Background:
Healthcare systems are in a constant process of adaptation due to rapid advances in technology, new treatments, high specialisation and changes in the organization of health services [1]. As a consequence, patients are seen by an ever-expanding array of different providers in a variety of locations, making coordination difficult [1, 2]. This is particularly challenging in the care of patients with chronic and multiple conditions, who tend to use healthcare services more frequently and use a greater array of services than other patients [3, 4]. Clinical coordination across levels of care should prevent wasteful duplication of diagnostic testing, perilous polypharmacy and conflicting care plans [5, 6]; thus the effects of clinical coordination extend beyond cost reduction through improving quality of care [7–9].

This study is set within a conceptual framework for analysing the performance of integrated healthcare...
Clinical coordination is defined as the harmonious connection of the different health services needed to provide care to a patient throughout the care continuum in order to achieve a common objective without conflicts. Continuity of care refers to how individual patients experience coordination of services, and it is defined as the degree to which patients experience care over time as coherent and linked. Clinical coordination across levels of care involves the coordination of both clinical information and clinical management. Clinical information coordination is the transfer and use of patients’ clinical information in order to harmonize activities between providers, and it consists of two dimensions: transfer of clinical information and the use of this information. Clinical management coordination is the provision of care in a sequential and complementary way according to a healthcare plan shared by the different services and healthcare levels involved, and it consists of three dimensions: care coherence (i.e., the existence of similar approaches and treatment objectives among professionals from different levels of care), follow-up across care levels (i.e., the adequate monitoring of the patient when there are transitions from one care setting to another) and accessibility across levels (provision of care without interruption across levels of care throughout the clinical episode of the patient). The results of clinical coordination can be assessed by analysing processes aimed at coordination or their outputs (immediate results of activities related to clinical coordination) or outcomes (final expected middle-long term results of clinical coordination, such as hospital readmissions or avoidable hospital admissions), and using different perspectives (services, professionals, users (continuity)). The focus of this study relies on measures to assess the outputs of clinical coordination across levels of care (primary and secondary) by using service-based indicators.

Despite the interest this subject has generated, there are still important gaps in terms of measures to assess clinical coordination across levels of care and the development of new indicators continues to be considered a priority in health policy and health services research. Many of the attempts to address this to date have focused on developing indicators to measure healthcare outcomes which are attributed to improvements in clinical coordination. However, the development of output indicators has been limited, and without this type of indicators it is not possible to conclude that outcomes in health care can be attributed to improvements in clinical coordination across levels of care.

Existing sets of indicators are usually designed to analyse a single dimension (e.g., transfer of information) or attribute (e.g., due completion of referral forms and discharge reports) of clinical coordination. Those which address more than one dimension of clinical coordination are not exhaustive in their approach to clinical coordination and are often insufficiently operative or are not directed at the assessment of clinical coordination across levels of care. Furthermore, the conceptual framework used to develop these measures is not generally explained in detail, so it is not obvious exactly which aspects of clinical coordination are being analysed or how measures relate to clinical coordination. As a result of these issues, there is an overrepresentation of some dimensions of clinical coordination addressed by indicators, whilst other dimensions have scarcely been investigated. Studies have concentrated in particular on the transfer of clinical information, especially in terms of completeness of information in discharge reports and to a lesser degree in emergency reports and referral forms, and on the follow-up of patients and accessibility across care levels. Only a few studies have used indicators to measure clinical coherence between care levels.

The aim of this study is to develop and test a set of output indicators to comprehensively evaluate clinical coordination across care levels of care, i.e. addressing both types of clinical coordination, information and management, and their dimensions and attributes.

Methods

The study consisted of two phases: in the first phase, a set of indicators to measure clinical coordination across levels of care was developed based on the literature review and expert discussions, and in the second phase, the set was tested in three different healthcare areas.

1. Development of a set of indicators to measure clinical coordination across levels of care

Identification of indicators: literature review

The study was based on the conceptual framework for analysing the performance of integrated healthcare networks, which identifies two types of clinical coordination across levels of care (clinical information and clinical management) and five dimensions (transfer of information, use of information, care coherence, follow-up across levels and accessibility across levels). A systematic
review of literature was undertaken to identify previously developed indicators. A computerised search of the following bibliographic databases was conducted: Pubmed, Social Science Citation Index, Science Citation Index, ECONLIT, CINAHL and LILACS, in addition to standard internet search engines such as Google. The search strategy included a combination of descriptors and keywords relating to clinical coordination (‘coordination of care’ or associated key terms with similar meaning), levels of care (‘primary care’, ‘secondary care’, ‘hospitalization’, ‘interface’, ‘cross-level’ or associated terms) and measurement tools (‘measure’, ‘indicator’ or associated key terms), making use of the Boolean operator ‘AND’. References from retrieved studies were also screened for possible omissions. The search was conducted in May 2011. Additional searches were conducted on the following organizations’ websites: Agency for Healthcare Research and Quality (AHRQ), World Health Organization (WHO), Pan American Health Organization (PAHO), Physician Consortium for Performance Improvement (PCPI), The Joint Commission, Agència de Qualitat i Avaluació Sanitàries de Catalunya (AQuAS), Observatori de Tendències de Serveis de Salut, the RAND corporation and the National Quality Forum (NQF). Studies in English, Spanish, Portuguese or Catalan which included one or more indicators of clinical coordination across levels of care were selected.

Selection and adaptation of indicators according to the different types and dimensions of clinical coordination

First, the indicators included in the selected studies were analyzed to identify which attributes of clinical coordination they addressed [10]. They were subsequently grouped according to type, dimension and the attribute of clinical coordination across levels of care that they addressed (Fig. 1).

Second, three meetings took place with a team of 13 experts, who were either healthcare researchers with experience in the development of performance indicators and clinical coordination assessment or managers of healthcare services. Decisions concerning the selection and adaptation of indicators were made taking the scientific literature into account and when a consensus was reached among all participating members over three sessions of roundtable discussions. During the first meeting, it became obvious that in order to be applied, most of the indicators could not be generic but rather needed to be defined in relation to a specific disease. However, in order to gain a good grasp of the degree of coordination, a number of different diseases were included which require high levels of coordination across levels of care: diabetes mellitus type II, heart failure, chronic obstructive pulmonary disease (COPD) and breast, lung, bladder and colon cancer.

During the meetings, indicators were discussed and adapted based on the existing local clinical practice guidelines, which formed the basis on which standards of clinical coordination across levels of care were established [38–41] (for example, the guidelines allowed the team to determine when an urgent referral to secondary care is appropriate or to define the maximum acceptable time from discharge to a consultation in primary care). Each indicator was described in terms of numerator, denominator, target population, exclusion criteria, definition of terms involved, sources of data and bibliography [42].

For each indicator, the team discussed its relevance to clinical coordination across levels of care and its capacity to provide a good grasp of the degree of coordination. The indicators were then adapted to match the specific context in which they would be applied, taking into account local clinical practice guidelines and other relevant sources of information.
to measure that for which it was designed (face validity).
The team also discussed whether the indicator measured
an aspect of care that was susceptible to being improved
by services (opportunity for improvement), as well as
the formulation of the indicator in such precise terms
that it could be applied consistently within and between
organizations, allowing for comparability (reliability).
The experts identified the best sources of data to calcu-
late each indicator (electronic medical record audit and
clinical and administrative databases) and discussed its
feasibility in terms of data availability and accuracy.

2. Test of the set of indicators

Design and settings
A retrospective cross-sectional study was conducted ap-
plying the set of indicators in three healthcare areas of
the Catalan public healthcare system. The objectives
were to evaluate the feasibility of the indicators (avail-
ability of valid, reliable and consistent data across the
system) and to apply the indicators in three different
healthcare areas in order to assess their usefulness in de-
scribing clinical coordination across levels of care.

Three healthcare areas were selected in order to repre-
sent the diversity of providers present in Catalonia: Baix
Empordà (rural and semi-urban), the city of Girona
(urban) and the Ciutat Vella district of Barcelona (urban),
which all serve a population of 75,000-100,000. A single
entity manages both primary and secondary care in Baix
Empordà (Serveis de Salut Integrats Baix Empordà
— SSIBE) and in Girona (Institut Català de la Salut
— ICS). In Ciutat Vella, two public entities manage primary
care (ICS and Institut de Prestacions d’Assistència Mèdica
al Personal Municipal — PAMEM) and a different public en-
tity manages secondary care (Parc Salut Mar). With regard
to the coordination mechanisms used in these areas, patients
served in Baix Empordà had a single electronic medical rec-
ord for both care levels, whereas patients served in the other
two areas had two shared but different electronic medical re-
cords for primary and secondary care. Several additional
mechanisms have been implemented to improve clinical
coordination across levels of care within the organizations,
such as shared clinical guidelines, online consultations be-
tween primary care physicians and specialists, automated no-
tification of primary care following hospital discharge and
clinical case discussions between the two care levels.

Study population, data source and sample
The study population consisted of patients who had the
selected conditions and who had used more than one
care level, i.e. they were discharged from hospital, had
received outpatient secondary care, were referred to sec-
ondary care or were newly diagnosed in primary care,
depending on the indicator (Tables 1 and 2).

Two sources of data were used: a) electronic medical rec-
ord audit, to calculate seven indicators (five related to clinical
information coordination across levels of care and two
related to clinical management coordination across levels
of care); b) clinical and administrative electronic databases
(which differ from patients’ individual electronic medical
records in the fact that they collate patient data), to calcu-
late twelve indicators (all related to clinical management
coordination).

For indicators based on electronic medical record au-
dits, the sample size was calculated to estimate propor-
tions, which were expected to be around 0.50; the margin
of error was ±0.15 and alpha error 0.05. The sample size
required was 42 patients. A simple random sample with-
out replacement was selected from records provided by
primary care centres and hospitals. For indicators based
on electronic databases, all records were selected.

Data collection
Instructions for the data collection procedure were de-
veloped and systematically applied. Problems during data
collection and analysis were recorded.

For indicators based on electronic medical record au-
dits, data was retrieved by one researcher using standard-
ized forms. For indicators based on databases, primary
care centres and hospitals of the healthcare areas provided
clinical and administrative electronic databases. Informa-
tion was retrieved based on specified procedures, which
had to be adapted to each information system.

Data analysis
In the case of dichotomous indicators, percentages were
calculated, and 95 % confidence intervals were estimated
when indicators were based on electronic medical record
audits. Means and standard deviation were calculated
for continuous indicators. Problems during data collec-
tion and analysis were discussed with the group in order
to assess the applicability of the indicators and identify
the main barriers to their implementation.

Ethical considerations
The principles of confidentiality and anonymity were up-
held in the researchers’ conduct, reporting, and storage of
data arising from this study, in accordance with European
and Spanish legislation on ethical research [43]. The study
protocol was approved by the Ethical Committee for Clinical
Research ‘Parc Salut Mar (2010/4124/I)’.

Results
1. Development of a set of indicators to measure clinical
coordination across levels of care
Identification of indicators: literature review
A total of 892 documents were identified: 863 from biblio-
graphic databases, 11 from organizations’ websites and 18
Table 1 Indicators related to clinical information coordination across levels of care

<table>
<thead>
<tr>
<th>Dimension attribute</th>
<th>Description</th>
<th>Formula</th>
<th>Source of data</th>
<th>Adapted from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Information flow across levels | IT1. Percentage of hospital discharges for which a discharge report is made available to primary care within the first 24 h | - Numerator: Discharge report available in primary care within the first 24 h after hospital discharge
- Denominator: Hospital discharges | Discharge reports in EMRs | [22, 30, 34, 37, 49] |
| | IT2. Mean time to discharge report availability in primary care | - Numerator: Total hours elapsed from the time of hospital discharge to report availability in primary care
- Denominator: Hospital discharges | Discharge reports in EMRs | [19] |
| | IT3. Percentage of emergency care visits for which there is an emergency care report available in primary care within 24 h | - Numerator: Emergency care report available in primary care within 24 h of the emergency care visit
- Denominator: Emergency care discharges | Discharge reports in EMRs | [22, 30, 34, 37, 49] |
| | IT4. Mean time to emergency care report availability in primary care | - Numerator: Total hours elapsed from the emergency care visit to report availability in primary care
- Denominator: Emergency care discharges | Discharge reports in EMRs | [19] |
| Referral forms and discharge reports duly completed | IT5. Percentage of discharge reports duly completed | - Numerator: Hospital discharge reports which contain at least four of the following items: reason for admission, additional tests performed and pending, follow-up or monitoring for the patient after discharge, list of current medications and recommendations for the patient
- Denominator: Hospital discharge reports of patients discharged with a diagnosis of COPD, DM and/or HF | EMR audit | [30] |
| Transfer of information on medication and tests across levels| | | | |
| | IT6. Percentage of emergency care reports duly completed | - Numerator: Emergency care reports which contain at least four of the following items: the reason for the emergency care visit, additional tests performed and pending (laboratory, radiology, etc.), follow-up or monitoring of the patient after the emergency care visit, list of current medications and recommendations for the patient
- Denominator: Emergency care reports of patients with COPD, DM and/or HF | EMR audit | [30] |
| | IT7. Percentage of referral forms from primary care duly completed | - Numerator: Patients diagnosed with HF, COPD and/or DM that have been referred to secondary care with a referral form that contains relevant background morbidity, current medical treatment, and the reason for the referral
- Denominator: Patients diagnosed with HF, COPD and/or DM that have been referred to secondary care | EMR audit | [30] |

Indicators are available at: http://www.consocri.org/coneixement/cataleg-de-publicacions/80/indicadores-de-coordinacion-asistencial-entre-niveles-documento-de-trabajo
COPD chronic obstructive pulmonary disease, DM diabetes mellitus, HF heart failure, EMR electronic medical record
<table>
<thead>
<tr>
<th>Dimension attribute</th>
<th>Description</th>
<th>Formula</th>
<th>Source of data</th>
<th>Adapted from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Care coherence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinated medical testing across involved care levels</td>
<td>CC1. Percentage of secondary care visits of patients diagnosed with HF in which the specialist ordered tests that were performed in the previous six months in primary care</td>
<td>- Numerator: First secondary care visit of HF patients referred from primary care in which the specialist ordered a non-urgent, non-priority X-ray of the thorax, ECG or general blood test that was performed in the previous six months in primary care</td>
<td>Clinical and administrative databases</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>CC2. Percentage of pneumology visits of patients diagnosed with COPD in which the specialist ordered a spirometry that was performed in the previous six months in primary care</td>
<td>- Numerator: First non-urgent, non-priority pneumology visit of COPD patients referred from primary care in which the specialist ordered a spirometry that was performed in the previous six months in primary care</td>
<td>Clinical and administrative databases</td>
<td>[50]</td>
</tr>
<tr>
<td>Coordinated management of medication by involved levels</td>
<td>CC3. Percentage of patients with DM who started insulin therapy during hospitalization and whose primary care medical record documents a follow-up within one week of discharge</td>
<td>- Numerator: Patients with DM who started insulin therapy during hospitalization and whose primary care medical record documents a follow-up within one week of discharge</td>
<td>Clinical and administrative databases</td>
<td>[36, 47]</td>
</tr>
<tr>
<td>Care at the most appropriate level</td>
<td>CC4. Percentage of patients with HF correctly referred from primary care to non-urgent outpatient secondary care</td>
<td>- Numerator: Patients diagnosed with HF and correctly referred to cardiology or internal medicine</td>
<td>EMR audit</td>
<td>[17]</td>
</tr>
<tr>
<td></td>
<td>CC5. Percentage of patients with HF that have been correctly referred to emergency care from primary care</td>
<td>- Numerator: Patients with exacerbation of HF that have been correctly referred to emergency care from primary care</td>
<td>EMR audit</td>
<td>[17]</td>
</tr>
<tr>
<td>Completion of diagnostic process when more than one level is involved</td>
<td>CC6. Percentage of patients with HF diagnosed in the past year who had an echocardiogram as part of the diagnostic process</td>
<td>- Numerator: Patients diagnosed with HF who had an echocardiogram as part of the diagnostic process</td>
<td>Clinical and administrative databases</td>
<td>[47]</td>
</tr>
<tr>
<td>Follow-up across levels</td>
<td>FU1. Percentage of hospital discharges with contact between the hospital and primary care prior to the discharge of patients hospitalized for severe exacerbation of COPD</td>
<td>- Numerator: Hospital discharges with principal diagnosis related to the severe exacerbation of COPD and in which the hospital has contacted primary care prior to the discharge</td>
<td>Clinical and administrative databases</td>
<td>[21, 24, 32, 37, 44, 60]</td>
</tr>
<tr>
<td></td>
<td>FU2. Percentage of hospital discharges with contact between the hospital and primary care prior to the discharge of patients hospitalized for decompensated HF</td>
<td>- Numerator: Hospital discharges with principal diagnosis related to decompensated HF in which primary care has been contacted prior to discharge</td>
<td>Clinical and administrative databases</td>
<td>[21, 24, 32, 37, 44, 60]</td>
</tr>
<tr>
<td>Table 2</td>
<td>Indicators related to clinical management coordination across levels of care (Continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up visits after hospital discharge</td>
<td>FU3. Percentage of hospital discharges of patients admitted for exacerbation of COPD who have a consultation in primary care in less than 72 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Numerator: Hospital discharges with principal diagnosis related to severe exacerbation of COPD and with a consultation in primary care in less than 72 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Denominator: Hospital discharges with principal diagnosis related to severe exacerbation of COPD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FU4. Percentage of hospital discharges of patients admitted for decompensated HF who have a consultation in primary care in less than 7 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Numerator: Hospital discharges with principal diagnosis related to decompensated HF and with a consultation in primary care in less than 7 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Denominator: Patients discharged with principal diagnosis related to decompensated HF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility across levels</td>
<td>AAL1. Mean time elapsed from non-urgent, non-priority primary care referral of HF patients to cardiologist visit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Numerator: Total days elapsed from non-urgent, non-priority, primary care referral of HF patients to cardiologist visit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Denominator: Total HF patients with non-urgent, non-priority referrals from primary care to cardiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAL2. Mean time elapsed from the referral of a patient with suspected cancer (lung, colorectal, breast, bladder and prostate) to the first specialist care visit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Numerator: Total days elapsed from the primary care referral of a patient with suspected cancer to the first appointment with rapid diagnosis program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Denominator: Total patients referred from primary care to specialist care for suspected cancer (lung, colorectal, breast, bladder and prostate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAL3. Mean time elapsed from the referral of a patient with suspected cancer (lung, colorectal, breast, bladder and prostate) to time of cancer diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Numerator: Total days elapsed from the primary care referral of a patient with suspected cancer to the diagnosis of cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Denominator: Total patients with suspected cancer (lung, colorectal, breast, bladder and prostate) first identified in primary care and with a later diagnosis of cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAL4. Mean time elapsed from the referral of a patient with suspected cancer (lung, colorectal, breast, bladder and prostate) to the initiation of cancer treatment (surgery and/or chemotherapy and/or radiotherapy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Numerator: Total days elapsed from the referral from primary care of a patient with suspected cancer to the initiation of cancer treatment (surgery and/or chemotherapy and/or radiotherapy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Denominator: Total patients diagnosed with cancer (lung, colorectal, breast, bladder and prostate) referred to secondary care from primary care who initiate treatment including surgery, chemotherapy and/or radiotherapy at the hospital to which they were referred from primary care</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicators are available at: http://www.consorci.org/coneixement/cataleg-de-publicacions/80/indicadores-de-coordinacion-asistencial-entre-niveles-documento-de-trabajo

COPD chronic obstructive pulmonary disease, DM diabetes mellitus, HF heart failure, EMR electronic medical record
from references in retrieved studies (Appendix 1). Of these documents, 862 were excluded because they did not describe nor use indicators of clinical coordination across levels of care, and 30 met the inclusion criteria, containing at least one indicator. From these documents, 52 indicators were initially identified [17, 19, 21–24, 27, 28, 30–34, 36, 37, 44–50].

Selection and adaptation of indicators according to the different types and dimensions of clinical coordination

The 52 indicators addressed 11 different attributes of clinical coordination across levels of care (Fig. 2): 3 related to clinical information coordination and 8 related to clinical management coordination. The dimension “use of information” was not addressed by any attribute or indicator. After two meetings, an initial set of 21 indicators was drawn up (Fig. 2), which addressed 10 of the 11 identified attributes, since it was not possible to establish an unambiguous criterion which would permit the identification of redundant consultations. The remaining attributes were represented by at least 1 indicator.

The final set of indicators was as follows (Table 1 and 2):

1. Clinical information coordination across levels of care: 7 indicators measure the transfer of clinical information across care levels, addressing the availability of inpatient and emergency discharge reports in primary care (four indicators) and the completeness of inpatient and emergency discharge reports and referral forms, including the transfer of information on new medication, medical tests, reasons for referral and information for patients (three indicators). No indicator addressed the dimension “use of transferred information” since it was not possible to identify or design any indicator measuring the effective use by professionals of information generated in the other care level.

Fig. 2 Stages in the development of the set of indicators
b) Clinical management coordination across levels of care: 6 indicators address care coherence by measuring the coordinated management of medical testing in primary and secondary care of patients with heart failure and COPD (2 indicators), the adequacy of the referral of heart failure patients from primary care to non-urgent outpatient secondary care or emergency care (2 indicators) and the completion of the diagnostic process for heart failure, which requires coordination between the two care levels (1 indicator). Four indicators measure the follow-up of patients, addressing the communication between the hospital and the primary care centre when patients with heart failure and COPD are discharged (2 indicators) and their follow-up in primary care after being discharged (2 indicators). Finally, four indicators measure accessibility across care levels, specifically the time elapsed from the primary care referral of patients with heart failure or suspected cancer to their first specialist care appointment (2 indicators) and the time elapsed from the suspicion of cancer in primary care to cancer diagnosis or initiation of treatment (2 indicators).

2. Test of the set of indicators

Clinical care information: transfer of clinical information across levels of care

In the three healthcare areas, inpatient and emergency discharge reports were immediately available in primary care, since the two care levels share electronic medical records. In general, the quality of transferred clinical information was high (i.e. the clinical information required for the transfer of patients between care levels is duly registered; for example, in referral forms: background morbidity, current medical treatment and reason for referral), especially with respect to the completeness of inpatient and emergency discharge reports, although there are notable differences between areas (57.1% of discharge reports duly completed in Baix Empordà as opposed to 95.2% in Girona) (Table 3). In contrast, there were low percentages of duly completed referral reports in two of the healthcare areas (11.9% and 26.2% of reports).

Feasibility

All indicators were feasible in the three healthcare areas; however, in some cases the specified sample size was not reached due to an insufficient number of cases per year or due to insufficient precision in the available data to allow identification of the denominator – more than 100 records were reviewed without reaching the required sample size.

Clinical management coordination across levels of care

Care coherence Indicators showed different degrees of test duplication (coordinated medical testing across levels of care) depending on the type of medical test performed: the highest level of duplication was observed in electrocardiograms for patients with heart failure (48%) and the lowest was observed in spirometries for patients with COPD (2.5%) (Table 4). In terms of care at the most appropriate care level, indicators showed high levels of adequate referral to non-urgent and emergency care. Finally, in two healthcare areas there were low percentages of patients (13.9% and 22.7%) who had had an echocardiogram performed in the year prior to the diagnosis of heart failure (completion of the diagnostic process).

Follow-up across care levels

In terms of communication, there were significant differences in the degree to which hospitals communicate with primary care prior to the discharge of heart failure or COPD patients (58% and 3.2% of COPD patient discharges in Baix Empordà and Ciutat Vella respectively). Similarly, with regard to follow-up after hospital discharge, there were marked differences between areas (follow-up of patients with COPD in primary care ranged from 26% in Ciutat Vella to 76.7% in Baix Empordà).

Accessibility across care levels

The average time waited to access secondary non-urgent care for heart failure patients referred to cardiology was higher than three weeks in all cases, with significant variations across areas. In contrast, the average time waited to access urgent care for patients with suspected cancer was lower than a week in all healthcare areas, with little variation between areas.

Feasibility

Five indicators were feasible in the three healthcare areas, six indicators were feasible in two healthcare areas, two indicators were feasible in only one area and lastly, one indicator was not feasible in any of the healthcare areas. Difficulties in calculating indicators were due to two types of problems. Firstly, problems related to the identification of the denominator: not possible to identify patients who had started insulin therapy (3 areas), patients referred for the first time to the secondary care level (2 areas), and patients referred to secondary care for suspected cancer (1 area). Secondly, problems related to the availability and accuracy of data needed to calculate the numerator: reason for seeking emergency care not recorded (2 areas), echocardiograms conducted in secondary care not systematically registered (1 area).
<table>
<thead>
<tr>
<th>Indicator</th>
<th>Baix Empordà</th>
<th>Girona</th>
<th>Ciutat Vella</th>
<th>PAMEM- Parc de Salut Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT1. Percentage of hospital discharges for which a discharge report is made available to primary care within the first 24 h</td>
<td>%</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>IT2. Mean time to discharge report availability in primary care</td>
<td>hours</td>
<td>immediate</td>
<td>immediate</td>
<td>immediate</td>
</tr>
<tr>
<td>IT3. Percentage of emergency care visits for which there is an emergency care report available in primary care within 24 h</td>
<td>%</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>IT4. Mean time to emergency care report availability in primary care</td>
<td>hours</td>
<td>immediate</td>
<td>immediate</td>
<td>immediate</td>
</tr>
<tr>
<td>IT5. Percentage of discharge reports duly completed (at least four of the five selected items)</td>
<td>% (95 % CI) n</td>
<td>57.1 % (41.5-72.7) n: 42</td>
<td>95.2 % (88.5 - 100) n: 42</td>
<td>83.3 % (65.6- 91.5) n: 42</td>
</tr>
<tr>
<td>Reason for admission</td>
<td>% (95 % CI)</td>
<td>100 %</td>
<td>95.2 % (88.5 - 100)</td>
<td>97.6 % (92.7 - 100)</td>
</tr>
<tr>
<td>Additional tests performed and pending</td>
<td>% (95 % CI)</td>
<td>95.2 % (88.5 - 100)</td>
<td>97.6 % (92.7 - 100)</td>
<td>95.2 % (88.5 - 100)</td>
</tr>
<tr>
<td>Follow-up or monitoring of the patient after discharge</td>
<td>% (95 % CI)</td>
<td>64.3 % (49.2 - 79.0)</td>
<td>97.6 % (92.7 - 100)</td>
<td>92.9 % (84.7 - 100)</td>
</tr>
<tr>
<td>List of current medications</td>
<td>% (95 % CI)</td>
<td>88.1 % (77.9 - 98.31)</td>
<td>92.9 % (84.7 - 100)</td>
<td>88.1 % (77.9 - 98.3)</td>
</tr>
<tr>
<td>Recommendations for the patient</td>
<td>% (95 % CI)</td>
<td>0 %</td>
<td>97.6 % (92.7 - 100)</td>
<td>26.2 % (12.3 - 40.1)</td>
</tr>
<tr>
<td>IT6. Percentage of emergency care reports duly completed (at least four of the five selected items)</td>
<td>% (95 % CI) n</td>
<td>85.4 % (74.1-96.7) n: 41</td>
<td>85.7 % (74.6-96.7) n: 42</td>
<td>86.7 % (73.8 - 100) n: 30</td>
</tr>
<tr>
<td>Reason for admission</td>
<td>% (95 % CI)</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Additional tests performed and pending</td>
<td>% (95 % CI)</td>
<td>92.7 % (84.4 - 100)</td>
<td>97.6 % (92.7 - 100)</td>
<td>90% (78.6 - 100)</td>
</tr>
<tr>
<td>Follow-up or monitoring of the patient after discharge</td>
<td>% (95 % CI)</td>
<td>90.2 % (80.7 - 99.7)</td>
<td>97.6 % (92.7 - 100)</td>
<td>90% (78.6 - 100)</td>
</tr>
<tr>
<td>List of current medications</td>
<td>% (95 % CI)</td>
<td>97.6 % (92.6 - 100)</td>
<td>88.1 % (74.7- 96.7)</td>
<td>90% (78.6 - 100)</td>
</tr>
<tr>
<td>Recommendations for the patient</td>
<td>% (95 % CI)</td>
<td>19.51 % (6.8 - 32.2)</td>
<td>97.6 % (92.7 - 100)</td>
<td>50 % (34.2 - 65.8)</td>
</tr>
<tr>
<td>IT7. Percentage of referral forms from primary care duly completed</td>
<td>% (95 % CI) n</td>
<td>26.2 % (12.3- 40.1) n:42</td>
<td>71.4 % (57.2-85.7) n: 42</td>
<td>11.9 % (1.7 -22.1) n: 42</td>
</tr>
<tr>
<td>Background morbidity</td>
<td>% (95 % CI)</td>
<td>90.5 % (81.2 - 99.7)</td>
<td>95.2 % (88.5 - 100)</td>
<td>86.7 % (73.8 - 100)</td>
</tr>
<tr>
<td>Current medical treatment</td>
<td>% (95 % CI)</td>
<td>30.9 % (16.4 - 45.5)</td>
<td>90.8 % (81.2 - 99.7)</td>
<td>16.7 % (4.9 - 28.4)</td>
</tr>
<tr>
<td>Reason for the referral</td>
<td>% (95 % CI)</td>
<td>90.7 % (81.2 - 99.7)</td>
<td>57.1 % (41.5 - 72.7)</td>
<td>76.2 % (62.7 - 89.6)</td>
</tr>
</tbody>
</table>

CI confidence interval, COPD chronic obstructive pulmonary disease, DM diabetes mellitus, HF heart failure, SD standard deviation
Table 4 Application of the set of indicators related to clinical management coordination across levels of care

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Baix Empordà</th>
<th>Girona Ciutat Vella</th>
<th>ICS- Parc de Salut Mar</th>
<th>ICS- Parc de Salut Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1. Percentage of secondary care visits of patients diagnosed with HF in which the specialist ordered tests that were performed in the previous six months in primary care</td>
<td>%; n</td>
<td>3.6%; n:56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duplication of radiographies</td>
<td>%; n</td>
<td>48.2%; n:56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duplication of electrocardiograms</td>
<td>%; n</td>
<td>16.1%; n:56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CC2. Percentage of pneumology visits of patients diagnosed with COPD in which the specialist ordered a spirometry that was performed in the previous six months in primary care</td>
<td>%; n</td>
<td>2.5%; n:81</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CC3. Percentage of patients with DM who started insulin therapy during hospitalization and whose primary care medical record documents a follow-up within one week of discharge</td>
<td>%; n</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CC4. Percentage of patients with HF correctly referred from primary care to non-urgent outpatient secondary care</td>
<td>% (95 % IC) n</td>
<td>85.7 % (69.4-100) n:42</td>
<td>81.0 % (68.9-93.3) n:42</td>
<td>83.3 % (75.6-95.1) n:42</td>
</tr>
<tr>
<td>CC5. Percentage of patients with HF that have been correctly referred to emergency care from primary care</td>
<td>% (95 % IC) n</td>
<td>97.4 % (92.0-100) n:39</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CC6. Percentage of patients with HF diagnosed in the past year who had an echocardiogram as part of the diagnostic process</td>
<td>%; n</td>
<td>22.7%; n:203</td>
<td>13.9%; n:216</td>
<td>-</td>
</tr>
<tr>
<td>FU1. Percentage of hospital discharges with contact between the hospital and primary care prior to the discharge of patients hospitalized for severe exacerbation of COPD</td>
<td>%; n</td>
<td>58 %; n:119</td>
<td>36.8 %; n:224</td>
<td>3.2 %; n:95</td>
</tr>
<tr>
<td>FU2. Percentage of hospital discharges with contact between the hospital and primary care prior to the discharge of patients hospitalized for decompensated HF</td>
<td>%; n</td>
<td>40.3 %; n:88</td>
<td>44.78 %; n:201</td>
<td>0 %; n:48</td>
</tr>
<tr>
<td>FU3. Percentage of hospital discharges of patients admitted for exacerbation of COPD who have a consultation in primary care in less than 72 h</td>
<td>%; n</td>
<td>76.7 %; n:110</td>
<td>52.9 %; n:240</td>
<td>26.0 %; n:68</td>
</tr>
<tr>
<td>FU4. Percentage of hospital discharges of patients admitted for decompensated HF who have a consultation in primary care in less than 7 days</td>
<td>%; n</td>
<td>70.9 %; n:110</td>
<td>79.6 %; n:157</td>
<td>55.3 %; n:38</td>
</tr>
<tr>
<td>AAL1. Mean time elapsed from non-urgent, non-priority primary care referral of HF patients to cardiologist visit</td>
<td>Mean (SD); n</td>
<td>28.2 (4.0); n:42</td>
<td>39.6 (5.6); n:57</td>
<td>100.9 (9.1); n:86</td>
</tr>
<tr>
<td>AAL2. Mean time elapsed from the referral of a patient with suspected cancer (lung, colorectal, breast, bladder and prostate) to the first specialist visit</td>
<td>Mean (SD); n</td>
<td>5.3 (0.3); n:362</td>
<td>6.5 (0.4); n:87</td>
<td>6.6 (1.0); n:17</td>
</tr>
<tr>
<td>AAL3. Mean time elapsed from the referral of a patient with suspected cancer (lung, colorectal, breast, bladder and prostate) to cancer diagnosis</td>
<td>Mean (SD); n</td>
<td>46.9 (9.7); n:70</td>
<td>31.4 (4.6); n:36</td>
<td>39.9 (8.5); n:8</td>
</tr>
<tr>
<td>AAL4. Mean time elapsed from the referral of a patient with suspected cancer (lung, colorectal, breast, bladder and prostate) to the initiation of cancer treatment (surgery and/or chemotherapy and/or radiotherapy)</td>
<td>Mean (SD); n</td>
<td>71.4 (9.2); n:64</td>
<td>48.1 (5.1); n:33</td>
<td>46.9 (5.8); n:8</td>
</tr>
</tbody>
</table>

CI confidence interval, COPD chronic obstructive pulmonary disease, DM diabetes mellitus, HF heart failure, SD standard deviation

Discussion
Clinical coordination is considered a health policy priority, as a lack of coordination can lead to poor quality of care and inefficiencies in the use of resources [5–9]. However, its measurement is still challenging [1, 14, 15], since calculating the degree of clinical coordination in its multidimensional nature requires the availability of indicators that cover the different types and dimensions of clinical coordination.

Until now, most attempts to tackle this challenge have focused on the design of indicators to measure certain outcomes which can potentially be attributed to clinical
coordination [16]. However, progress must be made in the design of instruments to measure the outputs of clinical coordination in order to be able to attribute improvements in the outcomes of health care to improvements in clinical coordination [51]. With this in mind, this research constitutes a step forward by using a pre-established conceptual framework to generate a set of output indicators which address the two types of clinical coordination across levels of care (and most of their dimensions and attributes) that have been highlighted in previous studies [52]. Furthermore, in contrast with previous efforts [17, 37], the indicators presented here have been described in operative terms, thus allowing for their precise application in healthcare organizations.

With regard to clinical information coordination across levels of care, seven indicators addressing the transfer of clinical information have been created. Applying these indicators has permitted the analysis of transfer of information in the three healthcare settings, taking in both evidence of information transfer between levels and the quality of the information transferred. No previous set of indicators has allowed researchers to address these two attributes jointly in main transitions between levels of care [1, 30, 34, 53], so this is one of its most significant contributions. In addition, the result of the applicability test has proven that these indicators have the accuracy and feasibility needed to make their calculation possible in different healthcare areas. Their joint application has revealed that, although there is a flow of information between the different care levels, the quality of information varies across transitions and organizations, thus leading to the identification of specific margins of improvement in each healthcare area.

It is important to highlight, however, that clinical information coordination is not fully represented by the set of indicators, since we were unable to address the use of transferred information; i.e. we could not determine whether information was actually read and used by the receiving professional [54]. The lack of this type of measure of clinical coordination has been previously expressed in the literature [1, 54] and reflects the complexity of analyzing an activity which is not generally recorded but is considered central to clinical coordination. The fact that indicators are unable to systematically address all dimensions and attributes of clinical coordination points to the need to complement and enrich indicator results with those that can be obtained via different techniques, such as surveys or qualitative interviews with health professionals and patients.

With regard to clinical management coordination across levels of care, the systematic review led us to identify five attributes that define care coherence, two that define follow-up and one that defines accessibility across care levels. Their operationalization has resulted in a set of indicators to measure the main attributes of care coherence (such as coordinated medical testing across care levels or the provision of care at the most appropriate care level), follow-up (such as the existence of communication and follow-up after discharge) and accessibility across care levels (waiting time after referral). However, one of the eight identified attributes of care coherence, no redundant visits to primary and secondary care, is not represented by any indicator, since we were unable to establish an unambiguous criterion, either though the literature review or by expert consensus, which would permit the identification of redundant consultations.

During the first meeting, it became obvious that in order to be applied, most indicators could not be general but needed to be defined relating to a specific disease. However, in order to gain a good grasp of the degree of coordination in the area, a number of different diseases were included, which require high levels of coordination across levels of care: diabetes mellitus type II, heart failure, chronic obstructive pulmonary disease (COPD) and breast, lung, bladder and colon cancer.

The indicators to measure clinical management coordination have been adapted to several clinical conditions, due to the fact that the standards of clinical coordination upon which indicators are based need to be precise and based on what the evidence dictates, which varies according to the disease. Nevertheless, they can be adapted to other conditions as long as they have an evidence-based recommendation upon which to base the standard of clinical coordination measured by the indicator. Moreover, the use of the selected conditions (diabetes mellitus, chronic obstructive pulmonary disease, heart failure and cancer) could be considered a good strategy to identify the strengths and weakness in clinical coordination across levels of care [3, 55], since they meet the criteria to be considered adequate tracer conditions [55]: care is provided across levels and over the course of time; the care that should be provided at each care level is well defined; they are among the most prevalent diseases in the population; diagnoses are well defined; and their epidemiology is well known.

The applicability test illustrates the usefulness of these indicators in describing clinical management coordination, pointing to areas for improvement, such as the coordination of medical testing in Baix Empordà and communication with primary care after discharge in Ciutat Vella. Furthermore, as they cover the main attributes of clinical management coordination across levels, they can be used to support the design of strategies to improve clinical coordination between levels of care.

It is important to note, however, that several problems arose which made the calculation of some of these indicators difficult or impossible in some healthcare areas.
The problems were related to non-registration of the variables in information systems and under-registration of information by professionals, which points to the need for further improvements in information systems and record-keeping skills before we can systematically measure certain relevant aspects related to clinical management coordination across levels of care in these healthcare areas [56–59].

The methodology adopted in this study provides guarantees in terms of reliability of the indicators, since they have been adequately defined and precisely specified so that they can be implemented consistently within and across organizations (48). This is also true in terms of face and content validity, as the indicators have been adapted or newly created on the basis of scientific evidence and expert consensus. Furthermore, the applicability test provided information regarding data availability and accuracy (feasibility), thus highlighting major and minor problems in calculating the indicators, which could be informative for future studies. Finally, the indicators have been shown to be able to identify differences between areas, even in small samples. Further research should provide evidence regarding other relevant characteristics of the indicators, such as test-retest reliability and discriminant validity.

Certain aspects should be taken into account when applying the set of indicators in other healthcare contexts. First of all, data availability and validity should be explored. Secondly, it should be determined whether the information taken from the different health information systems is linkable, since indicators are constructed upon information generated in different levels of care. Lastly, although information recorded in digital format is desirable, most indicators could be calculated from a medical record audit, so data computerization is not a prerequisite.

One limitation of this study is the possibility of a publication bias in which relevant indicators were not identified (for example, indicators that measure clinical coordination but employ different terms, indicators published in other languages or grey literature not easily accessed by standard internet search engines). Moreover, the inclusion of terms referring to certain attributes of clinical coordination, such as “follow-up” or “referral adequacy”, might have extended the range of studies obtained. However, we employed several additional strategies for the identification of studies to reduce the possibility of publication bias, such as reviewing the reference lists of eligible documents and consulting the websites of the main organizations that design indicators. Another limitation is that one dimension (the use of clinical information) and one attribute (no redundant visits to primary and secondary care) are not represented by the set of indicators, pointing to the need to enrich the results obtained by the indicators with additional information from health professionals and patients in order to attain a more accurate evaluation of the process of coordination.

Conclusions

A set of rigorous and scientifically sound measures of clinical coordination were developed based on a literature review and discussion with experts. These indicators of clinical information and management coordination across levels of care could be employed to identify areas in which health care can be improved, as well as to measure the effect of efforts to improve clinical coordination. However, some relevant attributes of clinical coordination are not represented in the final set of indicators, which detracts from its comprehensiveness. In fact, clinical coordination is a multidisciplinary construct, and certain relevant dimensions and attributes of clinical coordination across levels of care such as the effective use of transferred information or redundant visits cannot be properly measured through indicators. Other approaches are therefore needed to obtain additional information, such as surveys or qualitative interviews. The indicators provided may also be useful for conducting comparative studies of clinical coordination across healthcare areas. Aspects such as the possibility of linking information from different health information systems, data availability and validity should be explored before proceeding to implement these indicators.

Appendix 1
Search Strategy and number of studies retrieved in the bibliographic databases

<table>
<thead>
<tr>
<th>Table 5</th>
<th>A1: medline-pubmed; 19/05/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clinical Coordination</td>
<td>References number</td>
</tr>
<tr>
<td>“Coordinated care” OR “coordination of care” OR 5.573</td>
<td></td>
</tr>
<tr>
<td>“Integrated care” OR “shared care” OR “transitional care” OR</td>
<td></td>
</tr>
<tr>
<td>“continuity of care”</td>
<td></td>
</tr>
<tr>
<td>2. Levels of care</td>
<td>655.466</td>
</tr>
<tr>
<td>“Primary care” OR “family practice” OR “Generalist” OR “GP”</td>
<td></td>
</tr>
<tr>
<td>OR “outpatient” OR “secondary care” OR “specialized” OR</td>
<td></td>
</tr>
<tr>
<td>“specialist” OR “inpatient” OR “hospitalization” OR</td>
<td></td>
</tr>
<tr>
<td>“hospitalisation” OR “care levels” OR “interface” OR “cross-level” OR “referral” OR “communication”</td>
<td></td>
</tr>
<tr>
<td>3. Measurement tools</td>
<td>939.670</td>
</tr>
<tr>
<td>measure OR measures OR indicator</td>
<td></td>
</tr>
<tr>
<td>4. (1) and (2) and (3)</td>
<td>466</td>
</tr>
</tbody>
</table>
The authors declare that they have no competing interest.

Authors’ contribution
MBA, IV and MLV were responsible for the study conception and design, for the systematic review and data analysis. MBA, IV, JC, SC, FC, MA, JF, JRL, LC and MLV participated in the selection, adaptation, development and interpretation of the indicators. JC, SC, FC, MA participated providing operational and methodological support to the fieldwork. MBA, IV and MLV drafted the manuscript. MBA, IV, JC, SC, FC, MA, JF, JRL, LC and MLV participated in data interpretation, reviewed draft versions of the paper and approved the final version. All authors read and approved the final manuscript.

Acknowledgments
The research leading to these results received funding from the Instituto de Salud Carlos III (PI10/00348) and Fondo FEDER. The funding source had no involvement in the study design, nor in the collection, analysis and interpretations of data, or in the writing of the article and the decision to submit it for publication.

The authors are most grateful to the people that participated in the study and generously gave their time and Claudia Ortiz and Josep Maria Lisbona who contributed to data collection. We thank Nuria Martinez for her administrative support and help, Irene Garcia Subirats for her statistical analysis.

Table 6 A2: Isi web of knowledge; social science citation index & science citation index 19/05/2011

<table>
<thead>
<tr>
<th>References number</th>
<th>1. Clinical coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Coordinated care" OR "care coordination" OR "collaborative care" OR "integrated care" OR "shared care" OR "transitional care" OR "continuity of care" OR "care continuity" OR "informational continuity" OR "managerial continuity" OR "management continuity"</td>
</tr>
<tr>
<td></td>
<td>>100.000</td>
</tr>
</tbody>
</table>

Table 7 A3: ECONLIT; 19/05/2011

<table>
<thead>
<tr>
<th>References number</th>
<th>1. Clinical coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TX (Coordinated care) OR (care coordination) OR (collaborative care) OR (integrated care) OR (shared care) OR (transitional care) OR (continuity of care) OR (care continuity) OR (informational continuity) OR (managerial continuity) OR (management continuity)</td>
</tr>
<tr>
<td></td>
<td>129</td>
</tr>
</tbody>
</table>

Table 8 A4: CINAHL; 19/05/2011

<table>
<thead>
<tr>
<th>References number</th>
<th>1. Clinical coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AB (Coordinated care) OR (collaborative care) OR (integrated care) OR (shared care) OR (transitional care) OR (continuity of care) OR (care continuity) OR (informational continuity) OR (managerial continuity) OR (management continuity)</td>
</tr>
<tr>
<td></td>
<td>5.092</td>
</tr>
</tbody>
</table>

Table 9 A5: LILACS; 19/05/2011

<table>
<thead>
<tr>
<th>References number</th>
<th>1. Clinical coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((coordinación) OR (continuidad) OR (collaborativa) OR (transición) OR (compartido)) AND (asistencial) OR (de la atención) AND (indicador OR indicadores OR medida OR medición OR mediciones) [Palabras del resumen]</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Competing interests
The authors declare that they have no competing interest.

Authors’ contribution
MBA, IV and MLV were responsible for the study conception and design, for the systematic review and data analysis. MBA, IV, JC, SC, FC, MA, JF, JRL, LC and MLV participated in the selection, adaptation, development and interpretation of the indicators. JC, SC, FC, MA participated providing operational and methodological support to the fieldwork. MBA, IV and MLV drafted the manuscript. MBA, IV, JC, SC, FC, MA, JF, JRL, LC and MLV participated in data interpretation, reviewed draft versions of the paper and approved the final version. All authors read and approved the final manuscript.

Acknowledgments
The research leading to these results received funding from the Instituto de Salud Carlos III (PI10/00348) and Fondo FEDER. The funding source had no involvement in the study design, nor in the collection, analysis and interpretations of data, or in the writing of the article and the decision to submit it for publication.

The authors are most grateful to the people that participated in the study and generously gave their time and Claudia Ortiz and Josep Maria Lisbona who contributed to data collection. We thank Nuria Martinez for her administrative support and help, Irene Garcia Subirats for her statistical analysis.
support, and Kate Bartlett for her help in correcting the English version of this article.

Author details
1 Health Policy and Health Services Research Group, Health Policy Research Unit, Consortium for Health Care and Social Services of Catalonia, Avenços Tibidabo, 21, 08022 Barcelona, Spain. 2 Grupo de Recerca en Serveis Sanitaris i Resultats en Salut, Serveis de Salut Integrats Baix Empordà, Carrer Hospital, 17-19 Edif. Flemming, 17230 Palamós, Spain. 3 Catalan Health Institute, Gran Via de les Corts Catalanes, 587, 08007 Barcelona, Spain. 4 IMIM - Hospital del Mar Medical Research Institute, Carrer Dr. Aiguader, 88, 08003 Barcelona, Spain. 5 Institut de Prestacions d’Assistència Mèdica al Personal Municipal, Carrer Viladomat, 127, 08015 Barcelona, Spain. 6 Centre Integral de Salut Coverts, Avinguda de Boboró, 18 – 30, 08016 Barcelona, Spain. 7 Health Policy and Health Services Research Group; Division of Management, Planning and Organizational Development, Badalona Healthcare Services, Via Augusta, 9-13, 08911 Badalona, Spain. 8 Health Policy and Health Services Research Group; Strategic Planning Division, SAGESSA Group, Avinguda del Dr. Josep Laporte, 2, 43004 Reus, Spain.

Received: 15 January 2015 Accepted: 24 July 2015

Published online: 13 August 2015

References

