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Abstract—Cooperation is viewed as a key ingredient for inter-
ference management in wireless networks. This paper shows that
cooperation has fundamental limitations. First, it is established
that in systems that rely on pilot-assisted channel estimation the
spectral efficiency is upper-bounded by a quantity that does not
depend on the transmit powers; in this framework, cooperation
is possible only within clusters of limited size, which are subject
to out-of-cluster interference whose power scales with that of the
in-cluster signals. Second, an upper bound is also shown to exist
if the cooperation extends to an entire (large) system operating
as a single cluster; here, pilot-assisted transmission is necessarily
transcended. Altogether, it is concluded that cooperation cannot
in general change an interference-limited network to a noise-
limited one. Consequently, existing literature that routinely as-
sumes that the high-power spectral efficiency scales with the log-
scale transmit power provides only a partial characterization. The
complete characterization proposed in this paper subdivides the
high-power regime into a degrees-of-freedom regime, where the
scaling with the log-scale transmit power holds approximately,
and a saturation regime, where the spectral efficiency hits a ceiling
that is independent of the power. Using a cellular system as an
example, it is demonstrated that the spectral efficiency saturates
at power levels of operational relevance.

Index Terms—Wireless communications, interference, cooper-
ative systems, wireless networks

I. INTRODUCTION

W IRELESS networks with many uncoordinated trans-
mitters and receivers utilizing the same spectrum are

interference-limited, meaning that an increase in the transmit
powers does not improve the spectral efficiency once those
powers are sufficiently high. In cellular systems, spectrum
reuse leads to a large fraction of users having a low signal-to-
interference-plus-noise ratio (SINR) unless bandwidth-wasting
methods such as reuse patterns are implemented to relieve cell-
edge users. Similar effects can be observed in other types of
networks: in WiFi, inefficient contention-based medium access
protocols protect receivers from interference by silencing
nearby transmitters.

It has been persuasively argued in a by-now vast literature
that this limitation is not fundamental, but rather an artifact

Angel Lozano (angel.lozano@upf.edu) is with Universitat Pompeu Fabra
(UPF), 08018 Barcelona, Spain. His work was supported by the European
Project FET 265578 ”HIATUS”.

Robert W. Heath Jr. (rheath@ece.utexas.edu) is with The University of
Texas at Austin, Austin, TX 78704-0240. His work was supported by the
Army Research Lab Grant W911NF-10-1-0420 and the Office of Naval
Research Grant N000141010337.

Jeffrey G. Andrews (jandrews@ece.utexas.edu) is with The University of
Texas at Austin, Austin, TX 78704-0240. His work was supported by the
National Science Foundation CIF-1016649.

Parts of this paper were presented at the 2012 Information Theory and Ap-
plications Workshop (ITA) [1] and at the 2012 IEEE International Symposium
on Information Theory (ISIT) [2].

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

of each transmitter-receiver pair communicating autonomously
rather than cooperatively (cf. [3]–[13] and references therein).
If the various nodes could cooperate, the logic goes, the
corresponding interference channel could be converted to a
broadcast channel—for the downlink—or a multiple access
channel—for the uplink—with all the transmitters (respec-
tively receivers) jointly encoding (respectively decoding). In
the cellular context, it would seem from this line of thinking
that an arbitrary number of base stations (BSs) could cooperate
to achieve enormous spectral efficiency gains over the lone-
BS model, with the only limitation being the amount of
coordination that can be afforded [14].

This is currently a problem of considerable theoretical
and practical interest. Incomplete but significant cooperation
between BSs has been attempted by industry and is still
ongoing, broadly under the current moniker of “coordinated
multipoint” (CoMP). The bit rate and latency of the backhaul
links have restrained the benefits of such cooperation thus far,
with disappointing improvements in average spectral efficiency
typically not exceeding 30% [15]–[17]. In fact, one respected
group has even observed a net loss from cooperative tech-
niques when the various over-the-air overheads are accounted
for [18]. Are these widespread observations a by-product of
current technology limitations that could be overcome with
better/more backhaul (e.g., over dedicated fiberoptic control
channels), improved feedback and overhead techniques, and/or
better joint encoding and decoding methods? Or is there a
fundamental limitation lurking beneath the surface, one that is
independent of the particular technology?

A. Background and Status Quo

There are currently about 3 million macrocellular BSs
worldwide and that number is expected to reach 50 million by
around 2015, once small cells (picocells and femtocells) are
incorporated [19]. In a typical urban area, thousands to tens-of-
thousands of BSs occupy the same spectrum. Because of the
ubiquity and commercial importance of cellular networks, plus
the clear scope for cooperation in them, and for the sake of
concreteness, we focus the discussion around BS cooperation.
However, the subsequent models and main results apply—at
least qualitatively—to any generic network.

Evaluating the performance of cellular systems is an arduous
task. Large-scale simulations are ultimately necessary to verify
the performance of any specific technique, but they are hardly
the best way to devise and probe ideas, build intuition, and
glean insights. Most designs are therefore incubated in much
simpler settings that represent a fragment of a network, and
only eventually are they transplanted and trialed at the level of
an entire system. A typical such controlled setting (at a given
time epoch) is described by the following relationship.
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Relationship 1 The observation at receiver n is

Yn =
K∑
k=1

Hnk

√
PXk + Zn n = 1, . . . , N (1)

where K and N are the number of transmitters and receivers,
respectively, Xk is the signal generated by transmitter k,
normalized such that P is its power, and Hnk is the channel
from transmitter k to receiver n. Power differences at the
K transmitters can be simply absorbed into the channel
coefficients or the noise variances. The term Zn is the noise
at receiver n, typically white and Gaussian, with some nor-
malized variance.

The signals and channel coefficients in Relationship 1 can
be scalars, or else properly dimensioned vectors and matrices
to accommodate multiple-input multiple-output (MIMO) tech-
niques. For the sake of exposition, unless otherwise stated, we
henceforth consider single-antenna transmitters and receivers.
Thus, the elements of Relationship 1 are scalars.

Relationship 1 subsumes, in effect, most basic information-
theoretic channel settings.
• Single-user channel if K = N = 1.
• Multiaccess channel (MAC) if K > 1 and N = 1.
• Broadcast channel (BC) if K = 1 and N > 1.
• Interference channel (IC) if K = N with K,N > 1.

Combinations of these basic settings are also possible. Re-
lationship 1 has led to characterizations of the single-user,
MAC and BC capacity, as well as asymptotic notions such as
the diversity-multiplexing tradeoff (DMT) [20] and practical
techniques like multiuser MIMO.

Relationship 1 has been applied to study the IC both
generically and in the context of cellular systems. Despite
the fact that the capacity of the IC is yet to be determined,
Relationship 1 has led to advances in its understanding.
• The definition of relevant quantities such as the number

of degrees of freedom (DoF) [21].
• The development of centralized-decoding cooperative

schemes such as Network MIMO [22].
• The genesis of distributed-decoding cooperative solutions

such as interference alignment (IA) [23], Max-SINR
[24], [25] and other forms of cooperative interference
management [26].

Most developments on the IC take place in the high-power
regime, which is where its nature comes to the fore. For any
setting conforming to Relationship 1, the high-power behavior
is as illustrated in Fig. 1. With the channel coefficients {Hnk}
known by the corresponding receivers and possibly also by
the transmitters, the spectral efficiency grows, for P → ∞,
linearly with logP with a slope given by the number of DoF.
Cooperative techniques such as Network MIMO or IA aim at
maximizing the number of DoF.

The IC developments spawned by Relationship 1 have
spurred an extensive amount of publications that invariably
promise major improvements in spectral efficiency through
cooperation. However, as noted at the outset, in subsequent
system-level simulations these gains do not seem to materi-
alize: DoF maximizations attained through IA translate only
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Fig. 1. Spectral efficiency v. P (in dB) according to Relationship 1.

to marginal gains or even outright losses in spectral efficiency
[27]–[30]. In [31], for instance, it was shown that a 300%
gain from using IA in an isolated 3-user setting shrinks to a
mere 28% gain when the same exact IA scheme is applied
to a 19-cell system. (The conditions are otherwise identical:
transmitters and receivers have 4 antennas and the signal-to-
noise ratio is 20 dB.) These serial many-fold discrepancies
point to a disconnect, to some fundamental way in which
a fragment of a cellular system is not properly modeled by
Relationship 1.

B. Modeling a Cluster Within a System
An obvious problem with Relationship 1 is that there is

a cutoff of K (potentially cooperating) transmitters, and all
other interference is ignored. The K cooperating transmitters
are typically geographical neighbors and are referred to as a
cluster. It is habitually assumed that any interference from
outside the cluster can be lumped into the {Zn} noise terms.
It cannot, because each Zn has a fixed variance that does not
depend on P whereas the out-of-cluster interference power
does scale with P . This scaling can be captured by modifying
Relationship 1 as follows.

Relationship 2 The observation at receiver n is

Yn =
K∑
k=1

Hnk

√
PXk +

K̃∑
k=K+1

Hnk

√
PXk + Zn (2)

where K̃ and Ñ are the total numbers of transmitters and
receivers in the system while K and N are the ones cooper-
ating. Defining Z ′n =

∑K̃
k=K+1HnkXk as the out-of-cluster

interference at receiver n,

Yn =
K∑
k=1

Hnk

√
PXk +

√
PZ ′n + Zn. (3)
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Fig. 2. Spectral efficiency v. P (in dB) according to Relationship 2.

As P → ∞, the out-of-cluster interference does as well if
the total network size is greater than K. This gives rise to a
saturation regime as shown in Fig. 2, where further increasing
the power P above some value Psat does not noticeably
improve the spectral efficiency because Z ′n dominates over the
noise Zn. Previous works in [32], [33] had acknowledged that
the interference power scales with P , but the representation
therein differs from Relationship 2 in at least one important
way: in [32] and [33], the channel coefficients are known
perfectly—at no cost—by all transmitters and receivers while,
in Relationship 2, the channel gains outside the cluster of
interest cannot be known (this is in fact what will come to
define the boundaries of a cluster) and those within the cluster
have to be learned, explicitly or not. Under the assumptions
in [32] and [33], the spectral efficiency still scales indefinitely
with logP , only with a modified and rather intuitive DoF
notion dubbed Generalized DoF. Under Relationship 2, in
contrast, the aforementioned saturation is observed.

C. Summary of Contributions

The correct representation of a cluster within a large wire-
less system is given by Relationship 2 and not Relationship 1,
and cooperation behaves very differently under the two rep-
resentations. A possible objection to this claimed distinction
could be that the high-power saturation occurs only because
the cluster size K, i.e., the number of cooperating transmitters,
is too small. If K were made large enough, wouldn’t the
saturation eventually disappear since interfering transmitters
would be converted to cooperating ones? The answer this
paper establishes is negative. Extending the cooperation scope
to ever larger clusters can at best shift the saturation point, Psat.
This fundamental limitation stems from the selective nature
of wireless channels, which inevitably vary in frequency and

in time (even if users are static, because of environmental
motion), and from the dynamic nature of wireless networks,
where users constantly switch from sleep-mode onto activity
and vice versa.

The points made in the sequel, which are consistent with
other recent works [34]–[36], descend from the model detailed
in Section II and its subsequent analysis in Sections III
and IV. The main observations from this analysis and the
accompanying examples are as follows.

1) Because of out-of-custer interference, a cluster within a
cellular system is described by Relationship 2 rather than
Relationship 1 and the performance of any cooperative
technique resembles Fig. 2 rather than Fig. 1.

2) For high P , two distinct sub-regimes can then be identi-
fied: a DoF regime where the noise dominates over the
out-of-cluster interference and a saturation regime where
the two become comparable and the spectral efficiency
chokes. The notion of DoF is only meaningful within
the DoF regime.

3) Two new quantities of interest emerge: Psat and C∞.
The former is the power level where the transition to
saturation is said to occur whereas the latter is the
corresponding limiting spectral efficiency. These new
quantities depend on the system topology, the propaga-
tion laws, and the degree of channel selectivity and user
dynamics. In most cases, the transition to the saturation
regime takes place well within the range of operational
interest and thus studies conducted using Relationship 1
are at risk of being misleading in terms of system-level
performance.

4) The saturation takes place regardless of whether the
communication is assisted by pilots, or not. Therefore,
the saturation does not occur simply because of explicit
channel estimation or because of pilot overhead in the
face of finite channel coherence. Nor could improved
channel estimation avert the problem.

II. DETAILED SYSTEM MODEL

This section is devoted to refining Relationship 2 and to
describing the models used to embody it in the remainder of
the paper.

A. Large-Scale Modeling

Let Gnk be the average channel power gain (associated with
distance decay, shadowing, building penetration losses, and
antenna patterns) between transmitter k and receiver n and let
us also define the normalized channel power gains

gnk =
Gnk∑K
κ=1Gnκ

(4)

such that, for every n,

K∑
k=1

gnk = 1. (5)

Thus, gnk signifies the share of receiver n’s signal power that
corresponds to transmitter k and the set {gnk} completely and
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compactly characterizes the degree of connectedness among
in-cluster nodes. We term the set {gnk} the geometry profile.

We can further absorb the various normalizations for each
receiver n into a signal-to-noise ratio (SNRn) that scales with
P and a signal-to-(out-of-cluster)-interference ratio (SIRn) that
does not scale with P . Specifically,

SNRn =
∑K
k=1GnkP

N0B
(6)

SIRn =
∑K
k=1Gnk∑K̃

k=K+1Gnk
(7)

where N0 is the noise spectral density and B the bandwidth.
From the definitions in (5), (6) and (7), we can rewrite (3)

as

yn =
√

SNRn

K∑
k=1

√
gnkhnkxk +

√
SNRn

SIRn
z′n + zn (8)

where the noise terms {zn}, the out-of-cluster interference
terms {z′n}, the signals {xk}, and the fading channel coef-
ficients {hnk} are all mutually independent random variables
normalized to be unit-variance.

If both the noise and the out-of-cluster interference are
Gaussian, then (8) becomes

yn =
√

SNRn

K∑
k=1

√
gnkhnkxk +

√
1 +

SNRn

SIRn
z′′n (9)

where z′′n is the aggregate noise-plus-interference, also Gaus-
sian and unit variance, i.e., z′′n ∼ NC(0, 1). Since the Gaussian
distribution correctly models thermal noise, and the out-of-
cluster interference is made up of a large number of indepen-
dent terms and thus its distribution tends to be approximately
Gaussian too, we focus on (9) with z′′n ∼ NC(0, 1). Nev-
ertheless, all of the points made henceforth apply—at least
qualitatively—in the wider generality of (8), with zn and z′n
having different distributions. Eq. (9) can be further rewritten
into the following.

Relationship 3 The observation at receiver n is given by

yn =
√

SNRn SIRn

SNRn + SIRn

K∑
k=1

√
gnkhnkxk + z′′n (10)

=
√

SINRn

K∑
k=1

√
gnkhnkxk + z′′n (11)

where SINRn equals the harmonic mean of SNRn and SIRn, i.e.,

1
SINRn

=
1

SNRn
+

1
SIRn

. (12)

For small P , SINRn ≈ SNRn whereas, for large P , SINRn ≈
SIRn. Although functionally equivalent to Relationship 2, the
above formulation on the basis of SNRn and SIRn is more
general in that it captures not only the scaling with P , but
also with other parameters such as cell size or noise variance.

B. Small-Scale Modeling

Referring back to Relationship 3, the small-scale fading
is modeled as Rayleigh distributed and thus the normalized
fading coefficients satisfy hnk ∼ NC(0, 1). (The unnormal-
ized channel coefficients utilized in Relationship 2 were thus
Hnk =

√
Gnkhnk.) We consider frequency-selective fading

with coherence bandwidth Bc, such that the value of each hnk
varies from subband to subband in an independent identically
distributed (IID) fashion. In terms of time selectivity, both
block- and continuous-fading are accommodated in our model.
• With block fading, the channels within each subband hold

constant for some time and then change to a different
value also in an IID fashion. If we denote by Tc the
channel coherence in time, then, irrespective of how the
signaling is arranged along the time and frequency di-
mensions, the number of symbols over which the channel
remains coherent is roughly L = BcTc.

• With continuous fading, the channels within each sub-
band are discrete-time stationary and ergodic random pro-
cesses with a Doppler spectrum Sh(·) that is bandlimited,
i.e., Sh(ν) = 0 for |ν| > fD with fD ≤ 1/2 some
maximum Doppler frequency. Typically

fD =
v

λBc
(13)

where v is the velocity and λ is the carrier wavelength,
yet our formulation holds regardless of how fD is defined.

Block fading is a coarse but effective approximation to
continuous fading, and remarkable equivalences between the
two have been uncovered [37], [38]. In particular, both models
have been shown to be equivalent in terms of channel estima-
tion minimum mean-square error (MMSE) for the case of a
rectangular Doppler spectrum, Sh(ν) = 1

2fD
for |ν| ≤ fD.

With such a spectrum, the MMSE is equivalent to that of a
block-fading channel having L = d 1

2fD
e (cf. Section III).

Example 1 Application of (13) with the typical cellular val-
ues λ = 0.15 m and Bc = 370 KHz leads to fD = 2.5 · 10−5

for v = 5 Km/h (pedestrian velocity) and fD = 5 · 10−4 for
v = 100 Km/h (vehicular velocity). This maps to L = 2 · 104

and L = 103, respectively.

C. Exemplary Cellular System

To close this section, let us introduce an exemplary system
that shall be utilized throughout.

Example 2 Consider a cellular system with tri-sector hexag-
onal cells of size R. Each sector’s antenna has a uniform gain
over the 120◦ span of the sector and a Q|dB-lower uniform
gain outside that span. Orthogonal signaling resources (time
slots and frequency subcarriers) are allocated to the users
within each sector. On any given resource, thus, there is a
single user per sector and hence K = N . Each user is
centered in azimuth within its sector and at distance 2R/3
from the BS. Depicted in Fig. 3 are an arbitrary reference cell
and the two tiers around it, yet the system has infinitely many
cells. The signals experience distance-dependent decay with
an exponent γ and also Rayleigh fading.
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Fig. 3. Regular universe with tri-sector hexagonal cells of size R. Each user
is centered in azimuth within its sector and at distance 2R/3 from the BS.

Example 2 is representative of a cellular system while
having the virtue of having regular user locations. Relationship
3 can then be embodied for any desired values of K = N , i.e.,
for clusters of arbitrary size, and the out-of-cluster interference
can be easily summed for K̃, Ñ → ∞ thanks to the regular
user locations.

III. CLUSTERED SYSTEM WITH PILOT-ASSISTED
CHANNEL ESTIMATION

In this section, we establish that the spectral efficiency
inevitably saturates for growing P whenever a system is
arranged into cooperation clusters. Specifically, the focus is
on clusters of dimension K < L, which renders it possible to
estimate all the channel coefficients within each cluster on the
basis of pilot symbol transmissions. The rationale for studying
systems featuring explicit channel estimation followed by
coherent detection of payload data [39] is that virtually every
existing wireless system abides by this methodology. The
procedure entails the transmission of pilot symbols regularly
in time (and in frequency when multiples of Bc are spanned).
We note the following.
• Pilot symbols are overhead.
• The periodicity of pilot transmission is determined by the

channel coherence.
Only a finite number of pilot symbols can be transmitted
within a given L-symbol coherence interval. At least one pilot
symbol, and possibly many, must be devoted to enabling the
estimation of each channel coefficient at the corresponding
receiver within each coherence interval. If the channels were
matrix-valued, as in MIMO, separate pilot symbols would
be needed for every entry therein. The number of channel

coefficients that can be estimated is therefore limited by L,
hence the restriction in this section that K < L. Having a
limited size, each cluster is inevitably exposed to interference
from all the transmitters beyond its borders.

Intuitively, excessively large clusters end up incurring a
disproportionate pilot overhead and/or poor channel estimates,
which, coupled with the diminishing returns in terms of useful
signal recovered from faraway transmitters, ultimately curb the
benefits of cooperation. To make this intuition specific, denote
by α the share of symbols reserved for pilots; the rest, (1−α),
is available for payload data. The pilot transmissions should
be orthogonally multiplexed from each of the transmitters [40]
and thus every receiver’s estimation of each of the K channel
coefficients corresponding to an in-cluster transmitter relies on
a share α/K of the symbols. When only the kth transmitter
is actively sending pilots, the SINR at receiver n is gnkSINRn.
With block fading, the estimation MMSE for hnk is then [39]

MMSEnk =
1

1 + gnkSINRnLα/K
(14)

whereas, with continuous fading [37], [41]

MMSEnk = 1−
∫ fD

−fD

gnkSINRnS
2
h(ν)

K/α+ gnkSINRnSh(ν)
dν. (15)

If the Doppler spectrum Sh(·) is rectangular, (15) becomes

MMSEnk =
1

1 + gnkSINRn
α/K
2fD

(16)

which coincides with (14) for fD = 1
2L . The MMSE expres-

sion in (16) thus allows embracing both the block- and contin-
uous fading models in a single framework [37]. Note that, to
accommodate at least one pilot symbol per channel coefficient
to be estimated, we need α ≥ αmin where αmin = K/L with
block fading and αmin = 2KfD with continuous fading.

Denoting the channel estimate by ĥnk and the corresponding
estimation error by h̃nk, it follows that hnk = ĥnk+ h̃nk with
ĥnk and h̃nk uncorrelated and with E[|h̃nk|2] = MMSEnk and
E[|ĥnk|2] = 1− MMSEnk. Hence, from Relationship 3,

yn =
√

SINRn

K∑
k=1

√
gnkĥnkxk +

√
SINRn

K∑
k=1

√
gnkh̃nkxk + z′′n

(17)
The receivers customarily utilize the channel estimates as if
they were correct, in which case the terms in the second
summation in (17) play the role of additional Gaussian noise
[42]. With that, the effective SINR at receiver n upon payload
data detection is

SINReff
n =

SINRn
∑K
k=1 gnk(1− MMSEnk)

1 + SINRn
∑K
k=1 gnkMMSEnk

(18)

and the average spectral efficiency (bits/s/Hz/user) that can be
attained reliably is

C = (1− α)
1
N
f
(

SINReff
1 , · · · , SINReff

N

)
(19)

where the function f(·) depends on the type of cooperation
among the K = N users. The spectral efficiency is maximized
by a proper choice of αmin ≤ α < 1. As K grows, αmin
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Fig. 4. Spectral efficiency as function of the single-user SNR, given by
PGkk/(N0B), for varying cluster sizes with either block fading (L = 2·104)
or continuous fading (fD = 2.5 · 10−5). Uplink with full cooperation.

grows with it squeezing α into higher values; additionally, α is
pushed further beyond αmin by the need to maintain effective
SINRs with ever more distant transmitters and, as a result, the
spectral efficiency is bound to peak at some cluster size and
diminish thereafter.

Example 3 Consider the uplink of the system in Example 2
with K = N and with clusters of dimension K < L where
the in-cluster BSs fully cooperate via Network MIMO, i.e., they
jointly decode the K signals received at the N sectors. The
distance-decay exponent is γ = 3.8 whereas Q|dB = 20 dB.
Defining an N ×K matrix S whose entries are independent
and such that the (n, k)th entry is Snk ∼ NC(0, σ2

nk) where

σ2
nk =

gnkSINRn(1− MMSEnk)

1 + SINRn
∑K
κ=1 gnκMMSEnκ

, (20)

the average spectral efficiency (bits/s/Hz/user) is

C = (1− α)
1
N

E[log2 det(I + SS†)]. (21)

Note that, because of the regular user locations, SNRn = SNR

for n = 1, . . . , N . The fading is either block (L = 2 · 104)
or continuous with a rectangular Doppler spectrum (fD =
2.5·10−5), which are equivalent in terms of channel estimation
and correspond to a pedestrian velocity. Shown in Fig. 4
is the spectral efficiency for several cluster dimensions as
a function of the single-user SNR, i.e., the SNR without
cooperation given by PGkk/(N0B). The baseline curve for
K = N = 1 corresponds precisely to single-user decoding,
without cooperation. The case K = N = 3 corresponds to
a cluster of 3 facing sectors as in Fig. 3. Finally, the case
K = N = 21 corresponds to a cluster of 7 cells: one central
cell plus the first tier around it. The pilot overhead α is equal
for all users but otherwise optimized to maximize C, i.e., it is
optimized for every cluster size and power level. For further
details, see Appendix C.
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Fig. 5. Spectral efficiency as function of the single-user SNR, given by
PGkk/(N0B), with either block fading (L = 2 · 104) or continuous fading
(fD = 2.5 · 10−5). Uplink with full cooperation. In solid, with the out-of-
cluster interference included. In dashed, with the out-of-cluster interference
turned off.

The performance in Example 3 improves when the cluster
size goes from 1 to 3, but then degrades slightly when
the cluster size increases to 21 and continues to degrade
for even larger sizes. To gauge the impact of out-of-cluster
interference, we replot the spectral efficiency corresponding
to K = N = 3 in Fig. 4 next to its counterpart in the same
exact conditions except with all the transmitters outside the
cluster of interest turned off. This comparison, presented in
Fig. 5, evidences that without out-of-cluster interference we
recover the traditional behavior (cf. Fig. 1). Out-of-cluster
interference, however, drastically modifies that behavior (cf.
Fig. 2). Note that modeling the out-of-cluster interference as
additional fixed-variance noise cannot fix the representation
in Relationship 1, as this would merely shift the spectral
efficiency by a certain amount. Only the representation in
Relationships 2–3 can properly reproduce the actual behavior,
as illustrated next for Example 3.

Example 4 For Example 3 with K = N = 3, the SIR that
should be inserted into Relationship 3 equals

SIRn =
∑3
k=1Gnk∑∞
k=4Gnk

(22)

= 9.2 dB n = 1, 2, 3 (23)

which, indeed, corresponds with the inflection point observed
in Fig. 5. This SNR point, which we had defined earlier
as Psat in terms of transmit power, delineates the transition
between the DoF regime and the saturation regime. In turn,
the limiting spectral efficiency can be found to be C∞ = 2.54
bits/s/Hz/user.

With different cluster arrangements, or simply with user
locations different from the regular ones in Example 3, the
values of SIR1, . . . , SIRN change and thus the optimum cluster
size may vary and the transition between the DoF and the
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Fig. 6. Cumulative distribution of SIR over all in-cluster locations for K =
N = 3. Uplink with K = N = 3 and full cooperation.

saturation regimes may take place at different points, but
qualitatively speaking the behavior is unaltered.

Example 5 Consider a variation of Example 3, with the out-
of-cluster users still centered within their own sectors but with
the location of each in-cluster user randomized to be uniform
over its sector. Shown in Fig. 6 is the cumulative distribution
of SIR at each of the three in-cluster receivers. In almost 90%
of locations, the SIR is below 20 dB. The median SIR is at 9.6
dB, confirming that the value obtained in Example 4 is indeed
quite representative.

The precedings examples indicate that, in a majority of
cases, the spectral efficiency with clusters implementing full
cooperation saturates at SNR levels of operational interest.
The final steps to fully generalize these figures would be
to randomize the location of the out-of-cluster users and to
incorporate shadow fading on all the links. Exactly adding up
the out-of-cluster interference for an infinitely large network
becomes challenging in that broad generality, but the com-
putation is otherwise conceptually identical and the resulting
SIR distribution is not expected to substantially depart from
the one in Fig. 6.

Qualitatively similar observations to the ones made in this
section for the uplink can be made for the downlink, which
could be analyzed by extending the pilot-assisted scheme in
[43] to the multicell realm.

IV. FULLY COOPERATIVE SYSTEM

The analysis in the previous section confirmed that, as a
result of out-of-cluster interference, the spectral efficiency is
upper-bounded by a quantity which does not depend on the
transmit power. The analysis, however, relied on pilot-based
channel estimation and thus had the restriction K < L on the
dimensionality of the clusters. Conceivably, if clusters could
be overcome and the entire system could cooperate as one,
then out-of-cluster interference would be eliminated altogether

thereby restoring—backhaul and hardware limitations aside—
the unbounded growth of the spectral efficiency with the SNR.
This section explores this possibility, admittedly quixotic but
relevant from the vantage of a fundamental understanding.
For K > L, there are not sufficient opportunities within
each coherence interval to separately estimate all the channel
coefficients and thus we resort to a pure information-theoretic
characterization; this can be interpreted as pertaining to the
realm of noncoherent communication, since no explicit chan-
nel estimation is presumed, but we hasten to emphasize that
in actuality this characterization subsumes any feasible form
of communication, noncoherent or otherwise.

In the absence of explicit channel-state information (CSI) at
the receivers, the capacity-achieving signal distribution and the
capacity itself are generally unknown. The spectral efficiency
achievable with complex Gaussian signals is also unknown,
save for certain single-user channels [44]. Given the difficulty
in computing the exact spectral efficiency achievable by a fully
cooperative system without CSI at the receivers, we focus on
showing that its limiting value for P → ∞ is bounded by
above by a quantity that does not depend on P .

Consider the uplink again. With block fading, the transmit-
receive relationship can be vectorized for the entire system
and all the symbols in a channel coherence block as

Y = diag
{√

SNR1, . . . ,
√

SNRN
}
HX + Z (24)

where Y and Z are N × L, H is N ×K and X is K × L.
The entries of Z are IID with Zn` ∼ NC(0, 1) whereas
the entries of H are independent with Hnk ∼ NC(0, gnk);
notice that the normalized channel power gains {gnk} are
directly incorporated as the variances of the entries of H. The
entries of X are unit variance and, since the kth row of X
contains the signal sequence transmitted by user k over the
L symbols of a fading block, the rows of X are independent.
The entire system is represented by (24) and there is no out-of-
cluster interference because all the transmitters in the system
participate in the cooperation.

Proposition 1 Consider the uplink of a cellular system subject
to block-fading with K > L. Define, for n = 1, . . . , N ,
respective diagonal matrices Gn = diag{gn1, . . . , gnK}.
Each Gn contains along its diagonal the normalized power
gains between the K transmitters and the nth receiver and
thus Tr{Gn} = 1. If X is full rank w.p.1, the average spectral
efficiency that a fully cooperative system can achieve reliably
for P →∞ satisfies C∞ ≤ CUB

∞ with

CUB

∞ = − 1
K

N∑
n=1

1
L

E
[
log2 det

(
X†GnX

)]
. (25)

Proof: See Appendix A.

In light of (5), CUB
∞ remains bounded for K,N →∞ with a

fixed ratio K/N . In large systems, therefore, sheer cooperation
cannot restore the unbounded growth of the spectral efficiency
with P .

The constraint on the rank of X is in principle mild, because
wireless transmissions invariably amount to sequences of IID
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symbols, but it does lead to a way out of the result that is
discussed in detail in Section V.

If the signal sequence transmitted by each user is not only
IID, but complex Gaussian, then CUB

∞ in (25) can be expressed
using [45, Prop. 4] in a form that is closed but not particularly
convenient to work with when K and L are large.

A more compact analytical handle on CUB
∞ can be obtained

by resorting to large-dimensional results in random matrix
theory, with the added advantage that the expressions then
hold for IID signals regardless of the distribution from which
the symbols are drawn, e.g., PSK or QAM in addition to com-
plex Gaussian. The following result offers an approximation
derived through random matrix theory.

Proposition 2 Consider the uplink of a cellular system subject
to block-fading with K > L. If every transmission consists of
IID symbols drawn from a common distribution, then

CUB

∞ ≈
N

K
log2e+

1
K

N∑
n=1

[
log2

an
L
− 1
L

K∑
k=1

log2(1 + angnk)

]
(26)

with each an, for n = 1, . . . , N , the nonnegative solution to
K∑
k=1

gnk
gnk + 1/an

= L. (27)

Proof: See Appendix B.

In certain special situations such as the one in Example 2,
Propositions 1 and 2 simplify significantly.

Corollary 1 If the system is isotropic in the sense that the
set of channel power gains looks the same from the vantage
of each receiver, i.e., the set {gnk}Kk=1 can be reordered for
every n into a common set {gk}Kk=1, then we can define a
unique matrix G containing such common set on its diagonal
and rewrite (25) as

CUB

∞ = −N
K

1
L

E
[
log2 det

(
X†GX

)]
. (28)

In turn, Proposition 2 then specializes to

CUB

∞ ≈
N

K

[
log2 e+ log2

a

L
− 1
L

K∑
k=1

log2(1 + agk)

]
(29)

with the unique a being the nonnegative solution to
K∑
k=1

gk
gk + 1/a

= L. (30)

In the context of continuous fading channels, the expres-
sions in both Proposition 2 and Corollary 1 can be interpreted
using the equivalence L = d 1

2fD
e put forth earlier in the paper.

Before applying the above corollary to the infinitely large
system in Example 2, we test its accuracy on a reduced version
thereof, with K = N and L small enough that the exact value
in (28) can be computed numerically.

Example 6 Consider the uplink of a finite version of the
system in Example 2 having 20 × 20 cells (K = 1200) and

let L = 100. All the sectors in the system cooperate fully
via Network MIMO. The distance-decay exponent is γ = 3.8
whereas Q|dB = 20 dB. Monte-Carlo evaluation of (28) gives
CUB
∞ = 5.183 b/s/Hz/user whereas (29)–(30) give CUB

∞ = 5.181
b/s/Hz/user.

Let us now apply Corollary 1 to the full system in Example
2 for values of L in the range of practical interest.

Example 7 Reconsider Example 6 with K = N → ∞.
For L = 2 · 104, CUB

∞ = 11.86 bits/s/Hz/user whereas, for
L = 103, CUB

∞ = 7.98 bits/s/Hz/user. For further details on the
computations, see Appendix C.

The spectral efficiencies actually achievable for P → ∞
may be substantially lower than the values in Example 7,
not only because these correspond to (not necessarily tight)
upper bounds but also because the values of L utilized for the
computations, which are correct over the propagation distances
encountered within a single cell or a small cluster of cells, are
bound to shrink with propagation taking place among faraway
cells. Precisely, the long propagation delays that arise when
distant units cooperate is sure to lead to a longer delay spread
and thus a smaller Bc, with the consequent reduction in L.

A question that can be posed at this point is the following:
if one wants to assume perfect CSI at the receivers, which
values for SIR1, . . . SIRN should be inserted into Relationship 3
to reproduce the results in Example 7? We can gauge this from
the values of CUB

∞ obtained therein. Because of the isotropy in
Example 7, every user operates at the same spectral efficiency
and thus SIRn = SIR for n = 1, . . . , N . With perfect CSI at
the receivers, complex Gaussian signals are capacity-achieving
and the uplink capacity of Relationship 3 with full cooperation
approaches, for P →∞,

CCSI

∞ =
1
K

E
[
log2 det

(
I + SIR HH†

)]
. (31)

Applying [46, Thm. 5] as a finite-dimensional approximation

CCSI

∞ ≈ 2 log2

(
1 +
√

1 + 4 SIR

2

)
− log2 e

4 SIR

(√
1 + 4 SIR− 1

)2
.

(32)
Solving for the SIR that equates (32) with the values for CUB

∞
in Example 7, we obtain

SIR = 39.96 dB, L = 2 · 104 (pedestrian)
SIR = 28.02 dB, L = 103 (vehicular) (33)

which, deriving from (approximations to) spectral efficiency
upper bounds, are themselves (approximate) upper bounds on
the actual SIR that quantifies the amount of interference to
which channel uncertainty is effectively equivalent. Although,
with shadow fading and randomized user locations, these
equivalent SIR values are likely to vary significantly, they are
indicative: if an entire system were to fully cooperate, it would
still face a fundamental performance ceiling corresponding
to values of SIR within the range of interest in high-power
analysis. This ceiling, furthermore, would depend exclusively
on the coherence L, which relates to the degree of selectivity
and dynamics, and on the geometry profile {gnk}, which
quantifies the degree of connectedness among users.
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Besides computational convenience, an additional benefit of
the approximations in Proposition 2 and Corollary 1 is that
they cast light on how CUB

∞ depends on the geometry profile.
• If {gnk}Kk=1 is highly skewed for a given n, then most

of the power received by BS n corresponds to a few
nearby users. Intuition then says that, given their relative
strength, the fading of these users’ channels and the
overlaying signals could be determined and most of the
received power therein could be rendered useful. The
approximate results confirm this intuition: with fewer
than L nonnegligible terms, CUB

∞ can be arbitrarily large
and thus a sustained increase of the spectral efficiency
with P is feasible (cf. Example 8 below).

• Alternatively, if {gnk}Kk=1 for a given n contains a myriad
minute terms, rather than a few strong ones, each of these
terms is simply too weak relative to the aggregate rest.
Intuitively, this should give rise to an ocean of terms that
are fundamentally undecodable. Again, the approximate
results confirm this intuition: if gnk = 1/K for k =
1, . . . ,K, then, as K grows without bound for fixed L,
CUB
∞ is not only curbed but vanishingly small (cf. Example

9 below).

Example 8 Consider a skewed geometry profile given by
gnk = (1−ε)/K ′ for k = 1, . . . ,K ′ and gnk = ε/(K−K ′) for
k = K ′+1, . . . ,K, with K ′ < L and ε� 1. This corresponds
to having K ′ < L nonnegligible interferers and K − K ′

negligible ones with ε determining the degree of negligibility.
From (30), a = O(1/ε) and, expanding (29) with respect to ε,

CUB

∞ ≈
N

K

(
1− K ′

L

)
log2

1
ε

+O(1) (34)

which grows without bound as ε vanishes and the skewness
becomes pronounced.

Example 9 Consider an unskewed geometry profile given by
gnk = 1/K for k = 1, . . . ,K. From (30),

a =
1

1/L− 1/K
(35)

which, plugged into (29), yields

CUB

∞ ≈
N

K

[
log2 e− log2

(
1− L

K

)
−K
L

log2

(
1 +

1
K/L− 1

)]
(36)

=
N

K

L

2K
log2 e+O

(
L

K

)2

(37)

which is not only curbed for fixed L, but small for K � L.

In an actual system, there will be a few strong signals
accompanied by progressively weaker ones. The result is a
finite value for CUB

∞ that depends on the precise geometry
profile. Note that, since the {gnk} are normalized, they are
scale independent: cell size is therefore immaterial in terms
of the geometry profile. Note also that the schedulers that
determine which user(s) in each cell are allocated to a given
signaling resource play a significant role in establishing the

geometry profile. Subject to latency and quality-of-service
constraints, the schedulers can shape the geometry profile.
Dynamic definition of the cooperation clusters is also likely
to be beneficial [47], [48]. Other aspects that may affect
the geometry profile include power control, vertical antenna
patterns and antenna downtilting [49].

For the downlink, the roles of transmission and recep-
tion are reversed relative to the uplink. The corresponding
performance of a fully cooperative system can be upper-
bounded by allowing all the receivers to cooperate, in which
case the uplink derivations carry over and a performance
ceiling is readily observed. Tighter upper bounds might be
obtained by removing the premise of receiver cooperation
while considering downlink transmission strategies other than
IID signaling.

V. CONCLUDING DISCUSSION

As argued up to this point, Relationships 2 or 3 with the
appropriate values for SIR1, . . . , SIRN are the correct represen-
tation of a large cellular system, or any fragment thereof.
The traditional high-power regime for user n, characterized
by SNRn � 1, splits into two sub-regimes (cf. Fig. 2).

1) The DoF regime, where SNRn � SIRn. In this regime,
the out-of-cluster interference is negligible relative to the
noise and the spectral efficiency grows approximately
linearly with logP according to the number of DoF
computed without out-of-cluster interference. The notion
of DoF remains approximately valid.

2) The saturation regime, where SNRn is comparable to or
greater than SIRn. In this regime, the spectral efficiency
chokes as it approaches C∞. The notion of DoF becomes
meaningless; more precisely, the actual number of DoF
is revealed to be zero.

The transition between these regimes takes place, for user
n, at the value of SNRn corresponding to Psat. (In pilot-
assisted communication, such SNRn essentially equals SIRn.)
If this transitional value of SNRn is not explicitly known
but the corresponding C∞ is known, the former can be
ascertained by establishing where an interference-free high-
power expansion of the spectral efficiency intersects with the
latter. It is pointless to operate at values of SNRn much above
this point.

It has also been shown that, in a fully cooperative system,
the transitional SNRn and the corresponding C∞ depend on
the skewness of the geometry profile and it has been pointed
out that a process of scheduling can modify such skewness.
Could scheduling modify the skewness to the point of restoring
the unbounded scaling of the spectral efficiency with P ? The
answer, implicitly given by Example 8, is affirmative. Specif-
ically, the example shows how the spectral efficiency upper
bound can be arbitrarily high if less than L transmitters have
nonnegligible powers, and scheduling can certainly ensure this
by silencing all but K ′ < L transmitters throughout the entire
system. This is consistent with the result derived in [50] for
a MIMO setting similar to (24), only with H having IID
entries, whereby the best asymptotic (P → ∞) scaling is
achieved if no more than L/2 transmitters are activated; the
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ensuing scaling is C = L/4 log2 P + O(1). This result can
be extended to our setting, where the entries of H can have
radically distinct variances.1 The cost of achieving those L/4
DoF is to allow only L/2 users to transmit concurrently and
within the same bandwidth. The remaining K − L/2 users
in the system, however, cannot be denied access and thus
they must be moved to separate orthogonal channels (in either
time or in frequency). It follows that the existing time and
bandwidth resources would have to be divided into K/(L/2)
orthogonal channels, each to accommodate a subset of L/2
users. Therefore, the asymptotic (P → ∞) scaling achieved
through this process would be

C =
L/2
K

L

4
log2 P +O(1) (38)

=
L2

8K
log2 P +O(1) (39)

which is optimal for P → ∞, but highly inefficient at finite
power levels. In fact, one of the main evolutionary axes of
wireless networks has been the move to ever more aggressive
resource reuse patterns, nowadays approaching universal reuse
whereby every unit of bandwidth and every time slot is always
active at every sector. The channelization required to ensure
(39) would go a full circle, countering what cooperation set
out to do in the first place: avoid bandwidth-wasting reuse
patterns.

Altogether then, the limits of cooperation are delineated
by the geometry profile. Mechanisms such as scheduling can
modify the geometry profile subject to a clear tradeoff: more
skewness pushes the saturation regime to higher power levels,
at the expense of less bandwidth reuse, while less skewness
causes the saturation to occur at lower powers but increases
the bandwidth utilization. The guideline that emerges is that,
to establish the fundamental limits at a given operating point
in terms of P , the geometry profile should be adjusted so as
to push the saturation just beyond such P .

A. Benefits of Cooperation

We hasten to emphasize that the points made in this paper do
not nullify the benefits of cooperation but, rather, they evidence
that cooperation has fundamental limitations that cannot be
overcome through faster backhaul, more sophisticated signal
processing, or any other technological advance. Under Rela-
tionships 2-3, cooperation can still yield a markedly higher
C∞ than if all interference was simply ignored. Similarly,
cooperation can provide an increased slope within the DoF
regime, allowing C∞ to be approached at lower power levels.2

This is demonstrated in the following example.

Example 10 Consider Relationship 3 with K = N = 3 and
with perfect CSI at the receivers. Let every BS and user have
two antennas. Further let SNRn = SNR, for n = 1, 2, 3, which
embodies a widely studied canonical setting. Shown in Fig.

1The fact that the same number of DoF holds regardless of the variances
of the channel matrix, as long as these are not identically zero, contextualizes
the extent to which the number of DoF is informative [51], [52].

2Recall that, in this regime, the slope is well approximated by the number
of DoF with the out-of-cluster interference neglected.

K = N = 3
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Fig. 7. Max-SINR v. TDMA utilizing Relationship 3 with K = N = 3
and with two antennas per transmitter and per receiver, for SIR → ∞ and
SIR = 20 dB.

7 are the spectral efficiencies achieved by distributed Max-
SINR [24], [25] and by round-robin TDMA for both SIR→∞
(no out-of-cluster interference) and for SIR = 20 dB. Note
that, for SIR → ∞, Relationship 3 reverts to Relationship 1
and the theoretical number of DoF per user (1 with Max-
SINR and 2/3 with TDMA) are approached with growing SNR.
For SIR = 20 dB, the inflection that delineates the DoF and
saturation regimes occurs around SNR = 20 dB as expected.

Apropos Example 10 with SIR = 20 dB, we observe that
the value of C∞ is over 50% higher with Max-SINR relative
to TDMA. Further, in the DoF regime—from about 5 to 20
dB—a substantial difference between Max-SINR and TDMA
builds up. Altogether then, cooperation continues to provide a
substantial advantage in this setting but the number of DoF is
only a partial measure thereof.

B. Future Directions

A key insight of the present work is that interference in
large wireless networks is made up of a multitude of terms,
the majority of which are too minute to be tracked given that
they are subject to independent fading. Beyond a few strong
terms corresponding to nearby transmitters, the structure of
the interference is too intricate to discern within the fading
coherence yet the sum of all those minute terms is very
substantial. Essentially then, the receivers are near-sighted.
They can only focus on a few strong nearby transmitters,
depending on the channel selectivity and system dynamics,
and everything else in the distance looks fundamentally blurry.
The result is a naturally clustered structure, with everything
that ensues.

There is a certain sense of acceptance that near-sightedness
is unavoidable, not only in the prevalence of clusters in the
cooperation literature, but also in the more recent trend of
studying partially connected networks [53]. The concept of
partial connectedness can be interpreted as a quantization of
the entries of the geometry profile to either zero or nonzero, a



IEEE TRANSACTIONS ON INFORMATION THEORY, 2013 11

simplification that facilitates the analysis while being faithful
up to a certain SNR (beyond which the neglected terms would
become relevant).

Undoubtedly, further work is needed to expand the observa-
tions in this paper, and we outline several directions of interest.

• The analysis focused on the uplink. The extension to
the downlink is relatively straightforward in clustered
systems with pilot-assisted transmission, but nontrivial
for fully cooperative systems.

• Although the model did encompass MIMO transmis-
sions, for the analysis only single-antenna transmitters
and receivers were considered. It would be desirable to
formalize the extension to MIMO, and especially to large-
dimensional MIMO [54], [55]. Note that the upper bound
in (25) grows sustainedly for N → ∞ with fixed K,
buttressing the potential of deploying base stations with
massive numbers of antennas.

• Related to the above point, it would also be desirable to
understand the tradeoffs between numbers of antennas at
a single base station and cooperation of many base sta-
tions to gauge whether there is a fundamental preference
for centralized or distributed antenna architectures [36].

• If a system is small in number of cells or if the clusters
are highly isolated (e.g., through geographical separa-
tion, penetration losses, or millimeter-wave propagation
losses), then Psat can be large enough to render the
saturation anecdotal. It would be useful to understand
and classify systems based on the proximity of Psat to
operationally relevant values.

• The modeling in this paper also neglected propagation
delay among distant units. Characterizing the impact of
delay (as a function of bandwidth) on Psat and C∞ would
likely further reduce both of these values, making them
even more practically relevant.

• Determining how Psat and C∞ behave in heterogeneous
networks with diverse cell sizes and user velocities would
also be desirable, as these are the types of networks that
are likely to predominate henceforth.

APPENDIX A
PROOF OF PROPOSITION 1

Using the chain rule, the mutual information between X
and Y (in bits per coherence block) can be expressed as

I(X; Y) = I(HX; Y)− I(Y; H|X). (40)

Since the entries of X are zero-mean and those of H are
independent, the entries of HX are zero-mean. Furthermore,
the variance of the (n, k)th entry of HX is

∑K
j=1 gnj which,

from (5), equals unity. It follows that the entries of HX
are zero-mean and unit-variance. The term I(HX; Y) is then
upper-bounded by the value it would take if those entries were
IID and NC(0, 1). Thus,

I(X; Y) ≤
N∑
n=1

L log2(1 + SNRn)− I(Y; H|X). (41)

Turning now our attention to I(Y; H|X), and denoting the
differential entropy operator by h(·),

I(Y; H|X) = h(Y|X)− h(Y|H,X). (42)

Conditioned on X, the rows of Y are independent (both con-
ditionally and unconditionally on H) and thus both differential
entropy terms in (42) can be computed row-wise and simply
added. Hence,

I(Y; H|X) =
N∑
n=1

I(yn; hn|X) (43)

where yn =
√

SNRn hnX+zn with hn and zn the nth rows of
H and Z, respectively. Since hn and zn are complex Gaussian
vectors,

I(Y; H|X) =
N∑
n=1

E
[
log2 det

(
I + SNRnX†GnX

)]
(44)

where, recall, Gn = diag{gn1, . . . , gnK}.
Since I(X; Y) increases monotonically with P , we concen-

trate on upper-bounding it for P →∞. Suppose first that we
had K < L. Then, for large SNRn, n = 1, . . . , N , we would
have

I(Y; H|X) =
N∑
n=1

(
K log2 SNRn + E

[
log2 det

(
XX†Gn

)])
+ o(1) (45)

and, from (41),

I(X; Y) ≤
N∑
n=1

((L−K) log2 SNRn

−E
[
log2 det

(
XX†Gn

)])
+ o(1) (46)

whose right-hand side grows unboundedly with P indicating
that there is hope for I(X; Y) to grow unboundedly with P .

Conversely, for K ≥ L, and given the full-rank condition
on X,

I(Y; H|X) =
N∑
n=1

(
L log2 SNRn + E

[
log2 det

(
X†GnX

)])
+ o(1) (47)

and thus (41) becomes, expanded with respect to P ,

I(X; Y) ≤ −
N∑
n=1

E
[
log2 det

(
X†GnX

)]
+ o(1) (48)

from which the upper bound in (25) follows.

APPENDIX B
PROOF OF PROPOSITION 2

If each user transmits an IID sequence with the symbols
drawn from a common distribution, the entries of X are
IID. It follows that, if the variances of the entries of G are
uniformly bounded, the expression in Proposition 1 satisfies
the conditions for the large-dimensional analysis in [46], [56].



IEEE TRANSACTIONS ON INFORMATION THEORY, 2013 12

Under these conditions, and couched in the notation of this
paper, we have that [46, Section VI-A]

− 1
L

E
[
log2 det

(
X†GnX

)]→ log2 e− log2

(
K∑
k=1

gnk
1 + ank

)

− 1
L

K∑
k=1

log2(1 + ank) (49)

as K,L → ∞ with K ≥ L, and with ank the nonnegative
solution to

ank =
Lgnk∑K
j=1

gnj

1+anj

. (50)

Defining

an =
L∑K

j=1
gnj

1+anj

(51)

we can write ank = angnk and

− 1
L

E
[
log2 det

(
X†GnX

)]→ log2 e+ log2

(an
L

)
− 1
L

K∑
k=1

log2(1 + angnk)

(52)

with an the nonnegative solution to

K∑
k=1

gnk
gnk + 1/an

= L. (53)

It must be noted that, in a cellular system, the variances of the
entries of G need not be uniformly bounded for K,N →∞.
Hence, there are no guarantees of convergence to the right-
hand side of (49) and the expression therein should in general
be taken only as an approximation for finite K, N and L. All
the tests conducted for finite but large values, e.g., Example
6, have indeed yielded very tight approximations to the exact
expression in the left-hand-side of (49).

APPENDIX C
DETAILS OF EXAMPLES 3 AND 7

If the integers u and v denote the indices of a cell on the
axes shown in the inset of Fig. 3, the cartesian coordinates of
the corresponding BS are

x =
3
2
uR (54)

y =
√

3
(
v +

u

2

)
R. (55)

Relative to its serving BS, the relative cartesian position of a
user centered in azimuth in its sector and at distance 2R/3
from the base is, for each of the sectors as labeled in Fig. 3,

∆x1 = −R
3

∆x2 = −R
3

∆x3 =
2R
3

(56)

∆y1 =
R√
3

∆y2 = − R√
3

∆y3 = 0. (57)

Therefore, the distance between the BS at the origin (u = v =
0) and the users at the cell with indices u and v equals, for
each of the sectors therein,

d1(u, v) = R

√(
3
2
u− 1

3

)2

+ 3
(
v +

u

2
+

1
3

)2

(58)

d2(u, v) = R

√(
3
2
u− 1

3

)2

+ 3
(
v +

u

2
− 1

3

)2

(59)

d3(u, v) = R

√(
3
2
u+

2
3

)2

+ 3
(
v +

u

2

)2

. (60)

The corresponding normalized power gains are g1(u, v) =
Dd−γ1 , g2(u, v) = Dd−γ2 /Q and g3(u, v) = Dd−γ3 /Q, with
D an appropriate constant and with Q the antenna front-to-
back ratio. (Because of symmetries, applying the factor 1/Q
to sectors 2 and 3 of each cell is equivalent to applying it to
all three sectors in the slices of the system spanned by sectors
2 and 3 of the central reference cell.)

Then, for Example 3, we can compute (7) by having the
appropriate terms in the numerator and denominator with
K̃ →∞.

For Example 7, D is the constant rendering
∞∑

u=−∞

∞∑
v=−∞

(g1(u, v) + g2(u, v) + g3(u, v)) = 1 (61)

which, for γ = 3.8, gives D = 0.157R3.8. Then, a is the
solution to

∞∑
u=−∞

∞∑
v=−∞

(
g1(u, v)

g1(u, v) + 1/a
+

g2(u, v)
g2(u, v) + 1/a

+
g3(u, v)

g3(u, v) + 1/a

)
= L (62)

while

C∞ = log2

ae

L
− 1
L

∞∑
u=−∞

∞∑
v=−∞

[log2(1 + a g1(u, v))

+ log2 (1 + ag2(u, v)) + log2 (1 + ag3(u, v))] . (63)

Numerical evaluation of (62) and (63) with Q = 100 yields
the results in Example 7.
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