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Abstract The ATP-binding cassette efflux transporter

P-glycoprotein (P-gp) is notorious for contributing to mul-

tidrug resistance in antitumor therapy. Due to its expression

in many blood-organ barriers, it also influences the phar-

macokinetics of drugs and drug candidates and is involved in

drug/drug- and drug/nutrient interactions. However, due to

lack of structural information the molecular basis of ligand/

transporter interaction still needs to be elucidated. Towards

this goal, a series of Benzopyranes and Benzopyrano

[3,4b][1,4]oxazines have been synthesized and pharmaco-

logically tested for their ability to inhibit P-gp mediated

daunomycin efflux. Both quantitative structure–activity

relationship (QSAR) models using simple physicochemical

and novel GRID-independent molecular descriptors

(GRIND) were established to shed light on the structural

requirements for high P-gp inhibitory activity. The results

from 2D-QSAR showed a linear correlation of vdW surface

area (Å2) of hydrophobic atoms with the pharmacological

activity. GRIND (3D-QSAR) studies allowed to identify

important mutual distances between pharmacophoric fea-

tures, which include one H-bond donor, two H-bond

acceptors and two hydrophobic groups as well as their dis-

tances from different steric hot spots of the molecules.

Activity of the compounds particularly increases with

increase of the distance of an H-bond donor or a hydrophobic

feature from a particular steric hot spot of the benzopyrane

analogs.
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Abbreviations

P-gp P-glycoprotein

MDR Multidrug resistance

ABC ATP binding cassette

QSAR Quantitative structure–activity relationship

GRIND GRID-independent molecular descriptors

MIF Molecular interaction field

Introduction

Development of multidrug resistance (MDR) is one of the

major challenges in cancer chemotherapy, as it limits the

effectiveness of many clinically important agents [1]. One

of the basic underlying mechanisms is overexpression of

the mdr1 gene product, P-glycoprotein (P-gp) [2], which

belongs to the ATP-binding cassette (ABC) family of

transporters [3]. It is highly promiscuous in its ligand

recognition profile and thus transports a large variety of

structurally and functionally diverse compounds out of
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tumor cells [4]. Apart from its role in tumor cells it is

expressed at epithelial cells of liver, kidney, intestine and

colon, as well as at the blood brain barrier. Thus, P-gp not

only plays an important role in maintaining a concentration

gradient of toxic compounds at these physiological barri-

ers, but also modulates the pharmacokinetics of drugs that

are recognized as P-gp substrates.

Within the past decade numerous inhibitors of P-gp med-

iated drug efflux have been identified [3]. Several compounds

entered even phase III clinical studies, such as MS-209

(dofequidar fumarate), tariquidar, valspodar and elacridar

[5, 6]. However, none made it to the market so far, mainly

because of lack of efficacy or severe side effects. In light of our

extensive SAR and QSAR studies of propafenones [7, 8],

benzophenones [9] and dihydrobenzopyrans [10], a new class

of conformationally restricted benzopyrano[3,4b][1,4]oxa-

zines have been synthesized and biologically tested with

respect to their ability to block P-gp mediated daunomycin

efflux. These new P-gp inhibitors offer the advantage of a

remarkably reduced conformational flexibility, which renders

them versatile molecular tools for probing stereoselective

differences of drug/P-gp interaction [11], as well as for

3D-QSAR studies. These might be performed by utiliz-

ing alignment-dependent approaches, such as CoMFA

and CoMSIA, or by alignment independent methods using

descriptors derived from Molecular Interaction Fields (MIFs),

like the GRIND [12]. In particular, the latter allow the analysis

of structurally diverse data series. GRID MIFs [13] have been

applied to many areas of computational drug discovery,

including 3D-QSAR [14], docking [15], high-throughput

virtual screening [16], ADME profiling, kinetic [17, 18] and

metabolism prediction [19] of early drug candidates. In this

manuscript we explore the capability of the GRIND approach

to derive predictive 3D-QSAR models for a set of diastereo-

meric benzopyrano[3,4b][1,4]oxazines. The GRIND based

3D-QSAR models added value in recognition of important

pharmacophoric features and their mutual distances. In

addition, molecular shape of the P-gp inhibitors has been

recognized as an important structural prerequisite for high

pharmacological activity.

Materials and methods

Chemistry

Synthesis of the benzopyrane common scaffold was achieved

in analogy to the procedure reported by Godfrey et al. [20] and

following our strategy outlined recently [11]. Besides a set of

diastereomeric esters and benzopyrano[3,4b][1,4]oxazines,

also a set of corresponding ethers were synthesized. Respec-

tive procedures and experimental details are provided in the

supplementary material. In general, compounds showing

4aS,10bR stereochemistry are denoted as (a)-series, whereas

the respective 4aR,10bS-analogues are assigned as (b)-series

(Table 1).

Calculation of physicochemical parameters

Hansch analysis

Molecular descriptors supplied by the program MOE (atom

and bond counts, connectivity indices, partial charge

descriptors, pharmacophore feature descriptors, logP (o/w),

calculated physical property descriptors) were computed

for Hansch analysis. QSAR-Contingency [21], a statistical

application in MOE, was used for the selection of relevant

descriptors. PLS analysis was performed to determine the

relationship between these 2D molecular descriptors and

biological activity of the compounds. The predictive ability

of the model was determined by classical leave one out

(LOO) and leave one pair out cross validation procedures

(SM Table 1). In order to remove any bias, the final model

was externally validated by using a test set of already

published dihydrobenzopyrans [10].

GRIND

3D conformations of the molecules in the data set were

obtained from their 2D coordinates by using the program

CORINA [22]. Molecular Interaction Fields (MIF) were

calculated as GRID based fields in Molecular Discovery

software Pentacle [23] using four different probes: DRY

probe to represent hydrophobic interactions, O sp2 carbonyl

oxygen probe to represent H-bond donor feature of the

molecules, N1 probe to represent –NH which is a neutral flat

probe as an H-bond acceptor in the molecules and the TIP

probe that represents the shape of the molecule, in terms of

steric hot spots. The regions with the most relevant MIF were

extracted by applying the AMANDA algorithm [24] that

uses the intensity of the field at a node and the mutual node–

node distances between the chosen nodes. At each point,

the interaction energy (Exyz) was calculated as a sum of

Lennard-Jones energy (Elj), Hydrogen bond (Ehb) and

Electrostatic (Eal) interactions.

Exyz ¼
X

Eljþ
X

Eelþ
X

Ehb

Default values of probe cutoff (DRY = -0.5, O = -2.6,

N1 = -4.2, TIP = -0.74) was used for discretization of

MIF. Nodes with an energy value below this cutoff were

discarded. The Consistently Large Auto and Cross

Correlation (CLACC) algorithm [23] was used for

encoding the prefiltered nodes into GRIND thus producing

most consistent variables as compared to MACC [25]. The
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values obtained from this analysis were represented directly

in correlogram plots, where the product of node–node

energies is reported versus the distance separating the nodes.

Highest energy product can be defined for the same probe

(obtaining four auto correlograms: DRY–DRY, O–O,

N1–N1 and TIP–TIP) and for pairs of different probes

(obtaining six cross correlograms: DRY–O, DRY–N1,

DRY–TIP, O–N1, O–TIP, and N1–TIP). The QSAR model

was built using PLS and its quality assessed by means of q2

and standard deviation error of prediction (SDEP). Classical

leave one out (LOO) method was applied to calculate q2

values. The final model was validated by leave one pair out

Table 1 Enantiomerically pure benzopyrano [3,4b][1,4] oxazines (5a–22b) and their IC50 values

# Scaffold Stereochemistry R1 R2 IC50 lM ± SD LogP(o/w)

5a (A) (3S,4R) (L) CH3 H 29.85 ± 0.01 2.84

5b (A) (3R,4S) (L) CH3 H 14.55 ± 0.05 2.84

6a (A) (3S,4R) (L) CH(CH3)2 H 2.40 ± 0.03 3.82

6b (A) (3R,4S) (L) CH(CH3)2 H 2.70 ± 0.02 3.82

7a (A) (3S,4R) (L) CH2(C6H5) H 0.55 ± 0.02 4.38

7b (A) (3R,4S) (L) CH2(C6H5) H 0.77 ± 0.04 4.38

8a (A) (3S,4R) (L) CH3 CH3 3.96 ± 0.06 3.11

8b (A) (3R,4S) (L) CH3 CH3 3.72 ± 0.03 3.11

9a (A) (3S,4R) (L) CH(CH3)2 CH3 0.96 ± 0.06 4.08

9b (A) (3R,4S) (L) CH(CH3)2 CH3 1.35 ± 0.003 4.08

10a (A) (3S,4R) (D) CH(CH3)2 H 4.62 ± 0.31 3.81

10b (A) (3R,4S) (D) CH(CH3)2 H 1.34 ± 0.08 3.81

11a (A) (3S,4R) (D) CH(CH3)2 CH3 1.01 ± 0.02 4.08

11b (A) (3R,4S) (D) CH(CH3)2 CH3 1.00 ± 0.05 4.08

12a (B) (2S,4aS,10bR) CH3 H 1241.6 ± 0.04 1.98

12b (B) (2S,4aR,10bS) CH3 H 76.89 ± 0.06 1.98

13a (B) (2S,4aS,10bR) CH(CH3)2 H 15.32 ± 0.32 2.94

13b (B) (2S,4aR,10bS) CH(CH3)2 H 59.33 ± 0.60 2.94

14a (B) (2S,4aS,10bR) CH2(C6H5) H 2.68 ± 0.18 3.51

14b (B) (2S,4aR,10bS) CH2(C6H5) H 259.78 ± 0.06 3.51

15a (B) (2S,4aS,10bR) CH3 CH3 47.83 ± 0.91 2.24

15b (B) (2S,4aR,10bS) CH3 CH3 28.93 ± 0.15 2.24

16a (B) (2S,4aS,10bR) CH(CH3)2 CH3 47.51 ± 0.40 3.21

16b (B) (2S,4aR,10bS) CH(CH3)2 CH3 16.70 ± 0.20 3.21

17b (B) (2R,4aR,10bS) CH(CH3)2 H 9.63 ± 0.08 2.95

18a (B) (2R,4aS,10bR) CH(CH3)2 CH3 79.27 ± 0.05 3.22

18b (B) (2R,4aR,10bS) CH(CH3)2 CH3 27.84 ± 0.02 3.22

19a (C) (2S,3S,4R) – H 54.05 ± 0.31 2.14

19b (C) (2S,3R,4S) – H 102.64 ± 0.15 2.14

20a (C) (2S,3S,4R) – CH3 5.46 ± 0.24 2.14

20b (C) (2S,3R,4S) – CH3 6.84 ± 0.15 2.14

21a (D) (2S,4aS,10bR) – H 48.80 ± 0.09 3.10

21b (D) (2S,4aR,10bS) – H 44.00 ± 0.03 3.10

22a (E) (2S,3S,4R) – CH3 35.22 ± 0.02 3.66

22b (E) (2S,3R,4S) – CH3 45.17 ± 0.05 3.66
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cross validation as already described in the 2D-QSAR

section (SM Table 2) as well as by an external test set

composed of previously published compounds.

Pharmacology

Biological activity of target compounds 5a–22b was asses-

sed using the daunorubicin efflux protocol as described

previously [26]. Briefly, multidrug resistant CCRF-CEM vcr

1,000 cells were incubated with daunorubicin and the

decrease in mean cellular fluorescence in dependence of

time was measured in presence of various concentrations

of the modulator. IC50 values were calculated from the

concentration–response curve of efflux Vmax/Km versus

concentration of the modulator. Thus, the effect of different

modulators on the transport rate is measured in a direct

functional assay. Values are given in Table 1 and are the

mean of at least three independently performed experiments.

Generally, inter experimental variation was below 20 %.

Results and discussion

Structure activity relationships (SAR)

Biological activity values of the data series cover a range of

more than three orders of magnitude (Table 1) with the

two phenylalanine esters 7a and 7b being the most active

compounds (7a: 0.55 lM; 7b: 0.77 lM), followed by

N-methylated L-valine analogues 9a (0.96 lM) and 9b

(1.35 lM), which are by a factor of 2 more active than the

corresponding unsubstituted analogs 6a (2.40 lM) and 6b

(2.70 lM). The same trend could be observed for the

respective D-valine derivatives. This observation is even more

pronounced for the alanine derivatives (compare methylated

analogs 8a (3.96 lM) and 8b (3.72 lM) versus respective

secondary amines 5a (29.85 lM) and 5b (14.55 lM). This

most probably is due to a logP effect with more lipophilic

compounds showing higher biological activity, which has

been shown for numerous classes of P-gp inhibitors [27].

It has to be noted that for all seven diastereoisomeric

pairs showing a bicyclic scaffold almost no differences in

biological activity exist. However, this pattern changes

remarkably upon ring closure to the tricyclic benzopyr-

ano[3,4b][1,4]oxazines. While all stereoisomers containing

a valine moiety (13a,b; 16a,b, 18a,b, 19a,b–22a,b) are still

within one order of magnitude, both the alanine and

phenylalanine derivatives exhibit remarkable differences in

their P-gp inhibitory potency (IC50) values. Interestingly, in

case of alanine, the 4aS,10bR-isomer 12a is by a factor of

15 less active than the diastereomeric 4aR,10bS analogue

12b, whereas in case of the phenylalanine derivatives this

behavior reverses with the 4aS,10bR-isomer 14a being by

two orders of magnitude more active than 14b. This dif-

ference in their biological activities might be due to dif-

ference in mode of interaction of diastereoisomeric pairs as

has been indicated in a preceding publication [11].

Hansch analysis

3D structures of all diastereoisomers were built with the

builder function of MOE 2011. 10 and energy minimised

using the MMFF94 force field which uses a bond charge

increment method to set the electrostatic partial charges

[28]. In order to determine the influence of physicochem-

ical properties of the compounds on their biological

activity, QSAR analyses were performed by using the

software package MOE version 2011. 10 and MOE’s

contingency analysis tool for identification of the most

important descriptors. The multiple linear regression

analysis produced an equation solely based on the hydro-

phobic van der Waals surface area (vsa_hyd) (Eq. 1).

Interestingly, descriptors related to electrostatic properties,

such as topological polar surface area and molar refrac-

tivity, did not show significant contributions to the model.

Log ð1=IC50Þ ¼ 0:01 ðvsa hydÞ � 4:74 ð1Þ

n ¼ 35; R2 ¼ 0:67; q2
ðLOOÞ ¼ 0:63; RMSE = 0:48

Figure 1 shows a plot of observed versus biological

activity predicted by QSAR E. 1. Compounds 14b and 22b

show outlier behaviour (residual value above one log unit).

Upon removal of these two compounds, the q2 value

improves to 0.70. Interestingly, both compounds belong to

the (b) series of diastereoisomers, suggesting that for this
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Fig. 1 Plot of observed versus predicted MDR-modulating activity

expressed as log 1/IC50 (dashed line). Predicted values were obtained

with leave-one-out cross validation procedure. Results of linear

regression between observed and predicted log 1/IC50 values (dashed
line) and 1:1 line (continuous line) are shown on the plot for

comparative evaluation
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series additional factors other than lipophilicity might play

a role. Vsa_hyd describes the sum of van der Waals surface

areas of hydrophobic atoms (Å2). This is perfectly in line

with previous studies which showed that distribution of

hydrophobicity within the molecules influences their mode

of interaction with P-gp [29] and lipophilicity needs to be

considered as a space directed property [30, 31]. This

space-directedness might be indicative for different

orientations of molecules within the binding area of P-gp,

which is mainly hydrophobic [32]. The QSAR model was

further validated by using an external test set of already

published dihydrobenzopyrans and tetrahydroquinolines

[10]. All compounds are predicted well, with the

residuals being less than one log unit from their

experimental inhibitory potencies (log IC50). This further

strengthens the reliability of the final QSAR model

(Table 2). Additionally, 18 different models were

developed by taking one pair of diastereoisomer out at

each step. All models showed q2 values in the range of

0.57–0.70, which further demonstrates the consistency of

the QSAR model (SM Table 1).

GRID Independent molecular descriptor (GRIND)

analysis

The previously computed molecular structures along with

their activity values (expressed as log1/IC50) were loaded

into the software package Pentacle (v 1.06) [23] to derive

3D-QSAR model using GRIND descriptors. According to

previous findings for propafenone analogs, all compounds

Table 2 Test set of dihydrobenzopyrans, their experimental and predicted inhibitory potencies (log1/IC50) by 2D-QSAR and GRIND models

# R1 Exp. log 1/IC50 Pred. log 1/IC50 (2D-QSAR) Pred. log 1/IC50 (GRIND) Log P(o/w)

1a -1.77 -1.38 -0.79 3.19

1b 0.19 -0.22 -0.11 2.98

1c -3.16 -2.35 -2.06 1.40

1d -1.67 -1.28 -0.77 2.38

1e -0.38 0.17 -0.27 4.43

2a -0.51 -0.34 -0.02 4.27

2b 0.37 0.80 0.28 4.07

2f -0.90 -0.57 -0.72 3.59

2g -0.29 1.07 -0.25 4.70

3f -0.75 -0.57 -0.77 4.34

3g 0.47 1.07 0.01 5.44
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were modeled in their neutral form [33]. Structural vari-

ance of the data was analyzed with principal component

analysis (PCA) performed on the complete set of GRIND

descriptors. The first two principal components explain

about 32 % of the descriptor variance in the data set.

Principal component analysis (PCA) on the data matrix

showed that the series is organized in three different

clusters (Fig. 2). Molecules in the cluster on the right hand

side (cluster 1) do not contain any H-bond donor, while the

second cluster (cluster 2) contains one H-bond donor

group. The 3rd cluster (cluster 3), located on the upper left

corner of the plot, contains compounds with two H-bond

donor groups in their structures. Furthermore, rigid and

smaller compounds (cluster 1 and cluster 2) are separated

from the flexible ones (cluster 3). Overall, compounds in

cluster 3 are more potent than compounds in cluster 1 and 2,

suggesting that an elongated structure is an important per-

quisite for high P-gp inhibitory potency.

In order to identify the more important pharmacophoric

features of ligand–protein interaction, a PLS model was

built, using the complete set of active variables (450)

generated by Pentacle (v 1.06). This resulted in a one-latent

variable (LV1) model with an r2 of 0.51 and a cross-vali-

dated (LOO) q2 value of 0.27, which was quite unsatis-

factory. Thus, variable selection was applied to reduce the

variable number using the FFD variables selection algo-

rithm [34] implemented in Pentacle. This resulted in a

decrease from 450 to 196 variables and a large increase of

the model quality (r2 of 0.72, q2 of 0.58, standard error of

prediction 0.52).
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Fig. 2 PCA score plot shows the whole series organized in three different types of inhibitors of P-gp, overall no outlier has been observed in the

dataset
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Fig. 3 Plot of observed versus predicted (LOO) MDR-modulating

activity (log1/IC50) of inhibitors of P-gp obtained with the GRIND

descriptors

Fig. 4 3D representatives of series (a) having 2S,4aS,

10bR-configuration and series (b) having 2S,4aR,10bS-configuration
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With the exception of compounds 14b, 5a, and 12a, all

compounds are within one order of magnitude from their

predicted values (14b: obs 259.78, pred 23.21; 5a: obs

29.85, pred 2.80; 12a: obs 1241.65, pred 58.30 lM)

(Fig. 3). The outlier behavior of these three compounds

might be due to potential different interaction behavior of

the two diastereomeric series as reported by Jabeen et al.

[11]. However, building two separate QSAR models

composed of compounds of series (a) and series (b) in two

separate training sets showed an analogous picture and did

not improve the results (data not shown). Thus, although

GRIND descriptors are able to capture different configu-

rations, they were not able to extract the differences of the

two diastereomeric series. This might be due to the fact that

the molecules are quite compact (Fig. 4) and GRIND is

considering MIFs within a grid step of 0.5 Å.

All compounds of the external test set are predicted

within one log unit from the experimental inhibitory

potencies (log IC50), except (1c), where the residual is

slightly more than one log unit (Table 2). The low activity

of 1c mainly might be due to its low logP value, which is

not properly reflected in the GRIND based pharmacophoric

features. Thus, GRIND is over predicting the compound.

The overall good predictive ability and model statistics of

all 18 leave one pair out GRIND models further

demonstrates the consistency and validity of the GRIND

based 3D-QSAR model (SM Table 2).

Analysis of the PLS coefficients profile of the GRIND

model allows to identify those descriptors which exhibit

the largest contribution to the model. According to the

bar plot shown in Fig. 5, certain distances of the N1–N1,

O–N1, and O–TIP probes are participating most in explain-

ing the variance in the biological activity values (Table 3).

The sum of the van der Waals surface areas of hydro-

phobic atoms (vsa_hyd) has emerged as an important

determinant for high biological activity of benzopyrane-

type P-gp inhibitors (Eq. 1). The 3D-QSAR model using

GRIND descriptors further refines this general property and

identified two hydrophobic regions (DRY–DRY) separated

by a certain distance range in all active compounds. These

represent the aromatic ring of the benzopyrane ring sys-

tem and R1. In the most active phenylalanine derivatives

(7a,b and 14a,b) the two regions are separated by a dis-

tance of 13.2–13.6 Å, which is considered optimal accord-

ing to the GRIND model. Thus, adding a large hydrophobic

group (large vsa_hyd) at the position of R1 might lead to a

further increase of the biological activity.

Previous QSAR studies on propafenone derivatives have

demonstrated the importance of H-bond acceptors and their

distance from the central aromatic ring [35, 36].

Fig. 5 PLS Coefficients

showing the descriptors directly

(positive value) or inversely

(negative values) correlated to

IC50. P-gp inhibitory potency

particularly increases with the

increase in (N1–N1), (O–N1)

and (O–TIP) descriptor value

Table 3 Summary of GRIND variables and their corresponding distances that are identified as being highly correlated to biological activity of

compounds 5a–22b

Correlogram Distance Comment

DRY–DRY 13.2–13.6 Å Optimal distance separating two hydrophobic groups. More pronounced in phenylalanine derivatives

N1–N1 8.8–9.2 Å Related to two hydrogen bond acceptor atoms in the molecules. This is mainly associated to

the carbonyl group and the hydroxyl groups in tert-butyl esters

O–N1 2.4–2.8 Å Well pronounced in tert-butyl esters with IC50 *1 lM. Positive contribution towards

P-gp inhibitory potency

O–N1 9.6–10.0 Å Complements N1–N1, contributing directly to the inhibition of P-gp mediated drug efflux

O–TIP 12.8–13.2 Å H-bond donor present far away from a steric hot spot, positive contribution to IC50

O–TIP 5.6–6.0 Å H-bond donor present quite near to a steric hot spot, contributing negatively

DRY–TIP 15.2–15.6 Å Complements to DRY–DRY correlogram, positive contribution to P-gp inhibitory potency
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Furthermore, Seelig [37, 38] more explicitly defined two

patterns of H-bond acceptor groups and their fixed spatial

distance observed in ligands of P-gp. Pattern I contains two

H-bond acceptors separated by a distance of 2.51 ± 0.30

Å, while pattern II comprises two or three H-bond acceptor

groups at a distance of 4.60 ± 0.60 Å apart. Interestingly,

the 3D-QSAR model based on benzopyrano[3,4b][1,4]ox-

azines identified an optimal distance of 8.8–9.2 Å between

two H-bond acceptor groups (N1–N1) in all compounds

exhibiting IC50 *1 lM. The N1–N1 correlogram is mainly

associated to the carbonyl group and the hydroxy group in

tert-butyl esters 7a–11b. For tricyclic compounds (15a–16b

and 18a,b) it is associated to the distance of the carbonyl

group and the tertiary nitrogen atom. Finally, for amino

alcohols 19a–20b this descriptor refers to the two hydroxy

groups in the molecules. This indicates that the presence of

two H-bond acceptors is important for the biological activity

of P-gp inhibitors if they are separated by a distance

of *8.8–9.2 Å (Fig. 6a), which is in line with several

other studies. Crivori et al., used GRIND descriptors to

identify 3D pharmacophoric features which differentiate

P-gp inhibitors from substrates. They reported two H-bond

Fig. 6 a Represents two

H-bond acceptors (N1–N1: blue
hot spots) at a distance of

8.8–9.2 Å. b DRY-TIP

represents a hydrophobic probe

(DRY: yellow hot spots) at a

distance of 15.2–15.6 Å from a

steric hot spot (TIP: green
region). c O–TIP outline an

H-bond donor (OH) (O: red hot
spots) at a distance of 12.8–13.2

Å from the 9-carbonitril edge’’

of the molecule. d Marks an

H-bond donor (–NH) at a

distance of 5.6–6.0 Å from the

9-carbonitril edge of the

molecule (O–TIP).

e Representing an H-bond donor

(OH) at a distance of 9.6–10.0 Å

from an H-bond acceptor

(C=O), present only in esters

(O–N1). f Representing, H-bond

donor (–NH) at a distance of

2.4–2.8 Å from an H-bond

acceptor (C=O)
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acceptors at a distance of 8.0 Å apart from each other in

P-gp inhibitors [39], whereas a distance of 11.5 Å between

two H-bond acceptors, along with the importance of shape

descriptors, have been reported by Cianchetta et al. [40] for

substrates of P-gp.

However, despite of similarities in the number of

H-bond acceptors necessary for a high biological activity, a

direct comparison of distance matrices thereof across dif-

ferent chemical scaffolds reveals some differences. This

most probably is due to the fact that the large binding site

of P-gp has multiple spots able to contribute to H-bond

interactions and that different chemical series utilize dif-

ferent H-bond interaction patterns.

Apart from a certain number of H-bond acceptors, one

H-bond donor along with hydrophobic regions distribution

have been identified as important pharmacophoric features

of P-gp inhibitors/substrates [8, 36]. It is worth noting that

a very similar MIF based pharmacophore of P-gp inhibitors

was recently published by Broccatelli et al. [41]. They

identified one H-bond acceptor and two large hydrophobic

regions, together with an optimal molecular shape, as being

important for high activity, and successfully used their

model for virtual screening to identify new P-gp inhibitors.

The results are further in line with Boccard et al. [42]

outlining an optimal shape and hydrophobicity as major

physicochemical parameters responsible for the affinity of

flavonoid derivatives for P-gp [43, 44].

Also in our GRIND model, shape based probes (TIP)

defining steric hot spots exhibit a significant contribution.

Especially the 9-carbonitrile group in the benzopyrane scaf-

fold encodes an important molecular boundary (steric hot

spot) and serves as anchor for defining optimal distance ranges

to an H-bond donor (O–TIP correlogram) as well as to a

hydrophobic feature (DRY–TIP correlogram). The O–TIP

combination of probes encodes the shape of the molecules

(steric hot spots) together with an H-bond donor group.

Interestingly, O–TIP coefficients are negative for a distance

between 5.6 and 6.0 Å, but become positive for larger dis-

tances (12.8–13.2 Å). These distances (12.8–13.2 Å) are

present in benzopyranes bearing tert-butyl esters (5a–11b)

and amino alcohol derivatives (19a–20b and 22a,b) as shown

in Fig. 6c. In tricyclic diastereoisomers (12a–14b and 17b)

these descriptors are linked to shorter distances and mark

(–NH) as an H-bond donor at a distance of 5.6–6.0 Å apart

from the cyano group, which is the main group contributing to

the TIP MIF, and seems to be related with a negative influence

for the biological activity of this group (Fig. 6d). This indi-

cates that, in general, the most potent P-gp inhibitors show

extended conformations and have an H-bond donor group far

from regions with a strong TIP probe related field.

Analyzing the DRY-TIP correlogram it becomes evident

that a hydrophobic group at a distance of 15.2–15.6 Å from

one of the ‘‘edges’’ of the molecule (steric hot spot, cyano

group) positively contributes to biological activity. In

tert-butyl esters (5a–11b) and 14a,b these two probes map

the distance between a hydrophobic group (R1) (14a,b) or

tert-butyl group in 5a–11b from the cyano group (Fig. 6b).

In analogy to the O–TIP correlogram, DRY–TIP shows a

negative contribution towards biological activity for

shorter distances (7.6–8.0 Å) of these probes.

Finally, the O–N1 correlogram (H-bond donor–H-bond

acceptor) points towards two positive contributions at a

distance of 9.6–10.0 and 2.4–2.8Å, respectively (Fig. 6e, f).

The first distance is linked to the hydroxyl and carbonyl

group in 5a–11b and is complementary to the N1–N1

correlogram as already discussed. The second distance

refers to the –NH and carbonyl group. O–N1 probes at both

distance ranges are well pronounced in tert-butyl esters

(5a–11b) as well as in amino alcohol substituted deriva-

tives (19a–20 b and 22a,b). However, in all tricyclic

compounds (12a–18b) the two probes do not fit either of

the distance ranges.

To summarize, the presence of two H-bond-acceptor

groups and one H-bond donor at a particular distance from

each other and from a particular ‘‘edge’’ or steric hot spot

of the molecule is associated to an increase of the biolog-

ical activity in benzopyrane-type P-gp inhibitors (Fig. 6).

Conclusions

Benzopyrano-[3,4b][1,4]oxazines are versatile molecular

tools for probing the stereoselectivity of P-glycoprotein.

For a distinct substitution pattern, different pairs of dia-

stereoisomers exhibit a large difference in their potency to

inhibit P-gp mediated drug efflux. Unfortunately, GRIND-

based 3D-QSAR models were unable to link these dif-

ferences to concrete differences of distances between

pharmacophoric hot spots, even if the GRIND analysis

provided a reasonably well performing 3D-QSAR model

outlining a set of important pharmacophoric features. Two

H-bond-acceptor groups, one H-bond donor at a particular

distance from each other as well as distinct distances of

these probes to steric hot spots seem to play a major role in

the interaction of benzopyrane-type P-gp inhibitors. The

activity particularly increases when increasing the distance

between an H-bond donor or a hydrophobic feature and a

particular steric hot spot of the benzopyrane analogs. This

not only further highlights the importance of H-bonding,

but also indicates that a certain shape/configuration of the

molecules is important for high activity. Further analyses

will focus on a generalisation of this finding in other series

of P-gp inhibitors.
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