Age of onset and lifetime projected risk of psychotic experiences: cross-national data from the World Mental Health Survey

Short title: Age of onset of psychotic experiences

1 Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD 4076, Australia, 2 Discipline of Psychiatry, University of Queensland, St Lucia, QLD 4072, Australia, 3 Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia, 4 Department of Psychiatry, College of Medicine, Qadisia University, Diwania Province, Iraq, 5 IMIM-Hospital del Mar Research Institute, Parc de Salut Mar; Pompeu Fabra University (UPF); and CIBER enEpidemiología y Salud Pública (CIBERESP), Barcelona, Spain, 6 Department/Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil, 7 National Institute of Psychiatry, Mexico City, Mexico and Metropolitan Autonomous University, Mexico City, Mexico, 8 Department of Psychiatry, Stony Brook University School of Medicine, United States, 9 Centre for Mental Health, University of Melbourne, Australia, 10 Universitair Psychiatrisch Centrum - Katholieke Universiteit Leuven (UZ-KUL), Campus Gasthuisberg, Belgium, 11 Chronic Diseases Research Center (CEDOC) and Department of Mental Health, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Portugal, 12 Institute for Development, Research, Advocacy and Applied Care (IDRAAC), Beirut, Lebanon, 13 National School of Public Health, Management and Professional Development, Bucharest, Romania, 14 IRCCS St John of God Clinical Research Centre//IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy, 15 Department of Psychiatry, University College Hospital, Ibadan, Nigeria, 16 Shenzhen Institute of Mental Health & Shenzhen Kanning Hospital, China, 17 University of Groningen, University Medical Center, Groningen Department of Psychiatry, Interdisciplinary Center, Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands, 18 Ecole des Hautes Etudes en Santé Publique (EHESP), EA 4057 Paris Descartes University, Paris, France, 19 Hôpital Lariboisière Fernand Widal, Assistance Publique Hôpitaux de Paris INSERM UMR-S 1144, University Paris Diderot and Paris Descartes Paris, France, 20 Department of Psychological Medicine, Dunedin School of Medicine, University of Otago, New Zealand, 21 IMIB-Arrixaca. CIBERESP-Murcia. Subdirección General de Salud Mental y Asistencia Psiquiátrica. Servicio Murciano de Salud, El Palmar (Murcia), Spain, 22 National Institute of Health, Peru, Universidad Cayetano Heredia, Peru, 23 Department of Health Care Policy, Harvard University, Boston, MA, USA, 24 El Bosque University, Bogota, Colombia, 25 Department of Psychiatry Virginia Commonwealth University, United States.
Corresponding author:
Professor John McGrath
Queensland Brain Institute
The University of Queensland
St Lucia,
Queensland 4076, Australia.

Email: j.mcgrath@uq.edu.au
Phone: +61 7 3271 8694
Fax: +61 7 3271 8698
Summary \((n = 336)\)

Background Although it is now recognized that psychotic experiences (PEs) occur in about one in twenty individuals, scant information exists about the age of onset (AOO) of these experiences. Given the early age of onset of psychotic disorders, it has been assumed that PEs would have a similar early AOO. The aims of this study were to describe (a) the AOO distribution of PEs and subgroups related to hallucinatory experiences [HEs] and delusional experiences [DEs]), (b) the projected lifetime risk of PEs, and (c) the associations of PE AOO with selected PE features.

Methods Data came from the WHO World Mental Health (WMH) surveys, a coordinated set of community epidemiological surveys of prevalence and correlates of common mental disorders in nationally or regionally representative household samples of countries throughout the world. A total of 31,261 adult respondents across 18 countries were assessed for lifetime prevalence of PE. Projected lifetime risk (at age 75 years) was estimated using a two-part actuarial method. AOO distributions were described for the observed and projected estimates. We examined associations of AOO with PE type metric (i.e. number of different types of PEs) and annualized PE frequency (count of lifetime PE episodes divided by years since onset).

Findings Projected lifetime risk for PEs was 7.8\% (standard error = 0.3), slightly higher than lifetime prevalence (5.8\%, standard error = 0.2). The median (interquartile range; IQR) AOO based on projected lifetime estimates was 26 (17-41) years, indicating that PEs commence across a wide age range with nearly a quarter occurring after age 40. Early AOO was positively associated with number of PE types \((F = 14.1, p<0.001)\) but negatively associated with annualized PE frequency rates \((F = 8.0, p<0.001)\).

Interpretation While most people with lifetime PEs have first onsets in adolescence or young adulthood, projected estimates indicate that nearly a quarter of first onsets occur after age 40 years. The extent to which late onset PEs are associated with (a) late onset mental disorders or (b) declining cognitive and/or sensory function need further research.
Introduction

Population-based surveys have provided important new insights into the prevalence of hallucinations and delusions (collectively referred to as psychotic experiences; PEs). A recent cross-national study based on 18 countries reported a lifetime prevalence of PEs of 5.8% (standard error = 0.2),\(^1\) an estimate comparable to that reported in a recent systematic review.\(^2\) Given that psychotic disorders tend to emerge in late adolescence and young adulthood,\(^3\) there has been an expectation that PEs would also share an early age-of-onset (AOO) distribution.\(^2,4\)

To date, studies have generally reported on the association between age-at-interview and lifetime prevalence of PEs.\(^1,2\) To the best of our knowledge, no studies have reported on their AOO. Understanding the AOO of PEs is important for two reasons. First, AOO distributions can be used to estimate lifetime morbid risk (i.e., projected estimate of the proportion of the population who will develop PE during of their lifetime).\(^5\) Lifetime risk cannot be estimated directly from community surveys because respondents in surveys differ in age and, therefore, in number of years of expected future risk. The projected estimates can also be used to define standardized AOO percentiles, which provide a more valid indication of the age range during which PEs would be expected to first occur. These estimates are more informative for service planning. Second, an accurate understanding of the AOO distribution is required to design studies of antecedent predictors of PE onset, thus disentangling causal pathways from consequences (e.g., temporally secondary symptoms or disorders). We had the opportunity to examine the AOO distribution of PEs in the WHO World Mental Health surveys. The objectives of the present study were to describe (a) the projected lifetime risk of PEs, (b) the observed and projected AOO distributions, (c) the association between PE-related metrics and AOO.

Methods

Samples

The WMH surveys are a coordinated set of community surveys administered in probability samples of the household population in countries throughout the world (www.hcp.med.harvard.edu/WMH).\(^6\) Eighteen of the 29 WMH surveys administered the CIDI Psychosis Module. These 18 countries are distributed across North and South America (Colombia, Mexico, Peru, Sao Paulo in Brazil, USA); Africa (Nigeria); the Middle East (Iraq, Lebanon); Asia (Shenzhen in the People’s Republic of China); the South Pacific (New Zealand); and Europe (Belgium, France, Germany, Italy, the Netherlands, Portugal, Romania, Spain). All the surveys were based on multi-stage, clustered area probability household sampling designs (Supplementary material Table S1). A total of 31,401 respondents in these surveys were evaluated for PEs. The weighted average response rate across the surveys was 72.1%. Data were grouped for purposes of analysis into three country-level income strata according to the World Bank classification of low, middle and high income countries.\(^7\)
In keeping with previous studies of PEs, we made the a priori decision to exclude individuals who had PEs and also screened positive for possible schizophrenia/psychosis or manic-depression/mania (i.e., respondents who (a) reported (1) schizophrenia/psychosis or (2) manic-depression/mania in response to the question “What did the doctor say was causing (this/these) experiences?”; and/or (b) those who ever took any antipsychotic medications for these symptoms). This resulted in the exclusion of 140 respondents (0.4% of all respondents), leaving 31,261 respondents for this study (see Table S1).

Procedures

All surveys were conducted face-to-face by trained lay interviewers in the respondents’ homes. Informed consent was obtained before beginning interviews in all countries. Procedures for obtaining informed consent, ethical approvals were monitored for compliance by the institutional review boards of the collaborating organisations in each country. Standardised interviewer training and quality control procedures were used consistently in the surveys. Full details of these procedures are described elsewhere.

All WMH interviews had two parts. Part I, administered to all respondents, contained assessments related to core mental disorders. Part II included additional information relevant to a wide range of survey aims, including assessment of PEs. All Part I respondents who met criteria for any DSM IV mental disorder as well as a probability sample of other respondents were administered Part II. Within the different sites, items related to PEs were either administered to all Part II respondents or a random sample of Part II respondents. Part II respondents were weighted by the inverse of their probability of selection into Part II to adjust for differential sampling. Additional weights were used to adjust for differential probabilities of selection within households, nonresponse, and to match the samples to population socio-demographic distributions.

Data collection and data items

The instrument used in the WMH surveys was the WHO Composite International Diagnostic Interview (CIDI), a validated fully-structured diagnostic interview designed to assess the prevalence and correlates of a wide range of mental disorders according to the definitions and criteria of both the DSM-IV and ICD-10 diagnostic systems. WHO translation, back-translation, and harmonisation protocols were used to adapt the CIDI for use in each participating country.

Psychotic experiences (PEs)

The CIDI Psychosis Module included questions about six PE types – two related to hallucinatory experiences (HEs) (visual hallucinations, auditory hallucinations) and four related to delusional experiences (DEs) (thought
insertion/withdrawal, mind control/passivity, ideas of reference, plot to harm/follow) (Supplementary material Tables S2a & S2b). The module began by asking respondents if they ever experienced the PEs (e.g., “Have you ever seen something that wasn’t there that other people could not see?”; “Have you ever heard any voices that other people said did not exist?” etc.). Positive responses were then probed to determine if the reported PEs ever occurred when the person was ‘not dreaming, not half-asleep, or not under the influence of alcohol or drugs’. Only responses of the latter type are considered here. Respondents who reported PEs were then asked several probe questions about: (a) frequency of the PEs in their lifetime, and (b) the age of onset of PEs (i.e., How old were you the very first time (this/either of these things/any of these things) happened to you?). In the 8.0% of cases where PE AOO was missing, we used imputation to assign predicted values based on a set of predictors that included all the variables in the substantive model. Key summary statistics (n, mean, SE, median, IQR) for the observed data (without imputation) and the entire dataset after imputation are shown in Supplementary Material Table S3.In this paper, we present AOO estimates for any PE, any HE (with or without DEs), any DE (with or without HEs), ‘pure’ HE (without DEs), and ‘pure’ DE (without HEs).

Statistical Analysis
In a previous publication, we described two PE-related metrics used to characterize PEs in the WMH data – the Type metric and Frequency metric. The Type metric reports on the count of different types of PEs experienced by respondents (exactly one type, exactly two types, three or more types). The Frequency metric reported the cumulative lifetime number of PE episodes. For the current analyses, we also derived an Annualized PE Frequency Rate, by dividing the cumulative total number of PEs between onset and age at interview by the number of years since onset. In order to avoid zero values in the denominator of the new rate (e.g. in those with onsets at the same age as when interviewed), we added one to the years-since-onset value. We examined PE AOO when stratified according to (a) PE type metrics and (b) annualized frequency rate (divided into tertiles).

ProcLIFETEST in SAS was used to generate the AOO distributions of PE and undertake related comparisons. Time-to-event analysis of AOO took into account right-censored observations; thus graphical displays and related analyses based on ProcLIFETEST may be right shifted (i.e. later AOO) compared to analyses based on observed data. Projected lifetime risk as of age 75 years was estimated using the actuarial method. This method assumes a constant conditional risk of onset during a given year of life across age cohorts and allows for accurate estimations of the onset timings within a year. As the WMH data are both clustered and weighted, the design-based Taylor series linearization implemented in version 11 of the SUDAAN software system was used to estimate means, IQR ranges of AOO distributions, and standard errors and to evaluate statistical significance. Tests of significance were evaluated using F tests or Wald χ^2 tests based on design-corrected coefficient variance–covariance matrices. Statistical significance was evaluated consistently using two-tailed 0.05-level tests.
Results

Estimated lifetime prevalence and lifetime projected risks for PEs and related subtypes are shown in Table 1. For PEs, HEs, DEs, pure HEs and pure DEs, the projected lifetime risks (standard errors) were 7·8% (0·3), 6·8% (0·3), 1·9% (0·1), 5·9% (0·3) and 1·0% (0·1) respectively. These projected estimates were 31-46% higher than the comparable lifetime prevalence estimates for the different PE types. The means (standard errors) for the observed AOO and selected quantiles (including median and IQR) for projected AOO for key PE types are also shown in Table 1.

Figure 1 shows the cumulative AOO distributions of PE and related subtypes based on projected data for the various PE subgroups, including those with PEs, pure HEs, DEs, and pure DEs. A key feature that emerges from these distributions relates to the delayed AOO for those with pure DE. Those with pure HE have an earlier AOO distribution, and PE types that contain any HEs also share comparable (closely overlapping) distributions. The AOO for pure HEs was significantly earlier than that for pure DEs ($\chi^2 = 590·5, P <0·001$). The cumulative distributions have a linear (versus sigmoidal) pattern. Based on the standardized AOO (Table 1), the age range encompassed by the IQR (25-75th percentiles) for PEs was 17 to 41 years (a range of 24 years). Similar patterns were found for the PE subgroups (IQR gap ranged from 24 to 27 years for pure HEs to DEs respectively). The AOO distributions for PEs, DEs and HEs did not differ by sex (Supplementary material Table S4).

Table 1 also shows mean (s.e.) and median (IQR) for AOO distributions of lifetime PEs when stratified by the PE type metric. The AOO was monotonically lower in those reporting more PE types (mean AOOs were 25·0, 23·8, 18·7 years for exactly one type, exactly two types, and three or more types respectively ($F = 14·1, p<0·001$)).

The annualized frequency rate by type of PE (and count) is provided in Supplementary Material Table S5. Table 2 shows AOO distributions when stratified by tertiles of annualized frequency rates. Those with higher annualized frequency rates had later AOO (mean AOOs for lowest, middle, and highest tertiles were 21·6, 25·5 and 26·1 years respectively) ($F = 8·0, p<0·001$).
Discussion

To the best of our knowledge, the current study is the first to present the AOO distributions for PEs. Based on projected AOO values, the median AOO for PEs was 26 years, with a 24 year interval between the 25th and 75th percentiles. There is a lack of comparable standardized AOO estimates for schizophrenia although the Northern Finish Birth Cohort reported that the median (IQR) AOO for schizophrenia was 23 (19-27) years. Thus, while PEs have a comparable median onset in the 20s, the onset of schizophrenia is concentrated in a narrower age range compared to PsE. The IQR difference is eight years for schizophrenia versus 24 years for PEs. Strikingly, approximately a quarter of individuals who will experience PEs during their life will have their first experience after age 40 years.

The projected lifetime risk for PEs was 7.8% (s.e. 0.3), indicating that approximately one in 13 people can expect to have at least one PE by the age 75 years. The projected risk is 34% higher than the lifetime risk (5.8%, s.e. = 0.2). This finding is broadly consistent with the estimates of projected lifetime risk of DSM-IV disorders in the WMH surveys, which were also approximately one-third higher (IQR 28–44%) than estimated lifetime prevalence estimates. Lifetime prevalence estimates the proportion of the population who have experienced a PE up to the age at interview. In contrast, projected lifetime risk estimates the proportion of the population who will have PEs throughout their lifetime. Projected lifetime estimates of PEs may be of use to researchers interested in identifying individuals at high risk of psychotic disorders. In addition, based on the difference between projected and lifetime risks, it is feasible to generate population-based estimates related to the future risk of PEs (e.g. three people are likely to experience the first onset of PEs at some time in the future for every ten people who have already experienced PEs).

Because early work in this field concentrated on PEs as predictors of later psychosis, and because psychosis has a modal age of onset in the early twenties, later PE onsets has not previously been a topic of interest. We have recently reported on the bi-directional relationship between PEs and key mental disorders assessed within the World Mental Health Survey (McGrath et al; under revision). While the association between PEs and an increased risk of subsequent psychosis has been well recognized, we found that a wide range of mental disorders predicted the later first onset of PEs (18 of 21 primary mental disorders). Several of the mental disorders associated with the later onset of PEs tend to have a wide AOO. These include mood disorders (median and IQR AOO; 30, 18-43 years), generalized anxiety disorder (31, 20-47 years) and Post-traumatic Stress Disorder (23, 15-39 years). We speculate that later onset PEs (e.g. after age 40 years) may arise as a consequence of temporally primary mental disorders. We plan to explore if the temporal order and lag between
mental disorders and PEs varies across the age range, and also compare early versus late AOO according to socio-demographic and clinical factors.

Apart from disorders with peak onsets in young adulthood, hallucinations and delusions can also be features of dementia and aging-related sensory impairments. Furthermore, there are links between cognitive capacity and proneness to PEs. We speculate that age-related cognitive decline may contribute to the emergence of PE in later life (e.g. a ‘release’ phenomenon associated within diminishing cognitive capacity). Prospective studies would be better able to explore the associations between late-onset PEs and age-related cognitive decline and/or aging-related sensory impairments.

We found that the AOO for HEs was significantly earlier than for DEs. As noted previously, studies that report on PEs as a broad class will miss subtle nuances in the epidemiological profile of HEs and DEs. Previously, we found that the lifetime prevalence of HEs were substantially higher than DEs (5.2 versus 1.3% respectively). Here we report an additional epidemiological feature that differentiates HEs and DEs. The AOOs for pure HEs are left-shifted (i.e. earlier) compared to pure DEs. In future studies we will explore if preceding substance use may differentially ‘bring forward’ the AOO of HEs versus DEs.

With respect to PE metrics, we found that those with more PE types had an earlier AOO. This finding may indicate that among those with lifetime PEs, individuals with a more severe phenotype (e.g. more types of HEs and/or DEs) tend to have an earlier AOO. Curiously, when we analysed AOO distributions according to the annualized PE frequency rate, we found a different pattern. Those with higher frequency rates tended to have later onsets, which suggests that factors related to (a) the mix of PE types, and (b) PE annualized frequency rate, may vary across the lifespan. This study provides the first report of the annualized PE rate. While this measure makes the simplifying assumption that PE episodes are evenly spaced across the years since onset, it provides a more valid metric for comparing PE frequency rates across groups with different PE AOO and age at interview. Describing the AOO of PEs alongside type and frequency metrics allows us to build a more nuanced understanding of how PEs relate to mental disorders across the lifespan.

While the current study has many strengths (e.g. large sample size, range of countries, uniform methodology for data collection), it also has several important limitations. We relied on lay interviewers to administer the questionnaire. Moreover, we did not have access to clinical validations of psychotic disorders, although we excluded individuals who screened positive for psychosis. Most importantly, we relied on retrospective reports about age of onset. The latter might have led to recall bias despite the use of special age of onset probes in the CIDI that have been shown to improve the accuracy of retrospective AOO reporting. Large prospective surveys with repeated assessment of PE-related metric will be needed to address these issues.
Conclusions

Approximately one in 13 people can expect to have at least one PE by age 75 years. While the median AOO for PEs is comparable to the AOO for schizophrenia (i.e. early twenties), the AOO distribution is wider, with approximately a quarter of individuals having their first PE at or after age 40 years. Earlier AOO is associated with a higher PE type metric, and a lower PE annualized frequency rate. A better understanding of how PEs unfold across the lifespan and interact with mental disorders may help contextualize the epidemiologic landscape of PEs.
Figure legend

Cumulative distribution of projected age of onset by Psychotic Experience type (truncated at age 65 years)
References

