration almost always appears with LC codings, the H+L* L% and the L* L% nuclear configurations appear more frequently with HC codings.

10 Figure 4 in Section 3.1.3. offers examples of the L+H* !H% and H+L* L% nuclear configurations.
A GLMM analysis was conducted with the number of epistemic markers as the dependent variable (Gamma distribution, log link). INTONATION (three levels: L+H*!H%, L+H*L%, and L*L%), CERTAINTY (three levels: HC, MC, and LC), and their interaction were set as fixed factors. The difference noted above in the distribution of the nuclear configurations proved to be statistically significant (INTONATION × CERTAINTY ($F(3, 43) = 22.233, p < .001$)). Moreover, these results are in line with previous findings showing that L+H*!H% in Catalan is an intonational correlate of low certainty, whereas L*L%, H+L*L% and L+H*L% characterize HC broad focus statements (Prieto et al. 2013, Prieto & Cabré 2013).

2.2.2.3. Epistemic meanings at the textual and multimodal levels

An focal question for this study is the relative role of speech and gesture in conveying epistemicity (and specifically different degrees of certainty). The two panels in Figure 13 show the number of epistemic markers found at the textual level (left panel) and multimodal level (right panel), in participant performance when referring to the debatable (acupuncture) and nondebatable (aspirin) issues, separated by degree of certainty (LC, MC, and HC). The graph reveals a very interesting pattern, namely that while the number of MC markers is roughly the same at the textual and multimodal levels, the number of both HC and LC markings is higher at the multimodal level.

![Figure 12. Mean number of pitch nuclear configurations occurring with LC, MC, and HC multimodal epistemic coding.](image-url)
A GLMM analysis was conducted with the number of epistemic markers as the dependent variable (Gamma distribution, log link). DEBATABILITY (two levels: debatable and non-debatable), CERTAINTY (three levels: HC, MC, and LC), MODALITY (two levels: textual and multimodal), and all their possible combinations were set as fixed factors. SUBJECT PAIR was set as random factor. A main effect was found for both CERTAINTY ($F(2, 112) = 21.535, p < .001$) and MODALITY ($F(1, 112) = 15.890, p < .001$). The interaction CERTAINTY × MODALITY was found to be statistically significant ($F(2, 112) = 7.263, p = .001$), which indicates that HC and LC markers were more frequent at the multimodal level, whereas the number of MC markers was roughly the same at both levels of analysis.

2.3. Interim discussion

The results of Experiment 1 have allowed us to confirm several of the hypotheses we put forward at the end of Section 1. First of all, the results of this experiment have confirmed that epistemicity and evidentiality are conveyed by means of non-textual channels and that specific intonational contours and gestures are associated with high or low certainty.

Figure 13. Mean number of epistemic markers found at the text-only level (right panel) and multimodal level (left panel), in participant performance when referring to the debatable (acupuncture) and nondebatable (aspirin) issues, separated by degree of certainty (LC, MC, and HC).
In addition, it has become clear that prosody and gesture convey semantic information that is not present at the textual level. Interestingly, while the number of MC markers is roughly the same at the textual and multimodal levels, the number of both HC and LC markings is higher at the multimodal level. This suggests that potentially ambiguous MC textual marking is disambiguated at the multimodal level by means of prosody and gesture. To investigate this issue further, Experiment 2 was intended to analyze how the concentration of gesture and speech epistemic markings affects the listener’s assessments of the epistemic stance.

Our results also show that epistemic markers are more abundant in the reports about debatable issues, as we had hypothesized; yet we cannot confirm the hypothesis that evidential markers (especially those implying high certainty) prevail in the reports about nondebatable issues.

3. Experiment 2

The goal of Experiment 2 was to investigate the role of gesture and speech in the general assessment of epistemic stance. In order to test this, we carried out a rating task to investigate the potential correlation between the density of gestural and textual markers in a given oral opinion report and the assessment of its epistemic stance, as perceived by listeners.

3.1. Methodology

Twelve native speakers of Catalan (all of them undergraduate students at the Universitat Pompeu Fabra) watched the opinion reports videotaped in Experiment 1 and were told to rate the degree of certainty expressed by the speakers, by means of the 7-point Likert scale represented in Table 8 (see also Section 2.1.3). None of these participants had taken part in Experiment 1.

Table 8. 7-point Likert-scale options given to participants in Catalan (left-hand column) with the English translation (right-hand column)

<table>
<thead>
<tr>
<th>Escull l’opció que descriu millor la teva opinió.</th>
<th>Choose the option that better corresponds with your opinion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>En relació a l’acupuntura:</td>
<td>With regard to acupuncture:</td>
</tr>
<tr>
<td>3. Sap que funciona.</td>
<td>3. S/he knows it works.</td>
</tr>
<tr>
<td>2. Està convençut/da que funciona.</td>
<td>2. S/he is quite sure it works.</td>
</tr>
<tr>
<td>1. Creu que funciona.</td>
<td>1. S/he suspects that it works.</td>
</tr>
<tr>
<td>0. No sap si funciona o no.</td>
<td>0. S/he doesn’t know whether it works.</td>
</tr>
<tr>
<td>-1. Dubta que funcioni.</td>
<td>-1. S/he doubts that it works.</td>
</tr>
<tr>
<td>-2. Està convençut/da que no funciona.</td>
<td>-2. S/he is quite sure it doesn’t work.</td>
</tr>
</tbody>
</table>
Each listener rated 15 videos (out of a total of 30 reports), and the total number of ratings obtained was 180 (12 raters x 15 reports).

3.2. Results

First, the data were distributed in two groups, namely the recordings that were perceived as expressing a high degree of perceived certainty (scores that ranged from 3 to 2 on the Likert scale, with a mean of 2.1) and the recordings that were rated as showing a low degree of perceived certainty (scores that ranged from 1 to -1 on the Likert scale, with a mean of 0.1). A total of 12 opinion reports were classified on average as “high degree of perceived certainty” and 18 opinion reports were classified as “low degree of perceived certainty”. As expected, no opinion report obtained scores ranging from -2 to -3 on the Likert scale, corresponding to a perceived high degree of certainty in the belief that the medical procedure described does not work.

The two graphs in Figure 14 show the normalized average number of LC and HC textual, prosodic, and gestural epistemic markers present in two groups of opinion reports, namely reports perceived as LC (left panel) and reports perceived as HC (right panel).

![Figure 14](image-url)
Figure 14. Normalized average number of LC and HC textual, prosodic, and gestural epistemic markers present in two types of opinion reports, namely reports perceived as LC (left panel) and reports perceived as HC (right panel).

Focusing first on the left-hand panel showing reports perceived as LC, as expected, within each of the three communication channels (i.e., textual, prosodic and gestural), the number of LC markers is higher than the number of HC markers. Since they were more heavily marked as LC, it is easy to understand why they should tend to be perceived as such. Interestingly, however, in terms of the relative weight of each of these three channels within each of the two levels of certainty, one observes that while the number of LC markers is roughly the same at the textual, prosodic, and gestural
levels, the number of *textual* HC markers is dramatically low in reports perceived as LC.

On the other hand, the graph in the right-hand panel shows that the number of HC markers is higher than the number of LC markers in each of the three communication channels. It is therefore unsurprising that these reports were perceived as HC. Once more, if one compares the relative weight of each of the three channels within the two levels of certainty, one observes that while the number of LC markers is roughly the same at the textual, prosodic, and gestural levels, the number of HC gestures is more than twice than the number of HC textual or prosodic markers. This suggests that gesture patterns are playing a key role in the transmission of the epistemic stance in terms of HC.

Correlation analyses support the interpretation of the data presented above. In order to test the statistical significance of the correlations between the numbers of different kinds of epistemic markers and mean certainty ratings, we first calculated the internal proportion of epistemic markers of each kind (namely LC, MC, and HC) produced within each opinion report (15 speakers × 2 debatability conditions). For instance, an opinion report having eight textual epistemic markers in total, four of them being LC markers, another two MC, and the last two HC, reflected relative proportions of .5 LC,.25 MC, and .25 HC. After this, we assigned different weights to each type of certainty level, i.e., 0 for LC markers,.5 for MC markers, and 1 for HC markers. Thus, for example, in order to calculate the textual certainty conveyed by this particular opinion report we calculated (.5×0) + (.25×.5) + (.25×1), yielding a textual certainty value of .375. The same operation was carried out for each marker type (i.e., textual, prosodic, and gestural). By this method we obtained for the first opinion report a textual certainty value of .92, a prosodic certainty value of .40 and a gestural certainty value of 0.0. The same procedure was applied to all the remaining opinion reports. On the other hand, we calculated the mean perceived certainty rates given to each opinion report by the participants. The original 7 points of the Likert scale were aggregated into 4 different levels by collapsing negative and positive options with the same integer value into single categories, such that, for example –3 “S/he knows it doesn’t work” and 3 “S/he knows it works” were both assigned a value of 3, thus yielding a 4-point perceived certainty scale (0-1-2-3). Three Pearson correlations were then conducted between marker certainty values for each type (textual, prosodic, and gestural) and mean perceived certainty rates. In all cases, correlations were significant between the three pairs of measures (at $p < .001$). Moreover, the correlation coefficients showed that: (a) these correlations were positive (i.e., a higher concentration of HC markers correlated with perceived greater degree of perceived certainty); and (b) the correlations with perceived certainty were higher for gestural markers (.353) than for prosodic (.331) and textual markers (.265). This means that while all three marker types are useful to convey a speaker’s epistemic stance, gestural and prosodic markers seem to be particularly efficient for expressing epistemic stance.

On the whole, the results of Experiment 2 allow us to draw two important conclusions. First of all, within each of the three communication channels (textual, prosodic, and gestural), the number of HC markers is higher than the number of LC markers in reports perceived as HC and, conversely, the number of LC markers is higher than the number of HC marker in reports perceived as LC. This means that the three channels tend to contribute cohesively to the communication of epistemic stance. Secondly, if one seeks
to evaluate the role played by each channel, one sees that gestures seem to be the most important cue in predicting a HC assessment, whereas LC assessments seem to rely on a more balanced evaluation of textual, prosodic, and gestural markers. The asymmetry found between the assessment of LC and HC seems to reflect the fact that opinion reports with very low occurrence of textual HC markers will induce listeners to assess LC (see Figure 14, left panel).

In short, this experiment showed that in the case of reports rated as expressing low certainty, a balanced mix of multimodal components is a better predictor of the perception of the degree of certainty than the mono-modal components taken individually. In the case of reports rated as expressing high certainty, our data suggest that the gestural communicative component plays a particularly important role in the assessment of epistemic stance.

4. Discussion and Conclusions

How do speakers communicate epistemic stance in face-to-face interactions? And what is the role of speech and gesture in the assessment of epistemic stance by listeners? The present study has addressed these questions by investigating some verbal and non-verbal strategies used by speakers and listeners to convey or assess epistemic stance in a set of semi-spontaneous opinion reports. It has involved assessing the semantic role of spoken language (including prosody and gestural actions) as well as gestural on the conveyance of epistemic stance. Though traditional linguistic studies have tended to focus predominantly on the verbal aspects of the communication of epistemic stance, this study has focused on its non-verbal aspects. To this end, a production study (Experiment 1) and a rating task (Experiment 2) were carried out.

Experiment 1 had the specific goal of investigating how epistemic stance surfaces in face-to-face semi-spontaneous discourse. Fifteen pairs of Catalan speakers were asked to perform oral opinion reports after reading short articles on two topics, namely, a controversial issue (the properties and effects of acupuncture) and a less controversial issue (the properties and effects of aspirin). The resulting audiovisual reports were coded semantically (for evidentiality and epistemicity features), gesturally, and prosodically. The results showed that both epistemicity and evidentiality are encoded by means of specific textual, intonational, and gestural cues, in both conditions. The analysis of the specific gestural and prosodic patterns found in the data partially confirm what previous studies have found for laboratory speech, namely that epistemicity has specific gestural and intonational markers (see Borràs-Comes et al. 2011 for Catalan). As far as the gestural encoding of evidentiality is concerned, our results show that pointing gestures (pointing to self, pointing to absent referent) can have an evidential function and can act as a personal evidential or mediated evidential respectively. These results confirm our expectations, as evidentials have been considered to be deictic categories by nature, insofar as they point at the source of evidence (Haßler 2010:227, Mushin 2001: 33-34). The multilevel encoding of these two components has thus allowed us to document specific gestural cues for epistemicity and evidentiality (e.g., pointing gestures). These results represent an argument in favor of a view of epistemic stance as a combination of these two components, namely source of evidence (evidentiality) as well as a more subjective epistemic component (see Nuys 2001, Marin-Arrese 2004, 2011, Bednarek 2006, Du Bois 2007, Hoye 2008, and Cornillie 2009).
Regarding the semantic contribution of verbal and nonverbal features to the communication of epistemic stance, the analysis of our data showed two interrelated results. First, gestural and prosodic markers can occur independently from epistemic textual markers. Second, there is a large amount of epistemic information encoded in gesture. Both findings imply that the multimodal level of analysis contains more semantic information than the textual level. Moreover, utterances labeled as medium certainty were found to be less frequent at the multimodal than at the textual level, suggesting that potentially ambiguous textual epistemic meanings are disambiguated at the multimodal level by means of prosody and gesture. Therefore, these two results suggest that prosody and gesture convey information that is not present at textual level and consequently have the potential to enhance communication.

To investigate this issue further, Experiment 2 analyzed how the relative concentration of gesture and speech epistemic markings in those opinion reports can potentially have an effect on the listeners’ assessments of the epistemic stance conveyed by speakers uttering those reports. Twelve independent raters were asked to evaluate the degree of certainty expressed by the opinion reports which were videotaped in the first experiment. Results showed that: (a) in general, the perception of opinion reports as expressing low certainty or high certainty could be traced back to the fact that those opinion reports contained a higher proportion of low certainty or high certainty markers, respectively; and (b), specifically, the relative proportion of gestural high certainty markers in discourse was a especially good predictor of high certainty.

To sum up, the findings reported in this investigation reveal that a language like Catalan, with no morphosyntactic marking of epistemicity or evidentiality, displays a wide range of linguistic strategies for epistemic and evidential marking, be they lexical, prosodic, or gestural. Moreover, non-verbal marking emerges as a form of communication that is especially effective in the expression of epistemic stance and, at the same time, is able to disambiguate textual marking. All in all, the results obtained can be interpreted as an argument in favor of considering both gesture and speech as interactive components in the making of epistemic meaning in face-to-face oral communication.

5. References

11 We acknowledge one of the points raised by one of our reviewers: even though the strategy used in this paper of isolating discourse into its component parts allows us to get a complete picture of what is happening in multimodal discourse, we should be aware that there might be some information that is lost when we reduce the whole to its parts in this way.

Borràs-Comes, Joan; Roseano, Paolo; Vanrell, Maria del Mar & Prieto, Pilar (2011). Perceiving uncertainty: facial gestures, intonation, and lexical choice. In Caro Kirchhof, Zofia Malisz and Petra Wagner (Eds.): *Proceedings of the 2nd Conference on Gesture and Speech in Interaction* [GESPIN 2011], Bielefeld University (Germany), 5-7 September 2011.

Breen, Mara; Dilley, Laura C.; Kraemer, John & Gibson, Edward (2012). Inter-transcriber reliability for two systems of prosodic annotation: ToBI (Tones and Break Indices) and RaP (Rhythm and Pitch. *Corpus Linguistics and Linguistic Theory* 8(2), 277–312.

Escudero, David; Aguilar, Lourdes; Vanrell, Maria del Mar & Prieto, Pilar (2012). Analysis of inter-transcriber consistency in the Cat_ToBI prosodic labelling system. Speech Communication 54(4): 566-582.

Prieto, Pilar; Borràs-Comes, Joan; Cabré, Teresa; Crespo-Sendra, Verònica; Mascaró, Ignasi; Roseano, Paolo; Sichel-Bazin, Rafèu & Vanrell, Maria del Mar (2013 in press). Intonational phonology of Catalan and its dialectal varieties In Frota, Sonia & Prieto, Pilar (eds.), Intonational variation in Romance. Oxford: Oxford University Press.

Appendix 1. English translation of the acupuncture text.

From Wikipedia

Acupuncture is a traditional Chinese medical technique that aims at restoring health and well-being in patients by means of the insertion and manipulation of needles in the human body, re-equilibrating the flow of ch’i (the presumed active part of all living things, which could be translated as “vital energy flow”). It belongs to the so called alternative therapies, which are characterized by limited clinical evidence in scientific studies. The definition and characterization of acupuncture points is currently standardized by the World Health Organization (WHO), which suggested a nomenclature that is based on the major traditional acupuncture schools, although it does not completely correspond with any traditional pattern. The WHO has published documents and clinical guidelines to encourage this discipline “as a way of validating medical acupuncture, improving its acceptance and spread within modern medicine and its use as a simple, cheap and effective treatment”. The WHO itself has Publisher results of clinical trials involving acupuncture for several years. According to its supporters, acupuncture is suitable for treating a wide range of diseases, especially hernia, allergies, inflammation and the flu. It is also important to emphasize its use as an analgesic, and even to reduce pain in surgical procedures. Today, acupuncture is included as a medical treatment within the health systems of China, Vietnam and Cuba. There is evidence of its effectiveness for the treatment of nausea and back pain as well as for most types of chronic pain. So far, though, observations have concluded that there is insufficient evidence to determine whether acupuncture is effective in the treatment of other diseases. There is a skeptical critical movement which argues that there is no evidence of the existence of the notion that underpins acupuncture, namely that the origin of disease lies in an imbalance of ch’i. Critics say that the studies which claim prove of the effectiveness of acupuncture are few and of poor quality. However, in 1998 acupuncture was backed in the United States by a national study published in the Journal of the American Medical Association, which concluded that it may be beneficial in the treatment of some diseases, although the placebo effect cannot be excluded. Other studies, however, argue that it is more effective than conventional treatments.
Appendix 2. English translation of the aspirin text.

From Wikipedia

Aspirin or acetylsalicylic acid (acetosal or AAS) is a drug belonging to the family of salicylates. It is often used as an analgesic (for minor injury and acute pain), antipyretic (against fever), and anti-inflammatory. It was first synthesized in 1897 by the German chemist Felix Hoffmann, following the method of Arthur Eichengrün. Its properties as an analgesic and anti-inflammatory drug were described in 1899 by the German pharmacologist Heinrich Dress. In 1966 the New York Times Magazine stated that “Aspirin is the wonderful drug that nobody understands”. In 1971, the British pharmacologist John Robert Vane showed that aspirin’s multiple medical applications derived from its ability to block the production of certain prostaglandins. Although prostaglandins were first identified in 1935 by the Swedish philosopher Ulf von Euler, research on their composition, structure, functions and medical use began in the late 1960s. Prostaglandins in biochemistry and medicine are a family of chemicals similar to hormones that are naturally present in all mammals. There are over a dozen prostaglandins that play a major role in biology and are relevant in many essential physiological functions. Although aspirin’s main effect seem to be its effect on prostaglandins, aspirin has favorable effects on several other cellular processes. Many other effects of aspirin are linked to its action in the cell. The following effects of aspirin are known: the antipyretic effect (i.e. regulation of fever), the analgesic effect (acting on the same nerve endings affected by pain-generating substances), and the anti-inflammatory effect (aspirin reduces the responses of cells to the inflammatory stimulus). Aspirin is used in the treatment of migraine, tension headache, rheumatic fever, arthritis, angina, ischemic stroke, senile dementia, and diabetes. In the prospectus attached to a container of Aspirin, one can read a list of contraindications that this drug can have, such as gastrointestinal irritation, rashes, breathing difficulties, dizziness, dry mouth, nose or throat, nervousness or drowsiness (especially when alcohol is ingested simultaneously), which can reduce the user’s ability to drive vehicles and operate machines.