Representation of Discourse Markers in Vector Spaces

Joel Pocostales Mercè

Màster: Lingüística Teòrica i Aplicada

Directors: Dra. Núria Bel Rafecas

Any de defensa: 2015

Col·lecció: Treballs de fi de màster

Programa oficial de postgrau
"Comunicació lingüística i mediació multilingüe"

Departament de Traducció i Ciències del Llenguatge
Representation of Discourse Markers in Vector Spaces

Joel Pocostales Mercè
TFM
Master in Theoretical and Applied Linguistics

Universitat Pompeu Fabra
Department of Translation and Language Sciences (DTCL)

Advisor: Dra. Núria Bel

July 2015
I would like to especially thank Núria Bel Rafecas for her inestimable effort to teach me how to play the first scales of the exiting Computational Linguistics compositions with almost no previous knowledges of solfège and less time for rehearsals.

I am also sincerely grateful to Marco del Tredici because without his help I would have not be able to tune some of the instruments that form part of this chamber concerto for discourse markers and vector spaces.
Abstract

Vector Space Semantic models (VSMs) have gained attention over the last years in a great variety of computational language modelling tasks. Some of the most popular approaches to computational semantic models use various training methods based on neural-networks language modelling to obtain dense vector representations, which are commonly known as *neural embeddings* or *word embeddings*. These neural models have been proved to capture what Turney (2006) calls *attributional similarities* as well as *relational similarities* between words.

The goal of this master’s thesis is to explore the extent and the limitations of the word embeddings with regards to their capacity to encode the complex *coherence relations* that Discourse Markers signal along a given text. To that end, we have built different vector spaces of DMs using new Log-linear Models (CBOW and Skip-gram). The subsequent DMs representations have been evaluated by means of *data mining* techniques such as clustering and supervised classifications.

The results obtained in this research show that only those DMs where the lexical effect is greater can be represented efficiently by word embeddings. Likewise, comparing both data mining techniques (clustering and supervised classification), we conclude that the relations among similar DMs can be induced better with a supervised methods previously trained on a given data.

Keywords: *Discourse Markers, Vector Spaces, Artificial Neural Networks, Data Mining.*
Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 From words to vectors ... 1
1.2 From discourse markers to vectors 4
1.3 Motivations .. 7
1.4 Research questions ... 11

2 Methods 13

2.1 Experimental design and set-up 13
2.2 Procedures used to obtain data and results 14

3 Results 17

3.1 Key results obtained in the study 17
 3.1.1 K-means clustering ... 17
 3.1.2 Decision tree classification 20

4 Discussion and Conclusion 21

4.1 Clustering .. 21
4.2 Supervised classification .. 22
4.3 Relevance with respect to state of the art 23
4.4 Future steps ... 24

References 25
Appendix A: Table of Cue Phrase Definitions 30

Appendix B: Small portion of the overall Knott’s taxonomy 32
List of Figures

1.1 A portion of taxonomy for POSITIVE and NEGATIVE phrases. . . 7
1.2 Adapted classification of DMs based on Hutchinson (2003). . . . 8
1.3 Vector space adapted from Manning et al. (2008) 9
3.1 DMs versus Class plot . 18
3.2 Cluster versus Class plot . 19
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Pre-experimental cosine distance test</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Clustering results</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Classification results</td>
<td>20</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction

1.1 From words to vectors

The distributional hypothesis of Harris (1954) stated that the words occurring in similar contexts will tend to have similar meanings, and this hypothesis has become the starting point for those techniques focused on obtaining vector space semantic representations of words using cooccurrence statistics from a large corpus of text (see (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990; Turney & Pantel, 2010; Baroni & Lenci, 2010) for comprehensive survey).

In most of the vector space semantic models (VSMs) the words are represented as a very high dimensional but sparse vectors capturing the contexts in which the words occurs. That is, following the formal definition of O. Levy and Goldberg (2014), for a vocabulary \(V \) and a set of contexts \(C \), the result is a \(|V| \times |C| \) sparse matrix \(S \) in which \(S_{ij} \) corresponds to the strength of the association between word \(i \) and context \(j \). The variant positive pointwise mutual information (PPMI) metric (Niwa & Nitta, 1995) has been demonstrated to perform well in Bullinaria and J. P. Levy (2007) as a measure of the association strength between a word \(w \in V \) and a context \(c \in C \). From O. Levy and Goldberg (2014):
\[S_{ij} = PPMI_{(w, c)} \]

\[
PPMI_{(w, c)} = \begin{cases}
0 & \text{if } PMI(w, c) < 0 \\
PMI(w, c) & \text{otherwise}
\end{cases}
\]

\[
PMI(w, c) = \log \frac{P(w, c)}{P(w)P(c)} = \log \frac{freq(w, c)|\text{corpus}|}{freq(w)freq(c)}
\]

where \(|\text{corpus}|\) is the number of tokens in the corpus, \(freq(w, c)\) is the number of times that word \(w\) is found in context \(c\), and \(freq(w)\), \(freq(c)\) are the corpus frequencies of the word and the context, respectively.

The extremely high-dimensional word-vector spaces can be reduced using mathematical techniques such as Singular Value Decomposition (SVD) to obtain a smaller set of \(k\) new dimensions accounting for the variance in the data. These techniques have recently been used in Latent Semantic Analysis (LSA) (Bullinaria & J. P. Levy, 2007) and Latent Dirichlet Allocation (LDA) (Ritter & Etzioni, 2010; Séaghdha, 2010; Cohen, Goldberg, & Elhadad, 2012).

More recently, some related works have focused on building dense real-valued vectors of words in \(\mathbb{R}\) instead of the above-mentioned sparse vectors. These approaches use various training methods based on neural-network language modelling to obtain the dense vector representations, which are commonly known as neural embeddings or word embeddings because they embed an entire vocabulary into a relatively low-dimensional linear space, whose dimensions are latent continuous features (Bengio, Ducharme, Vincent, & Janvin, 2003; Collobert & Weston, 2008; Mikolov & Kombrink, 2011; Mikolov, Chen, Corrado, & Dean, 2013).

The word embeddings have gained attention over the last years as they have been proved to capture what Turney (2006) calls attributional similarities between vocabulary items (Collobert et al., 2011; Socher, Pennington, Huang, Ng, & Manning, 2011). That is, two words occurring in similar contexts are projected to similar
1.1 From words to vectors

subspaces of vectors. Therefore, given two words A and B, the amount of attributional similarity between A and B is a function that maps the degree of correspondence between the properties of those two words to a real number, $\text{sim}_a(A, B) \in \mathbb{R}$: for instance, "dog" and "wolf" will be grouped in similar subspace, and likewise syntactic related words as "books", "cars" and "dogs".

In the same way, Turney (2006) proposed the term relational similarity in contrast to attributional similarity for the degree of correspondence between the relations of two words A and B and the relations between words C and D, whose measure of relational similarity is a function that maps two pairs of words, $A : B$ and $C : D$, to real number, $\text{sim}_r(A : B, C : D) \in \mathbb{R}$. Their relational similarity degree will be given by the correspondence between the relations of $A : B$ and $C : D$: for instance, the relation between man : boy and woman : girl.

Both, attributional and relational similarities have been demonstrated to be captured by Recurrent Neural Net Language Models (RNNLM) and the new Log-linear Models, Continuous Bag-of-Words Model (CBOW) and Continuous Skip-gram Model (Skip-gram). The latter, provided within the word2vec2 toolkit¹ (Mikolov & Kombrink, 2011; Mikolov, Chen, et al., 2013; Mikolov, Corrado, Chen, & Dean, 2013; Mikolov, Yih, & Zweig, 2013). The internal performance of this model will be extended in section 1.3.

Such similarities can be recovered by simple vector arithmetics in the embedded representation. As shown by Mikolov, Corrado, et al. (2013):

$$\text{vector}X = \text{vector}("\text{biggest}") - \text{vector}("\text{big}") + \text{vector}("\text{small}")$$

Then, from the vector space and applying the cosine distance, we might find the word closest to X, "smallest".

¹https://code.google.com/p/word2vec/
Introduction

Alternatively to \textit{word2vec}, Pennington, Socher, and Manning (2014) propose a new global log-bilinear regression model, \textit{GloVe}2. The main difference with the former methods is that during the training, only the nonzero values in the word-word co-occurrence matrix are processed, whereas in previous models the entire sparse matrix or individual context windows in the corpus are taken into account. As a result, the statistical information is leveraged more efficiently and the corpus statistics captured directly by the model, outperforming some related models on similarity tasks and named entity recognition.

Despite the outstanding performance pointed out above, only CBOW and Skip-gram models will be considered for the research purposes of this thesis, as we will see in the following sections.

1.2 From discourse markers to vectors

The distinction between \textit{discourse markers} and \textit{connectives} is by no means clear. As Bordería (2001) has noted, the terminology confusion has to do with the fact that the term \textit{connectives} is not a widespread concept in US linguistics. American linguist have traditionally considered connectives as a subset within the wider class of discourse markers (henceforth, DMs), and consequently blurring the boundaries between those two terms. For example, Schiffrin (1987, p.328) give the following unclear conditions to allow an expression to be used as a DMs:

- it has to be syntactically detachable from sentence
- it has to be commonly used in initial position of an utterance
- it has to have a range of prosodic contours
- it has to be able to operate at both local and global levels of discourse, and on different planes of discourse

2The source code for the model can be find at \url{http://nlp.stanford.edu/projects/glove/}
1.2 From discourse markers to vectors

whereas Fraser (1999, p.950) posits more accurately definition for DMs:

pragmatic class, lexical expressions drawn from the syntactic classes of conjunctions, adverbials, and prepositional phrases. With certain exceptions, they signal a relationship between the segment they introduce, S2, and the prior segment, S1. They have a core meaning which is procedural, not conceptual, and their more specific interpretation is 'negotiated' by the context, both linguistic and conceptual. There are two types: those that relate aspects of the explicit message conveyed by S2 with aspects of a message, direct or indirect, associated with S1; and those that relate the topic of S2 to that of S1.

Although this terminology confusion seems to be relevant enough to be addressed in this paper, we will adopt a different approach based on Knott (1996) and Hutchinson (2003).

The former, proposes in his doctoral dissertation a hierarchical taxonomy (see appendix A and B), representing the relationship between cue phrases (assumed here as simply DMs) and their relations when linking one portion of text to another (such relations can roughly be taken as the coherence relations of the whole text), giving as a result a model of feature-based relations signalled by the cue phrases.

Although Knott (1996) justifies every feature definition individually, only a summary of the motivated features will be considered for the aim of this thesis and, likewise, just one example of how the portions of the taxonomy are derived will be provided here:

Given the following sentences

\[
\text{Jim had just washed his car,}\quad \left\{\begin{array}{l}
\text{so}\ \\
\text{and}\
\end{array}\right\} \text{he wasn't keen on lending it to us. (1.1)}
\]
Introduction

It was odd. Bob shouted very loudly, \(\left\{ \begin{array}{ll} \text{but} \\ \check{\text{and}} \\ \# \text{ so} \end{array} \right\} \) nobody heard him. \ ((1.2)\)

we can conclude that and is contingently substitutable both for but and for so. Hence, it seems that but and so are defined for different values of some feature, which does not apply for and since it can be substituted for both, but and so.

Back to the examples, we can observe that \(A \), so \(C \) signals a sort of implication or cause relation, where \(A \) is the antecedent/cause and \(C \) the consequent/result. On the other hand, \(A \), but \(C \) signals a violation of the type of relations signalled by so, but both phrases can be interpreted as having a consequential component, though. As a result, we can posit that the consequence relation for so is specified as succeeding, whereas for but, an expected consequence is not forthcoming. In the case of and, the information is left to be inferred by the reader because the consequence relation is not specified whether or not succeeds.

Formalising the above ideas, the difference between the relations signalled by so and those signalled by but is that, given a 'statement of implication' \(P \rightarrow Q \), for so, \(P \) relates to the proposition in the first span of text and \(Q \) to that in the second, whereas for but, \(P \) relates to the proposition in the first span and \(Q \) to the negation of that in the second span. That is what Sanders, Spooren, and Noordman (1993) roughly calls POSITIVE and NEGATIVE POLARITY relations.

Assuming that causal and consequential rules can be defeated, Knott (1996) hypothesise a feature called POLARITY with alternative values NEGATIVE and POSITIVE, where each relation presupposes the presence of defeasible rule \(P \rightarrow Q \):

POLARITY

- **POSITIVE**: \(A = P; C = Q \). The rule is specified to succeed.

- **NEGATIVE**: \(A = P; C \) is inconsistent with \(Q \). The rule is specified to fail.
1.3 Motivations

Where A and C are the propositional contents of the two related text spans S_A and S_C.

This feature is represented in Knott’s taxonomy as shown in Fig. 1.1.

![Figure 1.1 A portion of taxonomy for POSITIVE and NEGATIVE phrases.](image)

As will be detailed in Chapter 2 (methodology), a manual classification of DMs is required for test the accuracy of their representations in the vector spaces. For this reason, we have adopted the above Knott’s taxonomy as well as Hutchinson (2003), which it also based on Knott (1996).

Following Hutchinson (2003) classification, we set a group of 61 DMs distributed in 5 broad classes so that, although this DMs may be ambiguous as to which relation they signal, no DM is ambiguous as to which class it belongs in\(^3\) (see Fig.1.2 bellow).

1.3 Motivations

In contrast with other approaches to semantics such as hand-coded knowledge bases and ontologies, VSMs have been proved to automatically extract semantic knowledge from given corpus, reducing the labour involved for achieving so successfully (Turney & Pantel, 2010). In the same way, the attested relation between VSMs and the distributional hypothesis as well as related hypotheses (see section 1.1), makes them especially appropriate for related semantic task. Among those performing

\(^3\)Hutchinson (2003), for example, points out the signal ambiguity of *when*, which can signal either simultaneity or succession between events.
Introduction

- **Negative polarity**: though, although, but, nevertheless, whereas, however, yet, then again, otherwise, all the same, still, even so, nonetheless, despite this, in spite of this, having said that, rather, instead

- **Temporal**: after, afterwards, meanwhile, before, finally, eventually, at last, after this, following this, previously, ever since, later, later on, from then on, thereafter, when

- **Additive**: too, as well, furthermore, moreover, in addition, also

- **Causal**: therefore, consequently, to this end, it follows that, hence, thus, clearly, plainly, obviously, as a result, as a consequence, thereby, in so doing, accordingly, so

- **Hypothetical**: if, suppose that, if ever, if only, if so, in that case

Figure 1.2 Adapted classification of DMs based on Hutchinson (2003).

Outstanding well, we find tasks that involve measuring the similarity of meaning between words, phrases and documents (Manning, Raghavan, & Schütze, 2008; Pantel & Lin, 2002; Rei & Briscoe, 2014).

One of the most popular methods to measure the similarity of two words is computing the cosine angle between their corresponding frequency vectors (raw or weighted) in a word-vector matrix.

Given two vectors \(\mathbf{X} \) and \(\mathbf{Y} \),

\[
\mathbf{X} = (x_1, x_2, \ldots, x_n)
\]

\[
\mathbf{Y} = (y_1, y_2, \ldots, y_n)
\]

the cosine of those two vectors (similarity) can be derived by using the Euclidean dot product formula:

\[
\mathbf{X} \cdot \mathbf{Y} = \| \mathbf{X} \| \| \mathbf{Y} \| \cos \theta
\] (1.3)
1.3 Motivations

\[
\text{similarity} = \cos(\theta) = \frac{X \cdot Y}{\|X\| \|Y\|} = \frac{\sum_{i=1}^{n} x_i \cdot y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} y_i^2}} \tag{1.4}
\]

Therefore, given the vector space in Fig. 1.3, we can compute the similarity between the target word and word1, word2 or word3 applying (1.4), being the maximum degree of similarity when the cosine is 0 (orthogonal vectors, \(\theta \) is 90 degrees):

![Figure 1.3 Vector space adapted from Manning et al. (2008,p.112)]

On the basis of the above, at the beginning of this thesis we tested whether some of the mentioned VSMs in section 1.1 could capture the particular linguistic features of DMs or not. Using word2vec tool kit trained in a small corpus text8 (17000K words) provided with the model, we obtained the the cosine distances for the target word although (the six most similar words are separated by narrower line) shown in Fig (1.4).
Introduction

<table>
<thead>
<tr>
<th>word</th>
<th>Cosine distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>though</td>
<td>0.874836</td>
</tr>
<tr>
<td>however</td>
<td>0.829028</td>
</tr>
<tr>
<td>but</td>
<td>0.776965</td>
</tr>
<tr>
<td>because</td>
<td>0.660516</td>
</tr>
<tr>
<td>nevertheless</td>
<td>0.626817</td>
</tr>
<tr>
<td>nonetheless</td>
<td>0.589289</td>
</tr>
<tr>
<td>have</td>
<td>0.587005</td>
</tr>
<tr>
<td>still</td>
<td>0.572910</td>
</tr>
<tr>
<td>yet</td>
<td>0.566393</td>
</tr>
<tr>
<td>since</td>
<td>0.535253</td>
</tr>
<tr>
<td>indeed</td>
<td>0.535020</td>
</tr>
<tr>
<td>while</td>
<td>0.527823</td>
</tr>
</tbody>
</table>

Table 1.1 Cosine distance obtained with the following parameters: model, CBOW; size, 200; window, 8.

In sum, it seems that even with such a small corpus as text8, word embeddings can capture some of the relation signalled by DMs (recall section 1.2), leading us to further research in this direction as it will be shown in the forthcoming sections.

It remains to be seen why we have chosen word embedding models among others with similar performance. Although we will not go into mathematical arguments, Mikolov, Corrado, et al. (2013) have noted that most of the complexity in previous models (Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA), for example) is caused by a non-linear hidden layer, which hinders the possibility to be trained on large data efficiently. On this basis, Mikolov, Corrado, et al. (2013) have developed simple models where the non-linear hidden layer is removed, increasing the speedup and the efficient computation of word similarities, with similar performance to other state-of-the-art word embedding methods.

- Continuous Bag-of-Words Model (CBOW): "the projection layer is shared for all words; thus, all words get projected into the same position (their vectors are averaged)."

- Continuous Skip-gram Model (Skip-gram): "similar to CBOW, but instead of predicting the current word based on the context, it tries to maximize classification of a word based on another word in the same sentence".
All things considered, henceforth the above models will be used for the proposes of this thesis.

1.4 Research questions

In the previous sections we have talked about different methods by which we can represent words with vectors. Likewise, we have introduced a data-driven classification of DMs based on Knott (1996) that seems to be followed by our preliminary small experiment with word embeddings.

Having reached this point and on the basis of previous sections, we are in the position to address the following research question:

- Despite the fact that DMs signal relations that go beyond simple local phenomena, can word embeddings capture some of these relations and the linguistic particularities of DMs?

- If so, is it necessary to train a classifier in order to recognise them?

In sum, these are the two main questions that have motivated this thesis and further research as it will be discussed in next sections.
CHAPTER 2

Methods

2.1 Experimental design and set-up

Any experimental design must first have an objective and a clear picture of every task in order to achieve it. Since the main objective of this master’s thesis is to verify whether the word embedding can capture the linguistic particularities of DMs or not, we need a theoretical framework and a classification of DMs based on their context. That is what we attempted in section 1.2 and 1.3, where adapted classification of DMs based on Hutchinson (2003) was proposed as a starting point (we reproduced Fig. 1.2 again for reading facilities).

Note that in this classification some DMs may be ambiguous as to which relation they signal, but no DM is ambiguous as to which class it belongs in, and that fact will be of crucial importance for further evaluations.

The second step is to obtain the word representations of the above-mentioned DMs. For this aim we used word2vec tool kit as detailed subsequently in section 2.2.

On the other hand, the quality of the word representation in vector space depends to a large extent on the training data, among other parameters. For this reason, we chose the British National Corpus (BNC), a 100-million-word balanced sample of
Methods

- **Negative polarity**: though, although, but, nevertheless, whereas, however, yet, then again, otherwise, all the same, still, even so, nonetheless, despite this, in spite of this, having said that, rather, instead

- **Temporal**: after, afterwards, meanwhile, before, finally, eventually, at last, after this, following this, previously, ever since, later, later on, from then on, thereafter, when

- **Additive**: too, as well, furthermore, moreover, in addition, also

- **Causal**: therefore, consequently, to this end, it follows that, hence, thus, clearly, plainly, obviously, as a result, as a consequence, thereby, in so doing, accordingly, so

- **Hypothetical**: if, suppose that, if ever, if only, if so, in that case

written (90%) and spoken (10%) English produced in the UK (The British National Corpus, 2007).

Once the word embeddings are obtained, it remains to be seen how to evaluate the distances among DMs vectors and if they are grouped accordingly with our classification in vector space or not. For this task, we will use Weka software (Hall et al., 2009). Weka is a collection of machine learning algorithms for data mining tasks, such a classification, regression or clustering. In this thesis, we will focus in clustering and classification techniques as detailed bellow.

2.2 Procedures used to obtain data and results

In order to obtain the DMs vector representations we needed to preprocess our data (the British National Corpus, about 100 million tokens). The preprocessing steps involved tokenisation and lowercasing. The punctuation, however, was not removed as it is considered a potential feature in our model.

As a result our processed data was formed by 115,376,293 words and a vocabulary size of 158,035.

The models and the parameters introduced in section 1.3 (Skip-gram and CBOW) were tested with the aim of determining the best configuration for our DMs repre-
2.2 Procedures used to obtain data and results

sentation. Therefore, following the comparisons between CBOW and Skip-gram models made by Mikolov, Chen, et al. (2013) as well as several tests in the vector spaces provided by Rei and Briscoe (2014)\(^1\)^\(^2\), we set our model with the following parameters:

- **Architecture**: skip-gram (skip-gram seems to perform better than CBOW with infrequent words. Since we assumed DMs to be infrequent words in comparison with the rest of the vocabulary, skip-gram was used as a main model).

- **The training algorithm**: hierarchical softmax (same reason than above: HS seems to perform better than negative sampling with infrequent words).

- **Sub-sampling of frequent words**: \(10^{-4}\) (this parameter indicates that frequent words, \(10^{-4}\), are down-sampled, improving the accuracy and speed for large data sets).

- **Dimensionality of the word vectors**: 200 (we matched the best results with values in range 200 to 300).

- **Context (window) size**: 10.

Before training the model in our data, we converted all the DMs constituted for more than one word in a single item using underscores (\(in\ of\) ⇒ in_spite_of\). The reason for that has to do with the way word2vec builds its internal vocabulary. Since we want a single vector for each DMs, underscoring is the most effective method to achieve so, otherwise, we would obtain an independent vectors for \(in\), \(spite\) and \(of\).

After the training, each word from our data is map onto word-vector, giving as a result a 200 dimensions vector space containing the target DMs that later on will be

\(^1\)http://www.marekrei.com/projects/vectorsets/
\(^2\)The tests consisted mostly in simple task such as measurements of cos distance or accuracy and analogy tasks based on `demo-word-accuracy-sh` and `demo-analogy.sh` scripts included in word2vec tool kit.
isolated from the vector space. The resulting subspaces are evaluated by means of clustering and classification algorithms in Weka software:

The first subspace used for clustering can be encoded in a $m \times n$ matrix, where $m = 61$, $n = 202$. Each row maps a DM vector (61 DMs) and the columns (202) are organized respectively as follows: Classes (Temporal, Negative Polarity, Causal, etc), DM name, features up to 200 (dimensionality of the word vectors).

K-means clustering method is used to partition the 61 observations (DMs vectors) into 5 clusters (the 5 DMs classes). The results and the evaluation of the clusters are given in the next chapter.

For classification, we created 10 vector spaces: 5 for training and the other 5 for the tests. Each training file contains a vector space composed of several DMs of only one class tagged accordingly, and a random number of DMs from different class tagged as no. Therefore, we have 5 binary training files for each class of DMs, and 5 test files also binary but containing DMs that have not been seen during training (2 DMs for each of the 5 classes, plus random DMs from different classes).

A Hoeffding decision tree (VFDT) algorithm is used to evaluate the classification. The results are given below.
CHAPTER 3

Results

3.1 Key results obtained in the study

3.1.1 K-means clustering

Table 3.1 Clustering results

(a) Clustered Instances

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>1</td>
<td>45 (74%)</td>
</tr>
<tr>
<td>2</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>3</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>4</td>
<td>12 (20%)</td>
</tr>
</tbody>
</table>

Incorrectly clustered instances: 31.0 (50.8197 %)

(b) Class attribute: DM class

<table>
<thead>
<tr>
<th>Assigned to cluster</th>
<th>Cluster Class assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4</td>
<td>0 15 0 0 0 Causal</td>
</tr>
<tr>
<td></td>
<td>0 6 0 0 0 Additive</td>
</tr>
<tr>
<td></td>
<td>1 2 0 0 12 Temporal</td>
</tr>
<tr>
<td></td>
<td>0 5 1 0 0 Hypothetical</td>
</tr>
<tr>
<td></td>
<td>0 17 0 2 0 Negative polarity</td>
</tr>
</tbody>
</table>

(c) Classes to Cluster

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Class assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No class</td>
</tr>
<tr>
<td>1</td>
<td>Causal</td>
</tr>
<tr>
<td>2</td>
<td>Hypothetical</td>
</tr>
<tr>
<td>3</td>
<td>Negative polarity</td>
</tr>
<tr>
<td>4</td>
<td>Temporal</td>
</tr>
</tbody>
</table>
Figure 3.1 DMs vs Class (cluster 0, cluster 1, cluster 2, cluster 3, cluster 4)
3.1 Key results obtained in the study

Figure 3.2 Clusters vs Class (cluster 0, cluster 1, cluster 2, cluster 3, cluster 4)
3.1.2 Decision tree classification

Table 3.2 Classification results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct classified</td>
<td>7 (70%)</td>
<td>8 (80%)</td>
<td>10 (10%)</td>
<td>8 (80%)</td>
<td>8 (80%)</td>
<td>41 (82%)</td>
</tr>
<tr>
<td>Incorrect classified</td>
<td>3 (30%)</td>
<td>2 (20%)</td>
<td>0 (0%)</td>
<td>2 (20%)</td>
<td>2 (20%)</td>
<td>9 (18%)</td>
</tr>
<tr>
<td>Precision</td>
<td>0.622</td>
<td>0.640</td>
<td>1.000</td>
<td>0.640</td>
<td>0.900</td>
<td>0.760</td>
</tr>
<tr>
<td>Recall</td>
<td>0.700</td>
<td>0.800</td>
<td>1.000</td>
<td>0.800</td>
<td>0.800</td>
<td>0.820</td>
</tr>
<tr>
<td>F-Measure</td>
<td>0.659</td>
<td>0.711</td>
<td>1.000</td>
<td>0.711</td>
<td>0.819</td>
<td>0.780</td>
</tr>
</tbody>
</table>

Weighted averages (Precision, Recall and F-Measure)
CHAPTER 4

Discussion and Conclusion

4.1 Clustering

From Table 3.1 we can observe that most of DMs (74%) were grouped in the same cluster, cluster 1. Yet, we expected to find the DMs instances distributed along the five clusters in line with the five DMs classes.

If we take a closer look at the clustering results, we find that the great majority of temporal DMs are clustered together in cluster 4 (80%). Looking at the sentences where those DMs appear in the BNC corpus, we find that temporal DMs are mostly used along with temporal nouns and adverbs of time such as *day, time, shortly, soon*, etc. In the same way, the only temporal DMs that is clustered in cluster 0 has certain differential particularities: although *ever since* can appear in different positions in a sentence, in our corpus it is almost always seen in the final position followed by a dot, which in our model is taken as a potential feature when word vectors are built.

On the other hand, the negative polarity DMs *despite this* and *in spite of* are clustered in cluster 3. They seem to share the same context schema unfeasible for most of the other negative polarity DMs: the DM preceded by another DM such a *nevertheless, however, so* or the coordinating conjunctions *and, or and but.*
Discussion and Conclusion

Finally, we have the hypothetical DM *suppose that* clustered in cluster 2. In this case, it is not clear whether *suppose that* can be taken as a pure DM or not. Since we followed Hutchinson (2003) in our initial DMs classification, we decided to include it for further comparisons with the results obtained by this researcher.

Although DMs are quite diverse from a syntactic point of view, most of them fall into four syntactic classes: coordinators, subordinators, conjunct adverbs and prepositional phrases. However, a few of them, such as *suppose that*, fall into a different category: phrases which take sentential complements. For that reason, the schema of the sentence is often different. Likewise, we can see in our corpus *suppose that* preceded by subject pronouns, auxiliary verbs such a *don’t* or the infinitive marker *to*. All of them either infeasible or infrequent with the rest of DMs.

Therefore, our experiment reflects the local lexical effect that word embeddings capture: words combining with same words have similar vector representations. That is, those words which do not have similar contexts in terms of lexical items, appear to be less related in the vector space (different vectors), so that the word representations are not grouped in similar clusters.

Bringing back our first question research (*Despite the fact that DMs signal relations that go beyond simple local phenomena, can word embeddings capture some of this relations and the linguistic particularities of DMs?*), we conclude that only those DMs where the above-mentioned lexical effect is greater, can be represented efficiently by word embeddings, as it has been clearly seen with temporal DMs. Since those DMs appear with similar adverbs of time or temporal nouns (greater lexical effect), most of the temporal DMs are clustered in the same cluster.

4.2 Supervised classification

The results obtained in the supervised classification appear to be slightly better with an overall precision, recall and F-measure of 0.760, 0.820 and 0.780, respectively.
4.3 Relevance with respect to state of the art

However, it should be noted that although the number of correct and incorrect classified instances are the same for the additive, hypothetical and negative polarity classes (8 vs 2), the confusion matrices are different. In the case of the additive and the hypothetical classes, all of the instances where classified as *no*, whereas in the negative polarity class, all NP instances were correctly classified but also two instances of *no* were classified as NP.

Therefore, the best performances are found again with temporal DMs followed by the NP DMs. Additive, hypothetical and causal DMs obtain, respectively, the worst performances.

Comparing both methods (clustering and supervised classification), we conclude that the relations among similar DMs can be induced better with the second, a supervised classification which has been trained previously. That is, word embeddings may provide the required information to establish the common features between DMs given a known sample.

4.3 Relevance with respect to state of the art

In the beginning of the thesis, we saw related research where vector space models were used to distinguish polysemous from monosemous prepositions in vector space and to determine salient vector-space features for a classification of preposition senses (Koper & Schulte im Walde, 2014). Likewise Rei and Briscoe (2014) investigate how dependency-based vector space models performs in hyponym generation, that is, returning a list of all possible hyponyms, given only a single word as input.

It is likely due to the fact that vectors space models are quite new in linguistics, we only found one research focus exclusively in DMs and data obtained from corpora (Hutchinson, 2003). Although the goal of that research was the automatic classification of DMs based on co-occurrence, no vector space models are involved to achieve it.
Discussion and Conclusion

In this regard, Hutchinson (2003) research faced similar problems than us with hypothetical and additive DMs. He obtained the poorest performance with those classes, which he believe could be improved by means of reducing the noise of some co-occurrences. That is, in the case of hypothetical DMs, selecting either only those instances where modality is clearly involved (the presence of *will* or *may*) or selecting the co-occurrences of DMs in specific position (*if* in a subordinate clause is known to collocate with *then* in the main clause).

4.4 Future steps

We believe on the basis of the results shown along this thesis that certain noise has been originated during the training process as a result of incorrectly taken occurrences such *too* in *too far* or *so* in *I think so*, which are clearly not a DMs. The former, as Hutchinson (2003) pointed out, could be easily addressed using a parsed version of BNC and considering only DMs attached at either the S or VP nodes. The second could also be disambiguated using similar strategies. So it remains to be seen whether a parsed version of the corpora could improve the overall performance of the model or not.
References

Appendix A:
Appendix A:

Table of Cue Phrase Definitions

<table>
<thead>
<tr>
<th>Cue Phrase</th>
<th>SOURCE OF COHERENCE</th>
<th>ANCHOR</th>
<th>PATTERNS OF INSTANTIATION</th>
<th>FOCUS OF POLARITY</th>
<th>POLARITY</th>
<th>PRESUPPOSITIONALITY</th>
<th>MODAL STATUS</th>
<th>RULE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>if S_A, S_C</td>
<td>PRAG</td>
<td>CAUS</td>
<td>BILAT</td>
<td>COUNT</td>
<td>PRES</td>
<td>HYP</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: despite this, S_C</td>
<td>PRAG</td>
<td>CAUS</td>
<td>BILAT</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
</tr>
<tr>
<td>even if S_A, S_C</td>
<td>PRAG</td>
<td>CAUS</td>
<td>BILAT</td>
<td>COUNT</td>
<td>NEG</td>
<td>PRES</td>
<td>HYP</td>
<td>CAUS</td>
</tr>
<tr>
<td>even when S_A, S_C</td>
<td>PRAG</td>
<td>CAUS</td>
<td>BILAT</td>
<td>COUNT</td>
<td>NEG</td>
<td>PRES</td>
<td>HYP</td>
<td>CAUS</td>
</tr>
<tr>
<td>S_A: otherwise S_C</td>
<td>PRAG</td>
<td>CAUS</td>
<td>BILAT</td>
<td>COUNT</td>
<td>POS</td>
<td>PRES</td>
<td>ACT</td>
<td>CAUS</td>
</tr>
<tr>
<td>S_A: rather than S_C</td>
<td>PRAG</td>
<td>RES</td>
<td>BILAT</td>
<td>POS</td>
<td>PRES</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: besides S_C</td>
<td>PRAG</td>
<td>UNIL</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: as a result of S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: as a result of S_C, such that S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: but S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: because of S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: before S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: finally S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: just as S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: nonetheless S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: on the other hand S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: such that S_C, if S_A</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: then again, S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: unless S_A, S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: whereas S_C</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
<tr>
<td>S_A: with the exception of S_C, S_A</td>
<td>PRAG</td>
<td>SEM</td>
<td>COUNT</td>
<td>NEG</td>
<td>NON</td>
<td>ACT</td>
<td>CAUS</td>
<td></td>
</tr>
</tbody>
</table>

Extracted from Knott (1996, p.201), where A and C are the propositional contents of the two related text spans S_A and S_C.

30
Appendix B:
Appendix B:

Small portion of the overall Knott’s taxonomy