Susceptibility Factors Relevant for the Association Between Long-Term Air Pollution Exposure and Incident Asthma

Emilie Burtea,b, Rachel Nadif, PhDa,b, Bénédicte Jacquemin, MD, PhDa,b,c,d,e

\textbf{a.} INSERM, U1168, VIMA: Aging and chronic diseases. Epidemiological and Public health approaches, F-94807, Villejuif, France
\textbf{b.} Univ Versailles St-Quentin-en-Yvelines, UMR-S 1168, F-78180, Montigny le Bretonneux, France
\textbf{c.} CREAL-Centre for Research in Environmental Epidemiology Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.
\textbf{d.} Universitat Pompeu Fabra (UPF), Barcelona, Spain
\textbf{e.} CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain

\textbf{Corresponding author:}
Bénédicte Jacquemin
INSERM - UMR-S 1168 - VIMA

Currently at
CREAL-Centre for Research in Environmental Epidemiology
Parc de Recerca Biomèdica de Barcelona
Doctor Aiguader, 88
08003 Barcelona
Spain
Tel. + 34 93 2147359
Fax. + 34 93 2147302
benedicte.jacquemin@inserm.fr

Keywords Air pollution; incident Asthma; susceptibility factors; long-term exposure;

Abstract
In this review, we identified 15 studies in children and 10 studies in adults that assessed the association between long-term exposure to air pollution and incident asthma and that conducted stratified analyses to explore potential susceptibility factors. Overall, adult never/former smokers seem to be at higher risk of incident asthma due to air pollution. Children without atopy and children from low socio-economic status families also seem to be at higher risk of incident asthma due to air pollution. While interaction between air pollution and genes involved in the response to oxidative stress pathways have been explored, results are somewhat inconsistent and in need of replication. To evaluate interactions, large sample sizes are necessary and much more research, including data pooling
from existing studies, is needed to further explore susceptible factors for asthma incidence due to long-term air pollution exposure.

Introduction

Ambient air pollution has been associated with several health outcomes such as cardiovascular and respiratory diseases [1], lung cancer [2] or low birth weight [3]. Some specific population groups seem to be more sensitive to air pollution effect such as children, elderly people, overweight or obese individuals [4], subjects with chronic respiratory disease such as asthma [5] or chronic obstructive pulmonary disease [6]. Sex differences have also been found [7]. Regarding air pollution, there is no consensus on specific susceptibility factors that would be common across all health outcomes. The association between air pollution and asthma has been widely studied, some studies evaluated acute exposure to air pollution and its relation with asthma exacerbation or hospitalization [8], others have evaluated long-term air pollution and its relation with prevalence and incidence of asthma [9]. To our knowledge there is no (systematic) review that has evaluated potential susceptibility factors in relation to the effects of air pollution on incident asthma. Thus, the aim of this review is to fill this gap by summarizing results from studies that reported on air pollution and incident asthma while stratifying on possible susceptibility factors.

Methods

This review focuses on studies that assessed the effect of long-term air pollution on asthma incidence and reported stratified analysis on possible susceptibility factors. Through a PubMed research, we selected articles in peer-reviewed journals. The search terms included “air pollution” and “asthma or wheeze” – in title or abstract- and “inciden*” or “onset”. The search resulted in 272 papers, for which we screened the title, the abstract and the full article when necessary to identify studies according to the criteria that will be described here. We also compared the list with recent reviews based on the effect of air pollution on asthma [8–10], confirming that our search did not miss any eligible paper. We included only articles in English, in adults or children (not animals) that studied long-term pollution effects on incidence asthma, and that stratified on possible susceptibility factors (Flow-chart of the articles selection is available in Figure 1).

Pollution exposure

Pollutants studied in the articles were: nitrogen oxides (NOx), nitrogen dioxide (NO₂), particulate matter up to 10µm (PM₇.₅), particulate matter up to 2.5µm (PM₂.₅), ozone (O₃), sulfur dioxide (SO₂) and soot. Most of the papers included in this review used modeled (land-use regression (LUR) or dispersion models) exposure at individuals’ residential addresses [11–26], one study used modeled individual exposures at both home and school addresses [27]. Three articles used proximity to
traffic/major roads as a proxy of air pollution exposure, one relied on residential address [28], one on school and home addresses [29] and one on school address only [30]. Two studies used community exposure to air pollution as proxies of individual exposure [31,32] and three studies used zip code level exposures corresponding to home and work/school [33–35].

Asthma incidence

In adults, incident asthma was the variable of interest whereas in children incident asthma or incident wheeze were considered. Incident asthma or wheeze was assessed mostly using questionnaires and questions used across studies vary from report of asthma symptoms to report of diagnosed asthma (parental report for children). Five studies used a physician diagnosis of incident asthma (personal visit to the physician) [17,18,20,29,35]. One study used asthma symptom score as a proxy to identify asthma incidence [23].

Susceptibility factors

The susceptibility factors of a-priori interest were:

- Age: effect of air pollution exposure could differ according to each stage of life [4] (in particular prenatal period [36], early childhood, and in the elderly [37]). Actually, regarding age, two concepts appear. From the one side the age of exposure and from the other side the age at diagnosis. Regarding the first, it is possible that there are different windows of susceptibility. Regarding the latest, it is well known that childhood asthma is different from adulthood asthma and within adulthood asthma, teenage or elderly asthma can be also different phenotypes, and thus air pollution could have a different effect on these different phenotypes. Most of the studies stratified their analyses on age using age at inclusion or follow-up (possibly trying to integrate both concepts). However, some birth cohorts have air pollution exposure during pregnancy or early in life, and therefore stratified by age of exposure

- Sex/gender: exposure to air pollution could be different according to gender (for example women spending more time at home), or the effect of air pollution could be biologically different according to sex. Throughout the manuscript we will use the term “sex” as it is very difficult to disentangle what is related to sex –biological differences- and what is related to gender - life habits differences- regarding air pollution effects [38].

- Tobacco -secondhand smoke for children-: air pollution effects could be masked among smokers (or passive smokers) as smoking and air pollution share several mechanisms [24], furthermore recently it has been suggested that there could be an interaction between smoking and air pollution [39].

- Atopy: atopic and non-atopic asthma are possibly two different diseases with different mechanisms, and air pollution may have a different effect according to atopy status [40].
- Body mass index (BMI): subjects with obesity have been found to be more susceptible to air pollution in terms of lung function (and as lung function is an asthma related phenotype, it seems plausible that susceptibility factors related to lung function may also be interesting to study regarding asthma incidence) and asthma [41–43].
- Genetic variants [4]: mainly the ones associated with oxidative stress or inflammation are the ones investigated so far.

During the review we also identified a posteriori socio-economic status (SES, individual SES for adults, family SES for children) or- family environment (such as parental stress or exposure to violence), race, wheeze or bronchial hyperresponsiveness at baseline and parental history, as being others potentials susceptibility factors that we will expose in the manuscript.

Results and discussion

Twenty-five articles fulfilled the inclusion criteria (17 from the PubMed research and 8 from the hand research) (Figure 1) and are presented separately for adults and children. Study characteristics and main results for each study are summarized in Table 1 for children and in Table 2 for adults.

Sex:

Seven studies stratified the effects of air pollution on asthma by sex [13,14,17–19,30,35] in children. In Canadian children at high risk for asthma [17], the association between exposure –measured at year of birth- and incident asthma at 7 years old was reported as higher among boys, but no further details were given. In a pregnancy cohort in US [19], the association between in- utero exposure to PM$_{2.5}$ and asthma onset at age 6 showed a sensitive exposure window between 12-26 weeks of gestation for boys but not for girls, and the authors reported a significant interaction term for sex (p-interaction=0.01, OR(PM$_{2.5}$*boys): 1.33(1.05-1.69)). In the five other studies, associations were similar in boys and girls: in children aged 6-9 years from the Chiba prefecture in Japan [30], the association between air pollution, measured as school proximity to traffic and asthma incidence was similar in boys and girls (OR(95%CI): 3.75(1.00-14.06) for boys and 4.06(0.91-18.10) for girls). The same result was found among more than 4000 children aged 8-21 years from US and Puerto Rico [18], for NO$_2$ and PM (PM$_{2.5}$ and PM$_{10}$), considering air pollution exposures during the first year of life or first 3 years of life (First year of life: NO$_2$: OR(95%-CI): 1.26(1.05-1.52) in boys, 1.11(0.96-1.29) in girls; PM$_{10}$: 1.10(0.89-1.36) in boys, 1.15 (0.97-1.37) in girls, the p-interaction was not significant. First 3 years of life: PM$_{10}$: 1.08(0.86-1.35) in boys, 1.19(1.00-1.41) in girls, p-interaction NS). In a Swedish birth cohort [13], association between traffic NOx and persistent wheezing was also similar whatever the sex (OR(95%CI)= 1.94(1.07-3.50) in girls, OR: 1.55(0.92-2.63) in boys, p-interaction=0.43). In another birth cohort conducted in Oslo, NO$_2$ was not associated with asthma incidence among girls (RR (95%CI): 1.05 (0.74-1.49)), while the effect estimate was negative among boys (RR: 0.73(0.56-
Finally, in Canadian children aged between 36 and 59 months [35], associations were similar in boys and girls for both NO and NO\(_2\) (OR(95%CI) for NO\(_2\): 1.17(1.09-1.26) for girls and 1.09(1.03-1.16) for boys, OR for NO: 1.13(1.06-1.20) for girls and 1.05(1.00-1.10) for boys).

In adults, six studies stratified by sex when they assessed the associations between air pollution and asthma [22–24,28,33,34]. In American non-smokers [34], for an IQR increase in 20-years average of O\(_3\)-8h concentration, the association was positive in men, while there was no association in women (RR(95%CI): 2.09(1.03-4.16) in men, 0.86(0.58-1.26) in women); in the same study population, another paper [33] reached a similar conclusion when considering one-year O3-8h average as exposure. In an European study conducted in 7 countries [23], the association between NO\(_2\) concentration and incident asthma was similar but slightly stronger among men (OR(95%CI): 1.32(1.12-1.56), than among women (1.14(0.97-1.34); , p-interaction=0.13). Among Swiss never-smokers [24], the OR per 1\(\mu\)g.m\(^{-3}\) increase in traffic related PM\(_{10}\) (TPM\(_{10}\)) was also slightly higher in men –but no precise OR were available as results were presented only in a figure-. Other studies found no significant difference between men and women in the association between air pollution and asthma [22,26,28]: no difference according to sex was found in an European study conducted in 7 countries (OR for NO\(_2\): 1.31(0.76-2.27) in men and 1.53(0.99-2.38) in women (p-interact=0.69), [22]) nor in a Swedish cohort (OR for NO\(_2\): 1.32(0.64-2.74) in men, 1.67(0.98-2.74) in women (p-interact=0.63), [28]). Similarly, in a European study regrouping 6 cohorts, no difference was found according to the sex and no association between air pollution and incident asthma was found (OR for NO\(_2\): 1.06(0.92-1.24) in men, 1.07(0.97-1.19) in women, p-interact=0.66, PM\(_{10}\): 1.00(0.63-1.59) in men, 1.07(0.91-1.26) in women, p-interact=0.80 [26]).

Both in adults and children, sex was the most studied susceptibility factor. Among children, similar effect of air pollution on incident asthma was similar in boys and girls. Among adults, results are discordant with some studies showing a higher effect of air pollution exposure on incident asthma in men whereas others reported no difference according to sex. This is opposite to what Clougherty [38] pointed out in her review where she found a higher effect of air pollution among women. Overall, in both adult and children, evidence mostly support no effect modification between air pollution measures and sex on incident asthma.

Age:

In children, three studies stratified their analysis on age, [11,16,27]. In children from Lanceeister aged 1-5 years at baseline [11], no evidence for a modifier effect of age (1-2.9 years vs. 3-4.9 years) was found. In a Netherland birth cohort [16], a slightly higher association of air pollution and onset asthma at 6-8 years vs. younger (age at follow-up, no exact OR available only OR showed in a figure) was found. Among children followed-up at 1, 2, 4, and 12 years of age in a Swedish birth cohort [27], association between air pollution during first year of life and asthma risk increased with age.
(OR(95%CI)= 1.48(0.85-2.57) for NOx and 1.59(0.83-3.05) for PM$_{10}$ at 4 years of age at follow-up and 1.87(1.01-3.44) for NOx and 2.39(1.18-4.86) for PM$_{10}$ at 12 years at follow-up).

In **adults**, we found only two studies stratifying the analysis of the association between air pollution and incident asthma according to age at baseline [24,26]. Among Swiss non-smokers [24], the association between traffic related PM$_{10}$ and incident asthma was slightly higher among participants aged of more than 40 years at baseline (OR≈1.65 significant in >40 years, OR≈1.3 NS in <=40 years, no exact OR available, p-interact>0.1). In a meta-analysis of 6 European studies [26], no difference was found in the association between NO$_2$ and incident asthma in participants with more or less than 50 years old at baseline.

In children as in adults, only few studies stratified on age -whatever age at baseline or age at follow-up- and no particular patterns were found, except perhaps stronger estimated effects among children between 6 to 12 years at diagnosis. As epidemiological studies are either conducted among adults or among children, and often focus on a specific age range, few studies stratify the results according to age. However it is of special interest that one study reported higher incidence of asthma in children (even if only boys) who were more exposed in utero during 12-26 weeks of gestation pointing out to a possible prenatal susceptibility window [19]. This result is concordant with a study that found that prenatal exposure to air pollution was associated with long-term lung function deficits at preschool age [44].

Smoking:

In **children**, we found no study that stratified on passive smoking or maternal smoking. A study in children from Lanceister, however stated that the “effect of PM$_{10}$ on health outcomes did not depend on whether children were exposed to secondhand tobacco smoke (p-interaction>0.1)” [11]. Generally, this factor was taken into account in the adjusted models.

In **adults**, five studies stratified their analysis on smoking status, but classification of smoking was not homogenous across studies. An American study of women and a European study grouped never and ex-smokers together. In both studies, they found a higher association between NO$_2$ and asthma or wheeze incidence among ex/never smokers (American study: OR(95%CI)=1.14(1.04-1.24) in never/ex-smoker and 0.89(0.74-1.06) in current smoker, p-interaction=0.01 [25], European study: 1.30(1.11-1.52) in never/ex-smokers and 1.07(0.92-1.26) in current smokers, p-interaction=0.005 [23]). The interactions were significant in both studies, but the first one only stratified on smoking status for incident wheeze, due to a lack of power for incident asthma, and this population was restricted to women. Another study conducted in 7 European countries [26], considered ex-smokers and current smokers together, and associations were slightly stronger for NO$_2$ among ever smokers (OR(95%CI): 1.13(0.99-1.29) than never smokers (OR= 1.01(0.88-1.16;p-interact=0.35) and no difference was found for PM$_{10}$ in ever smokers (1.17(0.79-1.74) versus never smokers (OR=1.10(0.87-
Among American non-smokers [34], the association between ozone and incident asthma was similar among ex-smokers and never smokers, but stratification was only done for men. In another study, for non-smokers only [24], there was an association between traffic related PM$_{10}$ and incident asthma among never smokers (HR(95%CI)=1.30(1.05-1.61) but no association among ex-smokers (HR=0.99(0.64-1.53)). They also reported no association between air pollution and asthma in smokers. Overall, the association between air pollution and incident asthma according to smoking status was studied only in adults, and while results were not always consistent, the effects of air pollutant on incident asthma seemed to be stronger among never/ex-smokers. This susceptibility might be explained by the fact that any air pollution effect may be masked among smokers, who may already have a higher risk of asthma [45].

Atopic status:

Five studies stratified their analyses according to atopy status in children. Atopy status was defined according to level of specific Immunoglobulin E (IgE, >35kU/L) [13,16,27], positive skin-prick test (SPT) [29], or level of total IgE (Total IgE \geq200) [18]. Two birth cohorts [13,16,27] reported a stronger association between air pollution and incident asthma in non-atopic children: a Swedish birth-cohort [13] reported an association between NOx exposure and incident asthma in non-atopic children and no association in atopic children at age 4 (OR(95%CI): 1.46(1.00-2.13) in non-atopic, 1.11(0.55-2.22) in atopic, p-interaction NS). Another study conducted in the same birth cohort [27] reached similar results for exposure to PM$_{10}$ and NOx and incident asthma at age 8 (OR(95%CI) for NOx: 2.6(0.9-8.1) in non-atopic, 0.8(0.2-2.4 in atopic). In a Dutch birth-cohort [16], the association between NO$_2$, PM$_{2.5}$ and soot and incident asthma were higher among non-atopic children at age 8, but in this study it was not possible to adjust for any type of confounding due to small sample size (OR(95%CI) for NO$_2$: 1.85(0.92-3.73) in non-atopic, 0.95(0.64-1.40) in atopic). Contrary to all of these results, a French case-control study examined traffic density –expressed in tertiles- before age 3 [29], and associations between traffic density and incident asthma were stronger among atopic children, but with wide confidence intervals and results were probably mainly driven by the way they categorized exposure (tertile 1 as reference. OR(95%CI): tertile2: 0.61(0.1-3.6) and tertile3: 11.03(1.3-100.9) and in non-atopic tertile2: 1.23(0.29-5.31) and tertile3: 1.47(0.32-6.97), p-interact=0.20). Finally, in a study in children from US and Puerto Rico [18] there was no differences in estimated effects according to low or high total-IgE level.

In adults, five studies stratified the analyses according to allergic sensitization. Atopy status was defined by a positive SPT [20,24], high levels of specific IgE [22,23] or using the report of hay fever as proxy of allergic sensitization [28]. No difference according to atopic status was found in a European study whatever the way to define asthma incident cases (OR for NO$_2$: (95%CI): 1.20(1.02-1.41) in non-atopic, 1.37(1.14-1.65) in atopic, p-interaction=0.63) using asthma symptoms report [23], and 1.31(0.84-2.04) in atopic, 1.57(0.92-2.67) in non-atopic, p-interaction=0.77 using symptom score
of asthma [22]). On the one side, a study in Swiss non-smokers [24] reported an association between TPM$_{10}$ concentration and asthma incidence among atopic whereas no association was observed among non-atopic participants (OR\approx1.35 in atopic, CI higher than 1, OR\approx1.2, CI including 1 in non-atopic. OR available in a figure). In a Swedish case control study [20], association reached significance in atopic only (OR for NO$_2$ (95%CI: 1.2(1.0-1.3) in those with ≥1 SPT, 1.0(0.9-1.1) in those with no SPT), however no significant associations was found for the whole population. On the other side, in a prospective Swedish cohort [28], the association between NO$_2$ and asthma incidence was higher in participants without hay fever (OR(95%CI): 1.15(0.59-2.24) in those with hay fever, 1.79(1.04-3.05) in those without, p-interaction=0.30).

Stratification on atopy status was one of the most commonly assessed susceptibility factors, particularly in children. Estimated effects of air pollution on incident asthma seem to be stronger in non-atopic children; possibly because air pollution effects may be masked among atopic participants, a sensitive population who already is at higher risk of asthma. In adults, results were too discordant to come to a conclusion. Allergic and non-allergic asthma could be two distinct diseases, and it may be hypothesized that biological response to air pollution differs according to allergic sensitization. Furthermore, studying the effect or air pollution with and without atopy may help to better understand the mechanism that air pollution exhibits on asthma.

Genetic factors:

Only two papers -conducted both in the same study- investigated interactions between genetic variants and air pollution on asthma incidence during childhood and adolescence [31,32]. Among children from 12 Southern Californian communities, non-Hispanic whites children carrying at least one “short” allele (<23 repeats) in the HMOX-1 gene and residing in a low ozone communities had a twofold lower risk of new-onset asthma than those residing in high ozone communities (HR(95%CI): 0.44(0.23–0.83) for low-ozone communities, 0.88(0.33–2.34) for high ozone communities, p-interaction=0.003 [31]). Associations did not vary according to children’s participation in sports or time spent outside [31] . No interaction was found with PM$_{10}$ [31] . Among children from the same cohort, those homozygous for Ile105 in the GSTP1 gene and playing more than 2 team sports risk of asthma was increased, and the risk was highest in those living in high ozone communities (HR(95%CI): 1.06(0.3-4.0) in low-ozone community, 6.15(2.2-7.4) in high-ozone communities, p-interaction=0.10, [32]).

In adults, only one study investigated interactions between genetic variants and NO$_2$ concentration on asthma incidence [21]: in an European prospective cohort, subjects homozygous for the NQO1 rs291766 C allele were at greater risk for developing asthma due to air pollution compared with those with CG/GG genotypes (OR(95%CI): 2.02(1.16–3.73) in those homozygous for the NQO1 rs291766 C allele, as compared with those with CG/GG genotypes: (OR(95%CI): 1.26(0.83–1.99), p-interaction=0.04).
Polymorphisms in few genes involved in xenobiotic metabolism or in the NRF2-mediated oxidative stress response modified associations between ozone and asthma incidence in children and adolescents, and between NO\textsubscript{2} and adult onset-asthma. No association was observed with PM, suggesting different chemical mechanism of action between pollutants. Overall, results confirm the complex interplay between pollutant, ethnicity, exercise and antioxidant defenses on the development of asthma.

Familial environment and SES:
Among Californian children age 5-9 years at baseline [15], those exposed to a higher level of parental stress were more susceptible in the association between NO\textsubscript{x} and incident asthma (HR(95%CI): 1.51(1.16-1.96) in high parental stress, 1.05(0.74-1.49) in low parental stress, p-interaction=0.05) and this association was greater in boys. A stronger association was also found among children with low SES (1.20(0.93-1.55) in high SES, 1.55(1.09-2.19) in low SES, p-interaction=0.25). In a US birth cohort [12] susceptibility due to exposure to violence was reported: associations between NO\textsubscript{2} concentration and incident asthma were stronger among children most exposed to violence (OR(95%CI): 1.63(1.14-2.33) lower than median exposure, 2.40(1.48-3.88) above median).

In adults, we found no study that stratified on SES.

Two studies included in our review reported that children with low SES or exposed to a harmful familial environment were at higher risk of asthma due to air pollution, concordant with results related to short-term air pollution [46] or mortality [47] and with the fact that low SES has been traditionally associated with higher air pollution exposure even if recent studies found that this is not always the case [48]. The association between air pollution and SES still needs to be better understood to better explore if SES could be a susceptibility factor in the association between asthma and air pollution.

Some studies assessed others potential susceptibility factors. In Canadian children at high-risk for asthma [17], the association between air pollution and incident asthma seemed stronger among Caucasian participants. In adults, two studies had looked at the association between air pollution and incident asthma according to baseline characteristic associated with asthma: wheeze [28] and BHR [23]. In a Swedish cohort, the association was positive among those with wheezing at baseline, but not in those without wheeze at baseline [28]. In the same way, in a European study, the association was positive and significant among those with BHR at baseline, whereas those without BHR at baseline had a non-significant association [23]. In a Swiss non-smokers population, the association between incident asthma and PM\textsubscript{10} level were higher among those with parental history of allergy [24] These results may suggest that participants who are already predisposed to develop asthma or at higher risk of developing asthma may be more susceptible to air pollution.

Overall discussion and Conclusion
In this review, we identified 15 studies in children and 10 studies in adults with stratified analyses on potential susceptibility factors assessing associations between long-term exposure to air pollution and incident asthma. Overall, never/former smokers adults seem to be more susceptible to air pollution in relation to incident asthma. Children without atopy seem to have a higher risk of incident asthma due to air pollution, as well as children with low SES. Some early studies also suggest a role for genes involved in the response to oxidative stress.

We focused on incident asthma, but incident asthma is strongly associated with prevalent asthma, and as they share commons features, we could expect to find similar susceptibility factors for both outcomes. Papers who had specifically studied susceptibility factors of the association between air pollution and prevalence of asthma found discordant results about sex [49,50], parental asthma or allergic symptoms [50,51]. As for incident asthma it seems difficult to draw a firm conclusion on who could be more susceptible to the effects of air pollution. It seems also plausible that susceptibility factors involved in the association between air pollution and lung function have a role in the association between air pollution and asthma onset as lung function is an asthma related phenotype. More previous studies investigated possible susceptibility factors in regard to air pollution and lung function. Downs et al. [52] showed that lung function in adults declined less in area where air pollution improved more, but they did not find any interaction with sex, atopy or smoking status. Another study [53] reported that the association between NO$_2$ concentration and lung function decline was stronger among girls, older children, and stronger but not significant among children of high SES and in those exposed to parental smoking. However the association was not modified by asthma status.

Surprisingly, very few studies have assessed the potential role of SES as a susceptibility factor in the association between air pollution and asthma incident, although asthma is known to be socially patterned [54] and SES is very probably associated with air pollution exposure [55]. We found no study with stratified analysis on BMI or dietary factors, despite of the known association between BMI and asthma [43]. Several papers suggested that obesity can play a role in susceptibility to pollutants effects [41,42] in lung function, and in a randomized-trial [56] antioxidant intake was associated with a moderate impact of ozone exposure on lung function in children with moderate to severe asthma. Whereas susceptibility of older adults to the health effects of air pollution is well recognized, and particularly on lung function [57] where frailty was associated with a higher decline of forced vital capacity due to air pollution, we did not find study stratifying on these factors. Others potential susceptibility factors such as low birthweight, second-hand tobacco smoke or ethnicity have also been proposed in a recent review as risk modifiers of the association between air pollution and asthma in general [58], but none of these were taken into account in the articles included in this review.
One of the limitations of this review is that most of the studies used different methodology to assess air pollution exposure and also different definitions for some susceptibility factors. Some studies assessed the association between several pollutants and incident asthma, and correlations between pollutants were not always taken into account or reported. Some studies did not report the year of exposure assessment and did not clearly define the window of exposure. Whether in children or in adults, half of the studies had considered the problem of participants having moved during the window of exposure to air pollutant. Among those assessing that problem, several had conducted sensitivity analysis, and basically results among non-movers only were either stronger or similar to those among all participants. Another limitation of this review is that several studies did not assess the interaction term related to the susceptibility factor and for those who presented it, only few reported a significant p-value. Among the 25 articles identified, a majority assessed air pollution exposure to NO$_2$ and few assessed PM or other pollutants, making difficult to identify which pollutants could be more important for which susceptibility factor and not allowing to conduct any meta-analysis. Definition of the susceptibility factors differed also according to the study, for example for atopy some studies used IgEs, others SPT and others total IgE or concomitant allergic disease. In children, all studies that found stronger associations among non-atopic participants used specific-IgEs to define atopy while studies using other definitions did not find interactions between atopy and air pollution. Therefore the question arises if the results depend on the way atopy is defined. Differences in exposure or phenotypic characterization, may explain, at least in part, heterogeneity of results across studies.

Regarding genetic factors, it is now well established that asthma is due to a complex interplay of environmental and genetic factors. There have been considerable efforts to characterize the genetic determinants of asthma, however the identified genetic factors explain only a small part of the genetic component of asthma. One of the reasons is that many genetic factors are likely to be involved in the development of asthma through complex mechanisms that involve interactions with environmental factors and with other genes through pathways or networks. Furthermore, the effect of such genetic factors may be missed if genes are considered alone, regardless of the biological functions they shared or the pathways they are involved in [59]. Studies of candidate gene and long-term air pollution for incident asthma are scarce, have been only conducted on genes involved in the response to oxidative/nitrosative stress, and have explored a limited number of genes. Future studies should investigate a greater number of candidates genes selected from a pathway-based approach [60]. The gene selection process may want to integrate information on the biological processes shared by genes, the pathways to which genes belong and the biological knowledge related to the environmental exposure under study.

Overall, no clear susceptibility factors of the relation between outdoor air pollution and incident asthma is currently established. Discordant results could be due to misclassification in exposure such
as not taking into account time-activity patterns, at it is usually the case in air pollution epidemiological studies. Among the papers included, no study was explicitly designed to assess susceptibility factors for the association between air pollution and incident asthma. Few studies had enough power to stratify or find significant interaction terms. A major challenge in the future would be to have studies specifically designed, or pooling data from existing studies, to address the role of susceptibility factors on the association between air pollution and asthma, and also explore which pollutant is the most relevant for which susceptibility factors. For that purpose, we would need both a detailed characterization of the disease together with a precise modelled individual exposure to air pollution and a better definition of some susceptibility factors such as atopy or smoking.

Acknowledgments
SESAP: ANSES EST-2012-166.

Compliance with Ethics Guidelines

Conflict of Interest
Emilie Burte, Rachel Nadif, and Bénédicte Jacquemin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
References

Papers of particular interest, published recently, have been highlighted as:

- Of importance

This paper provides a nice and complete study on the effect of air pollution on incident asthma in children, with data-driven approach to select window of exposure. This paper reported a stronger susceptibility in boys for mid-gestation exposure.

This meta-analysis provides a complete study of the association between incident asthma and air-pollution in 6 European Cohort, with several stratified analysis on different susceptibility factors.

This review provides a complete overview of the association between air pollution and asthma in general, covering the association itself but also several others issues such as biological mechanism or risk modifiers.

Table 1: Description of studies assessing the association between air pollution exposure and incident asthma in adults (by year of publication) and that had stratified their analyses by possible susceptibility factors

<table>
<thead>
<tr>
<th>First author, Year, Journal, reference</th>
<th>Design, Study, Outcome</th>
<th>Population; age</th>
<th>Exposure assessment</th>
<th>Main association</th>
<th>Susceptibility factors</th>
<th>Modifying effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shima, 2003, J Epidemiology [30]</td>
<td>Prospective cohort study. Recruitment in 1992, follow-up yearly until 1995. Outcome: incident asthma.</td>
<td>1858 children from 8 communities in Chiba prefecture, Japan. (6-9 years at baseline)</td>
<td>School proximity to roadside: rural area, non-roadside area: ≥50m from the roads, roadside area: <50 m from the roads.</td>
<td>Symptoms of asthma tended to increase in the order of roadside> non-roadside> rural areas.</td>
<td>Sex</td>
<td>-Sex: Ref: rural area. OR (95% CI) for non-roadside area: 1.99 (0.79-4.99) among boys, 1.74 (0.63-4.81) among girls. OR (95% CI) for roadside area: 3.75 (1.00-14.06) among boys, 4.06 (0.91-18.10) among girls. Significant trend among boys (p=0.013), not among girls</td>
</tr>
<tr>
<td>Zmiou, 2004, JECH [29]</td>
<td>Case control study, conducted in 5 French metropolitan areas: VESTA, between 1998 and 2000. Outcome: incident asthma.</td>
<td>195 pairs of matched cases and controls investigated. Aged 4-14 years</td>
<td>Traffic density: time weighted average of the traffic density to road distance ratio; index of lifetime exposure to traffic exhaust. Exposure index considered in tertile. Home and school addresses</td>
<td>Traffic density associated with asthma when considering 3 first years of life, but not when averaging on life. OR (95%CI) for traffic density as a quantitative predictor: 1.30(1.04-1.62). Results in tertiles: ref=tertile1; tertile2: 1.48(0.73-3.02), tertile3: 2.28(1.14-4.56).</td>
<td>Atopy (at least one positive SPT to one of 9 tested allergens)</td>
<td>-Atopy (positive SPT). Tertile 1 as reference. Atopic: Ter2: 0.61(0.1-3.6), tertile3: 11.03(1.3-100.9). Non-atopic: Tert2: 1.23(0.29-5.31), tertile3: 1.47(0.32-6.97) (p interaction=0.20)</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Participants</td>
<td>Exposure</td>
<td>Health Outcomes</td>
<td>Results/Findings</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Clougherty et al., 2007, EHP, [12]</td>
<td>Birth cohort, recruitment: between 1987 and 1993, follow-up in 1997. Outcome: incident asthma.</td>
<td>413 children from Boston, recruiting pregnant women.</td>
<td>Measured NO₂, weekly collected. Monthly averaged, corresponding to address of participants. Year of exposure assessment: Monthly from January 1987 through December 2004</td>
<td>Univariate OR: 1-SD increase in year-of-diagnosis of NO₂ showed near-significant associations with asthma: 1.17(0.94-1.46). Exposure to violence (ETV), -ETV: exposed above than median: 1.65(1.16-2.34), lower than median: 0.94(0.70-1.26). (Year of diagnosis NO₂). Multivariate: increase risk among children with above median ETV 1.63(1.14-2.33) Above median: 2.40(1.48-3.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islam et al., 2008, AJRCCM, [31]</td>
<td>Prospective cohort (CHS). Recruitment between 1993 and 2004, follow-up yearly during 2-8 years. Outcome: incident asthma.</td>
<td>1.125 non-Hispanic white and 576 Hispanic white from 12 southern California communities. Age: >7 years.</td>
<td>Average hourly levels of O₃, NO₂, and PM (PM₁₀ and PM₂.₅). For ozone: annual average of 8h daytime average computed. Communities were classified as higher ozone communities or lower ozone communities. (1994-2003)</td>
<td>no general effect assessed Genetic variants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordling, 2008, Epidemiology, [13]</td>
<td>Birth cohort, recruitment between 1994 and 1996, follow-up at 1, 2 and 4 years of age. Outcome: Persistent wheezing.</td>
<td>4089 infants from 4 Swedish Municipalities. Age different according to the follow-up (1, 2 and 4 year-old).</td>
<td>Dispersion model. NOₓ, PM₁₀, SO₂. Home addresses. 1990: traffic NOₓ and heating SO₂. 2000: traffic NOₓ, heating SO₂ and traffic PM₁₀. Outdoor levels of air pollution for the children's Persistent wheezing: Association with traffic NOₓ (for a difference between the 5th and 95th percentile range in the cohort): OR: 1.60(1.09-2.36). Similar but ns results for PM₁₀. No association between</td>
<td>Age, Atopy (atopic wheeze: allergic sensitization to pollen (specific-IgE))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-Secondhand-smoke: (p-interact>0.1)
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Recruitment</th>
<th>Follow-up</th>
<th>Outcome</th>
<th>Pollutant</th>
<th>Genetic Variants</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Islam, 2009, Thorax, [32]</td>
<td>Prospective cohort (CHS).</td>
<td>1993 and 2004, follow-up yearly during 2-8 years.</td>
<td>>7 years.</td>
<td>Incident asthma.</td>
<td>Average hourly levels of zone (O₃), nitrogen dioxide (NO₂), and particulate matter (PM₁₀ and PM₂.₅)</td>
<td>GSTP1 haplotype tagging SNPs: rs6591255, rs4147581 and Ile105Val and rs749174</td>
<td>0.43</td>
</tr>
<tr>
<td>Oftedal, 2009, EHP, [14]</td>
<td>Oslo Birth Cohort.</td>
<td>1992-1993, follow-up: 2001-2002 (and cross sectional study).</td>
<td>NO₂ dispersion model. Home addresses</td>
<td>Incident asthma.</td>
<td>No positive associations between any long-term TRAP and onset of doctor-diagnosed asthma.</td>
<td>Sex</td>
<td>-Sex: RR of 0.73(0.56-0.95) in boys and 1.05(0.74-1.49) in girls (p-interaction= 0.10)</td>
</tr>
</tbody>
</table>
| Shankardass, 2009, PNAS, [15] | Prospective cohort study (CHS). | 2002-2003 and 2007. | NOx dispersion model. Annual concentrations. Home address. Year of exposure assessment: 1997. | Risk of asthma increased with exposure to Traffic Related Pollution: HR(95%CI) 1.31 (1.07-1.61), for an IQR of 21ppb | Parental stress, SES | -Parental stress (p interaction 0.05): High parental stress: HR: 1.51(1.16-1.96) Low parental stress: 1.05(0.74-1.49). p-interact for 3way “gender-
<table>
<thead>
<tr>
<th>Study</th>
<th>Design and Setting</th>
<th>Outcome: incident asthma</th>
<th>Exposure measures</th>
<th>Effect of air pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark, 2010, EHP, [35]</td>
<td>Nested case-control in a Cohort study, all 1999 and 2000 births in British Canada</td>
<td>baseline.</td>
<td>LUR modeling/IDW. High resolution (10m) TRAP: NO, NO\textsubscript{2}, PM\textsubscript{2.5}, black carbon. Exposure levels assigned at the zip code level. Average exposure calculated for duration of pregnancy and first year of life.</td>
<td>Increased risk of asthma diagnosis with increased early life exposure (in utero and 1st year of life). Greater results for 1st year of life). OR for 1st year of life: 1.08(1.04-1.12) for a 10mg.m-3 increase of NO, 1.12(1.07-1.17) for a 10mg.m-3 increase of NO\textsubscript{2}, 1.10(1.06-1.13) for a 100mg.m-3 increase of CO, 1.07(1.03-1.12) for an increase of 1mg.m-3 in PM\textsubscript{10}.</td>
</tr>
<tr>
<td>Gehring, 2010, AJRCCM, [16]</td>
<td>Prospective birth cohort (PIAMA). Recruitment in 1996-1997 of pregnant women, follow-up yearly during 8 years</td>
<td>baseline.</td>
<td>LUR. NO\textsubscript{2}, PM\textsubscript{2.5}, soot: four times 2-week measurements in a year and then adjustment on temporal trend to calculate long-term average concentrations. Birth address.</td>
<td>Association between PM\textsubscript{2.5} concentration and incidence of asthma: 1.28(1.10-1.49) (same results for NO\textsubscript{2} and soot)</td>
</tr>
</tbody>
</table>

Sex, Definition of asthma

- Sex:
 - NO: 1.13(1.06-1.20) for girls and 1.05(1.00-1.10) for boys.
 - NO\textsubscript{2}: 1.17(1.09-1.26) for girls and 1.09(1.03-1.16) for boys.
<table>
<thead>
<tr>
<th>Study (year, journal, reference)</th>
<th>Intervention</th>
<th>Recruitment</th>
<th>Follow-up</th>
<th>Outcome</th>
<th>Exposure Assessment</th>
<th>Results</th>
<th>Sex, Race</th>
<th>Suggestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlsten, 2011, OEM, [17]</td>
<td>Intervention prenatal study. Recruitment during pregnancy in 1995, follow up until 7 years of age. Outcome: incident asthma.</td>
<td>184 children from Vancouver, at high-risk for asthma</td>
<td>LUR. NO, NO₂, black carbon and PM_{2.5}. Year of exposure assessment: 2003, exposure of birth year estimated. Residential address</td>
<td>Elevation in exposure to some Traffic Related Air Pollution during the year of birth are associated with new onset asthma at 7. Results by quartile. Significant for last quartile, only for PM_{2.5}. No significant results for the others pollutants, despite the increase.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruzieva, 2013, Epidemiology, [27]</td>
<td>Swedish Birth cohort BAMSE. Recruitment between 1994 and 1996, follow up during 12 years. Outcome: incident wheeze, incident asthma.</td>
<td>4089 children.</td>
<td>Gaussian dispersion model and wind model used to assess concentration of PM_{10} and NOx. Years of exposure assessment: 1994 to 1998. Interpolation of concentrations for some years for NOx. Residential, daycare and school addresses.</td>
<td>Incidence of wheeze symptoms seems to be highest during the first 2 years of life. Associations between exposure to NOx or PM_{10} and incident asthma over the first 12 years of life: OR: 1.21 (0.79–1.84) for NOx, OR: 1.34 (0.80–2.23) for PM_{10}. Results significant only at age 12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nishimura, 2013, AJRCCM, [18]

GALA II (case control) and SAGE II. Recruitment between 2006 and 2011. Outcome: incident asthma. Latinos from urban regions in USA and Puerto Rico and African Americans from SF bay, 3343 Latinos and 977 African American, with no history of other lung or chronic illness. 8-21 years

O$_3$, NO$_2$, SO$_2$, PM$_{10}$, PM$_{2.5}$. Inverse distance-squared weighted average. Residence address. Exposure over the first 3 years of life.

A 5ppb increase in NO$_2$ during the first year of life associated with incident asthma: OR(95% CI) for first year of life: OR$_1$: 1.17(1.04-1.31). OR(95% CI) for first three year of life: OR$_3$: 1.26(1.07-1.48). NS for PM and O$_3$

Sex, Total-IgE

- Sex:
 - NO$_2$:
 - OR$_1$: 1.26(1.05-1.52) in boys, 1.11(0.96-1.29) in girls;
 - OR$_3$: 1.47(1.05-1.52) in boys, 1.24(1.02-1.50) in girls.
 - PM$_{10}$:
 - OR$_1$: 1.10 (0.89-1.36) in boys, 1.15(0.97-1.37) in girls;
 - OR$_3$: 1.08(0.86-1.35) in boys, 1.19(1.00-1.41) in girls.
 - PM$_{2.5}$:
 - OR$_1$: 0.92(0.73-1.16) in boys, 1.13(0.98-1.30) in girls;
 - OR$_3$: 0.91(0.77-1.06) in boys, 1.15(1.02-1.30) in girls.

- Total IgE

Incident asthma ORs:
1 years: 0.85 (0.44-1.62) for NOx and 0.79(0.39-1.62) for PM$_{10}$
2 years: 0.96 (0.51-1.80) for NOx and 1.14(0.57-2.25) for PM$_{10}$
4 years: 1.48(0.85-2.57) for NOx and 1.59(0.83-3.05) for PM$_{10}$
8 years: 1.07(0.53-2.14) for NOx and 1.30 (0.61-2.74) for PM$_{10}$
12 years: 1.87(1.01-3.44) for NOx and 2.39(1.18-4.86) for PM$_{10}$

all p for interaction NS
Hsu, 2015, AJRCCM, [19]

736 full-term births children, from Brigham and Boston.

PM$_{2.5}$: Novel spatio-temporal model incorporating Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-driven Aerosol Optical Depth (AOD) measurements at a 10*10km spatial resolution. Residence over pregnancy

Significant sensitive window of PM$_{2.5}$ exposure around mid-pregnancy on asthma onset by age 6, specifically during 16-25 weeks gestation. OR: 1.09(0.98-1.21)

Sex: Sensitive Exposure window between 12-26 weeks gestations: boys: OR≈1.2, significant, girls: OR≈1.03, NS.

Difference in log-Odds between boys and girls: significant in 14-20. Significant interaction between PM$_{2.5}$ and sex (p=0.01). OR(PM$_{2.5} \times$ boy) : 1.33(1.05-1.69)

NO$_2$: OR$_1$: 1.12(0.93-1.36) in IgE<200, 1.20(0.91-1.58) in IgE>=200;

OR$_3$: 1.19(0.97-1.46) in IgE<200, 1.38(0.90-2.12) in IgE>=200.

PM$_{10}$:

OR$_1$: 1.12(1.00-1.25) in IgE<200, 1.22(0.97-1.55) in IgE>=200;

OR$_3$: 1.04(0.83-1.29) in IgE<200, 1.35(0.98-1.85) in IgE>=200.

PM$_{2.5}$:

OR$_1$: 1.06(0.93-1.21) in IgE<200, 1.00(0.85-1.17) in IgE>=200;

OR$_3$: 0.93(0.72-1.21) in IgE<200, 1.10(0.96-1.25) in IgE>=200. all p for interaction NS
Table 2: Description of studies assessing the association between air pollution exposure and incident asthma or wheeze in children (by year of publication) and that had stratified their analyses by possible susceptibility factors

<table>
<thead>
<tr>
<th>First author, Year, Journal, Reference</th>
<th>Design, Study, follow-up</th>
<th>Population; age</th>
<th>Exposure assessment</th>
<th>Main association</th>
<th>Susceptibility factors</th>
<th>Modifying effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greer, 1993, JOM, [33]</td>
<td>Prospective Cohort (California), AHSMOG. Recruitment in 1977, follow-up in 1987.</td>
<td>3577 non-smokers seventh-day Adventist. Mean age: 27-87 years.</td>
<td>Monthly interpolations of O3 from fixed-site monitoring stations applied to residential addresses and work site. Year of exposure assessment: 1987.</td>
<td>Borderline association of increased risk of asthma associated with increased ambient concentrations of ozone exposure (RR=1.31, CI: 0.96-1.78)</td>
<td>Sex</td>
<td>-Sex: increase in ambient concentrations of ozone exposure (Mean ozone concentration exposure through 1987)RR: 3.12, CI: 1.61-5.85 in men, RR: 0.94 “not significant at 0.05 level” in women</td>
</tr>
<tr>
<td>McDonnell, 1999, Environmental Research, [34]</td>
<td>Prospective Cohort (California), AHSMOG. Recruitment in 1977, follow-up in 1987.</td>
<td>3091 non-smokers seventh-day Adventist (101 cases). Mean age: 27-87 years</td>
<td>O₃, PM₁₀, SO₄, NO₂, SO₂. Exposure concentrations interpolated to zip code according to home and work location, cumulated and averaged over time. For ozone and PM₁₀: alternative indices: 8h-average ozone concentration (work hours) Years of exposure assessment: 1973-1992.</td>
<td>20years O₃-8h average associated with report of doctor diagnosis of asthma: RR 2.09(1.03-4.16)</td>
<td>Sex, smoking status</td>
<td>-Sex: Men: RR: 2.09(1.03-4.16), Women: 0.86(0.58-1.26)</td>
</tr>
<tr>
<td>Modig, 2006, ERJ, [20]</td>
<td>Case-control study. Recruitment between 1995 and 1999.</td>
<td>203 cases/203 sex and age-matched controls from Lulea, Sweden. 20-60 years</td>
<td>Home outdoor NO₂ measurements for 1 week, standardized and adjusted to represent annual average (for the year of recruitment). Traffic intensity at home address. Years of exposure assessment: 1999-2000.</td>
<td>No association between NO₂ level and asthma incidence (OR: 1.1(0.9-1.2)). Living close to high traffic was non-significantly associated with asthma incidence.</td>
<td>Atopy (defined as positive SPT: no more details)</td>
<td>-Atopy: [Among those who live >2 years in the present home]: OR for an increase of 1mg.m⁻³ of NO₂: >0 SPT: 1.2(1.0-1.3); <0 SPT: 1.0(0.9-1.1).</td>
</tr>
<tr>
<td>Castro-Giner, 2009, EHP, [21]</td>
<td>Prospective cohort, in 13 cities from 6 European countries (ECRHS). Recruitment in 1990-1994, follow-up: 1999-2001.</td>
<td>2250 subjects. 20-44 years.</td>
<td>No2 dispersion model (1x1km) for 2001 (APMoSPHERE model). Extrapolated to place of residence.</td>
<td>Significant association between NO2 levels and new-onset asthma for the 120 subjects who developed asthma during the follow-up period (OR = 1.52; 95% CI, 1.09–2.16).</td>
<td>Genetic variants: GSTM1 and GSTT1 deletion, GSTP1 Ile105Val, NQO1 (rs1800566, rs2917666), TLR4 (5 SNPs), TNFA (3 SNPs), ADRB2 (4 SNPs).</td>
<td>Genetic: Homozygous for the NQO1 rs2917666 C allele: OR = 2.02 (1.16–3.73); subjects with CG/GG genotypes: OR = 1.26 (0.83–1.99). (p-value for interaction = 0.04)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Jacquemin, 2009, ERJ, [23]</td>
<td>Prospective cohort, in 17 cities from 7 European countries (ECRHS). Recruitment in 1990-1994, follow-up: 1999-2001.</td>
<td>4185 subjects. Analysis on 387 participants: having no asthma and no symptoms at baseline; 20-44 years.</td>
<td>NO2 dispersion model (1x1km) for 2001 (APMoSPHERE model). Extrapolated to place of residence.</td>
<td>Outcome: score of symptoms of asthma, used as a tool to identify incidence of asthma. Ratio of the RMS after excluding participants with asthma and symptoms at baseline: 1.25 (1.05-1.51) for an increase of 10mg.m⁻³</td>
<td>Sex, Smoking status, atopy (Specific-IgE to 4 allergens).</td>
<td>-Sex: Men: 1.32 (1.12-1.56), Women: 1.14 (0.97-1.34) (p-interact: 0.13) -Smoking status: Never/ex-smokers: 1.30 (1.11-1.52) Current smokers: 1.07 (0.92-1.26) (p-interact: 0.005) -Atopy: Without atopy:</td>
</tr>
<tr>
<td>Study</td>
<td>Methodology</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacquemin, 2009, Epidemiology, [22]</td>
<td>Prospective cohort, in 17 cities from 7 European countries (ECRHS). Recruitment in 1990-1994, follow-up: 1999-2001. 4185 subjects. 20-44 years</td>
<td>NO$_2$ dispersion model (1x1km) for 2001 (APMoSPHERE model). Extrapolated to place of residence. Positive association between NO2 and asthma incidence (1.43(1.02-2.01) per 10mg.m$^{-3}$) when known age of asthma onset between the 2 surveys: 1.72(0.99-3.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Künzli, 2009, Thorax, [24]</td>
<td>Prospective cohort in 8 Swiss Areas (SAPALDIA). Recruitment in 1990-91 and follow-up in 2002. 2725 never smokers, without asthma or COPD. 18-60 years.</td>
<td>Traffic related PM${10}$ (particle matter up to 10mg.m$^{-3}$, TPM${10}$) change, from 1990 and 2000 using dispersion model. Exposure interpolated at participants place. Incidence of asthma was associated with a change in PM${10}$ in never-smoker. HR : 1.30(1.05-1.61) per 1mg.m$^{-3}$ change in PM${10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modig, 2009, Epidemiology, [5]</td>
<td>Prospective 3609 NO2 dispersion models</td>
<td>Association between per Sex, atopy (hay)</td>
<td>Sex, Smoking status</td>
<td>Results in a figure (HR) -Sex: Men OR=1.4, borderline, Women : OR=1.25 NS (p. interaction>0.1) -Atopy: atopic: OR=1.35, significant, non-atopic: OR=1.2 NS (p. interaction>0.1). -Age: >40: OR=1.65, significant, <=40 years: OR=1.3 NS. (p. interaction>0.1) -Parental allergy: OR=1.7 significant, no parental allergy: OR=1.3 NS (p-interact=0.088) -Smoking status: ever smoker: HR: 0.99(0.64-1.53)</td>
<td>-Sex: OR for NO$_2$ per 1.20(1.02-1.41) With atopy: 1.37(1.14-1.65) (p-interact=0.63)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Recruitment</td>
<td>Follow-up</td>
<td>Exposure Assessment</td>
<td>Outcome</td>
<td>Findings</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>ERJ, [28]</td>
<td>Cohort, 3 Swedish cities (RHINE)</td>
<td>Participants: 18-45 years</td>
<td>(50x50m), distance to major road<50m. Both estimates at home address. Year of exposure assessment: 1990.</td>
<td>10mg.m$^{-3}$ increase in NO2 and incident asthma (1.54(1.00-2.36). Risk of developing asthma related to living close to a major road: 3.88(1.93-7.82).</td>
<td>Incident asthma using fever as proxy</td>
<td>OR of NO2 per 10mg.m$^{-3}$: Women: 1.67(0.98-2.74), Men: 1.32(0.64-2.74) (p-interact=0.63). OR of NO2 per 10mg.m$^{-3}$: Subject with hay fever: 1.15(0.59-2.24), Subject without hay fever: 1.79(1.04-3.05) a (p-interact=0.30)</td>
</tr>
<tr>
<td>Young, 2014, AJRCCM, [25]</td>
<td>Sister study, cohort.</td>
<td>50884 US sisters of women with breast cancer, mean age: 55.</td>
<td>PM$_{2.5}$ and NO$_2$. National land-use/kriging model incorporating roadway information. Addresses of the participants geocoded. Year of exposure assessment: 2006.</td>
<td>OR of incident asthma for an IQR increase of PM$_{2.5}$: 1.20(0.99-1.46) and NO2: OR: 1.12(0.96-1.30). OR of incident wheeze for an IQR increase of PM${2.5}$: 1.14(1.04-1.26), and NO$_2$: 1.08(1.00-1.17).</td>
<td>Incident asthma positively, but NS, associated with all exposure metrics, except for PM${coarse}$. OR: NO2: 1.10(0.99-1.21) per 10mg.m$^{-3}$, NOx: 1.04(0.99-1.08 per 20mg.m$^{-3}$, PM${10}$: 1.04(0.88-1.23 per 10mg.m$^{-3}$, PM${2.5}$: 1.04(0.88-1.23 per 5mg.m$^{-3}$, PM$_{2.5absorbance}$: 1.06(0.95-1.19 per 10-5/m. Traffic load: 1.10(0.93-1.26)</td>
<td>Sex, smoking status, age</td>
</tr>
<tr>
<td>Jacquemin, 2015, EHP, [26]</td>
<td>6 prospective cohorts (ECRHS, EGEA, SAPALDIA, E3N, NHSD, SALIA).</td>
<td>23704 adults. Mean age: 60 years</td>
<td>ESCAPE project. NO2, NOx, PM${10}$, PM${2.5}$, PM${2.5absorbance}$, PM$_{coarse}$. LUR model. Exposure estimated at participant’s addresses. Back-extrapolated concentrations of NO2 and PM${10}$ when necessary-according to the year of the follow-up. Years of exposure assessment: 2010 or 2011.</td>
<td>Asthma incidence positively, but NS, associated with all exposure metrics, except for PM${coarse}$. OR: NO2: 1.10(0.99-1.21) per 10mg.m$^{-3}$, NOx: 1.04(0.99-1.08 per 20mg.m$^{-3}$, PM${10}$: 1.04(0.88-1.23 per 10mg.m$^{-3}$, PM${2.5}$: 1.04(0.88-1.23 per 5mg.m$^{-3}$, PM$_{2.5absorbance}$: 1.06(0.95-1.19 per 10-5/m. Traffic load: 1.10(0.93-1.26)</td>
<td>Smoking status, age</td>
<td></td>
</tr>
</tbody>
</table>

Sex: NO$_2$: Men: 1.06(0.92-1.24). Women: 1.07(0.97-1.19) (p-interact=0.66). PM$_{10}$: Men:1.00(0.63-1.59) Women:1.07(0.91-1.26) (p-interact=0.80) | Smoking status: Never/ex-smoker: 1.13(1.04-1.24). Current smoker: 0.89(0.74-1.06) (p interaction=0.012) |

- Smoking status: Never/ex-smoker: 1.10(0.92-1.24). Women: 1.07(0.97-1.19) (p-interact=0.66). PM$_{10}$: Men:1.00(0.63-1.59) Women:1.07(0.91-1.26) (p-interact=0.80) | Smoking status: Never/ex-smoker: 1.13(1.04-1.24). Current smoker: 0.89(0.74-1.06) (p interaction=0.012) |
| Traffic intensity | PM\textsubscript{coarse} | PM\textsubscript{10} |<50:| >50: | |
|---|---|---|---|---|---|
| 1.10 (0.93-1.30) | 0.98 (0.87-1.14) | \textless{} 50: 1.07 (0.86-1.32) | >50: 1.05 (0.78-1.42) | \textless{} 50: 1.02 (0.94-1.12) | >50: 1.08 (0.96-1.21) |

Abbreviations: OR: Odds Ratio, RR: Risk Ratio, HR: Hazard Ratio, CI: Confidence Interval, PM: Particulate Matter, NO\textsubscript{2}: Nitrogen dioxide, NO\textsubscript{x}: Nitrogen oxide, O\textsubscript{3}: ozone, IgE: Immunoglobulin E, SPT: Skin Prick Test, BHR: Bronchial Hyper Reactivity, NS: not significant, TRAP: Traffic Related Air Pollution
Figure 1 Flow chart of the articles selection

Identification
References identified: 280
- Pubmed Search: 272
 Air pollution (title/abstract)
 AND (asthma (title/abstract) or wheeze (title/abstract))
 AND incidence* OR onset
- Hand Search: 3

Screening
Excluded: 253
- Not in the subject area: 89
- Review, editorial, ...: 67
- Short-term air pollution: 30
- Not incidence asthma: 27
- No stratified analysis: 15
- Not in english: 26

Inclusion
Included in final review: 25
(15 in children, 10 in adults)

Number of articles according to susceptibility factors:
- Sex: 13
- Age: 5
- Smoking: 6
- Atopy: 10
- Genetic variant: 3
- SES/Familial environment: 2
- Others: 4