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Abstract

Intonation is traditionally considered to be the most important
prosodic feature, whereupon an important research effort has
been devoted to automatic segmentation and labeling of speech
samples to grasp intonation cues. A number of studies also
show that when duration or intensity are incorporated, auto-
matic prosody labeling is further improved. However, the com-
bination of word level acoustic features still attains poor results
when machine learning techniques are applied on annotated cor-
pora to derive intonation for speech synthesis applications. To
address this problem, we present an experimental set-up for the
development of a hierarchical prosodic structure model which
combines linguistic features, including information structure,
and three acoustic elements (intensity, pitch and duration). We
show empirically that this combination leads to a considerably
more accurate representation of prosody and, consequently, a
more reliable automatic labeling of speech corpora for machine
learning.

Index Terms: information structure, thematicity, prosodic
label, prosodic phrase, prosodic word, ToBI, hierarchical
prosodic structure, z-score, acoustic parameter.

1. Introduction

In speech synthesis, pitch!' has been traditionally considered to
be the most important prosodic feature, to be modelled in terms
of variations of fundamental frequency (FO) at the word level. It
has also been argued that generated speech quality is enhanced
when prominence (salient peaks of FO) and phrasing (pause
insertion) are complemented by lexical and syntactic [1-3] or
information structure features [4] for phrase-based intonation
generation. However, the combination of word level acoustic
and linguistic features seem still not to lead to an optimal speech
quality. Speech generated using these features continues to suf-
fer from a certain monotony, especially in the case of expressive
multisentential discourse [5].

To improve on intonation contour generation, Dominguez
et al. [6] argue that, in accordance with Ladd and Selkirk’s [7,8]
hypothesis of a hierarchical prosodic structure, intonation repre-
sentation surpasses syllable and word boundaries to give way to
intonation patterns at the intonation phrase (IP) level. The hier-
archical prosodic structure foresees that prosody is segmented

IThe term pitch in this paper refers to one of the three acoustic el-
ements, being the other two intensity and duration. Pitch comprises in
our experiments the following set of acoustic parameters: minimum FO,
maximum FO and FO range.
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into different units, which are nested in a multi-layered hier-
archical structure; as Selkirk’s Strict Layer Hypothesis [8] de-
scribes.

Dominguez et al. [6] show that intonation can indeed be
better correlated with information structure (IS) in the context
of the Information Structure — Prosody interface [4, 9] at the
IP level than at the word level, and thus lead to more accu-
rate intonation contours. But since their exploration was lim-
ited to a mere correlation between information structure and
ToBI labels [10], it remained unclear how other acoustic and
linguistic features may influence the accuracy of the prediction
of prosody.

In what follows, we set out to assess whether the accu-
racy of the prediction of prosodic labels at the prosodic phrase
(PPh) level is further improved when three acoustic, namely in-
tensity (dB), pitch (Hz) and duration (ms), and linguistic el-
ements (word position, syntax, and information structure) are
taken into account. In this respect, we use the terms prosodic
label and prosodic phrase implying the integration of several
acoustic traits (so far, intensity, pitch and duration) as opposed
to intonation label and intonation phrase, which in speech tech-
nologies mainly involve the manipulation of pitch, understood
as the variation of FO values along the utterance.

The remainder of the paper is structured as follows. The
next section describes the dataset that we use for our exper-
iments. In Section 3, we show that acoustic parameters also
correlate in terms of prosodic labels at the phrase and sentence
level and therefore cannot be neglected. Then, we combine the
acoustic and linguistic levels (including information structure)
and demonstrate in classification experiments that, together,
they lead to a more accurate prediction of prosodic labels.
Moreover, our experiments suggest that some general charac-
teristics are maintained across speakers, even if each speaker
varies in the relative amount of each parameter used when ex-
pressing the same communicative content. Section 4 then pro-
vides empirical data supporting the hypothesis that prosodic la-
bels at the PPh layer are characterized in terms of a distinct
combination of intensity, pitch and duration in standard devia-
tion values, Section 5 offers some conclusions and outlines as-
pects of our future work in this area.

2. The Dataset

We use a fragment of 109 sentences from the Wall Street Jour-
nal (WSJ) Penn Treebank corpus [11] as our working corpus.
The selection of this set of sentences was made considering a
varied syntactic composition which allows representativeness
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of information structure parameters in terms of: (i) the amount
of hierarchical levels of thematicity (up to three in the data set);
(ii) the presence/absence of each communicative span; (iii) their
position within the sentence and with respect to each other; (iv)
and the spans’ continuity or lack of it.

The corpus has been processed using Bohnet’s [12] joint
tagger and dependency parser to obtain lexical and syntac-
tic features and annotated manually with information structure
(more precisely, with Thematicity” features from Mel’¢uk’s [9]
communicative structure), following the guidelines established
by Bohnet et al. [13]. Further details on how information struc-
ture is understood can be found in the authors’ work [6] and [14]
on its correlation to prosody.

Twelve native speakers of American English were recruited
for a recording session in a professional studio and they were
asked to read each sentence independently. Segmentation of the
audio files and extraction of acoustic values has been automat-
ically carried out using Praat [15]. Extracted acoustic parame-
ters include: (i) intensity (minimum, maximum and average) in
dB, (ii) pitch (minimum, maximum and range) in Hz, and (iii)
duration (per word interval) in ms.

The subsequent manual annotation of prosodic labels for
the creation of the training set relied on the combination of
at least two salient acoustic parameters at the sentence level.
During the annotation, words have been labelled as lexically
stressed (S) and unstressed words (U) if they are not salient at
sentence level. On the other hand, words which are prosodically
prominent have been labelled as pitch accents (PA) or boundary
tones (BT), each of which may take one of the possible ToBI la-
bels shown in Table 1. We are using the reduced set of prosodic
labels specified in Table 1 including six ToBI labels and two
prosodic marks (S and U) for our classification problem.

Table 1: Prosodic Annotation Schema

| Prosodic Mark [ Prosodic Label |

H*

PA L*
L*+H
HL%
BT LL%
LH%

S S

U U

In the next section, we present the results from applying this
annotation schema in our corpus to a collection of classification
experiments that explore the combination of the acoustic and
linguistic levels using all speakers and individual speakers.

3. Prosody Prediction Experiments

For our experiments on prosody prediction, we used Weka’s J48
tree classifier [16], with a 10 fold cross-validation. In order to
account for the linear nature of our classification problem, a
time series filter (to use Weka’s terminology) has been applied
to all features. That is, the preceding prosodic label (n-1) and

2Mel’¢uk’s [9] Thematicity features are theme, rheme and specifier.
In contrast to the traditional bipartite Thematicity [4], Mel’¢uk’s the-
maticity is hierarchical, which accounts for embeddedness of commu-
nicative spans, and is consequently instrumental for complex sentence
generation and correlation of prosodic contours at different prosodic
layers.
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all its features are used to predict the pending prosodic label n.
Accuracy, kappa, and root mean square error (RMSE) are used
to assess each feature’s performance.

Three experiments have been carried out. The first two
served to assess the potential of acoustic parameters and linguis-
tic features to predict prosodic labels using all speakers’ voice
samples. For this purpose, we use each acoustic element (pitch,
intensity and duration) separately, and then, in combination.
Each element includes the corresponding set of acoustic param-
eters specified in the previous section. In the second experi-
ment, communicative (i.e., information structure) and morpho-
syntactic features are combined with acoustic parameters. In
the third experiment, we explore to what extent acoustic param-
eters are speaker dependent in order to validate the practice of
the state-of-art technologies to use samples obtained from dif-
ferent speakers for training prosody models.

3.1. Testing acoustic elements

Table 2 shows that when we use pitch, intensity and duration on
their own to predict prosodic labels, the best results are achieved
by duration (53.3%) and the lowest by pitch (41.8%). The high-
est performance, however, is achieved by the combination of all
three elements: intensity, duration and pitch (56.3%). In other
words, prosody is realized by a combination of at least these
three prosodic elements based upon observation on our speech
corpus. These results suggests that, as already pointed out by
Audibert et al. [5], in order to obtain a more natural synthesized
voice, more acoustic elements (not only pitch) should be inte-
grated.

Table 2: Classification Results. Acoustic Parameters

l Acoustic Parameters “ Accuracy [ Kappa [ RMSE H

Pitch 41.8% 0.26 0.32
Intensity 42.1% 0.26 0.32
Duration 53.3% 0.40 0.28
Pitch + Intensity 45.5% 0.31 0.32
Duration + Intensity 53.8% 0.42 0.30
Duration + Pitch 55.3% 0.43 0.29

[ Intensity + Duration + Pitch || 563% [ 048 | 029 |

Moreover, this suggests that an automatic prosody labeler
will perform better when three acoustic elements are integrated
(56.3%), instead of using only pitch and duration (55.3%), as
AuToBI does [17].

3.2. Adding linguistic features

Following the argumentation in [1-3] that adding linguistic fea-
tures to the acoustic parameters helps improve prosody predic-
tion, we added linguistic features to the acoustic parameters of
the first experiment. Table 3 presents results from combining
the acoustic level with each linguistic element: word position,
syntax and thematicity; and the linguistic level with each acous-
tic element (intensity, pitch and duration).

We see that, compared to the first experiment (where a max-
imum of 56.3% was achieved), prediction accuracy improved
considerably when the acoustic level is enriched by each lin-
guistic element. The syntactic element is particularly useful
(leading to an accuracy of 71.7%). The picture improves even
further when the linguistic level is taken as basic features and
individual acoustic elements (or a combination thereof) are used



Table 3: Classification Results. Acoustic and Linguistic Fea-
tures

l Features “ Accuracy [ Kappa [ RMSE ”
Position 58.7% 0.48 0.28
Acoustic + Thematicity 60.1% 0.49 0.27
Syntax 71.7% 0.64 0.23
Intensity 76.6% 0.70 0.21
Linguistic + Duration 76.6% 0.70 0.20
Pitch 77.9% 0.72 0.20

[ All features [ 725% [ o065 [ 022 ||

to complement them. As can be observed, a combination with
pitch reaches 77.9%.

In other words, the combination of acoustic and linguis-
tic features improves the prediction accuracy up to nearly 23%.
However, the best result is achieved by the combination of the
linguistic level with each acoustic element separately, rather
than by the combination of all linguistic and acoustic features
(when 72.5% is reached). We hypothesize that this is be-
cause in this experiment we draw upon the dataset of all speak-
ers for training. Therefore, in the next subsection, we ex-
plore whether the picture changes when we work with speaker-
specific datasets.

3.3. Speaker dependency of acoustic parameters

Five individual speakers have been compared in order to test
results of the previous experiments on all speakers samples.
The selected speakers belong to different dialectal regions in
the USA (New York, Illinois, Texas, Boston and Arizona) rep-
resented in blue in Figure 1.

i

“Seattle. S
T NORTH
.
WYOMING 7 '

NEVADA L. IE Upited States INDIANA
an Francisco o COLORADO
H

KANSAS
SpkSH

CALIFORNIA

Los Angeles
09

MMMMMM

Figure 1: Speakers’ state of birth

Figure 2 contrasts for each speaker-specific sample the pre-
diction accuracy of the combination of the linguistic level with
each acoustic element individually against the combination of
the linguistic level with all three acoustic elements together. It
is shown that indeed, for each individual speaker, the combina-
tion of the linguistic level with three acoustic elements leads to
a higher performance than a combination with only one acoustic
element. The overall prediction quality decreases from 72.5%
when the samples of all speakers are used to 63% (as the maxi-
mum accuracy obtained by individual speakers) when the voice
sample of only one speaker is used. This is because the amount
of training data decreases in each individual case to a point
where it is insufficient for optimal training. But this shortcom-
ing can be easily overcome using bigger datasets of speaker-
specific data.

On the other hand, it is remarkable that when each of the
acoustic elements is combined with the whole linguistic level,
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Inter-Speaker Comparison
Prediction Accuracy (%)

63%
62% 62%
% 59% 59%
57%  57%
56% 56% 56% 56% 56%  56%
55% ‘ ‘ - 5%

55% ‘ ‘
50%

spksf

59%

spkif spkim spkam spkdm

W Linguistic + Acoustic Levels M Linguistic Level + Intensity Linguistic Level + Pitch Linguistic Level + Duration

Figure 2: Comparison of inter-speaker accuracy

similar prediction accuracy (around 56%) is obtained for each
speaker. However, with some speakers (i.e. spklf) higher ac-
curacy is achieved for a specific acoustic element (in this case,
duration). For all speakers, the combination of both linguistic
and acoustic levels leads, once again, to better accuracy results
(average of 61%) than when using only one of the acoustic ele-
ments.

Annotation Schema Comparison
Prediction Accuracy (%)

75% 30%

61%

55% 56% 56% 25%

50% 43% 41% 41% 20%
ma o 15%] 32% 1%
25% 10%
5%
0% 0%
Linguistic + Linguistic Level +  Linguistic Level + Linguistic Level +

Acoustic Levels Intensity Pitch Duration

mmmm Standard ToBl Prosodic Labels Improvement

Figure 3: Annotation Schema Comparison

One speaker (spk5f) was considered for testing the im-
provement of our annotation schema versus a detailed descrip-
tion of the intonation contour using a detailed annotation with
ToBI labels carried out by an expert annotator. Figure 3 shows a
prediction accuracy improvement for all combinations of acous-
tic elements with the linguistic level when a reduced annotation
schema over prosodic labels is used. Further research on inter-
annotator agreement using each system was out of the scope of
this paper. The improvement (labeled in a black box in Fig-
ure 3) goes from 14% to 24% of prediction accuracy surpassing
the 50% accuracy level when our prosodic labeling annotation
schema is used for one speaker.

Accuracy is expected to be much higher when a larger
dataset for training is used. But, still, we must keep in mind
that each speaker may chose a different combination of acoustic
parameters to mark prosodic prominence and phrasing in a dif-
ferent way. Consequently, using different speakers for training
may result in classification shortcomings if data is not treated
independently for each speaker.

4. Acoustic Elements at the Prosodic
Phrase Layer
We have shown that combining acoustic elements with lin-

guistic features considerably enhances the prosody prediction
potential of a model using prosodic labels, compared to de-



tailed ToBI labeling, especially if we consider speaker-specific
voice samples. Let us now explore the characterization of each
prosodic label for each speaker in terms of the combination of
acoustic parameters that can be used both to annotate and gen-
erate prosody automatically.

Acoustic Characterization of Prosodic Labels

(Average Z-Scores Values)

M Intensity
L8 pitch
1 Duration
0.5 =
o I [ ] | B _ -
|| l - ||
0.5
o B
1.5
i i L* L*+H LH% LL% HL% s u

PA BT No prosodic mark

Figure 4: Characterization of prosodic labels combining acous-
tic elements

As already mentioned in the Introduction, Ladd [7] and
Selkirk [8] establish a universal hierarchy of prosodic con-
stituents. Our approach considers the prosodic phrase (PPh)
and prosodic word (PWd) as two intermediate layers between
the utterance and the syllable. These prosodic units are inclu-
sive for three acoustic elements, opposed to using only pitch
as the most relevant prosodic feature to be modeled at a word
level, as traditionally done in Speech Technologies. In what
follows, we aim to describe prosody as a vectorial representa-
tion of acoustic parameters at the PPh layer. For this purpose,
we normalize absolute values of the features using z-scores for
each speaker and sentence. Moreover, the average z-score for
each acoustic element is calculated to observe prosodic labels
characteristics in terms of standard deviation.

Figure 4 shows that both prosodic labels and prosodic
marks (PA, BT, S and U) are represented as a distinct combi-
nation of intensity, pitch and duration elements. Thus, PAs (H*,
L*, L*+H) are characterised by positive or null deviation in all
three acoustic elements, while words labelled as ‘S’ have little
or no deviation at all. BTSs, on the other hand, are characterized
by a high positive deviation in duration and negative deviation
in intensity and pitch. Finally, words labelled as ‘U’ have out-
standingly low negative deviation in duration and negative de-
viation in intensity and duration. Summing up, Figure 4 proves
that predicting and deriving prosodic labels from acoustic el-
ements systematically is feasible since prosodic labels show a
characteristic combination of acoustic parameters. Moreover,
the advantage of working at the PPh level is that it can serve as
a scaffolding upon which expressiveness can be constructed in
a more traceable way when moving across prosodic layers.

5. Conclusions

In this paper, we presented a prosody model that combines
acoustic and linguistic features and takes into account each
speaker’s voice sample at the PPh layer. Such an approach re-
flects better communicative expressiveness of natural speech,
and is, thus, more appropriate in expressive speech generation
for text-to-speech (TTS) and content-to-speech (CTS) applica-
tions. Furthermore, the approach introduced in this paper in-
volves a linguistically and acoustically traceable and theoret-
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ically motivated prosodic annotation schema which facilitates
the compilation of training datasets.

A further asset of this work is the fact that using ma-
chine learning approaches allows feature engineering experi-
ments that can be used as empirical evidence to advance greatly
in the research area of Speech Prosody. Furthermore, objective
annotation schemas based upon numeric values of acoustic pa-
rameters, like the one we presented in this paper, are essential to
analyze, automatically label and explore large amounts of data.

Finally, if we follow theoretical studies that consider differ-
ent prosodic layers nested in a hierarchical structure, the next
prosodic layer (i.e., the prosodic word) needs to be predicted
upon the results obtained at the prosodic phrase. Further re-
search is being carried out in this direction using a corpus of
spontaneous speech to establish a sound correlation between
PPh and PWd layers following the methodology presented in
this paper. The goal is to implement this model and evaluate
it in an automatic prosodic labeling system to train a prosodic
module for generating expressive prosody in CTS applications.
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