
1 

 

Prenatal exposure to mixtures of xenoestrogens and genome-wide 

DNA methylation in human placenta.  

Vilahur Nadia1,2,3,4, Bustamante Mariona1,2,3,4, Morales Eva1,3,5, Motta Valeria6, Fernandez Mariana 

Fátima3,7,8, Salas Lucas Andrés1,2,3, Escaramis Georgia3,4, Ballester Ferran3,9,10, Murcia Mario3,9, 

Tardon Adonina3,11, Riaño Isolina3,12, Santa-Marina Loreto3,13,14, Ibarluzea Jesús3,13,14, Arrebola Juan 

Pedro3,7,8, Estivill Xavier2,3,4,15, Bollati Valentina6, Sunyer Jordi1,2,3,15, Olea Nicolás3,7,8. 

 

¹Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; 2Universitat 

Pompeu Fabra (UPF), Barcelona, Spain; 3CIBER Epidemiología y Salud Pública (CIBERESP), 

Spain; 4Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for 

Genomic Regulation (CRG), Barcelona, Spain; 5IMIB-Arrixaca Research Institute, Virgen de la 

Arrixaca University Hospital, Murcia, Spain; 6EPIGET - Epidemiology, Epigenetics and Toxicology 

Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 

Milan, Italy; 7Department of Radiology, University of Granada, Spain; 8Instituto de Investigación 

Biosanitaria, ibs.GRANADA, Spain; 9FISABIO–Universitat de València - Universitat Jaume I Joint 

Research Unit of Epidemiology and Environmental Health, Valencia, Spain; 10University of 

Valencia, Valencia, Spain; 11University of Oviedo, Oviedo, Asturias, Spain; 12Hospital San Agustín, 

SESPA, Asturias, Spain; 13Biodonostia, Health Research Institute, San Sebastián, Spain; 14Sub-

Directorate for Public Health of Gipuzkoa, Department of Health, Government of the Basque 

Country, San Sebastian, Spain; 15Hospital del Mar Research Institute (IMIM), Barcelona, Spain. 

 

Financial & competing interests disclosure  

This work was supported by grants from the Spanish Ministry of Health (FIS-PI042018; FIS-

PI060867; FIS-PI081151; FIS-PI09/02311; FIS-PI09/02647; FIS-PI11/00610; FIS-PI13/02429); 

Instituto de Salud Carlos III [Red INMA G03/176 and CB06/02/0041]; the EU Commission 

(QLK4-1999-01422, QLK4-2002-00603 and CONTAMED FP7-ENV-212502), the Generalitat de 

Catalunya-CIRIT [1999SGR 00241]; the Fundació La Marató de TV3; the Consejería de Salud de la 

Junta de Andalucía (grant number 183/07 and 0675/10), the Diputación Foral de Gipuzkoa 

(DFG06/004), the Department of Health of the Basque Government (2005111093), the University 

of Oviedo, the Fundación Liberbank, and the Fundación Roger Torné. NV was supported by an 

FPI Grant from the Spanish Ministry of Health (BES-2009-023933) and a Formación de Personal 

Investigador Grant for Short Research Stays in Foreign Institutions (BES-2009-023933). The 

HUSC BioBank, integrated in the Andalusia Public Health System (SSPA) and the National 

Biobank Network, is financed by the Institute of Health Carlos III, (project RD09/0076/00148) 

and the Regional Government of Andalusia. The authors have no other relevant affiliations or 

financial involvement with any organization or entity with a financial interest in or financial conflict 



2 

 

with the subject matter or materials discussed in the manuscript apart from those disclosed. No 

writing assistance was utilized in the production of this manuscript. 

Acknowledgements: 

The authors would like to acknowledge all the study participants for their generous collaboration. A 

full list of INMA Study Investigators can be found at:  

http://www.proyectoinma.org/presentacion-inma/listado-investigadores/listado-

investigadores.html 

Ethical conduct of research 

The authors state that they have obtained appropriate institutional review board approval or have 

followed the principles outlined in the Declaration of Helsinki for all human or animal experimental 

investigations. In addition, for investigations involving human subjects, informed consent has been 

obtained from the participants involved and/or their legal tutors. 

 

Keywords: 

Xenoestrogens, placenta, DNA methylation, prenatal, programming, endocrine disruptors, TEXB, 

epigenome.



3 

 

Abstract 1 

Background: In utero exposure to xenostrogens may modify the epigenome. We explored the 2 

association of prenatal exposure to mixtures of xenoestrogens and genome-wide placental DNA 3 

methylation. 4 

Materials & methods: Sex-specific associations between methylation changes in placental DNA 5 

by doubling the concentration of TEXB-alpha exposure were evaluated by robust multiple linear 6 

regression. Two CpG sites were selected for validation and replication in additional male born 7 

placentas. 8 

Results: No significant associations were found, although the top significant CpGs in boys were 9 

located in the LRPAP1, HAGH, PPARGC1B, KCNQ1 and KCNQ1DN genes, previously 10 

associated to birth weight, type 2 diabetes, obesity or steroid hormone signaling. Neither technical 11 

validation nor biological replication of the results was found in boys for LRPAP and PPARGC1B. 12 

Conclusions: Some suggestive genes were differentially methylated in boys in relation to prenatal 13 

xenoestrogen exposure, but our initial findings could not be validated or replicated. 14 

 15 

  16 
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Background 17 

Xenoestrogens are a group of endocrine disrupting chemicals (EDCs) that specifically interfere with 18 

the endogenous estrogen hormone signaling pathways and/or metabolism [1]. Exposure to 19 

xenoestrogens during susceptible developmental stages like the prenatal period has been related to a 20 

number of adverse health outcomes in the offspring, both in humans and in animals, including 21 

alterations in birth weight, growth and body mass index, male and female reproductive 22 

abnormalities, infant neurodevelopment or increased risk for diabetes and several types of cancer 23 

among others [2-10]; with evidences for sex-specific associations [10-15].  24 

The environmental epigenetic hypothesis suggests that the fetal epigenome may be affected by in 25 

utero environmental exposures, and this may play a role in later disease phenotypes [16]. The adverse 26 

effects of environmental exposures are especially relevant in the context of early exposure to EDCs, 27 

since endogenous hormones, active at extremely low concentrations, play critical developmental 28 

roles during the prenatal period [17, 18]. Mice models have revealed that in utero exposure to 29 

xenoestrogens may disrupt DNA methylation. Bisphenol A and diethylstilbestrol, compounds with 30 

known xenoestrogenic properties, induced higher expression of the Enhancer of Zeste Homolog 2 31 

gene, a histone methyltransferase which resulted in increased mammary histone H3 trimethylation 32 

and triggered methylation changes in several estrogen-responsive genes [19, 20]. In another study, 33 

dietary exposure to soy phytoestrogens in pregnant rats advanced sexual maturation and induced 34 

aberrant promoter methylation of skeletal α-actin, estrogen receptor-αand c-fos genes in the offspring [21, 35 

22]. In addition, the pesticide methoxychlor induced changes in DNA methylation at a number of 36 

imprinted genes, accompanied by a substantial decrease in mice sperm count [23]. 37 

In humans, significant associations have been reported between prenatal exposure to single 38 

xenoestrogens like the persistent organic chemicals dichlorodiphenyltrichloroethane (DDT), 39 

dichlorodiphenyldichloroethylene (DDE) or polychlorinated biphenyls (PCBs) and global DNA 40 

hypomethylation, measured as DNA methylation in retrotransposon elements (LINEs and SINEs) 41 

[14, 24-26], as well as at gene-specific level [27]. On the other hand, a recent study has shown that 42 

prenatal exposure to phthalates and phenols was related to methylation changes in placenta in the 43 

imprinted H19 gene and in the IGF2 differentially methylated region 2 (DMR2) only in boys, two 44 

regions known to play a major role in fetal and placental growth, although a further relation with 45 

birth weight could not be demonstrated in this study [28]. Epigenetic dysregulation of the placenta, 46 

which can be caused by several environmental factors, may lead to abnormal placental development 47 

and function [29]. Even if this organ does not form part of an adult, the human placenta plays a key 48 

role in ensuring optimal fetal development and growth, with implications for newborns disease 49 

predisposition in later life. 50 

Exposure during pregnancy to arsenic and cadmium, metals which have been suggested to interfere 51 

with estrogen signaling [30-33], has been associated to methylation changes in cord blood DNA, 52 
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both globally and in specific genomic sites as revealed by epigenome-wide association studies 53 

(EWAS)[34], with stronger associations often observed in males [15, 35-37]. 54 

However, exposure to single chemicals is often an unrealistic scenario, since environmental 55 

contamination, including EDCs, is rarely due to a single compound but to mixtures to which 56 

populations are exposed that may produce additive or even synergistic effects [38-40]. The use of 57 

biomarkers of cumulative exposure, such as the Total Effective Xenoestrogen Burden (TEXB) is 58 

therefore a more realistic approach to study the impact of co-exposure to mixtures of chemicals 59 

with estrogenic disrupting properties in a real world scenario [41, 42]. 60 

 61 

We previously reported male specific associations between placenta TEXB-alpha and children birth 62 

weight, early growth and motor development at age 1-2 [43, 44], accompanied by DNA 63 

hypomethylation in Alu retrotransposons in placenta [45]. The aim of the present study is to 64 

perform an epigenome-wide association study (EWAS) analyzing boys and girls separately to 65 

identify differentially methylated genomic loci in placenta in relation to prenatal TEXB-alpha 66 

exposure.  67 

 68 

Material and methods 69 

Study population 70 

The INMA- INfancia y Medio Ambiente- (Environment and Childhood) Project is a Spanish multi 71 

center birth cohort study exploring the role of environmental pollutants on children development 72 

and health [46]. All participants involved in the study provided written consent prior to 73 

participation, and the research protocol was approved by the Ethical Committees of the Institutions 74 

and Centers from the different Spanish regions. 75 

Two subsets of samples were analyzed in the current study, one for the discovery step and the 76 

other for the replication step. The discovery study included 181 women of Caucasian origin 77 

enrolled from November 2003 to January 2008 from four different areas of Spain: Asturias (18%), 78 

Basque Country (34%), Catalonia (37%) and Valencia (11%), who had not followed any program of 79 

assisted reproduction, gave singleton birth at the reference hospitals and had placenta collected at 80 

delivery. In the replication step, 126 women from the same cohort which had male deliveries were 81 

selected, enrolled in the study in the same period and following the same inclusion criteria from 82 

Asturias (4%), Basque Country (39%), Catalonia (37%) and Valencia (20%). 83 

 84 

Exposure assessment 85 

The Total Effective Xenoestrogen Burden (TEXB) is a biomarker of the combined estrogenic 86 

effect of environmental estrogens [47]. The detailed procedure has previously been published 87 

elsewhere [42, 48]. Briefly, half of each placenta was homogenized, in order to obtain a sample 88 

representative of the maternal-fetal unit. Thereafter, an hexane-based solid-liquid extraction method 89 
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was used to separate less lipophilic chemicals including endogenous hormones (beta fraction) from 90 

more lipophilic environmental compounds, i.e. persistent organic pollutants with xenoestrogenic 91 

potential (alpha fraction). Then, the estrogenicity of the alpha fraction (i.e. TEXB-alpha) for each 92 

placenta sample was quantified using the E-Screen bioassay, a cell proliferation assay using MCF7 93 

breast cancer cells, at the Biomedical Research Center from the University of Granada (Spain). 94 

TEXB-alpha was expressed in picomolar (pM) estradiol equivalent units (Eeq) per gram of placenta 95 

tissue (pM Eeq/g placenta). 96 

DNA isolation and methylation genome-wide data generation 97 

INMA placentas were stored at -80ºC at the IUSC Biobank of the San Cecilio University Hospital 98 

(Granada). Later, half of each sample was homogenized for exposure assessment as described 99 

previously, and the other half was partially defrosted and biopsies of 5 cm³ from the inner region of 100 

the placenta were conducted, approximately at a distance of 1.0–1.5 cm below the fetal membranes, 101 

which were previously removed, and at a distance of ~5 cm from the site of cord insertion, in order 102 

to obtain biopsies from the placental villous parenchyma as homogeneous as possible across 103 

samples. Twenty five mg of tissue were used for DNA extraction, previously rinsed twice during 5 104 

minutes in 0.8 mL of 0.5X PBS in order to remove traces of maternal blood. Genomic DNA from 105 

placenta was isolated using the DNeasy® Blood and Tissue Kit (Qiagen, CA, USA) in narrow time 106 

windows and by the same person, in order to minimize technical and operator variations. 107 

DNA quality was evaluated using a NanoDrop spectrophotometer (Thermo Scientific, Waltham, 108 

MA, USA) and additionally 100 ng of DNA were run on 1.3% agarose gels to confirm that samples 109 

did not present visual signs of degradation (smears or bands below 10,000 bp). Isolated genomic 110 

DNA was stored at -20°C until further processing. 111 

Genome-wide DNA methylation was measured in 202 placenta samples (including ten duplicates) 112 

using the Illumina Infinium Human Methylation450 BeadChip, a panel which roughly spans 113 

486,000 CpG sites in the human genome. Samples were plated on each chip, experimentally 114 

randomized with regard to sex distribution and processed blind to sample identification at the 115 

Genome Analysis Facility of the University Medical Center Groningen (UMCG) in Holland, 116 

where500 ng of good quality DNA was used to perform bisulfite conversion followed by 117 

methylation profiling following Illumina’s protocol.  118 

BeadChips were scanned with an Illumina iScan and image data was uploaded into the Methylation 119 

Module of Illumina’s analysis software GenomeStudio (lllumina, SanDiego, CA USA), and 120 

converted in β-values, that range from 0 (unmethylated) to 1 (fully methylated) and represent the 121 

fraction of methylation at a given CpG locus. 122 

 123 

Methylation data quality control and normalization 124 
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Methylation data quality control (QC) was performed in several steps to exclude low quality 125 

samples and probes. 126 

First, using the Genome Studio software, we removed samples that did not reach a call rate of 95% 127 

at a p-value below 0.05. Then, following Illumina recommendations we verified the intensities of 128 

several control probes provided by Illumina in order to: i) assess the quality of the experiment 129 

(sample-dependent controls) and ii) identify problems in specific experimental steps (sample-130 

independent controls). If a given sample failed in 3 or more Illumina controls, it was excluded from 131 

further analyses. Altogether, 2 samples were excluded that did not meet these two criteria.  132 

Ten biological duplicates, distributed either in the same or in different bisulfite plates and 133 

BeadChips, were used to estimate the discrimination threshold of the Infinium450K Array using 134 

the total deviation index (TDI) [49], which was 0.059 in duplicates from different bisulfite and 135 

hybridation arrays, 0.057 in duplicates from the same bisulfite but different hybridation arrays, and 136 

0.066 in duplicates both from the same bisulfite and hybridation array. Additionally, the 450K 137 

BeadChip features 65 control probes which assay highly-polymorphic single nucleotide 138 

polymorphisms (SNPs). Consistent results were observed when we performed pairwise correlations 139 

of these genotypes in our duplicates (See Supplementary Figure 1). After these steps, one of the 140 

biological duplicate samples (randomly selected) as well as the 65 SNP probes were removed from 141 

the dataset.  142 

Methylation patterns in chromosome X probes were used to cluster subjects according to sex by 143 

principal component analysis, and 8 mismatched samples were detected in relation to the 144 

information on sex contained in our database. These samples were also excluded from further 145 

analyses.  146 

An additional QC step was performed in R environment using the WateRmelon package [50], and 1 147 

sample presenting more than 1% of sites with a detection p-value greater than 0.05 was excluded, in 148 

addition to 1,859 probes, either because they occurred in more than 1% of samples with a p-value 149 

greater than 0.05 or because they presented a bead count below 3 in more than >5% of samples. 150 

Finally, probes that ambiguously mapped to the human genome with at least 47 base pairs or more 151 

(N=29.233) were excluded, and probes containing a SNP with a minor allele frequency (MAF) in 152 

HapMap European population (CEU) > 4%, either at the extension site or in the 10 nucleotides 153 

immediately before (N=14.122), as suggested by Chen et al. [51]. Probes corresponding to CpG 154 

sites located in chromosomes X and Y were also excluded (n=8.537). 155 

A total of 433.131 CpG sites on autosomes were tested with regard to TEXB-alpha exposure in the 156 

remaining 181 samples, representing 93 boys and 88 girls. Raw methylation beta values were then 157 

normalized to reduce technical variability and four different normalization methods were compared 158 

(dasen, BMIQ, quantile normalization and Swan) using three performance metrics as proposed by 159 
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Pidsley et al [52]. Dasen normalization was used for further analyses as it resulted the best ranked 160 

method in our data (Additional information in Supplemental Material and Methods). 161 

Epigenome-Wide Association Study 162 

A robust linear regression model was employed using MASS (R package), to test the association 163 

between doubling of TEXB-alpha concentration and methylation at each CpG site in boys and in 164 

girls separately. Analyses were adjusted for area of study and two technical factors: chip and 165 

bisulfite plate. Covariates included in the adjusted model were selected by testing the difference of 166 

the correlation of p values before and after correction using a Kolmogorov-Smirnov test. Since 167 

crude and adjusted robust regression models produced very similar results, only adjusted models are 168 

presented. The False Discovery Rate (FDR) correction for multiple testing was calculated with the 169 

Benjamini and Hochberg (B&H) method.  170 

CpG sites annotation 171 

In order to obtain information on the top differentially methylated CpG sites in our study the 172 

University of California, Santa Cruz (UCSC) Genome Browser interface was used, which in 173 

addition contains ENCODE (Encyclopedia of DNA Elements) detailed information on regulatory 174 

elements, including chromatin accessibility and epigenetic marks across the genome both in DNA 175 

and in histones [53, 54]. The human gene database GeneCards (http://www.genecards.org/)[55] 176 

was used to obtain information on the genomic location and gene (or nearest gene) function and 177 

reported disease associations, while toxicological interactions of these genes with chemical 178 

compounds were explored with the Comparative Toxicogenomics Database (www.ctdbase.org) 179 

[56]. 180 

Validation and replication by pyrosequencing 181 

Two CpGs were selected for further DNA methylation validation in the same samples as in the 182 

discovery study, and replication was conducted in 126 independent placenta samples (boys only) 183 

from the INMA cohort. For that purpose, bisulfite pyrosequencing, a highly quantitative PCR-184 

based analysis was used. A total of 500 ng of extracted DNA was bisulfite converted using the EZ 185 

DNA Methylation-Gold™ Kit (Zymo Research, CA, USA), and 1 µl of converted DNA was 186 

further PCR amplified and sequenced. Additional information on primer design and PCR assay 187 

conditions can be found in Supplementary Material and Methods, Table 1. Samples were run in 188 

duplicate on a PyroMark Q96 ID pyrosequencing system (Qiagen) and the pairwise correlation 189 

between technical duplicates was 0.94 for cg05342136 and 0.80 for cg15809858 (See Suplementary, 190 

Figure 2).  191 
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The association between doubling the concentration of TEXB-alpha and changes in DNA 192 

methylation was tested using adjusted linear mixed regression models including repeated 193 

measurements (pyrosequencing duplicates) as random intercept.  194 

Results  195 

Study population characteristics 196 

Overall, our discovery study population did not differ from the rest of INMA cohort participants 197 

for the main pregnancy related and socio-demographic characteristics Women in the discovery 198 

study were on average 32 years old, with a pre-pregnancy BMI of 23.45 kg/m². Only 3 children 199 

were born preterm, which represented a slightly lower (non-significant) percentage than what we 200 

observed in the rest of the INMA cohort participants and, concordantly, we saw less small for 201 

gestational age (SGA) children in our discovery study group when compared to the rest of INMA 202 

cohort (p-value<0.02) (Supplementary Material and Methods, Table 2). Additionally, no significant 203 

differences were observed for any of the maternal and infant sociodemographic and pregnancy 204 

related characteristics when comparing the discovery and replication populations used in our study, 205 

as shown in Table 1.  206 

TEXB-alpha exposure among the 181 participants in the discovery sample did not differ by 207 

newborn sex (Kruskal-Wallis Test p-value<0.624), and was also similar between the discovery and 208 

the replication samples (discovery: median=0.75, iqr=0.28 to 1.28 pM Eeq/g placenta and 209 

replication: median=0.76, iqr: 0.40 to1.41 pM Eeq/g placenta; Kruskal-Wallis Test p-value<0.438).210 
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Table 1. Main characteristics and comparison between discovery and replication study mother-child pairs enrolled in the INMA Project from the four participating 

INMA cohorts*. 

 
Discovery study sample 

(n=181)   
Replication study sample 

(n=126)   P-value 

Variables 
N (%), mean (SD) or Median 

(IQR)   
N (%), mean (SD) or Median 

(IQR)     

Maternal characteristics 
          

      

Maternal age (years) 32 (3.97)  31.70 (4.04)  0.437 

Pre-pregnancy BMI (kg/m²) 23.45 (4.10)  24.01(5.30)  0.705 

Type of delivery      

Vaginal  121 (67.22)  80 (63.49)  0.539 

Instrumental 31 (17.22)  28 (22.40)   

Cesarean 28 (15.56)  17 (13.60)   

Parity      

Primiparous 106 (58.56)  69 (54.76)  0.497 

Multiparous (2+) 75 (41.44)  57 (45.24)   

Smoking during pregnancy (yes) 49 (27.37)  31 (24.60)  0.777 

Maternal educational level      

Below Secondary School 34 (19)  40 (31.75)  0.131 

Secondary School 83 (45.86)  33 (26.19)   

University Degree 64 (35.14)  53 (42.06)   

      

Infant characteristics          
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Sex (male) 93 (51.38)  126 (100)4  - 

Gestational age (weeks) 39.80 (1.35)  39.85 (1.33)  0.674 

Preterm (<37 weeks) 3 (1.67)  4 (3.17)  0.574 

Birth weight  3299.07 (419.04)  3305.75 (447)  0.396 

Small for gestational age (SGA)1  10 (5.65)  11 (8.73)  0.385 

Large for gestational age (LGA) 2 14 (7.91)   12 (9.52)   0.259 

* Asturias, Gipuzkoa, Sabadell and Valencia. 1SGA: below the 10th percentile of birth weight, adjusted for sex and gestational age; 2LGA: above the 90th percentile of birth weight, 

adjusted for sex and gestational age. 4Only boys were included in the replication study. 
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Association of TEXB-alpha and genome-wide DNA methylation in placenta 1 

No epigenome-wide significant associations were found either in boys or in girls between each 2 

doubling of TEXB-alpha (pM Eeq/g placenta) and methylation at CpG sites in placenta after 3 

correcting for multiple testing. Results for the 12 most significant CpG sites in boys (n=93) and in 4 

girls (n=88) are presented in Table 2. Quantile-quantile (Q-Q) plots showing the observed versus 5 

expected -log10 (P-values) under the null hypothesis of no association are shown in Supplementary 6 

Figure 3. Among the top CpG sites differentially methylated in boys we found some genes 7 

previously related to growth and steroid hormone signaling, while none of these genes were 8 

observed in girls (See Supplementary Materials and Methods, Table 3 for additional information). 9 

Table 2. Top CpG sites differentially methylated in placenta in relation to prenatal TEXB-alpha 10 

exposure, ranked by nominal p-value. 11 

CpG name 
% Mean 

methylation 
(SD) 

Regression β** 
(% methylation) 

P-value FDR* Chr 
UCSC 

GeneName 

Boys (N=93) 
 

    
  

cg05342136 89.07 (1.41) 0.29 4.72 E-07 0.20 4 LRPAP1 

cg08983490 6.63 (0.71) -0.12 2.25 E-06 0.49 16 HAGH 

cg00698124 9.73 (1.07) 0.21 7.84 E-06 0.70 18 SETBP1 

cg23261491 11.52 (1.10) 0.19 7.88 E-06 0.70 12 OSBPL8 

cg15809858 10.55 (1.29) 0.23 8.87 E-06 0.70 5 PPARGC1B 

cg14218861 29.81 (4.91) -0.77 9.73 E-06 0.70 10 
 

cg16172549 61.33 (7.01) -1.25 1.52 E-05 0.72 1 PCP4L1 

cg10447095 55.83 (8.40) -1.55 1.75 E-05 0.72 16 
 

cg19584136 87.49 (2.38) -0.40 1.82 E-05 0.72 10 MXI1 

cg00836964 91.08 (1.17) 0.22 2.22 E-05 0.72 5 
 

cg00957580 84.65 (2.30) 0.37 2.27 E-05 0.72 14 NDRG2 

cg23903244 55.29 (2.82) 0.48 2.61 E-05 0.72 11 KCNQ1 

Girls(N=88) 
 

          

cg21877656 4.88 (0.45) 0.08 1.66 E-06 0.54 19 ZNF329 

cg19743820 14.26 (3.82) -0.87 3.15 E-06 0.54 5 COX7C 

cg21690627 6.19 (0.56) -0.13 3.73 E-06 0.54 17 C17orf59 

cg04919579 7.60 (0.89) -0.19 9.85 E-06 0.88 3 RNF168 

cg23313650 12.04 (1.62) -0.28 1.24 E-05 0.88 7 WASL 

cg01648887 94.32 (0.84) -0.16 2.19 E-05 0.88 16 SPG7 

cg11804334 5.31 (0.48) -0.10 2.96 E-05 0.88 11 CCDC34 

cg25248213 88.40 (1.55) 0.30 3.14 E-05 0.88 11 
 

cg01374565 8.97 (0.95) -0.20 3.15 E-05 0.88 11 GDPD5 

cg16705665 8.02 (0.70) -0.13 3.35 E-05 0.88 11 RCOR2 

cg27489994 8.48 (1.57) 0.31 3.36 E-05 0.88 13 TPT1 

cg10424681 83.85 (2.98) -0.62 3.98 E-05 0.88 6 C6orf201 
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*FDR: False Discovery Rate; all models were adjusted for area of study, bead chip and bisulfite plate. 12 
**Estimates per doubling TEXB-alpha concentration. 13 
 14 
Validation and replication of selected top CpGs in boys 15 

Two CpGs differentially methylated in relation to TEXB-alpha in boys were selected for further 16 

validation by pyrosequencing in the same samples (n=92) and replication was conducted in 17 

additional 126 placenta samples from male deliveries. 18 

The first CpG, the top differentially methylated cg05342136 in boys, is located in the exon 1 of the 19 

low density lipoprotein receptor-related protein associated protein 1(LRPAP1), a lipid-metabolism 20 

gene highly expressed in placenta that in turn interacts with TGFb1, an angiogenic factor mediating 21 

successful placentation and fetal growth via regulation of trophoblast invasion, cell differentiation, 22 

immunosuppression and apoptosis of vascular endothelial cells, which has also been associated with 23 

susceptibility to degenerative dementia [57-60]. The second selected CpG site, cg15809858, is 24 

located in the first intron of Homo Sapiens peroxisome proliferator-activated receptor gamma, 25 

coactivator 1 beta (PPARGC1B), a gene expressed in human placenta that stimulates the activity of 26 

several transcription factors and nuclear receptors, including estrogen receptor alpha, nuclear 27 

respiratory factor 1, and glucocorticoid receptor, shown to be down regulated in pre-diabetic and 28 

type 2 diabetes mellitus patients and previously related to an increased risk of developing obesity 29 

[61-63]. 30 

Results from the discovery EWAS could not be neither validated nor replicated for the two CpG 31 

sites analyzed (Table 3), although a trend for technical validation (i.e. we were able to confirm the 32 

magnitude and the direction of the effect) was observed for cg05342136 (β=0.29 in the discovery vs 33 

β=0.25 in the validation study). Scatter plots showing the correlation between DNA methylation 34 

values measured using the Illumina 450K array platform and by bisulfite pyrosequencing in the 35 

same samples (discovery) are shown for cg05342136 and cg15809858 in Supplementary Material 36 

and Methods, Figure 4.  37 

Table 3. Technical validation and biological replication in boys of placenta DNA methylation in 38 

selected CpG sites in relation to prenatal TEXB-alpha exposure. 39 

  

 Technical validation  
(discovery samples)   

Biological replication  
(independent samples) 

CpG name 
UCSC 
 Gene 
name 

% Mean 
methylation 

(SD) 
n β** 95 % CI P-value   n β** 95 % CI P-value 

  
 

         
cg05342136 LRPAP1 89.77 (2.6) 92 0.25 -0.23 to 0.76 0.299 

 
125 -0.07 -0.28 to 0.15 0.546 

cg15809858 PPARGC1B 1.87 (1.52) 92 0.06 -0.08 to 0.19 0.405 
 

126 0.01 -0.04 to 0.06 0.652 

                       
*Adjusted for area of study, gestational age, maternal age during pregnancy, smoking during pregnancy and 40 
bisulfite plate. Pyrosequencing duplicate was included as a random intercept. **Estimates per doubling 41 
TEXB-alpha concentration. 42 
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 43 

Discussion 44 

This is the first genome-wide study analyzing site-specific DNA methylation changes in placenta 45 

tissue in relation to a biomarker of exposure to mixtures of environmental estrogens. At the 46 

interface between mother and child, the human placenta is an organ involved in the regulation of 47 

fetal growth and development and represents a gateway for substances, including xenoestrogens, to 48 

enter fetal circulation [64, 65]. 49 

In the INMA cohort we previously reported sex-specific associations between the TEXB-alpha 50 

biomarker measured in placenta and birth weight changes in boys only [48], along with lower 51 

AluYb8 retrotransposon methylation in placental DNA in the same group, used as a surrogate to 52 

study global genomic DNA methylation [45]. In order to gain further mechanistic insight into these 53 

associations, we have performed an EWAS study in placenta, stratifying data by sex, to identify 54 

differentially methylated genes as a result of prenatal exposure to xenoestrogens. No genome-wide 55 

significant associations were found between each doubling of TEXB-alpha and DNA methylation 56 

after correcting for multiple testing in either group. However, among the top significant CpG sites 57 

differentially methylated in relation to each doubling of TEXB-alpha in boys, several were located 58 

in genes that have been related to birth weight regulation, type 2 diabetes and obesity risk or steroid 59 

hormone metabolism, and are known to be expressed in human placenta tissue. The top significant 60 

one, cg05342136, is located in the first exon of LRPAP1), a gene involved in cholesterol 61 

metabolism, the primary metabolite of steroid hormone synthesis [66]. We also found an increase in 62 

DNA methylation in cg15809858, located in exon 1 of PPARGC1B. The protein encoded by this 63 

ubiquitously expressed gene stimulates the activity of several transcription factors and nuclear 64 

receptors, including estrogen receptor alpha (ERα), and may be involved in fat oxidation, non-65 

oxidative glucose metabolism, and the regulation of energy expenditure. This protein is down-66 

expressed in pre-diabetic and type 2 diabetes mellitus patients and certain allelic variations in this 67 

gene increase the risk of the development of obesity, type 2 diabetes and breast cancer [61, 67]. 68 

Moreover, it has been shown to be downregulated by the hormonally active compound 69 

benzo(a)pyrene in mice [68]. Other suggestive genes appeared among the top hits in boys, such as 70 

HAGH, encoding for an hydroxylase enzyme involved in the pyruvate metabolism, or KCNQ1, a 71 

paternally imprinted gene that although relatively low expressed in placenta, contains genetic 72 

polymorphisms related to birth weight and type 2 diabetes [69] and is located within a cluster of 73 

imprinted genes in the chromosomal region 11p15.5, that includes KCNQ1DN,H19, IGF2 and 74 

KCNQ1OT1 among others, previously associated with fetal and placental growth [28]. Mutations 75 

and epimutations in these genes have been associated to the Beckwith-Wiedemann Syndrome 76 

(BWS), an overgrowth imprinting disorder that causes large body size and large organs in addition 77 

to other clinical manifestations present from birth [28, 70, 71].  78 
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Overall, although statistically non-significant, these findings seem to go in line with our previous 79 

results, showing that higher levels of  xenoestrogens (TEXB-alpha) measured in placenta were 80 

associated with higher birth weight in boys (on average 148 grams when comparing high versus low 81 

exposed children), while no effects were found in girls [48]. However, we could not validate neither 82 

replicate our initial findings for two selected CpGs, and only for cg05342136, technical verification 83 

showed a coefficient (β value) of the same magnitude and direction as in the discovery study. In our 84 

data, we observe a poor reproducibility between DNA methylation values measured using the 450K 85 

Illumina array platform and by bisulfite pyrosequencing in the same samples, especially when CpGs 86 

are hypomethylated (as for cg15809858). Whether this lack of technical replication and biological 87 

validation of the results in our study reflects differences in the reproducibility, specificity and/or 88 

measurement sensitivity across different platforms used to measure DNA methylation (i.e. 89 

hibridation array vs bisulfite pyrosequencing), as previously demonstrated for miRNA quantitative 90 

expression data [72], a lack of statistical power to reach statistical significance (especially when the 91 

magnitude of changes might be small), or truly negative findings remains to be addressed with 92 

additional larger studies. 93 

Lack of statistical power is a problem when analyzing -omics data, and we are likely underpowered in 94 

our study, where stratified analyses were conducted. Moreover, by using an array based approach 95 

such as the Illumina Infinium Human Methylation450 BeadChip, covering with probes roughly a 96 

2% of the ~28 million CpG sites described in the human genome [73], we might have missed 97 

potentially important genomic regions in our study. 98 

Our study has two main methodological strengths: first, exposure to mixtures of xenoestrogens was 99 

measured in placenta tissue using a biomarker, and second DNA methylation changes were 100 

analyzed in the same tissue, which is relevant considering the tissue specificity of epigenetic marks, 101 

the role of this organ during prenatal development and its sensitivity to the effects of hormones 102 

[74].  103 

The magnitude of the differences in DNA methylation that we observed was small, although 104 

similar to what has been previously shown in other EWAS in relation to prenatal exposure to other 105 

environmental chemicals, including potential xenoestrogens like cadmium [75]. To some extent, our 106 

results may have been confounded by cell type mixtures in placenta samples, or by the possible 107 

maternal cell contamination, which in both cases could have led to a possible underestimation of 108 

the effects, while we do not know whether the observed changes in DNA methylation have 109 

functional effects on gene expression, since RNA was degraded due to placenta collection 110 

conditions in our cohort. Only one biopsy for DNA extraction was conducted per sample, which 111 

could have introduced additional noise due to regional variations in DNA methylation, although 112 

some authors have suggested that this is not a major source of DNA methylation variation in 113 

human placenta [76]. Finally, some uncertainty exists on whether the TEXB-alpha biomarker, based 114 
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on a lipophilic extraction of compounds (excluding endogenous steroid hormones and more polar 115 

xenoestrogens) followed by a quantification of MCF7 cell proliferation assay, is exclusively a 116 

biomarker of xenoestrogenicity, or also a biomarker of other lipophilic compounds present in the 117 

placenta that activate growth, and that might not necessarily (or uniquely) act through binding or 118 

interacting with the estrogen receptor.  119 

Conclusion 120 

We conducted a genome-wide methylation study in placental tissue in relation to prenatal exposure 121 

to mixtures of xenoestrogens using the TEXB-alpha biomarker, and although we identified some 122 

suggesting genes differentially methylated in boys, we were not able to validate neither replicate our 123 

initial findings by pyrosequencing. Future studies are warranted to confirm the observed 124 

associations and their potential to mediate the effect of prenatal exposure to mixtures of endocrine 125 

disruptors on the offspring’s health. 126 

  127 
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