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Data-driven modelling of a gene regulatory
network for cell fate decisions in the growing
limb bud
Manu Uzkudun1, Luciano Marcon1 & James Sharpe1,2,*

Abstract

Parameter optimization coupled with model selection is a conve-
nient approach to infer gene regulatory networks from experimen-
tal gene expression data, but so far it has been limited to single
cells or static tissues where growth is not significant. Here, we
present a computational study in which we determine an optimal
gene regulatory network from the spatiotemporal dynamics of
gene expression patterns in a complex 2D growing tissue (non-
isotropic and heterogeneous growth rates). We use this method to
predict the regulatory mechanisms that underlie proximodistal
(PD) patterning of the developing limb bud. First, we map the
expression patterns of the PD markers Meis1, Hoxa11 and Hoxa13
into a dynamic description of the tissue movements that drive limb
morphogenesis. Secondly, we use reverse-engineering to test how
different gene regulatory networks can interpret the opposing
gradients of fibroblast growth factors (FGF) and retinoic acid (RA)
to pattern the PD markers. Finally, we validate and extend the best
model against various previously published manipulative experi-
ments, including exogenous application of RA, surgical removal of
the FGF source and genetic ectopic expression of Meis1. Our
approach identifies the most parsimonious gene regulatory
network that can correctly pattern the PD markers downstream of
FGF and RA. This network reveals a new model of PD regulation
which we call the “crossover model”, because the proximal
morphogen (RA) controls the distal boundary of Hoxa11, while
conversely the distal morphogens (FGFs) control the proximal
boundary.
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Introduction

The vertebrate limb is a classical model system to study the specifi-

cation of a growing organ during development. In the mouse, limb

development starts with the outgrowth of the limb bud from the

lateral plate mesoderm, which in just two days is able to form the

main skeletal elements present in the adult limb. The limb skeleton

is divided into three main proximodistal (PD) segments: the stylopod

(upper arm/leg), the zeugopod (lower arm/leg) and the autopod

(hand/foot) (Fig 1A). The three segments are specified in a proxi-

mal-to-distal sequence, first the stylopod, then the zeugopod and

finally the autopod (Tabin and Wolpert, 2007; Towers et al, 2012).

The regulatory mechanism that specifies the three PD segments

sequentially is not yet fully understood (Tabin and Wolpert, 2007;

Roselló-Dı́ez et al, 2014).

During the development of the limb bud, a set of specific tran-

scription factors marks the developing PD segments. Currently, the

best known PD markers are homeobox genes: Meis1 and Meis2

(stylopod), Hoxa11 (zeugopod) and Hoxa13 (autopod) (Nelson

et al, 1996; Tabin and Wolpert, 2007; Mercader et al, 2009)

(Fig 1A). In the initial stages of limb development (around E9.25

stage), Meis1 and Meis2 are expressed across the entire limb bud.

Successively, around E10.0, they are downregulated in the distal

region where Hoxa11 is activated (Fig 1B). Finally, around E10.5,

Hoxa13 starts to be expressed in a small distal posterior region and

expands anteriorly and proximally with a simultaneous shrinking of

Hoxa11, which then maintains a mutually exclusive pattern with

Hoxa13 (Nelson et al, 1996; Tabin and Wolpert, 2007; Mercader

et al, 2009). The question of how these three molecular zones are

controlled by upstream signals has traditionally been split into two

categories of model: (i) those in which cells make decisions by

measuring the duration of exposure to a signal, or alternatively, (ii)

those in which the decision is based on the strengths or levels of a

signal.

A classical model to explain the specification of the limb PD axis

is the progress zone model (PZM). This model proposes that the

progressive specification of the PD segments is based on a timing

mechanism which is active in a distal region, called the progress

zone (PZ), that is under the influence of the apical ectodermal ridge

1 EMBL-CRG Systems Biology Program, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
2 Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain

*Corresponding author. Tel: +34 93 316 0098; E-mail: james.sharpe@crg.eu

ª 2015 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 8: 815 | 2015 1



A

E

D

B

C

Figure 1. A realistic data-driven model for PD patterning in the limb bud.

A Each PD skeletal element expresses specific genes. Meis1 and Meis 2 are stylopod markers, Hoxa11 is the zeugopod marker, and Hoxa13 is the autopod marker.
B The process of mapping experimental gene expression data of Meis, Hoxa11 and Hoxa13 to the 2D limb bud model.
C The general regulatory model uses the RA and FGF morphogen gradients as inputs and should explain the expression patterns of the PD markers as outputs: Meis,

Hoxa11 and Hoxa13 over time and space.
D An example of the simulated morphogen gradients of RA and FGF. The source of FGF signal (curved black lines) is combined from the FGF8 expression pattern, which

is uniform along the AER, and the FG4 expression pattern, which is initially expressed in a small posterior region which is later expanded anteriorly.
E Solid interactions describe the “upstream” part of the circuit, which we take as given. The main hypothetical interactions to be explored in this study are shown as

the dashed lines—the regulation of the Hox genes.
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(AER) (Summerbell 1974). As the limb grows, cells exit the progress

zone and assume different fates depending on the amount of time

they received the “distalizing” fibroblast growth factor (FGF) signals

coming from the AER (Niswander et al 1993; Fallon et al 1994).

Under this hypothesis, it is the duration of exposure to FGF which

determines how distal the cell fate will be—a longer duration speci-

fies a more distal fate. It is important to note that this hypothesis

does not specify the mechanism by which time is measured. It could

be counting temporal oscillations (e.g. the cell cycle), or it could

simply be the slow accumulation of a factor in the cells. Four differ-

ent FGFs are expressed in the mouse AER, and although their

precise role in PD patterning is still debated (Mariani et al, 2008; Yu

and Ornitz, 2008), it is clear that they also play a major role in the

physical outgrowth of the limb. FGF8 is expressed along all the AER

and is the most essential for correct growth of the limb bud (Mariani

et al, 2008). Fgf4,9,17 are functionally redundant and are expressed

initially in a posterior region and then expand anteriorly (Mariani

et al, 2008).

A more recent model of PD patterning is the two-signal model

(2SM) (Mercader et al, 2000). This model explains the specification

of the stylopod by a mechanism based on two opposing signals: a

distal FGF signal coming from the AER and a proximal signal

coming from the body flank (Mercader et al, 2000; Cooper et al,

2011; Roselló-Dı́ez et al, 2011). Experimental evidence suggests that

retinoic acid (RA) plays the role of the proximal signal (Mercader

et al, 2000; Cooper et al, 2011; Roselló-Dı́ez et al, 2011) although a

consensus on the importance of RA in PD patterning has not yet

been reached (Cunningham and Duester, 2015). RA is synthesized

in the lateral plate mesoderm (LPM) by the enzyme RALDH2 and

diffuses into the mesenchyme (Yashiro et al, 2004). FGF signalling

in the distal tissue promotes the expression of Cyp26b1, an enzyme

that degrades RA to inactive forms (Probst et al, 2011)—thereby

creating a gradient of RA along the PD axis (Yashiro et al, 2004). In

the proximal tissue, RA upregulates the expression of the stylopod

markers Meis1 and Meis2, while in the distal tissue, FGF signalling

appears to downregulate them, probably through the promotion of

Cyp26b1 (Mercader et al, 2000; Cooper et al, 2011; Roselló-Dı́ez

et al, 2011). In the 2SM, the stylopod–zeugopod boundary is thus

explained as the tipping point between the proximal influence of RA

and the distal influence of FGF, rather than as a timing mechanism.

Recently, the idea of timing has again been revived (Roselló-Dı́ez

et al, 2014) in a study which showed that prematurely exposing

distal tissue to the signalling environment typical for late distal tissue

(i.e. low RA and high FGF) is unable to induce precocious expression

of the distal marker Hoxa13. Moreover, it showed that reducing RA

could only induce extra Hoxa13 expression after the developmental

stage when Hoxa13 has been naturally activated. The fact that this

could be overcome by promoting chromatin opening suggested that

an epigenetic timing mechanism might also be involved (Roselló-

Dı́ez et al, 2014). It should be noted, however, that this proposal

was not exactly the same as the PZM, as the authors were able to

rule out a simple temporal integration of FGF signalling.

In summary, the main alternative models for this process still

focus on the distinction between measuring signal duration versus

measuring signalling levels. Here, we use an approach combining

parameter optimization and model selection to investigate these

different hypotheses in an unbiased way. First, we map the gene

expression of the PD markers over space and time into an accurate

model of limb morphogenesis (Marcon et al, 2011). Then, we

reverse-engineer the optimal gene network that controls the pattern-

ing of the PD markers by testing different networks that act down-

stream of the proposed FGF and RA gradients. Our method makes

no assumption on which mechanistic concept underlies PD pattern-

ing (i.e. whether the system measures signalling levels, or measures

time). We instead employ a step-by-step approach, starting from a

basic network that describes the known regulation between the

stylopod marker Meis and the RA/FGF signals (Mercader et al,

2000; Yashiro et al, 2004; Cooper et al, 2011; Roselló-Dı́ez et al,

2011). We then test different ways in which Hoxa11 and Hoxa13

could be regulated by a combination of RA and FGF. We fit the

different regulatory networks by inferring the optimal parameter

values that can better reproduce the experimental wild-type expres-

sion patterns of Meis, Hoxa11 and Hoxa13.

This systems biology approach allows us to identify which is the

simplest network that can explain the known experimental data on

the three PD markers. Finally, we use the model to investigate how

the network relates to the different conceptual models that have

been proposed to explain the specification of the PD segments. This

allows to us determine to which extent a model based on measuring

levels, versus measuring time, underlies PD patterning. Achieving

this in a system with dynamically moving tissue does not alter the

basic objective function (i.e. the method by which we calculate the

difference between simulated and experimental data), but it allows

us to find the model which explains the whole sequence of gene

regulatory events despite the constantly changing shape of the grow-

ing tissue during this period.

Results

Optimizing the null hypotheses: RA- or FGF-dominant models

To study different hypothetical PD patterning mechanisms, we

simulated gene regulatory networks on a realistic growing model of

limb development. This was done by using an accurate 2D numeri-

cal description of limb morphogenesis (Marcon et al, 2011) that has

been previously generated by combining a morphometric analysis

of limb shapes (Boehm et al, 2011) with clonal fate mapping data

(Arques et al, 2007). The growth of the limb is represented by a 2D

triangular mesh with anisotropic growth distortions, which is fully

remeshed at 1-hour intervals over a 36-hour period to maintain high

quality of the mesh throughout the simulation (Marcon et al, 2011).

We used this framework to investigate how well different gene regu-

latory networks can pattern the PD markers from stage mE10:09 to

stage mE11:12. To simulate the dynamics of the relative concentra-

tions of the PD markers and morphogen gradients (FGF and RA),

we employed reaction–diffusion partial differential equations

(PDEs). These equations are solved on the growing triangular mesh

using a finite-volume method. Our software uses precalculated

remeshing and handles the redistribution of element contents into the

new mesh at 1-h intervals, which is described in detail in Marcon

et al (2011). The rate of change in the concentration of a given gene

product G is given by three terms in equation (1): a production term

PG, a diffusion term DG and a linear decay term kG. The production

terms for all molecules vary in time and space. In the case of FGF

and RA, these non-uniform production terms are mapped from
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experimental data, while for the other molecules, production rates

are calculated from the regulatory dynamics of the network.

@G

@t
¼ PG � kGG þ DGr2G (1)

To obtain the experimental data needed for the reverse-engineering,

we performed whole-mount in situ hybridizations (WMISH) of the

main PD markers: Meis1, Hoxa11 and Hoxa13, from stage mE10:9 to

stage mE11:12. These data are used to constrain the models and to

implement the objective function for the optimization process. The

Meis1 and Meis2 genes show similar expression patterns and pattern-

ing roles, so we chose Meis1 as representative of both. We mapped

these data into the computational growth map by converting colour

intensity values to relative and approximate molecular concentrations

(see Materials and Methods, and Fig 1B). In situ hybridization is

known to be a non-quantitative technique; however, previous studies

in Drosophila (in a static 1D domain) have shown that successful

reverse-engineering of gene regulatory networks does not require

knowledge of the absolute concentrations of gene products (Jaeger

et al, 2004; Crombach et al, 2012). Instead, it is the shapes of the gene

expression domains which matter. To ensure that a non-quantitative

read-out of the expression levels is not a problem for our study, we

chose to perform an explicit non-linear sigmoid rescaling of the

mapped values—thereby ensuring that the primary information in the

data is about the shape of the expression domains rather than levels

(see Materials and Methods for more details, and further discussion

towards the end of the next results section).

Our next goal was to optimize the parameter values of different

gene regulatory networks to reproduce the wild-type gene expres-

sion patterns of Meis, Hoxa11 and Hoxa13 by interpreting the RA

and FGF gradients (Fig 1C). As our model is a high-level one, we

use a single variable to represent FGF signalling, even though it is

composed of multiple FGF ligands. To take into account the differ-

ent FGF sources, we calculated FGF production as a combination of

two primary sources: (i) the FGF8 pattern is expressed earlier and

more uniformly along all the AER and (ii) the patterns of FGF4, 9

and 17 are initiated slightly later with a clear posterior bias and then

gradually expand anteriorly to produce more uniform distributions

(Fig 1D) (Mariani et al, 2008). RA in the model is synthesized at a

constant rate at the main body of the embryo and diffuses into the

limb mesenchyme (Yashiro et al, 2004). The simulated FGF and RA

gradients at different stages are shown in Fig 1D.

As a starting point for the models, we used a simple regulatory

network that includes a set of key molecular components and inter-

actions that are well documented in literature. In particular, we

considered the basic hypothesis that the distal FGF morphogen

counteracts the action of a proximal RA gradient by induction of

Cyp26b1, a RA-degrading enzyme (Mercader et al, 2000; Yashiro

et al, 2004; Cooper et al, 2011, Roselló-Dı́ez et al, 2011; Roselló-

Dı́ez et al, 2014). Moreover, we considered that the stylopod marker

Meis1 (Mercader et al, 1999; Capdevila et al, 1999) is upregulated

directly by RA in the proximal limb bud (Mercader et al, 2000). This

basic regulatory network describing these interactions is shown as

the solid interactions in Fig 1E.

Using the simulated gradients, we explored the different ways in

which FGF and RA could regulate the expression of the PD markers

Meis, Hoxa11 and Hoxa13. How the FGF and RA signals control the

distal markers Hoxa11 and Hoxa13 is still a matter of debate

(Vargesson et al, 2001; Tabin and Wolpert, 2007; Roselló-Dı́ez et al,

2014). It is theoretically possible that both of these opposing gradi-

ents directly feed into both genes—thus allowing different thresh-

olds of signalling ratio to be encoded independently for each gene.

However, since FGF is known to regulate RA (Mercader et al, 2000;

Yashiro et al, 2004; Probst et al, 2011), it is also possible that each

Hox gene is primarily regulated by one pathway or the other. We

used our modelling approach to explore the hypothetical scenarios.

In each model, the interactions were implemented with Hill func-

tions that capture that main qualitative feature of gene regulation: a

cooperative non-linear responses coupled with saturation (Goutelle

et al, 2008). We define a model to describe the dynamics of FGF(F),

RA(R), Cyp26b1(C) and Meis(M), equations (2–5). This is the

“upstream” part of the network (mentioned above, Fig 1E), whose

topology (regulatory circuit) is common to all models tested in this

study. PF, PR, PC and PM are the corresponding production rates and

kF , kR, kC and kM are the corresponding decay rates. DF and DR are

the diffusion constants for the FGF and RA diffusible molecules,

respectively. k’s are specific constants of the Hill function relating to

a threshold for activation or inhibition, l’s are Hill coefficients

describing the steepness of the regulatory response, and c1 describes

the linear strength by which Cyp26b1 degrades RA.

@F

@t
¼ PF � kFF þ DFr2F (2)

@R

@t
¼ PR � c1CR� kRR þ DRr2R (3)

@C

@t
¼ PC

Fl

Fl þ k1
l � kCC (4)

@M

@t
¼ PM

Rl

Rl þ k2
l � kMM (5)

The parameters of this system do not represent measurable

biochemical constants but rather effective regulatory influences.

One exception is the diffusion constants RA and FGF that are

obtained from experimental estimates found in literature. For RA,

we used a diffusion constant of D = 600 lm2/min, estimated from

experiments in chick wing buds where a bead releasing RA was

applied in the anterior wing bud region (Tickle et al, 1985). For

FGF, we used a diffusion constant of D = 100 lm2/min, estimated

using FRAP measurements in zebra fish (Müller et al, 2013).

Starting from this upstream network, we explored how different

models that interpret FGF and RA could regulate the expression of

the PD markers Hoxa11 and Hoxa13. These different models corre-

spond to different combinations of the dashed regulatory interac-

tions in Fig 1E. Since there are two downstream genes, the minimal

models all have two links, and there are consequently four possible

minimal models, which we label A–D (and will be described in the

subsequent sections one by one). To determine how well each

model could theoretically explain the experimental data, we

employed a parameter-fitting approach in which the parameters kF,
kR, c1, l and the various regulatory k’s were optimized to give the

best match between the simulated dynamic gene expression patterns

and the experimental data. As far as we know, this is the first case

of automated reverse-engineering (parameter optimization plus
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model selection) on a 2D growing/moving tissue. As experimental

data, we used wild-type gene expression patterns of Meis, Hoxa11

and Hoxa13 (Fig 1B). For each model (e.g. Model A in Fig 2A), we

employed a gradient descent optimization method (see Materials

and Methods) in which the objective function consisted of an auto-

matic scoring method which compared the predicted 2D patterns of

each of the three genes with the digitized versions of the wild-type

patterns (Fig 2B). The goal was not to search only for a good final

result, but rather to find networks which recapitulate the entire

developmental trajectory of dynamic expression patterns, so pattern

scoring was performed for a series of time-points during develop-

ment (not just the end-point of the simulations). The total score for

a given simulation was defined as the sum of the scores for each

gene product (Meis, Hoxa11, Hoxa13) and each experimental time-

point. The score for a given gene product at a specific experimental

time-point was defined as the sum of squared differences for each

triangular element ek of the experimental and simulated concentra-

tions (equation 6). Rather than the absolute values of concentrations

at each position, it is the shapes of the expression domains that

matter for the objective function, so we normalized both the experi-

mental and predicted values by a non-linear rescaling process (see

Materials and Methods)

X

gi

X

tj

scoreðgi; tjÞ ¼
X

gi

X

tj

X

ek

ðcexpðgi; tj; ekÞ � csimðgi; tj; ekÞÞ2

(6)

For each model, the optimization process was run 27 times, start-

ing from different initial parameter values which were partially

random, but selected to be far away from each other in parameter

space (see Materials and Methods). This was to ensure that a wide

region of parameter space was being explored and to test whether

good solutions were converging to the same global optimum, or

whether conversely multiple local optima were being found. Two

examples run with very different initial parameter values are shown

in Fig 2C, indicating how far the optimizations start from a success-

ful result. A summary of all initial parameter combinations is given

in Supplementary Fig S1 and Supplementary Table S1.

We first tested two simple models based on the idea that both

Hoxa11 and Hoxa13 are regulated only by the RA gradient (Roselló-

Dı́ez et al, 2014) or only by the FGF gradient. In both models, we

also include the previously documented inhibition between Hoxa11

by Hoxa13 (Nelson et al, 1996; Mercader et al, 2009). Since our

molecular variables represent relative concentrations (rather than

absolute concentrations), both the maximum production rates and

the decay rates for Cyp26b1, Meis, Hoxa11 and Hoxa13 were fixed

to the arbitrary value of 0.05/min (so that the maximum steady-state

concentrations would be 1.0). The strength and speed of each gene

regulatory interaction are represented by the steepness of the Hill

functions. We used one Hill coefficient l to govern the steepness of

all regulatory interactions except for one exception. For the repres-

sion of Hoxa11 by Hoxa13, we allowed a distinct Hill coefficient l0,
since this repression is experimentally seen to be extremely rapid

[the expression patterns of the two genes become quickly mutually

exclusive (Nelson et al, 1996; Mercader et al, 2009)]. Both l and l0

were free parameters to be optimized during the fitting process.

In the first model (Model A, see Fig 2A), Hoxa11 and Hoxa13

are inhibited by the RA acid gradient and not directly regulated by

FGF, as suggested in the most recent study (Roselló-Dı́ez et al,

2014). Therefore, the expression of Hoxa11 should start when the

RA concentration falls below a certain threshold value, and

Hoxa13 should be initiated when the levels further decrease below

a second threshold value. This model contains no direct activator

of Hoxa11 or Hoxa13, only two different permissive conditions

specified by the RA gradient. The regulatory inputs into the Hox

genes are given by equations (7, 8) for Hoxa11(A11) and Hoxa13

(A13), where PA11
and PA13

are the corresponding production rates

and kA11
and kA13

are the corresponding decay rates. k3, k4, k5, k6
and k7 are again specific constants for the corresponding Hill func-

tions (see Fig 3A).

@A11

@t
¼ PA11

kl3
Rl þ k3

l
kl

0
4

Al0
13 þ k4

l0 � kA11
A11 (7)

@A13

@t
¼ PA13

k5
l

Rl þ k5
l � kA13

A13 (8)

In contrast, in the second model (Model B), both Hoxa11 and

Hoxa13 are activated by Fgf but not regulated by RA. In equa-

tions (9, 10), we describe it is dynamics.

@A11

@t
¼ PA11

Fl

Fl þ kl6

kl
0

4

Al0
13 þ kl

0
4

� kA11
A11 (9)

@A13

@t
¼ PA13

Fl

Fl þ k7
l � kA13

A13 (10)

We optimized the parameters of both models to fit the wild-

type pattern of Meis, Hoxa11 and Hoxa13. An example of the

iterative improvements in the gene expression patterns is shown

for Model A in Fig 2D, which gradually converges to the most

similar dynamic sequence of marker patterns. (The optimized

values of all parameters for all models discussed in this paper

are provided in Supplementary Table S2). After optimization,

both Models A and B were able to recapitulate a number of

features of the dynamic gene regulation of Hoxa11 and Hoxa13:

the general positioning of the domains and the timing of their

appearance (Fig 3). However, a more detailed examination of the

patterns suggested that neither model was able to reproduce

certain important qualitative features of the Hoxa11 pattern. In

particular, the simulated Hoxa11 domains appeared as a curved

stripe which is thicker in the middle than at the top or bottom

(i.e. thicker at the centre than at the anterior or posterior ends

of the domain). By contrast, the real expression pattern is thin-

ner and weaker in the middle, giving a curved “dumb-bell” type

of shape. We thus explored an alternative model which could

rectify this problem.

The value of 2D shape data: the crossover model

A detailed analysis of the experimental Hoxa11 pattern revealed that

its proximal boundary is more curved than the distal boundary

(white dashed lines in Fig 4C). Moreover, the central part of the

expression pattern is narrower and weaker than the anterior and

posterior ends. A possible explanation for the failure of Models A

and B to reproduce this expression pattern is that the Hox
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expression domains in these models are controlled only by one

gradient in each case (the RA gradient for Model A and the FGF

gradient for Model B). Examination of the shapes of these two gradi-

ents showed that they have different spatial profiles. The isoclines

for RA (lines which connect all points with the same concentration)

were less curved than those for FGF (Fig 4E and F). This is because

the source of RA is essentially a straight line (the main body of the

embryo), while FGFs are produced along a distal curved line that

corresponds to the AER.

These observations suggested that the FGF gradient may define

the more curved proximal boundary of Hoxa11, while the RA gradi-

ent may instead define the straighter distal boundary. We explored

this hypothesis using another simple model in which the proximal

boundary of Hoxa11 was controlled by a positive input from the

A

B

C

D

E

Figure 2. Reverse-engineering (parameter optimization) of a regulatory network in a 2D growing domain.

A An example of a regulatory network with a set of unknown parameters.
B The optimization algorithm iteratively finds a parameter set that minimizes the difference between the simulated and experimental gene expression patterns of Meis,

Hoxa11 and Hoxa13 at different stages.
C Two examples of the simulation using random initial parameter values before optimization.
D The gradually improving predicted expression patterns over time and space, for different iterations of the algorithm. Meis is shown in red, Hoxa11 in green, and

Hoxa13 in red.
E The experimentally mapped gene expression patterns are shown with the same colour code.
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FGF gradient. This would upregulate Hoxa11 expression on the

distal side of a given FGF concentration threshold. However,

Hoxa11 is also known to be downregulated distally in an indirect

manner by Hoxa13 (Nelson et al, 1996; Mercader et al, 2009). We

therefore considered that if RA had a repressive effect on Hoxa13, it

could downregulate Hoxa11 indirectly on the distal part where RA

concentrations are lower. We constructed Model C as a hybrid of

Models A and B: Hoxa11 activated by FGF and Hoxa13 repressed by

RA (Fig 4G). We named this the “crossover model” as it has the

interesting feature that the proximal boundary of Hoxa11 is

controlled by the distal gradient, and vice versa. The new equations

for the regulation of the Hox genes are (11, 12).

@A11

@t
¼ PA11

Fl

Fl þ k6
l

k4
l0

Al0
13 þ k4

l0 � kA11
A11 (11)

@A13

@t
¼ PA13

kl5
Rl þ kl5

� kA13
A13 (12)

To test this hypothesis, we performed the same optimization

procedure as before and obtained the simulated expression patterns

as shown in Fig 4G. The crossover model was indeed better able to

recapitulate the shape of the Hoxa11 pattern than the previous

models where the regulation was implemented only by one of the

two gradients (a difference score of 2.41 compared to 2.53 for Model

A, and compare Fig 4H with Fig 3).

Our hypothesis suggested that the final of the possible minimal

models (Model D) would be the worst of all—it should force the

distal boundary of Hoxa11 to be more curved than the proximal

boundary (the opposite of the observed pattern). When we

performed parameter optimization on Model D using equations (13)

and (14) , it indeed produced the worst fit of all minimal models (a

difference score of 3.36).

@A11

@t
¼ PA11

k3
l

Rl þ k3
l

k4
l0

Al0
13 þ k4

l0 � kA11
A11 (13)

@A13

@t
¼ PA13

Fl

Fl þ k7
l � kA13

A13 (14)

The conclusion from optimizing all four basic models was that

Model C was the best. However, we wanted to confirm this conclu-

sion as strongly as possible, with a series of extra optimizations and

simulations. Firstly, as mentioned above, in situ hybridization is

known to be a non-quantitative technique. To boost our confidence

that the results did not depend on the non-linear rescaling of

expression levels, we altered this sigmoid rescaling of values (both

experimental and simulated) so that the spatial patterns were

slightly changed (see Supplementary Fig S2). This was designed to

A

B

C

Figure 3. Simulation results of Model A and Model B.

A The regulatory network for Model A, and the simulated expression patterns of Meis shown in red, Hoxa11 in green, and Hoxa13 in red at successive time-points.
B The regulatory network Model B, and the simulated expression patterns with the same colour code.
C The same time-points as (A) and (B) showing the mapped experimental data. The last column for all rows shows the Hoxa11 pattern at the last time-point, using an

intensity colour map to highlight the shape of the expression domain.
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G
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J K LI

Figure 4. Proximal and distal expression boundaries of Hoxa11 and the crossover model.

A, B The predicted late expression patterns for Hoxa11 obtained using Model A or Model B.
C–F The real experimental pattern shows quite a different shape—a “dumb-bell” type of shape which is narrower in the middle. The proximal expression boundary is

more curved than the distal boundary. Related to this, the shape of the RA gradient (E) is less curved than the shape of the FGF gradient (F).
G, H When Model C is optimized, it produces a dynamical model with a good fit to the experimental data on Hoxa11. By contrast, Model D (H) provides a very poor fit.
I–L When all four models are compared, it is clear that Model C produces the lowest scores, but also achieves successful optimization more frequently than the others.

The x-axis shows the score, with better results to the left (lower difference values), while the y-axis shows the frequency of achieving this score. (J, K ,L) show the
convergence of free parameters towards optimal regions in parameter space for Model C.
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be equivalent to “underdeveloping” the colour reaction of the

in situ (or overexposing the image) which could have non-

uniform impacts on the final distribution of values. We then

reperformed the 27 parameter optimizations for each of the four

models, and although the absolute score values changed, Model

C still produced the best fit. This confirmed that the important

constraint from the data is not the absolute values, but rather the

shape of the expression domains. Secondly, to explore whether

we have enough data to constrain the model, we removed half of

the time-points of the experimental data for Hoxa11 and Hoxa13,

and reran the optimization for Model C. If overfitting was a prob-

lem, then halving the number of data points would reveal an

instability in the fitted parameters, but instead the resulting simu-

lation was indistinguishable from the original result (see Supple-

mentary Fig S3). Thirdly, we analysed the convergence of

parameter values during the multiple optimization runs. As can

be seen in Fig 4J–L, successful results always resulted in parame-

ters converging to the same position of parameter space, provid-

ing confidence that a global optimum has been found. (Further

analysis of parameter values was performed at the end of the

study on Model F.)

Lastly, we chose to optimize a new model (Model X0), which

rather than being one of the simplest topologies, represents the

“most complex” topology; that is, it contains all the possible four

regulatory links between the upstream nodes RA/FGF and the

downstream nodes Hox genes (the grey dashed links in Fig 1E).

We optimized this “super-model” (Supplementary Fig S4) and

then tested it by removing each regulatory link one by one

(thereby testing a series of intermediate models, which we called

X1�X4). In agreement with all results described above, the links

which are most important to maintaining a good score are indeed

the two links of Model C. Indeed, when we remove both of the

unimportant links, we have recreated Model C and the resulting

pattern is almost as good as when Model C was optimized

directly.

The ranking of the four minimal models (A–D) could be seen

not only by their difference scores, but also by how frequently

they managed to converge at all, with the best model (C)

managing to converge far more often than the next best model

(19 out of 27 optimization runs, as compared to 9/27 for Model

A). These results are summarized in Fig 4I. It should also be

emphasized that all four minimal models have the same number

of free parameters (they all have two regulatory links between

RA/FGF and the Hox genes), so Model C’s success is not just a

question of having more degrees of freedom. Overall, these

results highlight the power of analysing 2D gene expression

patterns as a means to distinguish between different alternative

models. All four models are equally capable of recapitulating the

correct order of genes along the PD axis, but when the true 2D

shapes are taken into account, Model C is clearly better than the

others.

In summary, we derived a model that is able to fit accurately

mapped wild-type data. We next had to seek other experimental

support for our specific crossover model. Could our optimized

model explain non-wild-type results—the effects of various types of

experimental perturbations? If not, the experimental perturbations

should be valuable extra constraints with which to improve the

model.

Perturbation experiments I: beads of RA

A classical type of manipulation used in limb development is the

implantation of beads soaked in diffusible proteins or drugs into the

limb bud tissue. A previous study on PD patterning (Mercader et al,

2000) showed that when RA-soaked beads were implanted in the

distal region of chick limb buds, they promote the expression of

Meis1 and Meis2 and shifted the expression pattern of Hoxa11–

Hoxa13 distally (Fig 5A).

To test our best model from the reverse-engineering process

(the crossover model), we reproduced this experiment by simulat-

ing a gradually decreasing point source of RA that was carried

along with the tissue during outgrowth (Fig 5B). A single triangle

of the mesh describing the early limb bud was marked as the

morphogen source. This point source produced RA at a rate that

decreased exponentially over time, simulating the exhaustion of

the morphogen. In (15), we show the modified source term for RA

in the bead triangle.

PR ¼ P0expð�kðt � t0ÞÞ (15)

where tb is the time-point when the bead is placed into the limb.

Since the dynamics of RA release from the bead are unknown, we

performed virtual bead experiment by testing a variety of different

values for the initial RA concentration within the bead (P0). The

results showed that when the exogenous RA is strong enough

(P0 = 20), the expression of the PD markers changes in accordance

with the real experiments (Fig 5C). In particular, the Meis boundary

and the Hoxa11/Hoxa13 boundary shift distally, while, importantly,

the proximal Hoxa11 boundary remains unaltered. This result

supports the crossover model as it shows that the two genes under

the control of RA are shifted, while the boundary under control of

FGF (the Hoxa11 proximal boundary) remains unchanged.

Perturbation experiments II: removal of FGF signals

Another study (Vargesson et al, 2001) manipulated FGF, the other

important morphogen gradient involved in PD patterning. In this

study, the AER was removed from chick limb buds at stage 21/22,

when Hoxa13 has just been activated. Although the expression of

Hoxa13 was lost within a few hours, Hoxa11 was maintained for a

longer period of time (Fig 6A).

We reproduced this experiment computationally (using Model C),

by terminating the production of FGF (PF = 0) at stage mE10:16 and

measuring the effect 6 h later (Fig 6B). Only one parameter from

our previous Model C had to be altered for it to correctly reproduce

the differential downregulation of Hoxa13 compared to Hoxa11

(Fig 6C): the decay rate for Hoxa11 had to be reduced by 60%. The

downregulation of Hoxa13 occurred despite the absence of a direct

regulatory link from FGF, because in our model when FGF is

removed, the absence of Cyp26b1 allows RA to diffuse back into

the distal tip.

Perturbation experiments III: ectopic Meis expression

Similar to the RA bead experiments, other manipulative studies

(Capdevila et al, 1999; Mercader et al, 1999; Mercader et al, 2009)

showed that when Meis1 was misexpressed, the expression of
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Hoxa11 and Hoxa13 showed a small but reproducible distal shift

(Fig 7A). Intriguingly as in the RA bead case, although the Hoxa13

expression domain is reduced and the Hoxa11 domain expands

distally, there was no clear shift of the proximal Hoxa11 boundary.

In our current best model (Model C), Meis has no regulatory effect

on any other genes. We therefore tested whether extending the

model with a new regulatory link from Meis to the Hox genes could

replicate this experimental result. Since ectopic Meis causes shrink-

age of the Hoxa13 domain, a simple possibility is that Meis directly

represses Hoxa13 (Model E). We implemented this interaction by

defining equation (16)

@A13

@t
¼ PA13

k5
l

Rl þ k5
l

k8
l

Ml þ k8
l � kA13

A13 (16)

With normal Meis levels (control in Fig 7B), the addition of this

new regulatory link had no impact on the gene expression patterns.

When we forced Meis expression to occur uniformly throughout the

tissue, by adding a constant term to the production rate (equal to

PM), the expression patterns of Hox genes changed but they were

not in agreement with the patterns of Hoxa11 and Hoxa13 observed

in the experiments (Mercader et al, 1999). The Hoxa13 expression

levels were reduced but its domain shape was unaltered, and

Hoxa11 now extended distally until the tip, completely overlapping

with Hoxa13. These patterns can be explained by considering the

fact that the ectopic expression of Meis was uniform, causing a

uniform repression of Hoxa13. Thus, although Hoxa13 expression

was lower, its spatial pattern was unaffected, and this in turn had

an impact on Hoxa11 which was derepressed throughout the distal

Hoxa13 domain.

A particular feature shown by this model was that there was no

PD shifting of the original expression boundaries. Indeed, shifting a

boundary usually indicates the involvement of a spatial gradient—

when the magnitude of the gradient increases or decreases, thresh-

old positions shift spatially. In contrast, the new interaction in

Model E links two genes which do not display clear spatial gradients

(Meis and Hoxa13). We did not consider a model in which Meis

activates the production of RA because there is no RA production in

the Meis domain of the wild-type limb bud. We therefore instead

explored the possibility that Meis regulates Cyp26b1 because this

BA

C

Figure 5. Computational experiments with RA beads.

A Experimental evidence on the effect of applying RA-soaked beads in chick limbs and monitoring the expression patterns of Meis, Hoxa11 and Hoxa13. Data from
Mercader et al (2000).

B A virtual bead moving with the tissue, secretes RA, as a source which decreases exponentially over time.
C Simulated expression patterns of Meis, Hoxa11 and Hoxa13 at mE10:13 and mE10:22 for the unperturbed system and for the perturbed system with an implanted RA

bead. In the experimental case, the distal boundaries of Meis and Hoxa11 shift distally, while the proximal boundary of Hoxa11 is unaltered. We use here the limb-
specific staging system developed in Boehm et al (2011), which provides an hour-by-hour temporal resolution (mE10:13 = 10 days and 13 h).
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directly influences the spatial gradient of RA. In particular, we

considered that Meis might repress Cyp26b1 (Model F), since it has

a positive effect on Hoxa13 (indirectly via repression of RA). This

interaction is represented by equation (17).

@C

@t
¼ PC

Fl

Fl þ k1
l

k9
l

Ml þ k9
l � kCC (17)

Figure 7C shows that Model F is indeed able to replicate the exper-

imental results: the indirect repression of Hoxa13 via Cyp26b1 and

RA shifts the distal boundary of Hoxa11 distally together with the

Hoxa13 boundary, while the proximal boundary of Hoxa11 is unaf-

fected. This is achieved because the proximal boundary is controlled

by FGF, which is unaffected by the new link. This again provides

very strong support for the crossover model, in which Hoxa13 is

primarily controlled by RA, while Hoxa11 is primarily controlled by

FGF. As a final check, we retested the new Model F against the previ-

ous tests performed in the study. For example, we reran the simula-

tions for the wild-type scenario, the RA-soaked bead experiment and

the surgical removal of the AER, and confirmed that the model still

gives the same consistent results for all three tests (Supplementary

Fig S5). We also performed a sensitivity analysis for each of the free

parameters of Model F, and discussed why one of these parameters is

less tightly determined than the rest (Supplementary Fig S6).

Discussion

Reverse-engineering methods use parameter optimization to derive

models which can best explain the behaviour of a system. In

systems biology, this approach is becoming increasingly important

to derive the gene regulatory networks that underlie the temporal

dynamics of gene expression and protein distributions. However,

this method has so far been limited to cases where the growth of the

biological systems could be neglected (e.g. single cells or to static

multicellular domains) (Basso et al, 2005; Bansal et al, 2007;

Goutsias and Lee, 2007; Crombach et al, 2012). This study provides

an example of a reverse-engineering approach applied to an arbi-

trary growing tissue. It does not change the basic principle of the

approach, but it is more computationally challenging and since most

developmental pattering occurs in growing tissue, this study extends

the method to a greater range of possible model systems. We

achieved this result by combining a previously generated model of

limb growth (Marcon et al, 2011) with gene expression time course

data to reverse-engineer the gene regulatory network that controls

the PD patterning of the limb.

Although limb PD patterning has traditionally been abstracted as

a one-dimensional problem, in this study we have reverse-

engineered a two-dimensional model to reproduce the dynamics of

the three PD markers. In this way, we were able to use the 2D

BA

C

Figure 6. AER removal experiments.

A When the AER is removed from stage 21/22 chick limb buds, in which Hoxa13 was already expressed, Hoxa13 becomes downregulated, while Hoxa11 remains
expressed. Experimental data from Vargesson et al (2001).

B In our virtual experiment, the limb bud grows normally until stage mE10:16 at which point the FGF production is set to 0.
C Simulation results using a modified Model C show a rapid Hoxa13 downregulation despite the absence of direct activation by FGF. In the model, this is due to

diffusion of RA into the distal tissue.
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expression patterns as extra constraints to better distinguish

between different hypothesis in the model-fitting process. In particu-

lar, we have been able to identify the crossover model as the

minimal gene regulatory network that best recapitulates the qualita-

tive shapes of the expression patterns of Meis, Hoxa11 and Hoxa13.

We found that the shape of the Hoxa11 pattern could be explained

only by a model where RA controlled its distal boundary and FGF

controlled its proximal boundary. Importantly, when we extended

and analysed the model to reproduce published experimental pertur-

bations, we found further confirmation of the ideas underlying the

crossover model. Indeed, in agreement with the experiments, when

RA was overexpressed, only the distal boundary of Hoxa11 changed

while the proximal boundary was unaffected (Figs 5 and 6). This

highlights the value of using two-dimensional expression patterns

to infer patterning models, since the crossover model, which

was derived only by using wild-type expression data, could

also reproduce the effect of previously published perturbation

experiments.

By analysing other perturbation experiments, we were also able to

further extend the crossover model and identify an additional inter-

action to account for the shift of Hoxa11 and Hoxa13 observed upon

Meis overexpression. In particular, we found that the repression of

Cyp26b1 by Meis was the simplest additional interaction that could

explain this phenomenon. Interestingly, a recent study (Roselló-Dı́ez

et al, 2014) has analysed the expression of Cyp26b1 in Meis1

misexpression experiments and has arrived to the same conclusion.

This further confirms the value of fitting 2D patterns to reverse gene

regulatory networks that control patterning. It should be noted that

our crossover model depends on a diffusible signal emanating from a

straight source in the main body, but it gives no direct evidence about

the identity of this molecule, which is still an unresolved question

(Cunningham and Duester, 2015).

Which classical model is correct?

The specification of the main limb axis is a classical model system

to study how cells acquire different fates during development.

Diffusible morphogens are known to be at the heart of this process;

however, the mechanisms of morphogen interpretation are still

unclear (Tabin and Wolpert, 2007). In particular, it is still debated

whether cells are able to acquire different fates by measuring the

relative strengths of morphogen signals, or instead by measuring

the duration of exposure to signals. Both ideas have been proposed

to explain limb PD patterning. The progress zone model (Summer-

bell 1974) is a long-standing proposal in support of the signal dura-

tion measurement hypothesis. By contrast, the two-signal model

(Mercader et al, 2000) supports the hypothesis that morphogen signal

ratios underlie PD patterning. Finally, a recent study (Roselló-Dı́ez

et al, 2014) has again revived the idea of a timing mechanism.

We thus chose to assess which of the two classical hypotheses

is a more accurate description of our final model (Model F). In

other words, which conceptual behaviours does the model

BA

C

Figure 7. Meis overexpression shifts the Hoxa11–Hoxa13 boundary distally.

A Comparison of the expression patterns of Meis, Hoxa11 and Hoxa13 between the wild-type and Msx2:Meis1 mouse embryos in which Meis1 is overexpressed
throughout the limb bud. Experimental data reproduced with permission from Mercader et al (2009).

B In the regulatory network Model E, Meis directly represses Hoxa13; however, this does not result in the correct change in expression patterns (shown at stages
mE10:16 and mE10:22).

C In the regulatory network Model F, Meis represses Hoxa13 indirectly through Cyp26b1 repression. This is able to reproduce the observed changes in Hox expression
patterns.
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exhibit: levels-measuring or time-measuring? Although our model

has been developed in a fully dynamic 2D tissue domain, it can

also be used to explore in which way an individual cell could

interpret the RA and FGF morphogens to express the different PD

markers. To do this, we simply evaluate a single set of the equa-

tions without diffusion—equivalent to simulating a single mesh

triangle on its own with no neighbours. We first explored the

levels-measuring hypothesis and performed simulations by expos-

ing individual cells to different levels of signals for a long period

of time. In this scenario, the stable equilibrium would be reached

so that the final expression of PD markers would not reflect the

temporal integration of the signals but only the signalling ratio of

FGF and RA. The plots in Fig 8A–C show different temporal

dynamics of the input signals and the corresponding PD marker

expression levels. These results revealed that Model F was indeed

able to measure the relative signalling ratio between RA and FGF:

when RA was high and FGF was low, the circuit stably activated

Meis (stylopod); when RA and FGF were both at intermediate

levels, it promoted Hoxa11 (zeugopod); and when RA was low

and FGF was high, it promoted Hoxa13 (autopod).

In agreement with the two-signal model, these results showed

that our model was able to activate different genes as a function of

the signalling ratio between FGF and RA. Nevertheless, we also

wanted to test whether the model could measure signal duration.

Similar to the previous case, we defined a simulation scenario

which could be used to test this hypothesis. We performed simulations

BA C

ED F

Figure 8. Our regulatory network can be seen both as a two-signal model and a progress zone model.
A–C Our regulatory network can describe PD patterning as a balance of two signals. For a proximal cell with high RA and no FGF (A), the stylopod marker Meis is

expressed. For a medial cell where both FGF and RA signals are present (B), the zeugopod marker Hoxa11 is stably expressed. For a distal cell with high FGF and no
RA (C), the autopod marker Hoxa13 is expressed.

D–F Our regulatory network can also describe PD patterning as a progress zone model. When there is no FGF signal (D), Meis is expressed. When the FGF signal
duration is short (E), Hoxa11 is expressed. And when the FGF signal duration is long (F), Hoxa13 is expressed.
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by using different durations of FGF signalling but keeping the

FGF level at a constant fixed value. In other words, we assumed

that the FGF signal could only have one level when it was ON

(high value), and would otherwise be OFF (zero value), and we

varied only the duration for which FGF was ON. This was not

intended as a realistic representation of FGF levels in the real limb

bud (which clearly display graded signalling), but it was necessary

to perform a clean test of how the network could respond to

different durations of FGF signalling. Interestingly, our analysis

(Fig 8D–F) revealed that the network (with the same parameter

values as before) could switch on different genes in response to

different durations of FGF exposure and therefore could also func-

tion as a temporal integrator of FGF over time. Indeed, in agree-

ment with the progress zone model, when FGF was ON for 0 h,

Meis was expressed; when FGF was ON for an intermediate expo-

sure time, Hoxa11 was expressed; and finally, if a cell was exposed

to FGF for longer time, it expressed Hoxa13. The precise durations

of FGF exposure required for medial versus distal fate will depend

on the detailed parameter values—this simulation is simply a proof

of concept. Nevertheless, our analysis revealed that a gene regula-

tory network can operate both as a levels-measuring circuit and as

a time-measuring circuit, showing that these two mechanistic

concepts may not be easily separable in real systems. This is

evident even in the scenario where the signalling ratio is measured

(Fig 8A–C): it takes some time before the equilibrium is reached,

so the early response of the circuit will always exhibit a degree of

temporal integration. This highlights a more general point about

gene regulatory networks. Since they are intrinsically dynamical

systems, some degree of temporal integration will be inevitable,

and it may be a general fallacy to consider levels-measuring versus

time-measuring as alternative explanations of a given system. In

support of this, a very similar observation has also been made in

the case of Sonic hedgehog signalling in the neural tube, where it is

clear that both signal level and signal duration affect the down-

stream gene expression (Balaskas et al, 2012). In the case of limb

development, we believe this understanding may underlie the

historical difficulties in resolving the debate between the PZM and

2SM hypothesis. It reveals that a single gene regulatory network

underlying PD patterning could simultaneously be explained by the

two different conceptual models.

Materials and Methods

Mapping gene expression data

We included in our limb bud growth model experimental data with

the expression of different genes. Gene expression data were

obtained using whole-mount in situ hybridization techniques from

mouse forelimbs and hindlimbs at different stages of development.

Given an image corresponding to the expression of a gene at some

stage in development, we used a combination of techniques to map

it to our 2D limb bud growth model (Marcon et al, 2011) and

convert it to molecular concentrations. First, using a limb bud

morphometric tool, we obtained the precise stage of the limb bud

comparing its shape to a database of limb bud shapes from different

stages of development (Boehm et al, 2011). Then, the image was

processed and edited to remove the background noise and obtain

the expression pattern. Using a computational tool developed in the

laboratory, we aligned the processed image to the limb bud model

at the correct stage and converted light intensity values to molecular

concentrations in such a way that highest intensity values corre-

sponded to a concentration of 1 and lowest values to a concentra-

tion of 0. We repeated the same process for the different stages of

development for which we have experimental data. We obtained

interpolated gene expression patterns for intermediate time-points

using the tissue movement map implemented in the model.

Optimizing a regulatory model

For each network model (each topology), we used parameter opti-

mization techniques to find the best parameter set that fitted the

available experimental data. We used a gradient descent algorithm

implemented in the Root package (Brun and Rademakers, 1997)

(https://root.cern.ch). During the optimization process, some of

the parameters were left free, while others were fixed (see main

text). In particular, PFGF4, kF, kR, l, l0, c1, k1, k2, k3, k4, k5, k6 and

k7 were free to optimize, while DF, DR, PFGF8, PR, PC, PM, PA11
,

PA13
, kC, kM, kA11

and kA13
were fixed. All values of parameters

used in the simulations are detailed in Supplementary Table S2.

As experimental data, we used the WT gene expression patterns

of Meis, Hoxa11 and Hoxa13 at different stages of development

(mE10:9 to mE11:12) obtained from mouse forelimbs and hind-

limbs using in situ hybridization techniques. We used 4, 26 and

32 different time-points for Meis, Hoxa11 and Hoxa13, respectively

(more time-points for the patterns with more complex or dynamic

shapes). To each simulation, we assigned a score defined as a

weighted sum of square differences between experimental and

simulated concentrations of Meis, Hoxa11 and Hoxa13 at different

stages of development. We applied a non-linear scaling to the

experimental and simulated data so that the emphasis was on the

shapes of the gene expression patterns rather than the levels. We

used a scaling Hill function given by xf ¼ kl=ðxl þ klÞ, where x

is the non-filtered data, xf is the filtered data, and k and l are Hill

parameters. In Supplementary Fig S3, we show that the choice of

best model is not affected by the parameter values chosen. The

weighting for Hoxa11 at the last time-point was assigned to 20

because its more complex pattern is particularly important to

recreate. We optimized the parameters of each tested model a

total of 27 times, each time starting from a different initial param-

eter set (see Supplementary Fig S1). To have a sufficiently diverse

initial parameter set, we chose three upstream parameters that

were affecting all the genes kF, kR and c1 and for each one selected

three reasonable values spanning two orders of magnitude (values

given in Supplementary Table S1). Combining these three parame-

ter values gave 27 combinations, and the remaining free parame-

ters were chosen at random (see Supplementary Table S1, and the

convergence of these values in Fig 4J–L).

Our model starts at a time-point when the RA and FGF gradients

already exist. We therefore “presimulated” the diffusion of these

gradients for the equivalent of 3 h on the static mesh representing the

first shape of the model—mE10:09. The remaining molecules were all

set to a concentration of zero at the beginning of the simulations.

Supplementary information for this article is available online:

http://msb.embopress.org
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