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Abstract. Suppose that, when evaluating two alternatives x and y by means of a

parametric utility function, low values of the parameter indicate a preference for x

and high values indicate a preference for y. We say that a stochastic choice model

is monotone whenever the probability of choosing x is decreasing in the preference

parameter. We show that the standard use of random utility models in the context of

risk and time preferences may sharply violate this monotonicity property, and argue

that their use in preference estimation may be problematic. In particular, they may

pose identification problems and yield biased estimations. We then establish that the

alternative random parameter models, in contrast, are always monotone. We show

in an empirical application that standard risk-aversion assessments may be severely

biased.
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1. Introduction

Consider gamble x, which gives $1 with probability .9 and $60 with probability .1,

and gamble y which gives $5 for sure. Let these gambles be evaluated by constant

relative risk aversion (CRRA) expected utilities, that is, U crra
ω (x) = .111−ω

1−ω + .9601−ω

1−ω

and U crra
ω (y) = 51−ω

1−ω . Notice that gamble x is riskier than y, since it is only for
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Figure 1.—RUM probabilities of choosing gamble x over y, for CRRA and CARA expected utilities.

low levels of risk aversion ω that option x is preferred to y.1 The most standard

approach to stochastic choice modeling is to adopt the logit random utility model (logit

RUM), which, in this case, implies that the probability of choosing x over y equals
eU
crra
ω (x)

eU
crra
ω (x)+eU

crra
ω (y) . Clearly, the logit RUM should be consistent with the underlying

utility representation, and hence fulfil the following monotonicity condition: lower

levels of risk aversion ω must be associated with higher probabilities of choosing gamble

x. Figure 1 shows that this is unfortunately not the case.2 There is a large range of

risk-aversion parameters for which the probability of choosing the riskier gamble x is

increasing with the level of risk aversion. The existence of this anomaly makes this

logit RUM theoretically flawed and, presumably, problematic for use in the estimation

of risk preferences.

In this paper, we address a number of issues surrounding the problem described in the

previous paragraph. First, we precisely characterize the type of gambles and classes of

RUMs that are problematic. Second, given a violation of the monotonicity property, we

portray the exact structure of the problem. That is, we describe the range of parameters

for which the RUM is non-monotone. Third, again given a violation of the monotonicity

property, we ascertain whether the range of parameters for which the problem arises has

any economic significance. Fourth, we show that the non-monotonicity problem is not

restricted to risk preferences, but also affects other important preference dimensions,

such as time preferences. Fifth, we show that an alternative random choice model,

1Specifically, for every risk-aversion level below .19, gamble x is preferred to y, and vice-versa.
2The figure also reports the RUM probability of choosing x for constant absolute risk aversion

(CARA) expected utilities. All the formal definitions are given in Section 3.
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the random parameter model (RPM), is free from these problems, and hence is always

monotone. Finally, we illustrate the practical importance of these results by using

actual choice data to evaluate differences in estimates from standard RUMs and RPMs.

We now elaborate on our results in more detail, starting with the type of RUMs and

gambles that are problematic. RUMs are typically constructed by introducing additive

i.i.d. random shocks on the utility evaluation of the alternatives, which is usually

assumed to be given by a CRRA or CARA expected utility functions. We say that one

gamble x is riskier than another gamble y if low values of the risk-aversion parameter

indicate a preference for x and high values indicate a preference for y. Notice that this

definition encompasses the standard definitions in the literature for one gamble being

more risk averse than another. We show in Corollary 1 that for every pair of gambles

where one is riskier than the other, every i.i.d. RUM using either CRRA or CARA

utilities, and not the logit RUM exclusively, violates monotonicity, thus showing that

the problem is ubiquitous.

We then turn to analyze the structure of the anomaly. Proposition 2 shows that, for

every such RUM and every such pair of gambles, there is always a level of risk aversion

beyond which the probability of choosing the riskier gamble increases. The practical

implications of this internal inconsistency in the empirical estimation of risk aversion

are apparent. First, there is an identification problem arising from the fact that the

same choice probabilities may be associated to two different levels of risk aversion.

Second, there is an upper limit to the level of risk aversion that can be estimated when

using maximum likelihood techniques, even for extremely risk-averse individuals.

The question arises whether the range of risk-aversion levels for which the RUM is

non-monotone has any economic relevance, or only involves risk-aversion parameters

that are too high to be of practical importance. The example in Figure 1 already

suggests that the problematic range of parameters may be of first order relevance

when low payoffs are involved, since the probability of choosing the riskier gamble

starts increasing at reasonable risk-aversion levels of .75 in the CRRA case, and .11

in the CARA case. Notably, Proposition 3 shows that the problem is worsened by

increasing the payoffs involved in the gambles. As the payoffs increase, the level of risk

aversion at which the RUM becomes non-monotone eventually converges to that at

which the two original gambles become indifferent.3 This implies that any individual

3As described above, for the gambles in the example this value is as low as .19 for the CRRA case,

and .02 for the CARA case.
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who is more likely to choose the safer gamble over the riskier one cannot be assigned an

estimated level of risk aversion higher than the one at which the two gambles become

indifferent. Finally, using standard experimental pairs of gambles, we also illustrate

that the problematic range of parameters may be very large.

For the extension of the non-monotonicity results to other key preferences, first

consider the following two streams of payoffs. Stream x, the longer-delay stream,

provides $15,000 yearly, except in period 10, where it provides $21,000. Stream

y, the shorter-delay stream, provides the same yearly $15,000, except in period 5,

where it provides $20,000. Assume, for the moment, risk neutrality and power dis-

counted utility, leading to Upow
ω (x) =

∑
t6=10

1
(1+ω)t

15, 000+ 1
(1+ω)10

21, 000 and Upow
ω (y) =∑

t6=5
1

(1+ω)t
15, 000 + 1

(1+ω)5
20, 000. Clearly, the two options can be ordered in terms of

delay aversion, since the higher the value of the delay-aversion parameter ω, the less at-

tractive stream x becomes.4 Figure 2 represents the logit RUM probability of selecting

x over y, dependent upon the delay-aversion parameter.5 It is apparent that exactly

the same anomaly emerges. The probability of selecting the longer-delay stream x

should decrease with the level of delay aversion, but fails to do so for levels above .19.

Corollary 2 and Proposition 4 basically reproduce the situation described in Corollary

1 and Proposition 2 for the case of risk preferences. Namely, under the standard dis-

count functions, that is, the power, the β− δ, or the hyperbolic discount functions, for

every i.i.d. RUM, with any increasing and continuous utility function over monetary

payoffs, and for basically every pair of streams that can be ordered in terms of delay

aversion, the probabilities are non-monotone. Moreover, the probability of choosing

the longer-delay stream starts to increase beyond a certain level of delay aversion, and

hence, in principle, the above two estimation problems apply here also. There is an

important difference with respect to the practical relevance of the results. Although

there are pairs of streams for which the problematic range of delay-aversion parame-

ters has economic relevance, as shown in Figure 2, we argue in Section 4.2 that the

practical relevance is more limited. In particular, there is a need to consider markedly

distant payoffs, which are not typical in the streams considered in the experimental

literature, for example. In fact, using a set of such streams we illustrate how the critical

delay-aversion levels at which the problematic range starts can be absurdly high.

4Every delay aversion below .04 prefers stream x over y, and vice-versa.
5Figure 2 also reports the probabilities of choosing x when using the β−δ or the hyperbolic discount

functions.
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Figure 2.—RUM probabilities of choosing stream x over stream y, for the power, hyperbolic and β − δ

discounted utilities.

Continuing with the extension of the results to other settings, we provide general

results for any i.i.d. RUM contingent on any preference parameter, not just those

representing risk or time preferences. Proposition 1 provides a necessary and sufficient

condition for monotonicity, and another easy-to-check necessary condition based on the

limiting behavior of the utility functionals. These conditions offer the analyst simple

tools for elucidating the appropriateness of a particular RUM in a particular context.

We then show that an alternative stochastic choice model, the random parameter

model (RPM), is free of the problems just described. In an RPM, the choice probabil-

ities are obtained by introducing random shocks on the preference parameter, rather

than on the utility evaluations of the alternatives. As a consequence, the choice proba-

bilities are given by the mass of shocks for which the utility function ranks one option

higher than the other. Crucially for our present purposes, when a pair of alternatives

can be ordered in terms of the preference parameter under consideration, be it risk,

time or any other, we establish that this mass of shocks is monotone in the prefer-

ence parameter and hence, the RPM is monotone. Thus, RPMs offer a safe method

for the treatment of stochastic choice contingent on a preference parameter. This can

be appreciated in Figure 3, where we have plotted the RPM choice probabilities for

the gambles (Figure 3a) and streams (Figure 3b) considered in Figures 1 and 2, using

exactly the same utility families. Figure 3a uses the logistic distribution while, since

we have assumed that the discount factor takes values in the positive reals, Figure 3b

uses the log-logistic distribution.



6

Figure 3.—RPM probabilities of choosing (a) gamble x over gamble y and (b) stream x over stream y.

We then turn to an empirical illustration of the established theoretical results in

which the two stochastic choice models under scrutiny are used to obtain separate

risk and time preference estimates based on the experimental data of Andersen et al.

(2008). In our empirical analysis of risk preferences we show that, consistent with

our theoretical results, the standard RUM significantly underestimates the population

risk-aversion level. When considering the full sample of 253 subjects, the RUM gives

a CRRA risk-aversion level of .66, while that given by the RPM is .75, which is about

15% higher. Our theoretical results further indicate that the severity of the estimation

bias associated with the RUM increases with more risk-averse individuals, which is

fully consistent with our results. Taking a sample of the most risk averse subjects, the

RUM risk-aversion estimate is 1.46, while the RPM estimate is 1.87, which is about

30% higher. We consider these results a clear indication of the importance of making

the right choice of random model for the estimation of risk preferences. The results of

the estimation of time preferences are, again, fully in line with our theoretical results.

Both, the RUM and the RPM delay aversion estimates are practically identical. For

risk neutrality and power discounted utility these are 0.27 and 0.26, respectively.

We close this introduction by reviewing the closest study to our own, Wilcox (2008,

2011). Wilcox first shows that, in our language, RUMs may be non-monotone. His

setting is very particular in that it involves only risk preferences, focuses exclusively on

three-outcome gambles related by mean-preserving spreads, and uses the logit RUM.

Analysts may therefore be unconvinced of the scope and relevance of the result, and

continue using RUMs for the sake of convenience. In contrast to Wilcox, this paper

establishes general theoretical findings that show the problem to be pervasive. Starting
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with the context of risk preferences, we show that, not only the logit, but basically

every i.i.d RUM is non-monotone for every pair of gambles ordered by risk aversion,

not only three-outcome gambles related by mean-preserving spreads, in a range of

parameters which we characterize and show to be of practical importance. This implies

that there is no way around this inconsistency. Importantly, we also show that this

problem extends to other key preference parameters, such as time preferences. We

also establish the conditions guaranteeing the monotonicity of RUMs based on any

preference parameter. These conditions are easy to check and hence practical when

contemplating the implementation of a random utility model. Wilcox further proposes

the use of a novel model, contextual utility, which is monotone for his particular choice

of gambles. We discuss contextual utility in Appendix A.1, showing that it does not,

alas, solve the problem for the case of gambles involving more than three possible

outcomes. Notably, we provide a general and easily-implementable solution to this

problem: the use of RPMs. We show that these models are always monotone and

therefore safe for use in applications.

The rest of the paper is organized as follows. Section 2 reviews the remaining rele-

vant literature. Section 3 lays down the basic definitions. Section 4 is devoted to the

study of RUMs, and Section 5 to that of RPMs. Section 6 contains the empirical ap-

plication, and Section 7 presents the conclusions. Several extensions of the theoretical

and empirical parts are reported in the Appendix.

2. Related Literature

Thurstone (1927) and Luce (1959) are two of the first key contributions from math-

ematical psychology to stochastic choice theory. Recent stochastic choice models that

have appeared in the theoretical literature are Gul, Natenzon and Pesendorfer (2014),

Manzini and Mariotti (2014) and Caplin and Dean (2015). Discrete choice models in

general settings are surveyed in McFadden (2001). See also Train (2009) for a detailed

textbook introduction.

For theoretical papers recommending the use of random utility models in risk set-

tings, see Becker, DeGroot and Marschak (1963) and Busemeyer and Townsend (1993).

Wilcox (2008, 2011), as reviewed in the Introduction, criticizes the use of these models

in risky settings. In addition, Blavatskyy (2011) shows that there is always one compar-

ison of gambles, where the safe gamble is degenerate, for which random utility models

based on expected utility differences are non-monotone. The literature using random
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utility models in the estimation of risk aversion is immense, and certainly too large to

be exhaustively cited here. We therefore cite only a few of the most influential pieces

of work, such as Friedman (1974), Cicchetti and Dubin (1994), Hey and Orme (1994),

Holt and Laury (2002), Harrison, List and Towe (2007), Andersen et al. (2008), Post

et al. (2008), von Gaudecker, van Soest and Wengstrom (2011), Toubia et al. (2013),

and Noussair, Trautmann and van de Kuilen (2014). Our results for risk preferences

immediately extend to situations where strategic uncertainty causes the individual to

replace objective probabilities with beliefs. A prominent example of this approach

in game theory is the quantal response equilibrium of McKelvey and Palfrey (1995),

which assumes a random utility model using (subjective) expected utility. Hence, for

given beliefs, our results show that there is a level of risk aversion beyond which more

risk averse individuals may have a higher probability of choosing the riskier action.

The random utility model is also the most commonly used approach in the estimation

of time preferences. See, e.g., Andersen et al. (2008), Chabris et al. (2008), Ida and

Goto (2009), Tanaka, Camerer and Nguyen (2010), Toubia et al. (2013), and Meier

and Sprenger (2015).

Starting with the seminal papers by Wolpin (1984) and Rust (1987), dynamic discrete

choice models have been used to tackle issues such as fertility (Ahn, 1995), health

(Gilleskie, 1998; Crawford and Shum, 2005), labor (Berkovec and Stern, 1991; Rust

and Phelan, 1997), or political economy (Diermeier, Keane and Merlo, 2005). Our

results may be relevant for this literature, for two reasons. The first is that some of

these settings involve risk and are modeled by means of random utility models with

errors over expected utility. The second is the dynamic nature of the setting, which

makes our results with respect to time preferences also relevant.

Finally, the use of random parameter models in settings involving gambles has been

theoretically discussed in Eliashberg and Hauser (1985), Loomes and Sugden (1995),

and Gul and Pesendorfer (2006). For papers using such models to estimate risk aver-

sion, see Barsky et al. (1997), Fullenkamp, Tenorio and Battalio (2003), Cohen and

Einav (2007), and Kimball, Sahm and Shapiro (2008, 2009). Coller and Williams

(1999) and Warner and Pleeter (2001) are two examples of the use of this approach in

the context of time preferences. Our results guarantee that one can be confident that

the use of random parameter models for the estimation of preference parameters is free

from the kind of internal inconsistencies studied in this paper.
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3. Preliminaries

Let X be a set of alternatives and consider a collection of utility functions {Uω}ω∈Ω

defined on X. Ω represents the space of possible values of a given preference parameter,

which consists of the set of all real numbers, unless otherwise explicitly stated. The

preference parameter represents the aversion to choose some alternatives over others.

For instance, higher values of ω may represent greater risk aversion or delay aversion

causing the individual to be less inclined towards riskier gambles or monetary streams

involving more distant payoffs.

Some pairs of alternatives (x, y) are clearly ordered with respect to the preference

parameter. Formally, we say that x and y are Ω-ordered whenever UωL(y) > UωL(x)

implies that UωH (y) > UωH (x), for every ωL, ωH ∈ Ω such that ωL < ωH . That is, x and

y are Ω-ordered if, when the low-type ωL prefers alternative y over x, so does the high-

type ωH . In other words, option x generates more aversion than y and hence can only

be chosen by individuals with low aversion, that is, with low values of the preference

parameter ω.6 The notion of Ω-ordered pairs of alternatives is natural and applicable

to the key comparisons in the different settings, as the following two examples show.

In a risk context, a gamble x involving risk is riskier than the degenerate gamble y

which gives the expected payoff of x with certainty. It is immediate that, if {Uω}ω∈Ω is

a collection of expected utility functions ordered by the Arrow-Pratt coefficient, x and

y are Ω-ordered. Similarly, in a context of temporal decision-making, a payoff stream

x with a later bonus payout is more delayed than a stream y with an earlier bonus

payout. Clearly, if {Uω}ω∈Ω is a collection of standard discounted utility functions, x

and y are again Ω-ordered. Sections 4.1 and 4.2 further illustrate the generality of the

definition of Ω-ordered pairs.

We now introduce the two main stochastic choice models used in the literature. In

the most standard random utility model (RUM), a random error is introduced in the

cardinal evaluation of alternatives. Namely, the individual chooses the alternative that

provides maximal utility, which is assumed to be additively composed by two terms:

(i) the representative utility, Uω(x), based on the characteristics of the alternative

x and the relevant preference attribute ω and, (ii) a random i.i.d. term, ε(x), that

6Notice that the definition of Ω-ordered pairs of alternatives is related to the influential single-

crossing condition of Milgrom and Shannon (1994). Basically, a pair of alternatives (x, y) is Ω-ordered

if the collection of utilities {Uω}ω∈Ω satisfies the single-crossing condition with respect to (x, y). For

a discussion on the consideration of more than two alternatives see Section A.3.
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follows a continuous cumulative distribution Ψ on R. Given a pair of alternatives

(x, y), the probability assigned to choosing x, ρrumω (x, y), is given by the probability

that Uω(x) + ε(x) is greater than Uω(y) + ε(y). By far the most widely-used error

distributions are the type I extreme value and the normal, which lead to the logit

model and the probit model, respectively. The former, also known as the Luce model,

has closed-form probability of choosing x over y equal to eλUω(x)

eλUω(x)+eλUω(y) , where λ is a

precision parameter.7

In a random parameter model (RPM), the random error distorts the agent’s pref-

erence parameter.8 Hence, the agent opts for the alternative that maximizes Uω+ε,

where the random error ε on the preference parameter follows a continuous cumulative

distribution Ψ on Ω. Then, given a pair of alternatives (x, y), the RPM probability

of choosing x over y, ρrpmω (x, y), is simply the probability mass of realizations ε from

Ψ such that Uω+ε(x) is greater than Uω+ε(y). Notice that in the case of Ω-ordered

pairs, this probability mass is 1 whenever x is preferred to y for every value of ω, and

0 whenever y is preferred to x for every value of ω. Otherwise, denoting by ω(x,y) the

value such that Uω(x,y)(x) = Uω(x,y)(y), this probability is Ψ(ω(x,y) − ω).9 To illustrate,

let Ψ be the logistic distribution, and suppose that (x, y) is Ω-ordered. Then, the

closed-form probability of selecting x over y is eλω
(x,y)

eλω(x,y)+eλω
.

Notice that the main difference between the two stochastic choice models lies in

where the disturbance occurs, which has the following implications. First, in the case

of the RUM, the error distorts the utility evaluation of each alternative independently,

while, in the case of the RPM, the error distorts the preference parameter, thereby

implying that the evaluation of the alternatives is not distorted independently. Second,

in the case of the RUM, the distortion of the utility function leads to it not necessarily

belonging to the family {Uω}ω∈Ω, while in the case of the RPM, by construction, the

utility is transformed into another utility within the same family.

We are now in a position to introduce the main notion in this paper. We say that the

stochastic model ρrum (respectively, ρrpm) is monotone for the Ω-ordered pair (x, y),

whenever ρrumω (x, y) (respectively, ρrpmω (x, y)) is decreasing in ω. That is, the larger the

value of the parameter ω, the lower the probability of choosing alternative x from the

7Parameter λ is inversely related to the variance of the initial distribution Ψ and is typically

interpreted as a rationality parameter. The larger λ, the more rational the individual.
8There is no consensus in the literature as for the denomination of these models. Some authors

refer to them as random preference models, random utility functions, or random utility models.
9For convenience, we assume that there is at most one such value ω(x,y).
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Ω-ordered pair (x, y), which captures the aforementioned aversion. This is a minimal

condition for the internal consistency of the stochastic model and for accurate empirical

estimation of the preference parameter.

4. Random Utility Models

The following proposition specifies simple conditions to check whether a RUM is

monotone for the Ω-ordered pair (x, y). It first establishes a sufficient and necessary

condition, which is based on the fact that RUM probabilities depend on the utility dif-

ferences between the alternatives. It then provides an even simpler necessary condition

based on the limiting behavior of utilities.

Proposition 1. Let (x, y) be an Ω-ordered pair. Then:

(1) ρrum is monotone for (x, y) if and only if the function Uω(x)−Uω(y) is decreasing

in ω.

(2) If limω→∞[Uω(x) − Uω(y)] = 0 and there exists ω∗ ∈ Ω such that Uω∗(y) >

Uω∗(x), then ρrum is non-monotone for (x, y).

Proof of Proposition 1. Consider a RUM and an Ω-ordered pair (x, y). Notice that

the probability of Uω(x) + ε(x) being greater than Uω(y) + ε(y) can be expressed as the

probability of ε(y)− ε(x) being smaller than Uω(x)−Uω(y). Hence, denoting by Ψ∗ the

cumulative distribution of the difference between two i.i.d. error terms with distribution

Ψ, it is the case that ρrumω (x, y) = Ψ∗(Uω(x) − Uω(y)). Since Ψ∗ is a continuous

cumulative distribution, ρrumω (x, y) is decreasing in ω if and only if Uω(x) − Uω(y) is

decreasing in ω, which proves the first part.

For the second part, suppose that there exists ω∗ such that Uω∗(y) > Uω∗(x). If

the RUM is monotone for (x, y), we know from the first part of the proposition that

Uω(x)−Uω(y) must be decreasing in ω. Clearly, therefore, either limω→∞[Uω(x)−Uω(y)]

does not exist, or it must be the case that limω→∞[Uω(x)− Uω(y)] < 0. In both cases

we reach a contradiction, thus proving the result.�

In the following sections, we show the relevance of these results in the context of

risk and time preferences. In particular, the second part of Proposition 1 enables us to

show immediately that most of the RUMs used in these contexts are non-monotone for

basically every Ω-ordered pair of alternatives. Meanwhile, the first part of Proposition

1 allows us to exploit the functional structure of these models to obtain results strong

enough to characterize the extent of the problem for every Ω-ordered pair.
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4.1. Risk Preferences. A gamble x = [x1, . . . , xN ; p(x1), . . . , p(xN)] consists of a fi-

nite collection of monetary outcomes with xi ∈ R+, and associated probabilities such

that p(xi) > 0 and
∑

i p(xi) = 1. In most standard analysis, utility functions over gam-

bles take the form of expected utility U eu
ω (x) =

∑
i p(xi)uω(xi), where uω is a monetary

utility function that is strictly increasing and continuous in outcomes. The CARA and

the CRRA families of monetary utility functions are by far the most widely-used spec-

ifications in real applications. The following are standard definitions. CARA utility

functions are such that the utility of monetary outcome m is ucaraω (m) = 1−e−ωm
ω

for

ω 6= 0, and ucara0 (m) = m, while CRRA utility functions are defined by ucrraω (m) = m1−ω

1−ω

for ω 6= 1, and ucrra1 (m) = logm.10 We write U cara
ω and U crra

ω for the corresponding

expected utilities, and ρrum(cara) and ρrum(crra) for the corresponding RUM choice prob-

abilities.

We focus on the interesting case of Ω-ordered pairs of gambles that are not stochastic-

dominance related. This implies that some types prefer x to y, while others prefer

y to x. We now mention three examples of classes of Ω-ordered pairs of gambles

often used in applications, which serve to illustrate the largeness of the class of Ω-

ordered pairs of gambles. The standard textbook treatment of risk aversion uses

pairs of gambles (x, y) where y involves no risk at all, i.e. y = [y1; 1]. The mone-

tary value y1 is sometimes taken to be the expected value of x, but any y1 in the

interval (min{x1, . . . , xN},max{x1, . . . , xN}) forms an Ω-ordered pair with x. Another

widely-used comparison involves pairs (x, y) where x is a mean-preserving spread of

y.11 Finally, experimental studies often use simple nested pairs of gambles where

x = [x1, x2; p, 1 − p] and y = [y1, y2; p, 1 − p], with x1 < y1 < y2 < x2 and p ∈ (0, 1).12

As in the first case, although the mean of x is sometimes assumed to be larger than

that of y, no further assumptions are required for them to constitute an Ω-ordered pair

of gambles.

We start the analysis by noting that Proposition 1 has immediate bite in this set-

ting. Corollary 1 shows that for every Ω-ordered pair of gambles, both ρrum(cara) and

ρrum(crra), are non-monotone.

10For ease of exposition, when dealing with CARA and CRRA we assume that m ≥ 1.
11Gamble x is a mean-preserving spread of gamble y through outcome yj∗ and gamble z, if x can

be expressed as a compound gamble that replaces outcome yj∗ in gamble y with gamble z, which has

yj∗ as its expected value. Then, x is a mean-preserving spread of y if there is a sequence of such

spreads from y to x.
12See, e.g., the gambles used in the influential elicitation procedure of Holt and Laury (2002).



13

Corollary 1. Let (x, y) be an Ω-ordered pair of gambles. Then, ρrum(cara) and ρrum(crra)

are non-monotone for (x, y).

Proof of Corollary 1. The proof is an immediate implication of the second part of

Proposition 1. Notice that limω→∞ U
cara
ω (x) = limω→∞ U

cara
ω (y) = limω→∞ U

crra
ω (x) =

limω→∞ U
crra
ω (y) = 0. Furthermore, since gamble x does not stochastically dominate

y, there are levels of risk aversion for CARA and CRRA utilities for which gamble y is

preferred. Hence, the second part of Proposition 1 leads to the result.�

Having established that ρrum(cara) and ρrum(crra) are problematic for every possible

Ω-ordered pair of gambles, we now exploit the functional structure of U cara
ω and U crra

ω

to characterize the nature of the problems. In the next result we show that, for every

Ω-ordered pair of gambles (x, y), there always exists a level of risk aversion ω̄(x,y) above

which the probability of choosing the riskier gamble x is strictly increasing. For further

emphasis, note the implication that higher levels of risk aversion are associated with

greater probabilities of choosing the riskier gamble. This is an obvious lack of internal

consistency with immediate practical implications for the estimation of the model.

Firstly, there is an identification problem arising from the fact that different levels of

risk aversion are compatible with the same probability of choice. Secondly, when using

the standard maximum likelihood technique, there is an upper bound in the level of

risk aversion that can be estimated, ω̄(x,y), which can, potentially, affect estimates of

intensely risk averse individuals.

Proposition 2. Let (x, y) be an Ω-ordered pair of gambles. Then, there exists ω̄(x,y)

such that ρ
rum(cara)
ω (x, y) and ρ

rum(crra)
ω (x, y) are strictly increasing in ω whenever ω ≥

ω̄(x,y).

Proof of Proposition 2. Consider an Ω-ordered pair of gambles (x, y), with x =

[x1, . . . , xN ; p(x1), . . . , p(xN)] and y = [y1, . . . , yM ; q(y1), . . . , q(yM)]. With reasoning

analogous to that used in Proposition 1, we need to show that there exists a risk-

aversion level ω̄(x,y) such that the difference between the utility values of x and y

is strictly increasing in values of ω above ω̄(x,y). Since, by assumption, x does not

stochastically dominate y, the two gambles are different. Let m be the minimum

monetary payoff to which gambles x and y assign different probabilities. Since (x, y) is

an Ω-ordered pair of gambles and x does not stochastically dominate y, it must be that

q(m) < p(m). This is so because for sufficiently large values of ω, the utility evaluations

of the gambles is determined by the first payoff where they differ, m. We now prove
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that we can consider, w.l.o.g., that yj > m = min{xi} for all payoffs in gamble y. To

see this, suppose that q∗ =
∑

j:yj≤m q(yj) > 0. Since q(m) < p(m), the definition of m

guarantees that it is also the case that q∗ < 1 and hence, we can express gamble y as

a compound gamble that assigns probability q∗ to gamble y′ and probability 1− q∗ to

gamble ŷ. Gamble y′ contains payoffs in y that are below m, with associated probability

q′(yj) =
q(yj)

q∗
. Gamble ŷ contains payoffs in y that are strictly above m, with associated

probability q̂(yj) =
q(yj)

1−q∗ . We can also express x as a compound gamble that assigns

probability q∗ to gamble y′ and probability 1− q∗ to gamble x̂. Gamble x̂ contains all

payoffs in x above m, with associated probabilities p̂(m) = p(m)−q(m)
1−q∗ and p̂(xi) = p(xi)

1−q∗

whenever xi > m. By the additive nature of expected utility, we know that the utility

difference between gambles x and y is proportional to the utility difference between

gambles x̂ and ŷ, which proves the claim.

We start by considering the case of CARA and focus on ω 6= 0, where the family is

differentiable.13 In this domain, ρ
rum(cara)
ω (x, y) is strictly increasing in ω if and only

if ∂[Ucaraω (x)−Ucaraω (y)]
∂ω

> 0 which, by expected utility, is equivalent to
∑
p(xi)

∂ucaraω (xi)
∂ω

−∑
q(yj)

∂ucaraω (yj)

∂ω
> 0. Since −∂ucaraω (m)

∂ω
= − e−ωm(1+ωm)−1

ω2 is a strictly increasing and

continuous utility function over monetary outcomes, ρ
rum(cara)
ω (x, y) is strictly increas-

ing in ω if and only if V cara
ω (y) > V cara

ω (x), where V cara
ω is the expected utility using

−∂ucaraω (m)
∂ω

. Denoting by CE(x, V cara
ω ) and CE(y, V cara

ω ) the certainty equivalents of

V cara
ω for gambles x and y, it follows that ρ

rum(cara)
ω (x, y) is strictly increasing in ω if

and only if CE(y, V cara
ω ) > CE(x, V cara

ω ).14 Now, notice that the Arrow-Pratt coeffi-

cient of risk aversion for −∂ucaraω (m)
∂ω

is simply ω− 1
m

.15 When ω grows, the Arrow-Pratt

coefficient goes to infinity, thereby guaranteeing that limω→∞CE(x, V cara
ω ) = m <

min{y1, . . . , yM} = limω→∞CE(y, V cara
ω ). Hence, we can find a value, which we denote

by ω̄(x,y), such that for every ω ≥ ω̄(x,y), CE(y, V cara
ω ) > CE(x, V cara

ω ), which proves

the result.

The proof of the CRRA case can be obtained analogously by considering that, for

any ω 6= 1, CRRA utility functions are differentiable, −∂ucrraω (m)
∂ω

= −m1−ω(1−(1−ω) logm)
(1−ω)2

is a continuous and strictly monotone utility function over monetary outcomes, and

13Note that the discontinuity of the CARA family at this point is not relevant for the result.
14In general, the certainty equivalent of a gamble x for some utility function U , is the amount of

money CE(x, U) such that U(x) = U([CE(x, U); 1]).
15The coefficient has a strictly positive derivative with respect to ω and thus, from the classic

result of Pratt (1964), it follows that the certainty equivalent of a non-degenerate gamble is strictly

decreasing in ω.
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the corresponding Arrow-Pratt coefficient is ω logm−1
m logm

.�

Using the differentiability of CARA and CRRA, the proof of Proposition 2 shows that

the model is monotone if and only if gamble x has more expected utility than gamble y

under the monetary utility function −∂uω
∂ω

. It establishes that there is always a level of

risk aversion, ω̄(x,y), beyond which this no longer holds, and hence the models are non-

monotone for every Ω-ordered pair of gambles. The proof also helps to explain how the

critical values, ω̄(x,y), vary with the pair of gambles involved. Consider, for instance,

two Ω-ordered pairs of gambles, (x, y) and (x, y′), where y′ first-order stochastically

dominates y. Then, it is evident from the proof that ω̄(x,y) < ω̄(x,y′). Hence, the better

the safer option, the wider the range of problems. In order to formally establish the

influence of the magnitude of payoffs on the critical value ω̄(x,y), consider an Ω-ordered

pair of gambles (x, y), and let (x+t, y+t), (x×t, y×t) and (x∧t, y∧t) denote the Ω-ordered

pairs of gambles where all the payoffs in gambles x and y are increased by, multiplied

by, and raised to the power of t > 0, respectively.

Proposition 3. Let (x, y) be an Ω-ordered pair of gambles.

• CARA: (i) limt→∞ ω̄(x+t,y+t) = ω(x,y), and (ii) for every t > 0, ω̄(x×t,y×t) =
ω̄(x,y)

t
.

• CRRA: (i) limt→∞ ω̄(x×t,y×t) = ω(x,y), and (ii) for every t > 0, 1 − ω̄(x∧t,y∧t) =
1−ω̄(x,y)

t
.

Proof of Proposition 3. Since the Arrow-Pratt coefficient of risk aversion for

−∂ucaraω (m)
∂ω

is ω − 1
m

, when the monetary outcomes grow, the Arrow-Pratt coefficient

becomes as close to ω as desired. Then, V cara
ω (x+t) ≥ V cara

ω (y+t) becomes essentially

U cara
ω (x+t) ≥ U cara

ω (y+t). Given that (x+t, y+t) is an Ω-ordered pair for U cara
ω , the latter

inequality holds if and only if ω ≤ ω(x+t,y+t). By noting that CARA utilities imply

that ω(x+t,y+t) = ω(x,y), we show the first claim with respect to CARA. Now, given that

−∂ucaraω (m)
∂ω

= − e−ωm(1+ωm)−1
ω2 , it is immediate that V cara

ω (x) = V cara
ω (y) if and only if

V cara
ω
t

(x×t) = V cara
ω
t

(y×t), and then, by Proposition 2, ω̄(x×t,y×t) =
ω̄(x,y)

t
.

In the CRRA case, note that the relative Arrow-Pratt coefficient for −∂ucrraω (m)
∂ω

is

ω − 1
logm

, and, using the same argument as that used in the case of CARA, we ob-

tain that, as t grows, ω̄(x×t,y×t) converges towards ω(x,y). Finally, since −∂ucrraω (m)
∂ω

=

−m1−ω(1−(1−ω) logm)
(1−ω)2

= − e(1−ω) logm(1−e(1−ω) logm)
(1−ω)2

, the same argument as that used in the

CARA case leads to 1− ω̄(x∧t,y∧t) =
1−ω̄(x,y)

t
.�
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Proposition 3 is particularly disquieting, since it implies that, in an estimation ex-

ercise involving large payoffs, the more risk averse the individual, the greater the bias

in the estimation of her risk-aversion level. Specifically, the first part of the result

establishes that, as the monetary payoffs increase (in the case of CARA through the

addition of a positive constant, and in the CRRA case through multiplication by a pos-

itive constant), the critical value ω̄(x,y) converges towards the risk-aversion level ω(x,y),

that makes the two original gambles indifferent. This means that every individual who

shows a larger probability of choosing the safer gamble y, over the riskier gamble x,

cannot be assigned an estimated risk-aversion level higher than ω(x,y). In the second

part of the results, it is shown that, under CARA, if the monetary payoffs are multi-

plied by a positive scalar, the critical value of risk aversion ω̄(x,y) diminishes, eventually

converging to 0, implying that there is an upper limit of 0 in the risk-aversion level that

can be estimated, no matter how risk averse the individual is. Under CRRA, if the

monetary payoffs are raised to the power of a positive scalar, the critical risk-aversion

value eventually converges to 1. This implies that when ω̄(x,y) is above (below) 1, the

increasing (decreasing) of payoffs becomes more problematic, since the critical value

diminishes.

It is worth stressing, however, that one does not need to use implausible payoffs to

obtain small critical values ω̄(x,y). This can be immediately appreciated in Table 1,

where we report the CRRA critical values for the 36 Ω-ordered pairs of gambles used

in the risk experimental part of Andersen et al. (2008). All the corresponding CARA

critical values are very close to 0, and hence omitted herein.

Table 1. Critical Risk Aversion Levels for the Pairs of Gambles of Andersen et al. (2008)

p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9 p = 1

Task 1 -1.578 -0.810 -0.348 -0.002 0.289 0.556 0.823 1.119 1.520 –

Task 2 -1.320 -0.586 -0.112 0.266 0.607 0.941 1.297 1.722 2.344 –

Task 3 -1.706 -0.877 -0.379 -0.005 0.310 0.600 0.891 1.216 1.658 –

Task 4 -0.611 -0.176 0.095 0.306 0.491 0.668 0.851 1.063 1.361 –

Note: The classes of pairs of gambles used in the four different tasks are, respec-

tively, ([3850, 100; p, 1 − p], [2000, 1600; p, 1 − p]), ([4000, 500; p, 1 − p], [2250, 1500; p, 1 − p]),

([4000, 150; p, 1 − p], [2000, 1750; p, 1 − p]), and ([4500, 50; p, 1 − p], [2500, 1000; p, 1 − p]). The

last pair of gambles in each of the four tasks is not Ω-ordered, since in all four cases one gamble

dominates the other.

We close this section by noting that the negative results characterized in Proposition

2 can be extended in a number of dimensions, as reported in Appendix A.1.



17

4.2. Time Preferences. A monetary stream x = (x0, x1, . . . , xT ) describes the amount

of money xt ∈ R+ realized at every time period t.16 The standard approach uses dis-

counted utility Udu
ω (x) =

∑
tDω(t)u(xt), with discount functions for which Dω(0) = 1

and limt→∞Dω(t) = 0 and with a parameter space Ω = R+.17 The utility function over

monetary outcomes u is strictly increasing and continuous. The most commonly-used

discount function is the power function where Dpow
ω (t) = 1

(1+ω)t
. The behavioral litera-

ture offers two alternative discount functions that appear better able to capture certain

behavioral patterns.18 These are the hyperbolic discount function Dhyp
ω (t) = 1

1+ωt
, and

the β − δ discount function where Dbeta
ω (0) = 1 and Dbeta

ω (t) = βDpow
ω (t) whenever

t > 0, with β ∈ (0, 1].19 We write Upow
ω , Uhyp

ω and U beta
ω for the corresponding dis-

counted utilities, and ρrum(pow), ρrum(hyp) and ρrum(beta) for the corresponding RUM

probabilities.

As in the case of the treatment of risk preferences, we consider here Ω-ordered pairs

of streams such that neither dominates the other, in the sense that some types prefer

x to y and others prefer y to x. For an illustration of such pairs, consider streams

where there is a period of time t̄ such that yt > xt for every t ≤ t̄ and yt < xt for

every t > t̄. A simple version of these comparisons used in common practice is one

where there is a unique conflict between waiting a shorter period for a larger monetary

payoff, or waiting a longer period for some other monetary payoff. That is, xt = yt

except for two periods t1 < t2, with yt1 > xt1 and yt2 < xt2 . These have been shown

to be key streams in the treatment of time preferences, since they are instrumental in

the characterization of the notion of more delay aversion (see Benôıt and Ok, 2007; see

also Horowitz, 1992).

Proposition 1 directly applies here, thereby implying that ρrum(pow), ρrum(hyp) and

ρrum(beta) are non-monotone for every Ω-ordered pair of streams such that x0 = y0.

Corollary 2. Let (x, y) be an Ω-ordered pair of streams such that x0 = y0. Then,

ρrum(pow), ρrum(hyp) and ρrum(beta) are non-monotone for (x, y).

16Whether streams are finite or infinite is immaterial to this analysis.
17Notice that Proposition 1 follows immediately with Ω = R+.
18See Loewenstein and Prelec (1992), Laibson (1997), and O’Donoghue and Rabin (1999).
19 That the exponential function Dexp

ω̂ (t) = exp−ω̂t is equivalent to the power function becomes

clear by considering ω̂ = log(1 + ω). For the β − δ case, the alternative representation based on the

exponential function is sometimes called quasi-hyperbolic. That is, Dqh
ω (0) = 1 and Dqh

ω (t) = βDexp
ω (t)

whenever t > 0, with β ∈ (0, 1]. Given the equivalence, these functional forms are omitted from the

analysis.
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Proof of Corollary 2. Consider an Ω-ordered pair of streams (x, y) such that x0 = y0.

Notice that limω→∞[Upow
ω (x)−Upow

ω (y)] = u(x0)− u(y0) + limω→∞[
∑T

t=1
1

(1+ω)t
(u(xt)−

u(yt))] = 0. Now, since there are, by assumption, some types of individuals for whom

y is preferable to x, Proposition 1 applies directly, thereby implying that ρrum(pow) is

non-monotone. The cases of ρrum(hyp) and ρrum(beta) are analogous and hence omitted.�

Note that whenever the Ω-ordered streams x and y differ in terms of present payoffs,

that is x0 6= y0, the choice probabilities ρrum(pow), ρrum(hyp) and ρrum(beta) may be

monotone. Consider, for example, a pair of streams (x, y) differing in only two periods,

the present and a period t. Clearly, for (x, y) to be Ω-ordered, it must be the case that

x0 < y0 and xt > yt. Now, since u(x0) − u(y0) is independent of ω and Dω(t)[u(xt) −
u(yt)] is decreasing in the delay-aversion coefficient ω, the first part of Proposition 1

guarantees that choice probabilities are monotone for such pairs (x, y). Importantly,

this is the class of streams used in Chabris et al. (2008) and Tanaka, Camerer and

Nguyen (2010).

Analogously to Proposition 2, the next result exploits the functional structure of

Upow
ω , Uhyp

ω and U beta
ω to reach stronger results.

Proposition 4. Let (x, y) be an Ω-ordered pair of streams with x0 = y0. Then, there

exists ω̄(x,y) such that ρ
rum(pow)
ω (x, y), ρ

rum(beta)
ω (x, y) and ρ

rum(hyp)
ω (x, y) are strictly in-

creasing in ω whenever ω ≥ ω̄(x,y).

Proof of Proposition 4. Let (x, y) be an Ω-ordered pair of streams with x0 = y0,

and denote by t∗ > 0 the first period for which streams x and y differ. Consider first

the case of the power discount function. We first claim that u(xt∗)−u(yt∗) < 0. To see

this, notice that since (x, y) is an Ω-ordered pair, when ω is sufficiently large, stream y

must be preferred to stream x, or equivalently, the sign of
∑

tD
pow
ω (t)[u(xt)− u(yt)] =

Dpow
ω (t∗)

∑
t:t≥t∗(1+ω)t

∗−t[u(xt)−u(yt)] must be negative. By standard arguments, for

ω sufficiently large, the latter sign is equivalent to the sign of u(xt∗)− u(yt∗), proving

the claim.

Now, ρrum(pow) is strictly increasing in ω if and only if
∑

tD
pow
ω (t)[u(xt) − u(yt)]

is strictly increasing in ω. Given the differentiability of Dpow
ω , the latter condition

is equivalent to
∑

t
∂Dpowω (t)

∂ω
[u(xt) − u(yt)] =

∑
t:t≥t∗ −t(1 + ω)−t−1[u(xt) − u(yt)] =∑

t:t≥t∗ −tDpow
ω (t+1)[u(xt)−u(yt)]. When ω grows, the sign of the previous expression

coincides with the sign of −[u(xt∗)−u(yt∗)], which we have shown to be positive. Hence,
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there exists ω̄(x,y) such that ρrum(pow) is strictly increasing in ω for every ω ≥ ω̄(x,y), as

desired.

The additivity of discounted utility, the fact that x0 = y0, and that Dbeta(t) =

βDpow(t) whenever t > 0, makes the proof of the β − δ case analogous. For the

hyperbolic case, we start by claiming that
∑

t:t≥t∗
1
t
[u(xt) − u(yt)] is negative. To see

this, notice that since (x, y) is an Ω-ordered pair, when ω is sufficiently large, stream y

must be preferred to stream x, or equivalently, the sign of
∑

tD
hyp
ω (t)[u(xt)− u(yt)] =

Dhyp
ω (t∗)

∑
t:t≥t∗

1+ωt∗

1+ωt
[u(xt) − u(yt)] must be negative. As ω increases, the limit of

1+ωt∗

1+ωt
is t∗

t
, and hence

∑
t:t≥t∗

1
t
[u(xt) − u(yt)] must be negative. Now, notice that∑

t
∂Dhypω (t)

∂ω
[u(xt)−u(yt)] =

∑
t:t≥t∗ −t(1+ωt)−2[u(xt)−u(yt)] which in turn is equal to

[Dhyp(t∗)]2
∑

t:t≥t∗ −t
(

1+ωt∗

1+ωt

)2
[u(xt) − u(yt)]. Clearly, the sign when ω grows is equal

to the sign of
∑

t:t≥t∗
−1
t

[u(xt) − u(yt)], that we know to be positive, concluding the

proof.�

Using the differentiability of the standard discount functions, the proof of Proposition

4 establishes that for every Ω-ordered pair (x, y) such that x0 = y0, there is always a

level of delay aversion, ω̄(x,y), beyond which the models give an increasing probability

for the choice of x over y. The proof also helps to explain how the critical values

ω̄(x,y) vary with the pair of streams involved. To illustrate, we focus on the power case

and use streams in which there is a unique conflict, that is, xt = yt, except for two

periods, 0 < t1 < t2, with yt1 > xt1 and yt2 < xt2 . In this case, Proposition 4 shows

that ω̄(x,y) is characterized by
∑

t:t≥t∗ −tDpow
ω (t+ 1)[u(xt)− u(yt)] = 0, which leads to

ω̄(x,y) =
(
t2[u(xt2 )−u(yt2 )]

t1[u(yt1 )−u(xt1 )]

) 1
t2−t1−1. As in the case of risk, one can immediately appreciate

that the better stream y is in relation to x, the lower the critical value ω̄(x,y). Focusing

on time, it is also easy to see that, with the temporal gap t2− t1 fixed, as t1 increases,

ω̄(x,y) decreases. That is, as the first difference between x and y becomes more distant

in time, the range of problems widens. This is consistent with the fact discussed above

that, for this type of streams, whenever x0 6= y0, the RUM choice probabilities are

monotone. Finally, with t1 fixed, there is an interior value of t2 that minimizes ω̄(x,y).
20

Having shown that for every Ω-ordered pair (x, y) with x0 = y0 there is a delay-

aversion level, ω̄(x,y), at which the RUM probabilities of selecting the longer-delay

stream x increase, we now argue that the practical relevance of the problem is, in fact,

limited, because the critical values ω̄(x,y) obtained with the standard streams used in

20This interior value is the solution to t1 + t2(−1 + log
t2[u(xt2

)−u(yt2
)]

t1[u(yt1 )−u(xt1 )] ) = 0.
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the experimental literature are clearly too large to be economically relevant. This can

be appreciated with the pairs of streams used in Andersen et al. (2008). The lowest

critical value is a yearly discount rate of 4.25 that corresponds to the pair of streams

giving 3,313 Danish kroner in 25 months versus 3,000 in 1 month, which is clearly

absurdly high in empirical terms. Given the above discussion on the determination

of ω̄(x,y), it is clear that to obtain critical values of practical relevance with streams

à la Andersen et al. (2008), we would need to vary the payoff times. In order to see

this point consider linear utility functions over monetary payoffs, and note that the

standard population discount rate estimated for this case in the literature is about .25.

Hence, critical values around this discount rate would be economically relevant, since

they would be binding for a large fraction of the population. Then, with the monetary

payoffs and the temporal gap of 2 years fixed, when we increase t1 from one month to

5 years the critical value becomes ω̄(x,y) = .24.

4.3. Other Cases. Beyond risk and time, another preference parameter of interest is

the one governing the degree of complementarity between two different inputs. These

inputs may be the monetary payoffs to oneself and to another subject, as in a distribu-

tive problem with social preferences (see, e.g., Andreoni and Miller, 2002). Another

case of interest in this respect is when the inputs refer to present consumption and

future consumption, as in the influential Epstein and Zin (1989) preferences.21 Yet,

another example is when the inputs refer to different consumption goods in general,

as in a standard CES utility function. Our results advise caution when the comple-

mentarity parameter enters non-linearly into the utility function in a RUM estimation

framework.

5. Random Parameter Models

The following result establishes that RPMs are monotone for every Ω-ordered pair

of alternatives.

Proposition 5. ρrpm is monotone for every Ω-ordered pair of alternatives.

Proof of Proposition 5. Let ωL, ωH ∈ Ω, with ωL < ωH . Consider a realization ε

of Ψ such that UwL+ε(y) > UwL+ε(x). Since (x, y) is an Ω-ordered pair of alternatives,

it must be the case that UwH+ε(y) > UwH+ε(x). Consequently, the set of realizations

21These preferences also introduce risk attitudes and time preferences, so Sections 4.1 and 4.2 are

of interest here too.
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for which x is preferred to y shrinks with the preference parameter, implying that

ρrpmω (x, y) is decreasing in ω, as desired.�

Proposition 5 implies that RPMs can be safely used for the estimation of preference

parameters. In the contexts of risk and time preferences, in particular, RPMs are

immune to the problems characterized in Propositions 2 and 4. Furthermore, they are

easily implementable. That is, given an Ω-ordered pair of alternatives (x, y), all that

is required to obtain ρrpmω (x, y) is to compute the value ω(x,y) and the corresponding

probability Ψ(ω(x,y) − ω).

Note that a distinguishing feature of RPMs is that when, for a given pair of options

(x, y), every utility function regards one option as better than the other, then the

probability of choosing the former is one. This is sometimes seen as a limitation of the

model, as in the case of stochastic-dominance related gambles, for instance, where the

observed probability of choosing the dominated gamble is typically above zero. One

way to deal with this in the context of RPMs is to add a trembling stage, in the spirit

of the trembling hand approach used in game theory. This would work as follows.

After a particular utility has been realized, with a large probability 1− κ the choice is

made according to the realized utility, and with probability κ there is a tremble and

the reverse choice is made. It is easy to see that such a model is also monotone for

every Ω-ordered pair of alternatives.

6. An Empirical Application

In an influential paper, Andersen et al. (2008) implement a field experiment to jointly

estimate risk and time preferences, using a representative sample of the adult Danish

population comprised of 253 subjects. In this section we use the data of Andersen et

al. (2008) to obtain separate risk and time preference estimates, using both random

utility models and random parameter models. The purpose of this exercise is not

to attempt to replicate the original results of Andersen et al. (2008), but rather to

illustrate the difference in the estimations obtained by using the two random models

under scrutiny. Hence, we depart in a number of ways from the identification strategy

used by Andersen et al. (2008).

6.1. Estimation of Risk Preferences. There were four different risk-aversion choice

tasks in the style of the multiple-price lists of Holt and Laury (2002). Each task

comprised of ten pairs of nested gambles, as described in Table 1. All 253 subjects
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were confronted with the four tasks, but 116 of them were presented with all 40 pairs of

gambles, 67 with pairs 3, 5, 7, 8, 9, and 10 in every task, and the remaining 70 subjects

were presented with pairs 1, 2, 3, 5, 7, and 10, again in every task. Subjects had to

make a choice from each pair of gambles presented, which made a total of 7,928 choices.

In every pair, subjects could either choose one of the gambles, or express indifference

between the two. In the latter case, they were told that the experimenter would settle

indifferences by tossing a fair coin.22

We use CRRA utilities and include a tremble parameter, as defined in Section 5.23

Every expression of indifference is transformed by assigning a half-choice to each of the

two gambles. In the RUM estimations we assume the error distribution to be type I

extreme value, while in the RPM estimations it is logistic. This gives the closed-form

probabilities of selecting the riskier gamble x over the safer one y described in Section

3. We then use standard maximum likelihood procedures to estimate the population

risk-aversion level ω, the tremble parameter κ, and the precision parameter λ. The

RUM log-likelihood function contingent on these three parameters is

i=40∑
i=1

[
(X i +

I i

2
) log[

(1− 2κ)eλU
crra
ω (xi)

eλUcrraω (xi) + eλUcrraω (yi)
+ κ] + (Y i +

I i

2
) log[

(1− 2κ)eλU
crra
ω (yi)

eλUcrraω (xi) + eλUcrraω (yi)
+ κ]

]
where i = 1, . . . , 40 denotes the i-th pair of gambles, and X i, Y i, and I i the number

of subjects expressing a preference for the riskier gamble, for the safer gamble, or

indifference between the two gambles in pair i, respectively. Analogously, the RPM

log-likelihood function is

i=36∑
i=1

[
(X i +

Ii
2

) log[
(1− 2κ)eλω

(xi,yi)

eλω(xi,yi) + eλω
+ κ] + (Y i +

I i

2
) log[

(1− 2κ)eλω

eλω(xi,yi) + eλω
+ κ]

]
+
i=40∑
i=37

(Y i+
I i

2
) log[κ]

where i = 1, . . . , 36 denotes the 36 Ω-ordered pairs of gambles and i = 37, . . . 40 the 4

pairs where xi dominates yi.

Table 2 presents the estimates. When considering the entire population of 253 sub-

jects, we see that the RPM risk-aversion estimate is about 14% higher than that of

the RUM. We see this as a considerable bias in the RUM estimation. We test the

significance of this difference using the bootstrap method, which we consider partic-

ularly appropriate in the light of our theoretical results on the non-monotonicity of

225% of all choices were expressions of indifference. With indifferences omitted, the estimates are

practically identical.
23Given the large values of the payoffs involved in the gambles, we avoid the use of CARA utilities.
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Table 2. RUM and RPM estimations of risk-aversion

RUM RPM RPM - RUM

ω λ κ ω λ κ ∆ω CI(∆ω) %ω

All Subjects 0.661 0.275 0.034 0.752 2.495 0.051 0.091 0.065 0.134 0.137

(0.032) (0.067) (0.012) (0.043) (0.137) (0.008) (0.018)

z% more risk-

averse individuals

z = 50 1.031 4.596 0.016 1.231 2.793 0.029 0.2 0.149 0.262 0.194

(0.036) (1.28) (0.006) (0.056) (0.192) (0.006) (0.029)

z = 45 1.076 6.5 0.01 1.283 2.891 0.025 0.207 0.15 0.28 0.192

(0.038) (1.89) (0.005) (0.06) (0.204) (0.005) (0.033)

z = 40 1.127 9.564 0.01 1.358 2.871 0.024 0.231 0.165 0.317 0.205

(0.041) (3.086) (0.005) (0.067) (0.22) (0.006) (0.039)

z = 35 1.198 16.29 0.011 1.468 2.818 0.025 0.27 0.19 0.367 0.225

(0.049) (6.134) (0.007) (0.074) (0.222) (0.006) (0.044)

z = 30 1.249 23.24 0.004 1.577 2.853 0.023 0.328 0.226 0.442 0.263

(0.056) (9.555) (0.005) (0.083) (0.239) (0.006) (0.055)

z = 25 1.366 62.1 0.011 1.699 2.857 0.022 0.333 0.223 0.482 0.244

(0.068) (43.64) (0.006) (0.1) (0.267) (0.007) (0.066)

z = 20 1.465 128.8 0.013 1.869 2.676 0.026 0.404 0.234 0.606 0.276

(0.102) (117.6) (0.006) (0.147) (0.287) (0.008) (0.094)

Note: Block bootstrap standard errors clustered at the individual level, shown in parentheses, calculated using 10,000

resamples. ω, λ and κ are the population risk-averse level, precision parameter and tremble parameter, respectively.

∆ω reports the difference between the RPM and RUM estimated risk-aversion levels. CI(∆ω) is the 95% bootstrap

confidence interval for ∆ω. %ω reports the percentage increase in the estimated risk-aversion level when using RPM

as opposed to RUM.

RUMs. We perform 10,000 resamples at the individual level, where we estimate the

corresponding RUM and RPM parameters, and compute the difference between them,

which is our statistic. Figure 4 reports the density functions of the RUM and RPM

risk-aversion estimates (subfigure a), and the density of the difference in the bootstrap

estimations (subfigure b). It is immediate to see that RPM risk-aversion estimates are

systematically greater than those obtained by the RUM, as predicted by our theoret-

ical results. When we compute the bootstrap confidence interval of our statistic at

standard confidence levels, we note that the confidence interval never includes zero.

Our theoretical results show, moreover, that the greater the risk aversion of sub-

jects, the greater the potential bias in the RUM estimates. In order to empirically

test this prediction, we rank subjects in terms of their revealed risk aversion, using

a simple method that relies neither on RUMs, nor on RPMs.24 The method focuses

24In Appendix B, we explore another possible simple method, with similar results.
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Figure 4.—(a) Density functions of the RUM and RPM bootstrap risk-aversion estimates. (b) Density

function of the difference between the RUM and RPM bootstrap risk-aversion estimates.

on the 36 Ω-ordered pairs of gambles and computes, for each individual, the propor-

tion of the pairs in which they opted for the riskier gamble xi, recording a half-choice

to each gamble whenever indifference was expressed. In order to break possible ties

between individuals, we consider all values ω(xi,yi) that make the gambles xi and yi

indifferent, and focus on the first value where the individual chooses the riskier gam-

ble over the safer one. Now, given the ranking of the individuals provided by this

method, Table 2 reports the estimates for the z% more risk averse individuals, where

z ∈ {50, 45, 40, 35, 30, 25, 20}.25 First, we see that the risk averse estimates for both

RUMs and RPMs are increasing, suggesting the appropriateness of the selected ranking

method. Secondly, as predicted by our theoretical results, we see that the gap between

the two methods is increasing, up to a sizable 28%, for the 20% most risk averse in-

dividuals. Following the same bootstrap method explained above, we obtain that all

these differences are statistically significant: it is always the case that the differences

in the estimated RPM and RUM coefficients are systematically positive. Finally, it is

25We stop at the 20% mark to ensure some choice variability.
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worth noting that, while the RPM estimates of the precision parameter λ are very ro-

bust, the RUM λ estimates increase substantially as the estimation progresses towards

more risk averse individuals.26

6.2. Estimation of Time Preferences. There were six delay-aversion choice tasks of

the multiple-price list type, each comprised of ten pairs of streams differing in only two

periods, as described in Table 3. All 253 subjects were confronted with all the tasks,

which made a total of 15,180 choices. Indifferences were again allowed and dealt with in

the same way as in the case of risk preferences. We use power and hyperbolic discounted

utility functions, including a tremble parameter.27 In the RUM estimations, we assume

the error distribution to be type I extreme value, leading to a similar log-likelihood

function as in the risk-aversion treatment, with the appropriate utility representation.

In the RPM estimations, notice that all pairs of streams are now Ω-ordered, and,

since the discount parameter takes only positive values, we use a log-logistic instead

of a logistic distribution. Again, using the appropriate utility representation, the log-

likelihood function is similar to that employed in the risk-aversion analysis. We then

use standard maximum likelihood procedures to estimate the population delay-aversion

level ω, the tremble parameter κ, and the precision parameter λ.

Table 3. Streams of Payoffs used in Andersen et al. (2008)

xt2

t2 = 2 3012 3025 3037 3049 3061 3073 3085 3097 3109 3120

t2 = 5 3050 3100 3151 3202 3253 3304 3355 3407 3458 3510

t2 = 7 3075 3152 3229 3308 3387 3467 3548 3630 3713 3797

t2 = 13 3153 3311 3476 3647 3823 4006 4196 4392 4595 4805

t2 = 19 3232 3479 3742 4020 4316 4630 4962 5315 5687 6082

t2 = 25 3313 3655 4027 4432 4873 5350 5869 6431 7039 7697

Note: Every pair of streams involves a comparison of xt2 , as detailed in the table,

with y1 = 3000.

In consonance with our theoretical results, the RUM and RPM estimations of the

delay aversion parameter are very close, as can be appreciated in Table 4.

26Taking the estimated precision parameters for the full sample of 253 individuals (0.275 in the

RUM case and 2.495 in the RPM case), and estimating RUM and RPM risk aversion coefficients for

the 50% more risk averse individuals, we obtain 0.687 and 1.268, respectively, which represents a bias
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Table 4. RUM and RPM estimations of delay-aversion

RUM RPM RPM - RUM

ω λ κ ω λ κ ∆ω CI(∆ω) %ω

Power 0.274 0.103 0.228 0.265 9.335 0.064 -0.009 -0.04 0.022 -0.033

(0.022) (0.087) (0.01) (0.011) (0.72) (0.018) (0.018)

Hyperbolic 0.245 0.04 0.221 0.262 11.36 0.107 0.017 -0.026 0.007 0.069

(0.014) (0.009) (0.011) (0.011) (0.798) (0.015) (0.009)

Note: Block bootstrap standard errors clustered at the individual level, shown in parentheses, calculated using

10,000 resamples. ω, λ and κ are the population delay-averse level, precision parameter and tremble parameter,

respectively. ∆ω reports the difference between the RPM and RUM estimated delay-aversion levels. CI(∆ω) is

the 95% bootstrap confidence interval for ∆ω. %ω reports the percentage increase in the estimated delay-aversion

level when using RPM as opposed to RUM.

7. Conclusions

We have introduced here the notion of monotonicity of a stochastic choice model

with respect to a preference parameter. Namely, consider a pair of alternatives (x, y)

and a utility evaluation of them where x is preferred to y for low values of the parameter

and y is preferred to x for larger values. That is, the preference parameter represents

an aversion to x with respect to y. Monotonicity implies then that the probability of

selecting x should decrease as the aversion to choosing x increases. We argue that this

is a minimal property for a stochastic model.

We have focused on two popular stochastic models, random utility models and ran-

dom parameter models. After establishing the conditions for these models to be mono-

tone, we have focused on the particular cases of risk and delay aversion. We have shown

that the standard application of random utility models to risk or time settings is sub-

ject to serious theoretical inconsistencies. In the main results we have shown that there

is a level of risk aversion (respectively, of delay aversion) beyond which the probability

of choosing the riskier gamble (respectively, the more delayed stream) increases with

the level of risk aversion (respectively, of delay aversion). We have then established

that random parameter models are free from all these inconsistencies. These findings

should constitute an alert to exercise caution when directly applying sound stochastic

choice models to settings other than those originally contemplated.

of 84%. Reproducing this exercise for the 20% more risk averse individuals, we obtain 0.712 and 1.915,

respectively, which is a difference of 169%.
27Notice that β − δ discounted utility is indistinguishable from power discounted utility, since the

relevant payoffs take place in the future.
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Appendix A. Theoretical Extensions

A.1. Random Utility Models and Risk Preferences. We now comment on several

extensions to Proposition 2.

Logarithmic Transformation of the Representative Utility. This approach starts by

assuming that the representative utility of every option is strictly positive. Thus, the

probability of selecting option x over option y is P (log(Uω(x)) + ε(x) ≥ log(Uω(y)) +

ε(y)) = Ψ∗(log(Uω(x)) − log(Uω(y))), where Ψ∗ is the distribution function of the

difference of the i.i.d. errors. Paralleling the first part of Proposition 1, it is now

immediate that a RUM based on the logs of the utilities, LRUM, is monotone for

the Ω-ordered pair (x, y) if and only if the ratio Uω(x)
Uω(y)

is decreasing in ω. The second

part of Proposition 1 can also be directly reproduced considering limω→∞[log(Uω(x))−
log(Uω(y))] = 0. Denote by ρlrum(cara) the CARA probabilities.28

Proposition 6. Let (x, y) be an Ω-ordered pair of gambles. Then, there exists ω̄(x,y)

such that ρ
lrum(cara)
ω (x, y) > ρ

lrum(cara)
ω(x,y) (x, y) whenever ω > ω̄(x,y).

Proof of Proposition 6. Consider any Ω-ordered pair of gambles (x, y). Given the

structure of gambles and that of the CARA family, there always exists ω̂ > 0 such

that U cara
ω̂ (x) < U cara

ω̂ (y), or log(U cara
ω̂ (x)) < log(U cara

ω̂ (y)). It also can be immediately

seen that the limits of log(ωU cara
ω (x)) and log(ωU cara

ω (y)) as ω increases are both 0;

hence, limω→∞[log(Uω(x)) − log(Uω(y))] = limω→∞[log(ωUω(x)) − log(ωUω(y))] = 0.

Therefore, there exists ω̃ > ω̂ such that log(U cara
ω (x))− log(U cara

ω (y)) > log(U cara
ω̂ (x))−

log(U cara
ω̂ (y)) for every ω ≥ ω̃. This, together with the logarithmic counterpart of

Proposition 1, implies that ρ
lrum(cara)
ω (x, y) > ρ

lrum(cara)
ω̂ (x, y) for every ω ≥ ω̃. Now,

the function ρ
lrum(cara)
ω (x, y) is continuous on [ω̂,∞) and, hence, achieves a minimum

ω∗ in the closed interval [ω̂, ω̃], and, by the above reasoning, we know that ω∗ is also a

minimum in [ω̂,∞). Given continuity, we only need to consider ω̄(x,y) to be the largest

value of ω for which ρ
lrum(cara)
ω(x,y) (x, y) = ρ

lrum(cara)
ω∗ (x, y) and the result follows.�

Generalized Expected Utility. Proposition 2 works under the assumption of expected

utility. Clearly, generalizations of expected utility, such as cumulative prospect the-

ory, rank-dependent expected utility, disappointment aversion, etc, are susceptible to

28Notice that CRRA functions are not entirely appropriate in this context, because for values of ω

above 1 the utilities become negative, which is incompatible with the use of log-transformations. The

function x1−ω, without the normalization 1
1−ω , is positive for values of ω > 1, but in this case is not

monotone in outcomes, and thus is also problematic.
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the problems identified above, since they include expected utility as a special case.

More importantly, however, the additive nature of these models makes them vulnera-

ble to similar anomalies, even when considering only non-expected utilities. Formally,

consider a function π that associates every gamble x = [x1, . . . , xN ; p(x1), . . . , p(xN)]

with another gamble π(x) = [x1, . . . , xN ; q(x1), . . . , q(xN)] over the same set of out-

comes. We assume that, for any given vector of outcomes, the distortion of probabili-

ties is a one-to-one, continuous and monotone function over each argument. Then, the

generalized CARA expected utility is U gcara
ω (x) = U cara

ω (π(x)), while the generalized

CRRA expected utility is U gcrra
ω (x) = U crra

ω (π(x)), and the corresponding RUM choice

probabilities are denoted by ρrum(gcara) and ρrum(gcrra). It can be immediately seen

that, whenever (π(x), π(y)) is an Ω-ordered pair, the logic behind Proposition 2 can

be applied directly. Without assuming that the transformed gambles are Ω-ordered,

Proposition 7 nevertheless establishes analogous results.29

Proposition 7. Let (x, y) be an Ω-ordered pair of gambles such that min{x1, . . . , xN} 6=
min{y1, . . . , yM}. Then, there exists ω̄(x,y) such that ρ

rum(gcara)
ω (x, y) and ρ

rum(gcrra)
ω (x, y)

are strictly increasing in ω whenever ω ≥ ω̄(x,y).

Proof of Proposition 7. Consider an Ω-ordered pair of gambles (x, y) such that

min{x1, . . . , xN} 6= min{y1, . . . , yM}. Since x and y are Ω-ordered and not stochastic-

dominance related, it must be the case that min{x1, . . . , xN} < min{y1, . . . , yM}. Fol-

lowing the same logic as in the proof of Proposition 2, it follows that ρ
rum(gcara)
ω (x, y)

is strictly increasing in ω if and only if CE(π(y), V cara
ω ) > CE(π(x), V cara

ω ). These

certainty equivalents converge, with increasing ω, towards the corresponding minimum

outcomes in π(x) and π(y), which are, by construction, the corresponding minimum

outcomes in x and y. Now, the rest of the proof proceeds as in the proof of Proposition

2. The case of CRRA utilities is completely analogous and hence omitted.�

As already discussed, CARA and CRRA utilities are by far the most used utility

specifications used in the literature. In our previous results, the use of CARA and

CRRA utilities allows to characterize the structure of the choice probabilities involved

in the problem, and thereby to find the global minimum ω̄(x,y). Notice, however,

29For the result, we assume that gambles x and y in the original Ω-ordered pair do not share

the same minimum outcome. Notice, however, that when the gambles do share the same minimum

monetary outcome, the second part of Proposition 1 becomes immediately applicable, thereby showing

the model to be non-monotone for such gambles.



29

that one can show that every RUM based on generalized expected utilities using any

monetary utility function that is strictly increasing and continuous in outcomes is

non-monotone for some Ω-ordered pairs of gambles.30

Certainty Equivalents. The certainty equivalent is sometimes used to replace the ex-

pected utility as the representative utility. The main intuition behind this approach

is that the certainty equivalent is a monetary representation of preferences, where the

use of a common scale facilitates interpersonal comparisons. Thus, it is not beyond

reason that, by creating a common scale, this method could provide a solution to the

problem under discussion, as is indeed the case in instances, such as whenever the

Ω-ordered pair (x, y) involves a degenerate gamble. This can be appreciated by notic-

ing that the certainty equivalent of the non-degenerate gamble x decreases with the

level of risk aversion, while the certainty equivalent of the degenerate gamble y is con-

stant across risk-aversion levels. Thus, the difference between the certainty equivalents

of the two gambles decreases with the level of risk aversion and, by Proposition 1,

the probability of choosing the risky gamble decreases, as desired. However, caution

is required when using certainty equivalents, because problems may arise with other

comparisons. We illustrate this point by considering Ω-ordered pairs (x, y) such that

min{x1, . . . , xN} = min{y1, . . . , yM}. We denote by ρrum(cecara) and ρrum(cecrra) the

choice probabilities associated with this model, when using the certainty equivalent

representation of CARA and CRRA expected utilities, respectively.

Corollary 3. ρrum(cecara) and ρrum(cecrra) are non-monotone for every Ω-ordered pair

of gambles (x, y) such that min{x1, . . . , xN} = min{y1, . . . , yM}.

Proof of Corollary 3. Consider an Ω-ordered pair of gambles (x, y) such that

min{x1, . . . , xN} = min{y1, . . . , yM}. Since the Arrow-Pratt coefficients of ucaraω and

ucrraω are ω and ωm, respectively, it follows that limω→∞[CE(x, U cara
ω )−CE(y, U cara

ω )] =

limω→∞[CE(x, U crra
ω )−CE(y, U crra

ω )] = min{x1, . . . , xN}−min{y1, . . . , yM} = 0. Now,

since by assumption x and y are not stochastic-dominance related, there is a level

of risk aversion for which y is preferred to x. Hence, Proposition 1 is immediately

applicable, and the claim is proved.�

Mean-Variance Utilities. Let us now consider mean-variance utilities, which are much

used in portfolio theory and macroeconomics. Markowitz (1952) was the first to propose

30We can provide details upon request.
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a mean-variance evaluation of risky asset allocations. Roberts and Urban (1988) and

Barseghyan et al. (2013) provide examples of the use of mean-variance utilities in a

RUM, for the estimation of risk preferences. Formally, given a gamble x, let us denote

the expected value and variance of x by µ(x) =
∑

i pixi and σ2(x) =
∑

i pi(xi−µ(x))2,

respectively. Mean-variance utilities are then described by Umv
ω (x) = µ(x) − ωσ2(x).

We now argue that the corresponding RUM choice probabilities ρrum(mv) are always

monotone. This follows from the linear dependence of the utility function with respect

to the parameter.

Proposition 8. ρrum(mv) is monotone for every Ω-ordered pair of gambles (x, y).

Proof of Proposition 8. Consider an Ω-ordered pair of gambles (x, y). Notice that

Uω(x)−Uω(y) = µ(x)− µ(y)− ω(σ2(x)− σ2(y)). Since (x, y) are Ω-ordered, it cannot

be that σ2(x) < σ2(y). If the case were otherwise, individuals with an ω that goes to

−∞ would prefer gamble y to x, while those with an ω that goes to ∞ would prefer

gamble x to y, thereby contradicting that the pair (x, y) is Ω-ordered. Hence, it must

be that σ2(x) ≥ σ2(y). In this case, Uω(x)−Uω(y) is decreasing in ω, and Proposition

1 is directly applicable.�

Contextual Utility. To conclude, Wilcox (2011) suggests normalizing the utility differ-

ence between the gambles by the difference between the utilities of the best and worst

of all the outcomes involved in the two gambles under consideration. This variation of

a RUM goes under the name of contextual utility. The author shows that the suggested

normalization solves the problem for cases in which both gambles are defined over the

same three outcomes (thus covering the important Marschak-Machina triangles) and re-

lated through the notion of mean-preserving spreads. However, this normalization does

not solve the problem beyond the case mentioned. We illustrate this point by contem-

plating the Ω-ordered pair of gambles (x, y), with x = [0, 10, 50, 90, 100; .1, .4, 0, .4, .1]

and y = [0, 10, 50, 90, 100; .05, 0, .9, 0, .05], where x is a mean-preserving spread of y. It

can be seen that the RUM probability of choosing x using expected utility with CRRA

is lower for the risk-aversion coefficient ω1 = .7 than for ω2 = .9.

A.2. Random Utility Models and Time Preferences. We now consider the LRUM

case in the context of time preferences, as introduced in Appendix A.1. In order to im-

pose the condition that the discounted utilities must be strictly positive for Ω-ordered

pairs, we assume that u(0) = 0. Denote by ρlrum(pow), ρlrum(beta) and ρlrum(hyp) the
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LRUM probabilities for the power, β− δ and hyperbolic utilities. Proposition 9 estab-

lishes for the LRUM case results analogous to those of Proposition 4. For the hyperbolic

case denote by m̂x and m̂y the monetary payoffs such that u(m̂x) =
∑

t>t∗
t∗+1
t
u(xt)

and u(m̂y) =
∑

t>t∗
t∗+1
t
u(yt).

Proposition 9.

(1) Let (x, y) be an Ω-ordered pair of streams with t∗ > 0 and yt > 0 for some

t < t∗. Then, there exists ω̄(x,y) such that ρ
lrum(pow)
ω (x, y) and ρ

lrum(beta)
ω (x, y)

are strictly increasing in ω whenever ω ≥ ω̄(x,y).

(2) Let (x, y) be an Ω-ordered pair of streams with u(yt∗ )−u(xt∗ )
u(m̂x)−u(m̂y)

> t∗

t∗+1
> 0 and

y0 > 0. Then, there exists ω̄(x,y) such that ρ
lrum(hyp)
ω (x, y) is strictly increasing

in ω whenever ω ≥ ω̄(x,y).

Proof of Proposition 9. From the logarithmic version of Proposition 1 and the

differentiability of Uα
ω , α ∈ {pow, hyp, beta}, ρlrum(α) is strictly increasing in ω if and

only if the derivative of
∑
tD

α
ω(t)u(xt)∑

tD
α
ω(t)u(yt)

with respect to ω is strictly positive. Clearly,

the sign of this derivative is the same as that of
∑

t
∂Dαω(t)
∂ω

u(xt)[
∑

tD
α
ω(t)u(yt)] −∑

t
∂Dαω(t)
∂ω

u(yt)[
∑

tD
α
ω(t)u(xt)].

Now, in the case of α = pow, since ∂Dαω(0)
∂ω

= 0, the relevant sign is equivalent to

that of −
∑

t tD
pow
ω (t)u(xt)[

∑
tD

pow
ω (t)u(yt)]+

∑
t tD

pow
ω (t)u(yt)[

∑
tD

pow
ω (t)u(xt)]. The

latter expression is equivalent to
∑

r

∑
s(s − r)Dpow

ω (r)Dpow
ω (s)u(xr)u(ys) or, simply,∑

r

∑
s(s − r)Dpow

ω (r + s)u(xr)u(ys). To analyze the sign of the previous expression

when ω is sufficiently large, we only need to consider the smallest integer k for which the

term
∑

r

∑
s:r+s=k(s − r)u(xr)u(ys) is different from zero. Now, let t̄ be the smallest

integer such that t̄ < t∗ with yt̄ > 0, which exists by assumption. Any sum where

k < t̄ + t∗ is equal to zero, while the sum
∑

r

∑
s:r+s=t̄+t∗(s − r)u(xr)u(ys) is equal to

(t∗ − t̄)u(yt̄)(u(yt∗) − u(xt∗)), which is strictly positive by the assumptions on x and

y. This makes the desired derivative strictly positive above a certain value ω̄(x,y) and

hence ρ
lrum(pow)
ω (x, y) is strictly increasing above ω̄(x,y).

When α = beta, the relevant expression becomes β
∑

s sD
pow
ω (s)u(x0)u(ys)−

β
∑

r rD
pow
ω (r)u(xr)u(y0)+β2

∑
r>0

∑
s>0(s−r)Dpow

ω (r+s)u(xr)u(ys). Since β > 0, for

sufficiently high values of ω, the sign is equivalent to the sign of (t∗ − t̄)u(yt̄)(u(yt∗)−
u(xt∗)), and the result follows.

Now consider the case of α = hyp, where the relevant expression becomes
∑

r

∑
s(s−

r)[Dhyp
ω (r)Dhyp

ω (s)]2u(xr)u(ys). When ω goes to infinity, the expression converges to
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zero and the dominant terms are all terms in which either r or s is zero, i.e. those

of the forms s[Dhyp
ω (s)]2u(x0)u(ys) and −r[Dhyp

ω (r)]2u(xr)u(y0). To study the sign

of their sum, simply notice that, as ω increases, the limit of Dhypω (a)

Dhypω (b)
is b/a. Hence,

the determining expression is
∑

s
1
s
u(x0)u(ys) −

∑
r

1
r
u(xr)u(y0), which is equal to

1
t∗

(u(x0)u(yt∗) − u(xt∗)u(y0)) +
∑

t>t∗
1
t
(u(x0)u(yt) − u(xt)u(y0)), with x0 = y0 > 0.

Note that the summation in the former expression is strictly negative, since (x, y) is

an Ω-ordered pair of streams. Then, the extra condition assumed in the α = hyp

guarantees that the expression is strictly positive and the result follows.�

We close the treatment of time preferences by noticing that this problem pervades

beyond the usual parametric functions used in the literature. One can show that for

every discounted utility RUM there is always an Ω-ordered pair of streams for which

the model is not well-defined.31

A.3. More than Two Alternatives. We now show that the use of an Ω-ordered pair

of alternatives causes no loss of generality.

First, consider the case where stochastic choice is defined over a menu A involving

more than two options. Suppose that there is an alternative x ∈ A such that the pair

(x, y) is Ω-ordered for every y ∈ A \ {x}. In RUMs, our results show that, in the most

standard applications, there is a preference parameter ω̄(x,y) such that ρrumω (x, y) is

strictly increasing whenever ω ≥ ω̄(x,y), for every y ∈ A\{x}. We now contemplate the

probability of choosing x from A. It is easy to see that this probability is also strictly

increasing whenever ω ≥ maxy∈A\{x}{ω̄(x,y)}. To see this, notice that the probability of

choosing x from A is simply equal to the probability of ε(y)− ε(x) being smaller than

Uω(x) − Uω(y) for every y ∈ A \ {x}. Our results show that all the utility differences

Uω(x)−Uω(y) are increasing, at least for preference parameters ω ≥ maxy∈A\{x}{ω̄(x,y)},
and hence follows the result. Nevertheless, it is obvious that RPMs are still monotone

when considering the mentioned probability. This follows from observing that the set

of realizations from Ψ for which x is maximal in A shrinks with the value of ω, for

exactly the same reason as given in Proposition 5.

Now consider the case where there is a collection of Ω-ordered pairs of alternatives

{(xi, yi)}Ki=1, and that the exercise revolves around the selection of one alternative from

each pair. We comment on two conceptual problems that arise when K > 1. These

two problems collapse into the one we have studied in this paper when there is just

31Again, we avoid the details here, but can provide them upon request.
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one pair of alternatives. We first contemplate the conditional probability of choosing

vector x with respect to y, where x and y differ in only one pair, say pair j, where

xj is in x and yj is in y. It is obvious that, in the case of RUMs, this conditional

probability is increasing above ω(xj ,yj). Now consider the joint probability of selecting

each xi from the corresponding pair (xi, yi), i = 1, . . . , K. It is immediate that this joint

probability is prey to the same type of problem. Specifically, since the joint probability

is simply the product probability of the different choices, it strictly increases at least

for values ω ≥ maxi{ω̄(xi,yi)}. However, any conditional or joint probability of an RPM

is monotone, due to the product nature of the considered probability.

Appendix B. Empirical Application: Further Considerations

In Section 6.1 we propose a method with which to rank individuals in terms of their

revealed risk aversion. We now study another simple method serving this purpose,

Method B, and show that we replicate the results reported in Section 6.1. Method B

ranks individuals according to the average of the ω(xi,yi) corresponding to the first pair

in which the riskier option was taken or indifference expressed and the ω(xi,yi) corre-

sponding to the last pair in which the safer option was taken or indifference expressed.

We can now repeat the estimation analysis described in Section 6.1, conditional upon

the rankings of individuals given by Method B. Table B.1 reports the results. It is

immediately apparent that we reproduce the main conclusions reached in Section 6.1.

Notably, RPM risk-aversion estimates are always significantly greater than those pro-

vided by RUM, and the differences show an increasing trend, with the magnitude of

bias reaching as high as 33%.
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